Powered by Deep Web Technologies
Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high-sulfur Illinois coal. Design production is 125,000 pounds per hour of 400 psig saturated steam. An Illinois EPA construction permit has been received, engineering design is under way, major equipment is on order, ground breaking occurred in January 1984 and planned commissioning date is late 1985. This paper describes the planned installation and the factors and analyses used to evaluate the technology and justify the project. Design of the project is summarized, including the boiler performance requirements, the PYROFLOW boiler, the coal, limestone and residue handling systems and the pollutant emission limitations.

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

2

Identification and predictive control for a circulation fluidized bed boiler  

Science Conference Proceedings (OSTI)

This paper introduces the design and presents the research findings of the identification and control application for an industrial Circulation Fluidized Bed (CFB) boiler. Linear Parameter Varying (LPV) model is used in the model identification where ... Keywords: CFB boilers, Identification, LPV model, Linear models interpolation, MPC

Guoli Ji, Jiangyin Huang, Kangkang Zhang, Yucai Zhu, Wei Lin, Tianxiao Ji, Sun Zhou, Bin Yao

2013-06-01T23:59:59.000Z

3

Modeling of a coal-fired natural circulation boiler  

SciTech Connect

Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N. [Indian Institute of Technology, Bombay (India). Dept. of Mechanical Engineering

2007-06-15T23:59:59.000Z

4

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network (OSTI)

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

5

Distribution of bed material in a Horizontal Circulating Fluidised Bed boiler.  

E-Print Network (OSTI)

??A conventional circulating fluidised bed (CFB) boiler has a limitation due to the height of the furnace, when implemented in smaller industrial facilities. The design (more)

Ekvall, Thomas

2011-01-01T23:59:59.000Z

6

Assessment of New Energy Efficient Circulator Pump Technology  

Science Conference Proceedings (OSTI)

Electric pumps are the workhorses behind several industrial processes that help in transferring liquids, gases, and slurries from one location to another. From simple water pumping systems to sophisticated oil refineries, electric pumps find their application in many different areas. From hot water circulation systems to pool pumps, electric pumps also are used in various capacities in commercial and residential sectors. This technical update provides a technical assessment of a new circulator pump techn...

2010-11-15T23:59:59.000Z

7

Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler  

Science Conference Proceedings (OSTI)

Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

Changfu You; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2008-04-01T23:59:59.000Z

8

Effect of two-phase natural circulation distortion on tube failure in steam boilers  

SciTech Connect

Two different cases of evaporator tube ruptures in power station boilers due to natural circulation distortion are presented. The first case discussed concerns a 110-MW/sub e/ unit boiler with bottom evaporation tubing inclined at 15/sup 0/ to the horizontal. At the high heat fluxes present in the furnace, subcooled boiling occurs in inclined tubes. For these inclinations an insufficient flow rate causes local heat transfer deficiencies due to vapor-water separation. The introduction of internally finned tubes eliminates local heat transfer deficiencies and prevents further tube failures. The second case is that of circulation interruption due to blowdown during start-up. The water level in the drum of this second 110-MW/sub e/ unit boiler was controlled by inlet header blowdown during start-up. Thus, natural circulation was interrupted, causing local overheating of evaporator tubing. The event was identified by an increase of the tube rupture frequency. After changing the blowdown procedure, the interruptions of natural circulation were avoided and the tube failure frequency decreased substantially.

Afgan, N.; Radovanovic, P.; Brajuskovic, B.

1987-01-01T23:59:59.000Z

9

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS  

SciTech Connect

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

Nsakala ya Nsakala; Gregory N. Liljedahl

2003-05-15T23:59:59.000Z

10

Assessment of New Motor Technologies and their Applications: Evaluation of an advanced circulator pump for residential, commercial and industrial applications  

Science Conference Proceedings (OSTI)

Electric pumps are the workhorses behind several industrial processes that help transfer liquids, gases and slurries from one location to another. From simple water pumping systems to sophisticated oil refineries, electric pumps are used in many different areas. Electric pumps are also used in various capacities in the commercial and residential sectors from hot water circulation systems to pool pumps. This technical update provides an assessment of a new circulator pump technology that uses ...

2013-12-04T23:59:59.000Z

11

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

12

Heat Pump Markets UK in Europe  

E-Print Network (OSTI)

,000 units Total: 200,000 units 48% 19% 26% 0% 7% boilers heat pumps solar thermal micro chp & FC district% boilers heat pumps solar thermals micro chp & FC district heating 2010 2020Sales to new build 15% 51% 18 to Renewables Boiler non- con. Boilers con. Boiler Boiler + ST ST Boiler condensing Boiler non-condensing Boiler

Oak Ridge National Laboratory

13

Circulating pump impeller: Presbyterian Intercommunity Hospital, Klamath Falls, Oregon, geothermal heating system. Failure analysis report  

DOE Green Energy (OSTI)

The Presbyterian Intercommunity Hospital located in Klamath Falls, Oregon utilizes geothermal fluid pumped from its own well to provide space heat and domestic hot water. During an inspection of the heating system after a chemical cleaning of the heat exchangers, the circulating pump was dismantled to replace its seals which were found to be leaking. At that time, the impeller was found to contain many cracks. The analysis of those cracks and a scale sample removed from the impeller is presented. (MHR)

Mitchell, D.A.; Ellis, P.F.

1979-11-30T23:59:59.000Z

14

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

2003-03-26T23:59:59.000Z

15

Design of a high-pressure circulating pump for viscous liquids  

Science Conference Proceedings (OSTI)

The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 ? C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature ( 22 ? C ) and atmospheric pressure using liquids with low and moderately high viscosities

Bernhard Seifried; Feral Temelli

2009-01-01T23:59:59.000Z

16

Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler  

Science Conference Proceedings (OSTI)

Cofiring experiments were performed in a 12 MW circulating fluidized bed boiler. The fuel combinations were biofuel (wood+straw), coal+biofuel, coal+sewage sludge+biofuel, and sewage sludge+biofuel. Limestone or chlorine (PVC) was added in separate experiments. Effects of feed composition on bed ash and fly ash were examined. The composition of flue gas was measured, including on-line measurement of alkali chlorides. Deposits were collected on a probe simulating a superheater tube. It was found that the fuel combination, as well as addition of limestone, has little effect on the alkali fraction in bed ash, while chlorine decreases the alkali fraction in bed ash. Sewage sludge practically eliminates alkali chlorides in flue gas and deposits. Addition of enough limestone to coal and sludge for elimination of the SO{sub 2} emission does not change the effect of chlorine. Chlorine addition increases the alkali chloride in flue gas, but no chlorine was found in the deposits with sewage sludge as a cofuel. Cofiring of coal and biofuel lowers the alkali chloride concentration in the flue gas to about a third compared with that of pure biofuel. This is not affected by addition of lime or chlorine. It is concluded that aluminum compounds in coal and sludge are more important than sulfur to reduce the level of KCl in flue gas and deposits. 24 refs., 8 figs., 7 tabs.

K.O. Davidsson; L.-E. Aamand; A.-L. Elled; B. Leckner [Chalmers University of Technology, Goeteborg (Sweden). Department of Energy and Environment

2007-12-15T23:59:59.000Z

17

Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers  

E-Print Network (OSTI)

A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

2011-01-01T23:59:59.000Z

18

Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation  

SciTech Connect

The creation of a caesium vapour laser with closed-cycle circulation of the laser-active medium is first reported. The power of the laser radiation amounted to {approx}1 kW with the 'light-to-light' conversion efficiency of {approx}48 %. Quasi-two-dimensional computational model of the laser operation that provides adequate description of experimental results is considered. Calculated and experimental dependences of the laser radiation power on the temperature of the cuvette walls, laser medium pressure and pump power are presented.

Bogachev, A V; Garanin, Sergey G; Dudov, A M; Eroshenko, V A; Kulikov, S M; Mikaelian, G T; Panarin, V A; Pautov, V O; Rus, A V; Sukharev, Stanislav A

2012-02-28T23:59:59.000Z

19

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

2001-10-12T23:59:59.000Z

20

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

2002-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

2001-03-31T23:59:59.000Z

22

Drum-boiler dynamics  

Science Conference Proceedings (OSTI)

A nonlinear dynamic model for natural circulation drum-boilers is presented. The model describes the complicated dynamics of the drum, downcomer, and riser components. It is derived from first principles, and is characterized by a few physical parameters. ...

K. J. StrM; R. D. Bell

2000-03-01T23:59:59.000Z

23

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

2001-07-13T23:59:59.000Z

24

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

Bruce G. Miller; Curtis Jawdy

2000-10-09T23:59:59.000Z

25

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

2001-07-13T23:59:59.000Z

26

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)  

SciTech Connect

The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

John L. Marion; Nsakala ya Nsakala

2003-11-09T23:59:59.000Z

27

Waste heat boiler with feed mixing nozzle  

SciTech Connect

A waste heat boiler of the type which is particularly suited for use in marine applications and which incorporates a feed mixing nozzle that is operative for purposes of effecting, by utilizing steam taken from the steam generating bank, a preheating of the feedwater that is fed to the steam drum. In addition to the aforesaid feed mixing nozzle, the subject waste heat boiler includes a feedwater control valve, a steam drum, a circulation pump, a steam generating bank and a centrifugal water separator. The feedwater control valve is employed to modulate the flow rate of the incoming feedwater in order to maintain the desired level of water in the steam drum. In turn the latter steam drum is intended to function in the manner of a reservoir for the circulating water that through the operation of the circulating pump is supplied to the steam generating bank. The circulating water which is supplied to the steam generating bank is heated therein to saturation temperature, and steam is generated thus. A water-steam mixture is returned from the steam generating bank to the steam drum and is directed into the centrifugal water separator that is suitably located within the steam drum. It is in the centrifugal water separator that the separation of the water-steam mixture is effected such that water is returned to the lower portion of the steam drum and the steam is supplied to the upper portion of the steam drum. The preheating of the feedwater is accomplished by directing the incoming feedwater through an internal feed pipe to the mixing nozzle, the latter being positioned in the line through which the water-steam mixture is returned to the steam drum.

Mastronarde, Th.P.

1984-05-01T23:59:59.000Z

28

OEIM 210. Industrial Mechanics III 4 cr. Air compressors, sliding surface bearings, boiler maintenance, boiler  

E-Print Network (OSTI)

OEIM 210. Industrial Mechanics III 4 cr. Air compressors, sliding surface bearings, boiler maintenance, boiler tube repairs, basic arc and gas welding, measurement tools, gauge glass maintenance, heat by employer and instructor on boiler inspection and cleaning, centrifugal pumps, basic rigging, piping

Castillo, Steven P.

29

PUMPS  

DOE Patents (OSTI)

A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

Thornton, J.D.

1959-03-24T23:59:59.000Z

30

Modeling of a Drum Boiler Using MATLAB/Simulink.  

E-Print Network (OSTI)

??A dynamic simulator was developed for a natural circulation drum type boiler through a joint Youngstown State University/The Babcock and Wilcox Company cooperative agreement. The (more)

Anderson, Scott B.

2008-01-01T23:59:59.000Z

31

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

32

Boiler Alloys  

Science Conference Proceedings (OSTI)

Table 4   Major international research and development efforts...650 °C Ferritic steel development EPRI, U.S.A. Electric Power Research Institute 1978??2003 ? Boiler and turbine thick-walled components; standardization

33

List of Boilers Incentives | Open Energy Information  

Open Energy Info (EERE)

Boilers Incentives Boilers Incentives Jump to: navigation, search The following contains the list of 550 Boilers Incentives. CSV (rows 1-500) CSV (rows 501-550) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

34

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. The measures include: 1) Reheating of dehumidified cleanroom make-up air with heat extracted during precooling. 2) Preheating of deionization feedwater with refrigerant heat of condensation. 3) Preheating of boiler combustion air with heat extracted from boiler flue gas. 4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust. 5) Variable speed operation of boiler feedwater pumps and forced-draft fans. 6) Preheating of boiler make-up water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) reduced the amount of steam produced by about 25% and saved about $1,010,000/yr by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the unit cost of steam produced by about 13% and saved about $293,500/yr by reducing natural gas and electricity usage at the steam boiler plant. The combined result was a 35% reduction in annual steam costs (fuel and power).

Fiorino, D. P.

2000-04-01T23:59:59.000Z

35

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

36

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

37

Equilibrium Response of Ocean Deep-Water Circulation to Variations in Ekman Pumping and Deep-Water Sources  

Science Conference Proceedings (OSTI)

A multilayer ocean model that is physically simple and computationally efficient is developed for studies of competition and interaction among deep-water sources in determining ocean circulation. The model is essentially geostrophic and ...

F. L. Yin; I. Y. Fung; C. K. Chu

1992-10-01T23:59:59.000Z

38

Boilers | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Boilers Jump to: navigation, search TODO: Add description List of Boilers Incentives...

39

A New Scheme on Robust Observer Based Control Design for Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler  

E-Print Network (OSTI)

with Application to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract. The controller design is evaluated on a natural circulation drum boiler, where the nonlinear model describes

Marquez, Horacio J.

40

Water treatment program raises boiler operating efficiency  

Science Conference Proceedings (OSTI)

This report details the boiler water treatment program which played a vital role in changing an aging steam plant into a profitable plant in just three years. Boiler efficiency increased from approximately 70 percent initially to 86 percent today. The first step in this water treatment program involves use of a sodium zeolite water softener that works to remove scale-forming ions from municipal water used in the system. A resin cleaner is also added to prolong the life of resins in the softener. The water is then passed through a new blow-down heat exchanger, which allows preheating from the continuous blow-down from the boiler system. The water gets pumped into a deaerator tank where sulfite treatment is added. The water then passes from feedpumps into the boiler system.

Not Available

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

LMFBR with booster pump in pumping loop  

DOE Patents (OSTI)

A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

Rubinstein, H.J.

1975-10-14T23:59:59.000Z

42

Pioneering Heat Pump Project Geothermal Project | Open Energy...  

Open Energy Info (EERE)

that will serve multiple buildings, converting them from a traditional gas-fired boiler system to ground source heat pumps that use carbon dioxide as the refrigerant source,...

43

Cost-Effective Industrial Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were implemented during a recently completed boiler plant replacement project at a large semiconductor manufacturing complex. The "new" boiler plant began service in November, 1996 and consists of four 75,000 lb/hr water-tube boilers burning natural gas and producing 210 psig saturated steam for heating and humidification. Efficiency advancements include: 1) Reheating of cleanroom make-up air with heat extracted during precooling. 2) Preheating of combustion air with heat extracted from boiler flue gas. 3) Preheating of boiler feedwater with heat extracted from the exhaust of a nearby gas turbine. 4) Variable speed operation of boiler feedwater pumps and forced-draft fans. 5) Preheating of boiler make-up water with heat extracted from boiler blow-down. These efficiency advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

Fiorino, D. P.

1997-04-01T23:59:59.000Z

44

BOILER PERF MODEL  

Science Conference Proceedings (OSTI)

The BOILER PERFORMANCE MODEL is a package of eleven programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. (USDOE, Pittsburgh Energy Technology Center, Pittsburgh, PA (United States))

1988-01-01T23:59:59.000Z

45

Minimize Boiler Blowdown  

SciTech Connect

This revised ITP tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

46

Shield for Water Boiler  

SciTech Connect

Siimplified shielding calculations indicating the proposed design for the water boiler assembly will reduce the radiation at normal operaton to values well below those which are considered tolerable.

Balent, R.

1951-08-08T23:59:59.000Z

47

Boilers and Fired Systems  

SciTech Connect

This chapter examines how energy is consumed, how energy is wasted, and opportunities for reducing energy consumption and costs in the operation of boilers.

Parker, Steven A.; Scollon, R. B.

2009-07-14T23:59:59.000Z

48

Furnaces and Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating.

49

www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME  

E-Print Network (OSTI)

of residential HP and AC annual/ seasonal performance (Operating Agent: SE) Establish common calculation and test ­ Refrigeration Covers applications in ­ Residential and commercial buildings ­ Industry HEAT PUMPING TECHNOLOGY boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps

Oak Ridge National Laboratory

50

Boiler Stack Economizer Tube Failure  

Science Conference Proceedings (OSTI)

Presentation Title, Boiler Stack Economizer Tube Failure ... performed to investigate the failure of a type 304 stainless steel tube from a boiler stack economizer.

51

OMFP: An Approach for Online Mass Flow Prediction in CFB Boilers  

Science Conference Proceedings (OSTI)

Fuel feeding and inhomogeneity of fuel typically cause process fluctuations in the circulating fluidized bed (CFB) boilers. If control systems fail to compensate the fluctuations, the whole plant will suffer from fluctuations that are reinforced by the ...

Indr? liobait?; Jorn Bakker; Mykola Pechenizkiy

2009-10-01T23:59:59.000Z

52

Closed cycle steam turbine system with liquid vortex pump  

SciTech Connect

A closed cycle steam generating system is described comprising a steam boiler, and a steam turbine includes a vacuum pump of the liquid vortex type for condensing the exhaust steam from the turbine, a feedwater pump being employed for returning the condensate to the boiler. The tank of the vortex pump is maintained filled with water and the pressure in the tank is regulated automatically to maintain a predetermined value thereof.

Brown, K.D.

1976-08-10T23:59:59.000Z

53

Boiler Condition Assessment Guideline  

Science Conference Proceedings (OSTI)

This report Boiler Condition Assessment Guideline provides a concise overview of procedures developed by the Electric Power Research Institute EPRI to help power plant operators cost-effectively determine the extent of degradation and remaining life of key boiler components. The Guideline draws from EPRIs detailed area-specific guidelines, which in turn are based on extensive research findings by EPRI, member companies, and other organizations. This Guideline offers a starting point for power plant perso...

2010-12-23T23:59:59.000Z

54

Inherently Reliable Boiler Component Design  

Science Conference Proceedings (OSTI)

This report summarizes the lessons learned during the last decade in efforts to improve the reliability and availability of boilers used in the production of electricity. The information in this report can assist in component modifications and new boiler designs.

2003-03-31T23:59:59.000Z

55

Compilation of EPRI Boiler Guidelines  

Science Conference Proceedings (OSTI)

Boiler component failures are the most common cause of unplanned outages in fossil steam plants. Headers and drums are two of the largest and most expensive boiler components; however, tube failures have posed the primary availability problem for operators of conventional and combinedcycle plants for as long as reliable statistics have been kept. This product provides a compilation of technical reports covering boiler condition assessment, header and drum failures, and boiler and heat recovery steam gene...

2008-03-26T23:59:59.000Z

56

An Overview of Hot Corrosion in Waste to Energy Boiler ...  

Science Conference Proceedings (OSTI)

Presentation Title, An Overview of Hot Corrosion in Waste to Energy Boiler ... boiler designers, and boiler tube manufacturers since quite a few number of boiler...

57

Recovery Boiler Modeling  

E-Print Network (OSTI)

Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown to provide good resolution of the complex flow near the air ports and greatly improve the convergence characteristics of the numerical procedure. The improved resolution enhances the predictive capabilities of the computations, and allows the assessment of the relative performance of different air delivery systems.

Abdullah, Z.; Salcudean, M.; Nowak, P.

1994-04-01T23:59:59.000Z

58

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network (OSTI)

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research (unrecuperated) with an ultra- low nitrous oxide (NOx) boiler burner for firetube boilers. The project goals

59

Flame Doctor for Cyclone Boilers  

Science Conference Proceedings (OSTI)

This development program was designed to enhance monitoring and diagnostic technology for cyclone furnaces using the Flame Doctor combustion diagnostic system. First developed for wall-fired pulverized-coal burner systems and boilers, Flame Doctor allows simultaneous, continuous monitoring and evaluation of each burner in a boiler using signals from optical flame scanners. An initial feasibility test conducted at the AmerenUE Sioux cyclone boiler indicated Flame Doctor technology could be extended to cyc...

2007-12-12T23:59:59.000Z

60

Return Condensate to the Boiler  

SciTech Connect

This revised ITP tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Super Boiler 2nd Generation Technology for Watertube Boilers  

Science Conference Proceedings (OSTI)

This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

Mr. David Cygan; Dr. Joseph Rabovitser

2012-03-31T23:59:59.000Z

62

REED BESLER BOILER HIGH PRESSURE STEAM SYSTEM AND THERMAL CYCLING FACILITY. Summary Report  

SciTech Connect

A high pressure boiler has been installed at ORNL. This Besler boiler is capabie of producing from 150 to 2000 psi saturated steam at steaming rates up to 5000 lbs/hr. The boiler is part of a water-steam circuit whteh also includes two spray water pumps, a steam pressure control valve, a high pressure trapping station, and a low pressure deaerated feedwater system. The new boiler system is piped and instrumented to serve as a thermal cycling facility. Shakedown test thermal cycles to requirements set forth in HRT Specification 1113a have been conducted using the existing Dump Test Autoclave as a test piece. Fourty-four cycles have been run through mid February, 1958. The boiler has been operated a total of 142 hours. Cycles are run completely automatically. Better than three- fourths of the cycles as run fall within the specification prescribed limits. (auth)

Holz, P.P.

1958-02-12T23:59:59.000Z

63

Postcombustion and its influences in 135 MWe CFB boilers  

SciTech Connect

In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2009-09-15T23:59:59.000Z

64

Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study  

SciTech Connect

Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

2006-06-30T23:59:59.000Z

65

A Model of Wind- and Buoyancy-Driven Ocean Circulation  

Science Conference Proceedings (OSTI)

A layered model of steady geostrophic ocean circulation driven by wind stress and buoyancy flux at the surface is derived. Potential vorticity, or thickness, of the two near-surface layers is driven by Ekman pumping and buoyancy pumping. The ...

Roland A. De Szoeke

1995-05-01T23:59:59.000Z

66

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and...

67

Boiler Reliability Optimization: Interim Guideline  

Science Conference Proceedings (OSTI)

Competitive pressures to drive costs down in the new business environment sometimes conflict with the demands of increased reliability and quality of supply. The Boiler Reliability Optimization program, which makes use of a number of applicable EPRI technologies, was developed to assess, create, and implement an effective boiler maintenance strategy for the changing business environment.

1999-11-30T23:59:59.000Z

68

Flame Doctor for Cyclone Boilers  

Science Conference Proceedings (OSTI)

NOx control and combustion optimization in cyclone boilers requires a monitoring technique that can assess the quality of combustion in the burner and barrel and provide guidance to the operator to make adjustments in the air distribution. This report describes the results through the end of 2008 of a beta demonstration of the Flame Doctor combustion diagnostic system at five working cyclone boilers.

2009-07-22T23:59:59.000Z

69

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities in EPA's Boiler Rules Opportunities in EPA's Boiler Rules On December 20, 2012, the US Environmental Protection Agency (EPA) finalized new regulations to control emissions of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and Boiler Area Source Rule (smaller sources), will reduce the amount of HAPS such as mercury, heavy metals, and other toxics that enter the environment. Since emissions from boilers are linked to fuel consumption, energy efficiency is an important strategy for complying with the new Boiler rules. Who is affected? Most existing industrial, commercial and institutional (ICI) boilers will not be affected by the Boiler MACT. These unaffected boilers are mostly small natural gas-fired boilers. Only about 14% of all existing

70

New and Underutilized Technology: Condensing Boilers  

Energy.gov (U.S. Department of Energy (DOE))

The following information outlines key deployment considerations for condensing boilers within the Federal sector.

71

Practical Procedures for Auditing Industrial Boiler Plants  

E-Print Network (OSTI)

Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis, and the preparation of recommendations. A complete boiler plant program will consider each individual boiler, boiler room auxiliary equipment, steam distribution and return systems, and steam end use equipment. This paper summarizes the practical procedures, techniques, and instrumentation which Nabisco uses in its boiler plant energy conservation program.

O'Neil, J. P.

1980-01-01T23:59:59.000Z

72

Oxy-combustion Boiler Material Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

73

Recover Heat from Boiler Blowdown  

SciTech Connect

This revised ITP tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

74

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

75

Computer Control of Boiler Operation  

E-Print Network (OSTI)

Rapidly rising energy costs present the opportunity for substantial cost savings through improved boiler combustion control. A process computer control system was installed at an Air Products & Chemicals facility in 1978. As a result the boiler efficiency has increased over 11%. The control system includes; air flow, fuel flow, pressure and drum level control. Air flow control is achieved through modulation of the F.D. fan inlet vanes. Demand for airflow is produced from a high signal selection of the steam pressure controller or the total fuel signal. The output of the oxygen controller is used to modify this airflow index by the desired air/fuel ratio. The air/fuel ratio is a polynomial function of the type of fuel used. In summary, the computer control system provides for; greater overall boiler stability, operation within tight air/gas limits, increased boiler efficiency, capability to burn multiple fuels, faster response to demand changes, and fewer shutdowns.

Pareja, G. E.

1981-01-01T23:59:59.000Z

76

Field Guide: Boiler Tube Failure  

Science Conference Proceedings (OSTI)

In conventional and combined-cycle plants, boiler tube failures (BTFs) have been the main availability problem for as long as reliable statistics have been kept for each generating source. The three volumes of the Electric Power Research Institute (EPRI) report Boiler and Heat Recovery Steam Generator Tube Failures: Theory and Practice (1012757) present an in-depth discussion of the various BTF and degradation mechanisms, providing plant owners and operators with the technical basis to address tube failu...

2009-12-22T23:59:59.000Z

77

PUMP CONSTRUCTION  

DOE Patents (OSTI)

A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

Strickland, G.; Horn, F.L.; White, H.T.

1960-09-27T23:59:59.000Z

78

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

79

Water-Loop Heat Pump Systems: Assessment Study Update  

Science Conference Proceedings (OSTI)

Water-loop heat pump systems, composed of multiple water-source heat pumps, a boiler, and a cooling tower operating in a closed water loop are a key segment of the commercial building heat pump market. This type of system provides a low-first-cost, versatile, and energy-efficient approach to space conditioning commercial buildings that have simultaneous heating and cooling loads.

1991-10-25T23:59:59.000Z

80

Boiler using combustible fluid  

DOE Patents (OSTI)

A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

Baumgartner, H.; Meier, J.G.

1974-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Refractory experience in circulating fluidized bed combustors, Task 7  

Science Conference Proceedings (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

82

Handling outliers and concept drift in online mass flow prediction in CFB boilers  

Science Conference Proceedings (OSTI)

In this paper we consider an application of data mining technology to the analysis of time series data from a pilot circulating fluidized bed (CFB) reactor. We focus on the problem of the online mass prediction in CFB boilers. We present a framework ...

J. Bakker; M. Pechenizkiy; I. liobait?; A. Ivannikov; T. Krkkinen

2009-06-01T23:59:59.000Z

83

Improve Boiler System Operations- Application of Statistical Process Control  

E-Print Network (OSTI)

The Utilities Department provides utility services to Monsanto and Cain Chemical Company production units at Chocolate Bayou. Over two years ago the department recognized that a significant reduction in waste and rework could be achieved by improving steam boiler and boiler feedwater system operations. The processes were experiencing high maintenance cost due to metering pump and analyzer failures, equipment failures and fouling due to poor control of chemical treatment, and steam vent losses due to unproven system reliability. The team used statistical process control to prevent overadjustment of the process, identified special causes, interviewed customers and applied the ten steps to quality improvement. Results include a six-fold reduction in process variability, $2.3 million/year cost reduction, and improved reliability and customer relations.

Scarr, D.; Shea, D.

1989-09-01T23:59:59.000Z

84

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

85

Implementation of Boiler Best Practices  

E-Print Network (OSTI)

Boilers are an essential part of any industrial plant, and their efficient, economical operation can significantly affect the reliability and profitability of the entire plant. Best Practices for Boilers include tools to determine where a plant or corporation is with respect to boiler treatment, what needs to be done to make the plant (corporation) the "best of the best," and how to get there. When implemented, Best Practices provide a method to measure and track progress, and represent a benchmark for continuous improvement. Best Practices combine our global collective experience from the areas of research, consulting, sales and marketing, and involve not only recommendations and specifications, but also the rationale behind them for the application of the chosen treatment, monitoring, and instrumentation. Best practices provide energy savings, profitability improvement, reduction in total cost of operations, project management, optimized treatment choices, enhanced safety, system assessment processes and facilitated system improvements.

Blake, N. R.

2000-04-01T23:59:59.000Z

86

ELECTROMAGNETIC PUMP  

DOE Patents (OSTI)

This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

Pulley, O.O.

1954-08-17T23:59:59.000Z

87

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

88

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

89

Furnaces and Boilers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency...

90

Fossil Boiler Life News July 2008  

Science Conference Proceedings (OSTI)

Fossil Boiler Life News, published twice yearly, is the newsletter of EPRI's Boiler Life and Availability Improvement Program (P63). The July 2008 issue includes articles on upcoming meetings, new program personnel, R&D projects for 2009, a boiler drum fracture assessment guideline, protocols for manufacturing and inspecting CSEF steels, predictive FAC codes for fossil units, corrosion-resistant nanocoatings, preventive designs for eliminating boiler tube failures, and other deliverables. The newsletter ...

2008-07-28T23:59:59.000Z

91

ECUT energy data reference series: boilers  

SciTech Connect

Information on the population and fuel consumption of water-tube, fire-tube and cast iron boilers is summarized. The use of each boiler type in the industrial and commercial sector is examined. Specific information on each boiler type includes (for both 1980 and 2000) the average efficiency of the boiler, the capital stock, the amount of fuel consumed, and the activity level as measured by operational load factor.

Chockie, A.D.; Johnson, D.R.

1984-09-01T23:59:59.000Z

92

Steam Boiler Control Specification Problem:  

E-Print Network (OSTI)

Our solution to the specification problem in the specification language TLA+ is based on a model of operation where several components proceed synchronously. Our first specification concerns a simplified controller and abstracts from many details given in the informal problem description. We successively add modules to build a model of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed controller specification and prove that it refines the abstract controller. We also address the relationship between the physical state of the steam boiler and the model maintained by the controller and discuss the reliability of failure detection. Finally, we discuss the implementability of our specification.

Tla Solution Frank; Frank Le Ke; Stephan Merz

1996-01-01T23:59:59.000Z

93

Sootblowing optimization for improved boiler performance  

SciTech Connect

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

2013-07-30T23:59:59.000Z

94

Sootblowing optimization for improved boiler performance  

SciTech Connect

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

2012-12-25T23:59:59.000Z

95

Research on virtual assembly of supercritical boiler  

Science Conference Proceedings (OSTI)

Supercritical boiler is an important measure to solve problems like electricity shortage or energy intensity, with its high combustion efficiency. As supercritical boiler is a large and complex product, it may appear some problems of collision, location ... Keywords: interaction, lightweight model, supercritical boiler, virtools, virtual assembly, virtual reality

Pi-Guang Wei; Wen-Hua Zhu; Hao Zhou

2010-09-01T23:59:59.000Z

96

Covered Product Category: Commercial Boiler  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

97

BOILER-SUPERHEATED REACTOR  

DOE Patents (OSTI)

A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

Heckman, T.P.

1961-05-01T23:59:59.000Z

98

WATER BOILER REACTOR  

DOE Patents (OSTI)

As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

King, L.D.P.

1960-11-22T23:59:59.000Z

99

2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the  

E-Print Network (OSTI)

pumps Condensing gas and oil boilers DHW tanks Solar panels Under floor heating Installation equipment condsing Oil non condensing Heat pumps Biomass 612.500638.000550.000 618.500762.000751.500 735#12;2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the renovation

Oak Ridge National Laboratory

100

In-Field Performance of Condensing Boilers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IN-FIELD PERFORMANCE OF CONDENSING IN-FIELD PERFORMANCE OF CONDENSING BOILERS Lois B. Arena Steven Winter Associates, Inc. March 2012 Why Research Hydronic Heating? © 2012 Steven Winter Associates, Inc. All rights reserved Reasons to Research Boilers  Approx. 14 million homes (11%) in the US are heated with a steam or hot water system  Almost 70 percent of existing homes were built prior to 1980  Boilers built prior to 1980 generally have AFUE's of 0.65 or lower  Energy savings of 20+% are possible by simply replacing older boilers with standard boilers & up to 30% with condensing boilers.  Optimizing condensing boilers in new and existing homes could mean the difference of 8-10% savings with little to no

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

102

MULTI-FUEL BOILER TECHNOLOGY RICK A. HAVERLAND  

E-Print Network (OSTI)

-fired boiler was replaced with a N. V. Vyncke multi-fuel boiler with a rated capacity of 17,600 lb/hr (8000 kg of $0.785/gal ($0.208/L). The oil-fired boiler was replaced with a N. V. Vyncke multi-fuel boiler on the conveyor. Multi-Fuel Boiler Both boilers are the JUMBO OR) series boiler man ufactured by N. V. Vyncke

Columbia University

103

Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions.  

E-Print Network (OSTI)

??Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, (more)

Yang, Dong

2008-01-01T23:59:59.000Z

104

Study of Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid Ground Source Heat Pump systems often combine a traditional geothermal system with either a cooling tower or fluid cooler for heat rejection and a boiler or solar heat collector for heat addition to the loop. These systems offer the same energy efficiency benefits as full geothermal systems to utilities and their customers but at a potentially lower first cost. Many hybrid systems have materialized to resolve heat buildup in full geothermal system loops where loop temperatures continue to rise as ...

2010-12-06T23:59:59.000Z

105

Superheater Corrosion In Biomass Boilers: Today's Science and Technology  

DOE Green Energy (OSTI)

This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superh

Sharp, William (Sandy) [SharpConsultant

2011-12-01T23:59:59.000Z

106

Heat pump arrangement  

SciTech Connect

The invention concerns a heat pump arrangement for heating of houses. The arrangement comprises a compressor, a condensor and a vaporizer, which is a part of an icing machine. The vaporizer is designed as a heat exchanger and is connected to a circulation system comprising an accumulator, to which the ice slush from the icing machine is delivered. Water from the accumulator is delivered to the icing machine. The water in the accumulator can be heated E.G. By means of a solar energy collector, the outdoor air etc. Surface water or waste water from the household can be delivered to the accumulator and replace the ice slush therein.

Abrahamsson, T.; Hansson, K.

1981-03-03T23:59:59.000Z

107

Absorption heat pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

108

Fluidized bed boiler feed system  

SciTech Connect

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

109

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

110

WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Adsorption Heat-Pumps for domestic heating  

E-Print Network (OSTI)

Energies > Instantaneous water heaters > www.stiebel-eltron.de #12;4 Motivation Gas condensing boiler HP for hot water and enhancing the heating system > From the regarded sources, solar is the best suited burner with heat pump unit > Solar hot water tank > Heat pump-unit t

Oak Ridge National Laboratory

111

Feasibility of using power steering pumps in small-scale solar thermal electric power systems  

E-Print Network (OSTI)

The goal of this study was to determine performance curves for a variety of positive displacement pumps in order to select an efficient and low cost option for use as a boiler feed pump in a 1-kWe organic Rankine cycle ...

Lin, Cynthia, S.B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

112

Quantifying Energy Savings by Improving Boiler Operation  

E-Print Network (OSTI)

On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers. The methods include calculation of combustion temperature, calculation of the relationship between internal convection coefficient and gas flow rate, and calculation of overall heat transfer assuming a parallel-flow heat exchanger model. The method for estimating savings from changing from on/off to modulation control accounts for purge and drift losses through the boiler and the improved heat transfer within the boiler due to the reduced combustion gas flow rate. The method for estimating savings from reducing excess combustion air accounts for the increased combustion temperature, reduced internal convection coefficient and increased residence time of combustion gasses in the boiler. Measured boiler data are used to demonstrate the accuracy of the methods.

Carpenter, K.; Kissock, J. K.

2005-01-01T23:59:59.000Z

113

Guidelines for the Nondestructive Examination of Boilers  

Science Conference Proceedings (OSTI)

As the boiler fleet ages, new demands are being placed upon them including operating in cycling modes for which they were not originally designed. Operators are experiencing an increasing incidence of boiler tube failures (BTFs). These guidelines provide guidance on the performance of nondestructive evaluation (NDE) so that operators will know what type of NDE to perform and where to perform NDE within the boiler. The use of appropriate NDE methods is an essential approach to detecting and mitigating boi...

2007-08-30T23:59:59.000Z

114

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

115

ENERGY STAR Qualified Boilers | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualified Boilers Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov Communities Consumer Data ENERGY STAR Qualified...

116

Stress-Assisted Corrosion in Boiler Tubes  

Science Conference Proceedings (OSTI)

A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

Preet M Singh; Steven J Pawel

2006-05-27T23:59:59.000Z

117

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

preparation, and industrial processes. In homes with boilers, steam is distributed via pipes to steam radiators, and hot water can be distributed via baseboard radiators or...

118

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers  

E-Print Network (OSTI)

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers Carlos E. Romero *, Ying Li, Harun Bilirgen, Nenad Sarunac, Edward K. Levy Energy Research Center type, boiler operation, fly ash characteristics and type of environmental control equipment installed

Li, Ying

119

Effect of bed pressure drop on performance of a CFB boiler  

Science Conference Proceedings (OSTI)

The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu [Tsinghua University, Beijing (China). Department of Thermal Engineering

2009-05-15T23:59:59.000Z

120

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Application of the CALPHAD method for ferritic boiler steels  

Science Conference Proceedings (OSTI)

Presentation Title, Application of the CALPHAD method for ferritic boiler steels ... of the CALPHAD method on various questions concerning ferritic boiler steels...

122

FEMP Technology Brief: Boiler Combustion Control and Monitoring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows...

123

Boiler Upgrades and Decentralizing Steam Systems Save Water and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval...

124

Passivity based control of drum boiler  

Science Conference Proceedings (OSTI)

This paper proposes a novel state space model for the drum boilers with natural recirculation. This model uses the total mass and energy inventories of the boiler as the state variables, and has an affine structure in the control variables. A passivity ...

Chengtao Wen; B. Erik Ydstie

2009-06-01T23:59:59.000Z

125

Study on the Mode of Power Plant Circulating Water Waste Heat Regenerative Thermal System  

Science Conference Proceedings (OSTI)

Power Plant Circulating Water (PPCW) waste heat recycling is an important way of increasing a power plants primary energy ratio. According to the PPCW waste heat regenerative thermal system, the authors propose two modes of heat pump heat regenerative ... Keywords: heat pump, power plant circulating water (PPCW), waste heat recycling, energy saving

Bi Qingsheng; Ma Yanliang; Yang Zhifu

2009-10-01T23:59:59.000Z

126

Heat Pump Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Heat Pump Swimming Pool Heaters May 29, 2012 - 1:49pm Addthis How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool pump circulates the swimming pool's water, the water drawn from the pool passes through a filter and the heat pump heater. The heat pump heater has a fan that draws in the outside air and directs it over the evaporator coil. Liquid refrigerant within the evaporator coil absorbs the heat from the outside air and becomes a gas. The warm gas in the coil then passes through the compressor. The compressor increases the heat, creating a very hot gas that then passes through the condenser. The condenser transfers the heat from the hot gas to the cooler pool water circulating

127

Heat reclaimer for a heat pump  

Science Conference Proceedings (OSTI)

This invention relates to a heat reclaiming device for a heat pump. The heat reclaimer is able to absorb heat from the compressor by circulating cooling fluid through a circuit which is mounted in good heat transfer relationship with the condenser, then around the shell of the motor-compressor and lastly around the hollow tube which connects the condenser to the compressor. The reclaiming circuit is connected into a fluid circulating loop which is used to supply heat to the evaporator coil of the heat pump.

Beacham, W.H.

1981-02-03T23:59:59.000Z

128

Refractory experience in circulating fluidized bed combustors, Task 7. Final report  

Science Conference Proceedings (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

129

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network (OSTI)

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water movement inside a boiler has remained highly speculative. This paper and support test video of actual boiler operations will illustrate the effects steam quality vs. boiler efficiency during different boiler and steam system demands. There are four different operating situations that effect the steam quality. Each of the following situation will be described in detail using visual aids and supporting literature: Case I: On/Off Feedwater Control: Wide swings in the water level of the boiler can result in unnecessary low water alarms and shut downs. Case II: Reduced Operating Pressure: By running a boiler at a lower pressure, the boiling action within the boiler becomes much more violent causing water to be carried over in to the steam system. Case III: A Demand of 15% over Capacity: Over loading a boiler will cause excessive amounts of water to be carried along with the steam into the system. Case IV: TDS Control: Without proper control of IDS within the boiler carry-over of water into the steam system will occur causing damage to equipment and/or waterhammer.

Hahn, G.

1998-04-01T23:59:59.000Z

130

The Design of an Inspection Robot for Boiler Tubes Inspection  

Science Conference Proceedings (OSTI)

A climbing robot with magnetic wheels is designed for the inspection of boiler tubes in fossil power plants, which can inspect the boiler tubes automatically. The climbing robot will move on the boiler tubes. The magnetic wheels of the robot can be move ... Keywords: boiler tubes, climbing robot, magnetic flux leakage sensor, VSC controller

Lu Xueqin; Qiu Rongfu; Liu Gang; Huang Fuzhen

2009-11-01T23:59:59.000Z

131

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents (OSTI)

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

Wagoner, C.L.; Foote, J.P.

1995-07-04T23:59:59.000Z

132

Retrofitted coal-fired firetube boiler and method employed therewith  

SciTech Connect

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

1995-01-01T23:59:59.000Z

133

A new blowdown compensation scheme for boiler leak detection  

E-Print Network (OSTI)

A new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advances in identification-based leak detection techniques of boiler steam- water systems. Keywords: Industrial Boilers, Tube

Marquez, Horacio J.

134

Boiler efficiency methodology for solar heat applications  

DOE Green Energy (OSTI)

This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

Maples, D.; Conwell, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Boiler Efficiency Inst.; Pacheco, J.E. [Sandia National Labs., Albuquerque, NM (United States)

1992-08-01T23:59:59.000Z

135

A Methodology for Optimizing Boiler Operating Strategy  

E-Print Network (OSTI)

Among the many ways by which an energy manager can conserve energy is the establishment of a strategy for operation of fired boilers. In particular, he can effect total fuel consumption by his decision on how much on-line boiler surplus is required. There is a need to be able to balance the cost advantages of operating with less boiler surplus against the potential economic losses that might result from the increased risk of not meeting demand. A methodology for doing this along with an example calculation, is presented in this paper.

Jones, K. C.

1983-01-01T23:59:59.000Z

136

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

137

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

138

DOE Webcast: GTI Super Boiler Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webcast Webcast GTI Super Boiler Technology by Dennis Chojnacki, Senior Engineer by Curt Bermel, Business Development Mgr. R&D > November 20, 2008 November 20, 2008 2 November 20, 2008 2 WHO WE ARE Gas Technology Institute >Leading U.S. research, development, and training organization serving the natural gas industry and energy markets ─ An independent, 501c (3) not-for-profit Serving the Energy Industry Since 1941 > Over 1,000 patents > Nearly 500 products commercialized November 20, 2008 3 November 20, 2008 3 Super Boiler Background > U.S. industrial and commercial steam boilers ─ Consume over 6 quads of natural gas per year ─ Wide range of steam uses from process steam to space heating > Installed base of steam boilers ─ Largely over 30 years old

139

Energy Conservation for Boiler Water Systems  

E-Print Network (OSTI)

In the last ten years energy costs have soared. The cost of coal and # 2 fuel oil have gone up by a factor of 3-5. Residual fuel oil cost has increased by approximately ten times. The cost of natural gas has gone up at an even higher rate. This paper reviews methods to conserve energy in industrial boiler water systems. Both mechanical and chemical approaches for energy conservation are discussed. The important aspects of efficient combustion are covered as well as other mechanical factors such as boiler blowdown heat recovery, economizers, air preheaters, and boiler blowdown control. The chemical aspects discussed for energy conservation include fuel additives, boiler internal treatment, and condensate treatments. The emphasis in this paper, for both mechanical and chemical approaches to energy conservation covers three areas: 1) maximizing the use of available Btu's in fuel through more efficient combustion, 2) improving the efficiency of heat transfer, and 3) recovering Btu's that have been previously considered uneconomical.

Beardsley, M. L.

1981-01-01T23:59:59.000Z

140

Low Temperature Heat Recovery for Boiler Systems  

E-Print Network (OSTI)

Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas, are commonly called condensing economizers. It has traditionally been common practice in the boiler industry to not reduce flue gas temperatures below the 300F to 400F range. This barrier has now been broken by the development and application of corrosion proof heat exchanger technology. This opens up a vast reservior of untapped recoverable energy that can be recovered and reused as an energy source. The successful recovery of this heat and the optimum use of it are the fundemental goals of the technology presented in this paper. This Recovered Low Level Heat Is Normally Used To Heat Cold Make-up Water Or Combustion Air.

Shook, J. R.; Luttenberger, D. B.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Boiler scale prevention employing an organic chelant  

DOE Patents (OSTI)

An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

Wallace, Steven L. (Lake Jackson, TX); Griffin, Jr., Freddie (Missouri City, TX); Tvedt, Jr., Thorwald J. (Angleton, TX)

1984-01-01T23:59:59.000Z

142

List of Heat pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

pumps Incentives pumps Incentives (Redirected from List of Heat Pumps Incentives) Jump to: navigation, search The following contains the list of 1213 Heat pumps Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1213) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial

143

Metallurgical Guidebook for Fossil Power Plant Boilers  

Science Conference Proceedings (OSTI)

A wide range of steels has been used to manufacture boilers and associated piping components for fossil power plants. Detailed information on the various alloys and component design considerations is contained in applicable specifications and standards, but utility personnel often need to access basic metallurgical information to support decision making for various projects. This guidebook, developed to meet this need, provides information on all of the most common boiler and piping materials.

2008-03-25T23:59:59.000Z

144

Industrial Boiler Optimization Utilizing CO Control  

E-Print Network (OSTI)

Escalating energy costs have caused industry to search the technical section for the current state-of-the-art in combustion and control technology for power generation. Long a forgotten area in many industrial facilities, today the steam generating complex is the focus of many corporate and plant managers. This paper discusses the approach of a large chemical company that is effectively utilizing a direct digital control (DOC) system coupled with the measurement of carbon monoxide to optimize boiler combustion and generate steam in the most cost effective manner. Significant reductions in the amount of excess air have resulted from the use of CO as a control parameter. Previously, combustion effectiveness was determined by the more typical 02 measurement. For reasons of boiler leakage and gas stratification, this control technique was not suitable when operating close to stoichiometry. The use of DOC type control in our multiple boiler installation has also enabled the intelligent allocation of boiler capacity by evaluating steam demand versus incremental boiler steam cost. The system selectively increases or decreases boiler loads within specified constraints to provide the lowest overall steam production cost while continuing to meet the steam demand.

Ruoff, C. W.; Reiter, R. E.

1980-01-01T23:59:59.000Z

145

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

146

Section 5.2.1 Boilers: Greening Federal Facilities; Second Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

more efficient than single boilers, espe- cially under part-load conditions. * Consider solar-assisted systems and biomass-fired boilers as alternatives to conventional boiler...

147

The Research and Application of AGC in Circulating Fluidized Bed Unit  

Science Conference Proceedings (OSTI)

The circulating fluidized bed boiler (CFB) powerunit with its energy-saving and environmental protection hasbroad application prospects, but the problem of CFB unitautomatic control has not been solved satisfied, so automaticgeneration control (AGC) ... Keywords: CFB, AGC, power, main steam pressure, main steam temperature, bed temperature

Xin Xiaogang, Zhou Peng, Yang Chunxia, Guo Xiaohong, Wang Biao, Wang Yijun, Yu Jinglong

2012-07-01T23:59:59.000Z

148

Pump8  

NLE Websites -- All DOE Office Websites (Extended Search)

Preferred Upstream Management Practices Preferred Upstream Management Practices Rewriting the Meaning of "Standard Business Practices" PUMP U.S. Department of Energy * National Energy Technology Laboratory TECHNOLOGY TRANSFER TO THE USER * Regional Production Obstacles: Identification of specific regional obstacles to oil production, and the preferred management practices to overcome the problems. Demonstrate drilling, field opera- tions technology, reservoir man- agement approaches, computer tools, or better ways to comply with environmental regulations in a case study. * Research Groups or Councils: Use established groups or councils in a region to formulate the "best practices" appropriate to that region. The goal is to develop a self- sustaining system to identify pro- duction constraints and solve them

149

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

150

Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications  

SciTech Connect

CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

2006-12-15T23:59:59.000Z

151

Boiler MACT Technical Assistance (Fact Sheet)  

Science Conference Proceedings (OSTI)

Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

Not Available

2012-03-01T23:59:59.000Z

152

Absorption-heat-pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, G.; Perez-Blanco, H.

1983-06-16T23:59:59.000Z

153

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

154

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

155

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

156

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

157

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, P.M.

1979-12-27T23:59:59.000Z

158

Heat Recovery Boilers for Process Applications  

E-Print Network (OSTI)

Heat recovery boilers are widely used in process plants for recovering energy from various waste gas streams, either from the consideration of process or of economy. Sulfuric, as well as nitric, acid plant heat recovery boilers are examples of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800F to 1800F. This gas, when recovered, can result in a large energy savings and steam production. This paper attempts to outline some of the engineering considerations in the design of heat recovery boilers for turbine exhaust applications (combined cycle, cogeneration mode), incineration plants (solid waste, fume) and chemical plants (reformer, sulfuric acid, nitric acid).

Ganapathy, V.; Rentz, J.; Flanagan, D.

1985-05-01T23:59:59.000Z

159

Assessment of black liquor recovery boilers  

DOE Green Energy (OSTI)

In the paper making industry, pulpwood chips are digested and cooked to provide the pulp going to the refining and paper mills. Black liquor residue, containing the dissolved lignin binder from the chips, with a concentration of 12 to 16% solids, is further concentrated to 62 to 65% solids and mixed with salt cake, Sodium Sulfate (Na/sub 2/SO/sub 4/). The resulting concentrate of black liquor serves both as a fuel for generating steam in the boiler and also as the mother liquid from which other process liquors are recovered and recycled. Because the black liquor fuel contains high alkali concentrations, 18.3% sodium, 3.6% sulfur, an amount typical of midwestern bituminous coal, and measurable amounts of silica, iron oxides and other species, the black liquor boiler experience was reviewed for application to MHD boiler technology.

Not Available

1979-05-01T23:59:59.000Z

160

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Savings Calculator for Commercial Boilers: Closed Loop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtuhr* What is the thermal efficiency of the existing boiler? % Et New What is the...

162

Oregon Hospital Heats Up with a Biomass Boiler | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain...

163

Boiler Blowdown Heat Recovery Project Reduces Steam System Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

produced. Much of this heat can be recovered by routing the blown down liquid through a heat exchanger that preheats the boiler's makeup water. A boiler blowdown heat recovery...

164

Biomass Boiler to Heat Oregon School | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia...

165

Descriptions of Past Research: Boiler Life and Availability Improvement Program  

Science Conference Proceedings (OSTI)

Descriptions of Past Research: Boiler Life and Availability Improvement Program contains summaries of many past Electric Power Research Institute (EPRI) Boiler Life and Availability Improvement Program research and development (R&D) efforts.

2011-09-30T23:59:59.000Z

166

Air-Source Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pump Basics Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

167

Air-Source Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Heat Pump Basics Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

168

Feasibility demonstration of the Sperry down-well pumping system. Final report  

DOE Green Energy (OSTI)

Advantages of down-well pumping (vs. free-flowing) of geothermal hot-water wells are presented, and criteria for such a system are discussed. The main body of the report is presented under the following section headings: the Sperry down-well pumping system; field test program; field operations; test results; and, conclusions and recommendations. The appendix includes a summary of boiler heat transfer and pressure drop calculations. (JGB)

Not Available

1977-05-01T23:59:59.000Z

169

List of Heat pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

pumps Incentives pumps Incentives Jump to: navigation, search The following contains the list of 1213 Heat pumps Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1213) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial Installer/Contractor Residential Central Air conditioners

170

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the Electric Power Research Institute (EPRI) reports Boiler Water Deposition Model for Fossil Fuel Plants, Part 1: Feasibility Study (1004931), published in 2004; Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization (1012207) published in 2007; and Boiler Water Deposition ...

2009-03-12T23:59:59.000Z

171

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the following Electric Power Research Institute (EPRI) reports: 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004; 1012207, Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization, published in 2007; 1014128, Boiler Water Deposition Model fo...

2010-01-27T23:59:59.000Z

172

Best Practices: The Engineering Approach For Industrial Boilers  

E-Print Network (OSTI)

A plant's boilers represent a large capital investment, as well as a crucial portion of overall plant operations, regardless of the industry our customers are in. It is important to have systems and procedures in place to protect this investment, as well as plant profitability. Boiler Best Practices represent The Engineering Approach for Boilers-a way to examine mechanical, operational and chemical aspects of the systems (pretreatment through condensate) to ensure reliable boiler operations with no surprises.

Blake, N. R.

2001-05-01T23:59:59.000Z

173

TA-2 Water Boiler Reactor Decommissioning Project  

Science Conference Proceedings (OSTI)

This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

Durbin, M.E. (ed.); Montoya, G.M.

1991-06-01T23:59:59.000Z

174

Multifunctional robot to maintain boiler water-cooling tubes  

Science Conference Proceedings (OSTI)

A robot has been developed to maintain boiler water-cooling tubes. This robot has a double tracked moving mechanism, an ash cleaning device, a slag purging device, a tubes' thickness measurement device, a marking device, and a control system. This robot ... Keywords: Boiler maintenance, Boiler water-cooling tube, Climbing robot, Mobile robot

Xueshan Gao; Dianguo Xu; Yan Wang; Huanhuan Pan; Weimin Shen

2009-10-01T23:59:59.000Z

175

Materials for Advanced Ultra-Supercritical Steam Boilers  

E-Print Network (OSTI)

Materials for Advanced Ultra-Supercritical Steam Boilers Mike Santella ORNL 25th Annual Conference ­ For Profit Cost Sharing Consortium #12;2 26-May-2010 Materials for Advanced Ultra-Supercritical Steam Boilers Estimated Total Amount of Tubing for a Generic A-USC Boiler Images courtesy of The Babcock & Wilcox Company

176

Density-Enthalpy Phase Diagram 0D Boiler Simulation  

E-Print Network (OSTI)

Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Goal

Vuik, Kees

177

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

Henzinger, Thomas A.

178

1 | P a g e Boiler Gold Rush  

E-Print Network (OSTI)

1 | P a g e Boiler Gold Rush VISION STATEMENT The vision of BGR is twofold: first, help all new by participating in the premiere orientation program in the nation, Boiler Gold Rush. Second, enhance upper leaders for the betterment of the university. PROGRAM GOALS Boiler Gold Rush will provide the following

Ginzel, Matthew

179

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

?lveczky, Peter Csaba

180

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram  

E-Print Network (OSTI)

Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

Paris-Sud XI, Université de

182

Steam boiler control speci cation problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

Cengarle, María Victoria

183

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

Henzinger, Thomas A.

184

Steam boiler control specification problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

185

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

?lveczky, Peter Csaba

186

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

Cengarle, María Victoria

187

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility of modeling the various processes governing deposition in fossil boilers was assessed in EPRI report 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004. This report presents findings of follow-up activities directed toward the ultimate goal of developing an aggregate model that is applicable to the important deposition phenomena in fossil drum-type boilers.

2007-03-26T23:59:59.000Z

188

Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

Liss, William E; Cygan, David F

2013-04-17T23:59:59.000Z

189

Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration  

SciTech Connect

Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

Liss, William E; Cygan, David F

2013-04-17T23:59:59.000Z

190

Solar-powered turbocompressor heat pump system  

DOE Patents (OSTI)

The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

1982-08-12T23:59:59.000Z

191

Adaptive Fuzzy PID Control for Boiler Deaerator  

Science Conference Proceedings (OSTI)

The boiler deaerator temperature control system is a non-linear, time-varying, delay control process. It can not achieve satisfying effect using traditional control algorithm to control deaerator water temperature, the paper proposes an adaptive fuzzy ... Keywords: Deaerator, Adaptive, Fuzzy control, PID control

Lei Jinli

2012-08-01T23:59:59.000Z

192

Digital radiographic systems detect boiler tube cracks  

SciTech Connect

Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

Walker, S. [EPRI, Charlotte, NC (United States)

2008-06-15T23:59:59.000Z

193

The Effects of Mesoscale OceanAtmosphere Coupling on the Large-Scale Ocean Circulation  

Science Conference Proceedings (OSTI)

Small-scale variation in wind stress due to oceanatmosphere interaction within the atmospheric boundary layer alters the temporal and spatial scale of Ekman pumping driving the double-gyre circulation of the ocean. A high-resolution ...

Andrew Mc C. Hogg; William K. Dewar; Pavel Berloff; Sergey Kravtsov; David K. Hutchinson

2009-08-01T23:59:59.000Z

194

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

195

Match Pumps to System Requirements  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency matching pumps to system requirements

2005-10-01T23:59:59.000Z

196

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

197

The next generation of oxy-fuel boiler systems  

SciTech Connect

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

198

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

199

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

200

BPM2.0. Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

BOILER PERFORMANCE MODEL (BPM2.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. [USDOE, Pittsburgh Energy Technology Center, Pittsburgh, PA (United States)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

BPM3.0. Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

The BOILER PERFORMANCE MODEL (BPM3.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. [USDOE, Pittsburgh Energy Technology Center, PA (United States)

1992-03-01T23:59:59.000Z

202

Alternative backing up pump for turbomolecular pumps  

DOE Patents (OSTI)

As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

Myneni, Ganapati Rao (Yorktown, VA)

2003-04-22T23:59:59.000Z

203

Recovery Boiler Superheater Ash Corrosion Field Study  

SciTech Connect

With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2010-01-01T23:59:59.000Z

204

Biomass Cofiring in Coal-Fired Boilers  

DOE Green Energy (OSTI)

Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

Not Available

2004-06-01T23:59:59.000Z

205

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

206

Simulating aerosol formation and effects in NOx absorption in oxy-fired boiler gas processing units using Aspen Plus.  

E-Print Network (OSTI)

??Oxy-fired boilers are receiving increasing focus as a potential response to reduced boiler emissions limits and greenhouse gas legislation. Among the challenges in cleaning boiler (more)

Schmidt, David Daniel

2013-01-01T23:59:59.000Z

207

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. Ultrasupercritical (USC...

2011-12-23T23:59:59.000Z

208

Effect of Operational Transients on Boiler Damage  

Science Conference Proceedings (OSTI)

It is increasingly the case that utility systems demand more flexibility in a unit's ability to respond to dispatch requirements, which can create a conflict between maximizing efficient operation and limiting damage accumulation. A boiler can be operated in various cycling modes and can be subjected to planned and unplanned transients associated with load following, minimum load operation, forced cooling, variable pressure operation, increased ramp rates, increased attemperation, over-temperature operat...

2009-03-24T23:59:59.000Z

209

Impact of Operating Factors on Boiler Availability  

Science Conference Proceedings (OSTI)

As utilities strive to achieve higher reliability and lower operation and maintenance (O&M) costs for their fossil-fired power plants, changing plant operating conditions will provide even greater challenges in meeting those objectives. This report summarizes the cause and effect relationships that exist between operating conditions and boiler component reliability. It is an initial step in developing the tools and technology that will enable utilities to meet their objectives in an ever more competitive...

2000-12-19T23:59:59.000Z

210

Boiler Chemical Cleaning Waste Management Manual  

Science Conference Proceedings (OSTI)

Chemical cleaning to remove tube deposits/oxides that occur during unit operation or scale during unit commissioning from conventional fossil plants and combined cycle plants with heat recovery steam generators (HRSGs) will result in the generation of a waste solution. The waste contains residual solvent and elevated levels of heavy metals (primarily iron and copper) in addition to rinse and passivation solutions. An earlier manual, Boiler Chemical Cleaning Wastes Management Manual (EPRI ...

2013-12-20T23:59:59.000Z

211

Demonstration of Advanced Boiler Instrumentation Technologies  

Science Conference Proceedings (OSTI)

New and increasing limits on emissions (in particular, NOx) and new emphasis on heat rate have underscored the need to measure flue gas constituents more accurately and in more locations. Utilities are making large capital investments in boiler improvements and emission control devices. These investments can be enhanced through the use of innovative, on-line instrumentation closer to the furnace combustion zone. Traditionally, sensors for flue gas constituents, such as NOx and CO, are implemented as part...

2005-03-31T23:59:59.000Z

212

Generation Maintenance Applications Center: Conventional Vertical Pump Maintenance Guide  

Science Conference Proceedings (OSTI)

Vertical pumps are used in several applications in power plants, such as condensate, heater drain, circulating water, and service water/river water applications.BackgroundThe Maintenance Issue Surveys of the Electric Power Research Institute (EPRI) Generation Maintenance Applications Center (GenMAC) indicate that members are experiencing difficulties with various maintenance issues associated with vertical pumps. Some of the problems identified a need for ...

2013-12-19T23:59:59.000Z

213

Improving boiler performance through operator training  

SciTech Connect

The majority of the technical training in many plant facilities is the self-study type. These courses consist of packaged text materials as well as plant specific lessons. Video-based training is more effective than textbooks alone, and computer interactive training is becoming increasingly popular. Demonstration of technical competence can be conducted in a variety of ways: supervised system check off and verification system walk-throughs; simulator evaluation; written examinations required for promotion; and oral examinations. Boiler operators can be required to demonstrate in a practical way that they can apply the boiler plant theory to actual job performance in the plant. Some classifications may be required to perform a supervised system check off and verification before promotion to the next higher classification. Personnel who operate boilers from a control room or gauge board may be required to successfully complete simulator training and evaluation. All classifications may require successful completion of written and oral examinations before being promoted to the next higher classification.

DeHart, R.M. [Cogentrix Energy, Inc., Charlotte, NC (United States)

1995-12-31T23:59:59.000Z

214

Heat pump with freeze-up prevention  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

Ecker, Amir L. (Dallas, TX)

1981-01-01T23:59:59.000Z

215

New Boilers, Big Savings for Minnesota County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

216

Covered Product Category: Commercial Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Boiler Commercial Boiler Covered Product Category: Commercial Boiler October 7, 2013 - 10:27am Addthis What's Covered All Federal purchases of hot water or steam boilers (using either oil or gas) with a rated capacity (Btu/h) of 300,000-10,000,000 must meet or exceed FEMP-designated thermal efficiencies. FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Commercial Boilers Table 1 displays the FEMP-designated minimum efficiency requirements for

217

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

218

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

219

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

220

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler efficiency and availability. Proper control of boiler blowdown is also important to assure clean boiler surfaces without wasting water, heat, and chemicals. Recovering hot condensate for reuse as boiler feedwater is another means of improving system efficiency. Condensate which is contaminated with corrosion products or process chemicals, however, is ill fit for reuse; and steam which leaks from piping, valves, traps and connections cannot be recovered. Effective chemical treatment, in conjunction with mechanical system improvements, can assure that condensate can be safely returned and valuable energy recovered.

Bloom, D.

1999-05-01T23:59:59.000Z

222

New Boilers, Big Savings for Minnesota County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boilers, Big Savings for Minnesota County Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

223

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

224

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-water cycles. Deposition in drum boilers has been identified as the area of broadest concern to the industry; therefore, an improved understanding of deposition in drum boilers is expected to represent the greatest source of benefits and value to end users. The overall objective of the modeling described here is to develop a comprehensive, integrated model for deposition process...

2011-12-16T23:59:59.000Z

225

Application of Multivariable Control to Oil and Coal Fired Boilers  

E-Print Network (OSTI)

Increased visibility provided by advanced measurement and control techniques has shown that control of oil and coal fired boilers is a complex problem involving simultaneous determination of flue gas carbon monoxide, hydrocarbon, opacity and temperature levels. A microcomputer-based control system which recognizes the inter-relationship of these variables has produced fuel savings averaging about 3% on coal and oil fired boilers. The system is described and case study data is presented for both coal and oil fired boilers.

Swanson, K.

1981-01-01T23:59:59.000Z

226

Pumping Fluid Condensation in Oil Diffusion Pumps  

Science Conference Proceedings (OSTI)

Condensation conditions of the motive fluid in an oil diffusion pump are considered with particular attention to the backstreaming problem. The backstreaming rate is correlated with the temperature of the cold caps surrounding the pump nozzle and it is demonstrated that an upper temperature limit exists near 200?F where such devices cease to function effectively. The effect of oleophobic surfaces on cold caps and baffles is discussed. Conditions existing at the inlet of diffusion pumps and in baffles do not warrant attempts to introduce dropwise condensation. The condensation coefficient of pumping vapor at the temperature of the water cooled wall and with the flow rates used at the top nozzle appears to be very close to unity. The usefulness of creep barriers with modern pumping fluids and trap designs is judged to be questionable.

M. H. Hablanian

1972-01-01T23:59:59.000Z

227

Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

None

2011-11-21T23:59:59.000Z

228

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

229

Simulation of Combustion and Thermal Flow inside an Industrial Boiler.  

E-Print Network (OSTI)

??Industrial boilers that produce steam or electric power represent a large capital investment as well as a crucial facility for overall plant operations. In real (more)

Saripalli, Raja

2004-01-01T23:59:59.000Z

230

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: AstraZeneca - Newark This profiles explains how Astrazeneca's Newark...

231

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Allergan - Westport This profiles explains how Allergan's Westport facility...

232

Boiler Tune-ups: Improve efficiency, reduce pollution, and save...  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

233

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Boeing Philadelphia This profiles explains how Beoing's Philadelphia plant...

234

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Cargill Krefeld This profiles explains how Cargill's Krefeld mill saved...

235

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: GM Marion & Orion This profiles explains how GM's Marion & Orion facilities...

236

Flame Doctor for Cyclone Boilers: Beta Demonstration Program  

Science Conference Proceedings (OSTI)

This report describes the results of the beta demonstration of the Flame Doctor system as it is applied to cyclone boilers.

2012-07-10T23:59:59.000Z

237

Shattering Kraft Recovery Boiler Smelt by a Steam Jet.  

E-Print Network (OSTI)

??Kraft recovery boiler smelt is shattered into small droplets by an impinging steam jet to prevent smelt-water explosions in the dissolving tank. Inadequate shattering increases (more)

Taranenko, Anton

2013-01-01T23:59:59.000Z

238

Factors Affecting the Resistivity of Recovery Boiler Precipitator Ash.  

E-Print Network (OSTI)

??Electrostatic precipitators (ESPs) are commonly used to control particulate emissions from recovery boilers in the kraft pulping process. The electrical resistivity of entrained particulates is (more)

Sretenovic, Ivan

2012-01-01T23:59:59.000Z

239

Nanostructured Environmental Barrier Coatings for Corrosion Resistance in Recovery Boilers.  

E-Print Network (OSTI)

??Corrosion of components in a recovery boiler is a major problem faced by the pulp and paper industry. The superheater tubes get severely corroded due (more)

Rao, Shishir

2011-01-01T23:59:59.000Z

240

Improving Boiler Efficiency Modeling Based on Ambient Air Temperature  

E-Print Network (OSTI)

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load significantly effects boiler efficiency. In the study reported here, the measured performance of a 300,000 lb/h steam boiler was found to show more dependence on ambient air temperature than on boiler load. It also showed an unexplained dependence on the month of the year that is comparable to the load dependence.

Zhou, J.; Deng, S.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Improving Boiler Efficiency Modeling Based On Ambient Air Temperature  

E-Print Network (OSTI)

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load significantly effects boiler efficiency. In the study reported here, the measured performance of a 300,000 lb/h steam boiler was found to show more dependence on ambient air temperature than on boiler load. It also showed an unexplained dependence on the month of the year that is comparable to the load dependence.

Zhou, J.; Deng, S.; Turner, W. D.; Claridge, D. E.; Haberl, J. S.

2002-01-01T23:59:59.000Z

242

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

243

FEMP Technology Brief: Boiler Combustion Control and Monitoring System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows technicians observing operation at the monitoring station and making subsequent fine adjustments on combustion system controls Technical staff are making boiler adjustments with the control and monitoring system. Photo courtesy of the Department of Defense's Environmental Security Technology Certification Program. Technology Description A novel combustion control system, along with gas sensors, sets the opening of fuel and air inlets based on flue-gas concentrations. Continuous feedback from measurements of oxygen, carbon monoxide, and nitrogen oxide concentrations enable the control system

244

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

245

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

246

Apparatus and method for controlling a heat pump water heater  

Science Conference Proceedings (OSTI)

A method and apparatus for controlling the operation of an add-on heat pump water heater unit is disclosed. A combination of a thermally conductive tube having a flattened portion and a thermostat mounted thereto is utilized to sense the temperature level of water in a tank to which the heater unit is connected. The tube and thermostat are additionally insulated from the ambient. A circulating pump is provided and connected to the water thermostat such that the pump is energized only when it is necessary to operate the heat energy adding unit.

Whitwell, R. J.; Schafer, J. P.

1984-01-08T23:59:59.000Z

247

A centurial history of technological change and learning curves or pulverized coal-fired utility boilers  

E-Print Network (OSTI)

allow ultra-supercritical boilers to achieve still higherthat supercritical-coal boilers, at least in the 1970s, didGW/year) by type of boiler. Source: [25]. Net Efficiency (

Yeh, Sonia; Rubin, Edward S.

2007-01-01T23:59:59.000Z

248

Robust Output Feedback Stabilization of Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler  

E-Print Network (OSTI)

to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract-- This paper boiler (Utility boiler), where the nonlinear model describes the complicated dynamics of the drum

Marquez, Horacio J.

249

HYDRONIC BASEBOARD THERMAL DISTRIBUTION SYSTEM WITH OUTDOOR RESET CONTROL TO ENABLE THE USE OF A CONDENSING BOILER.  

SciTech Connect

Use of condensing boilers in residential heating systems offers the potential for significant improvements in efficiency. For these to operate in a condensing mode the return water temperature needs to be about 10 degrees below the saturation temperature for the flue gas water vapor. This saturation temperature depends on fuel type and excess air and ranges from about 110 F to 135 F. Conventional baseboard hydronic distribution systems are most common and these are designed for water temperatures in the 180 F range, well above the saturation temperature. Operating strategies which may allow these systems to operate in a condensing mode have been considered in the past. In this study an approach to achieving this for a significant part of the heating season has been tested in an instrumented home. The approach involves use of an outdoor reset control which reduces the temperature of the water circulating in the hydronic loop when the outdoor temperature is higher than the design point for the region. Results showed that this strategy allows the boiler to operate in the condensing region for 80% of the winter heating season with oil, 90% with propane, and 95% with gas, based on cumulative degree days. The heating system as tested combines space heating and domestic hot water loads using an indirect, 40 gallon tank with an internal heat exchanger. Tests conducted during the summer months showed that the return water temperature from the domestic hot water tank heat exchanger is always below a temperature which will provide condensing operation of the boiler. In the field tests both the condensing boiler and the conventional, non-condensing boiler were in the test home and each was operated periodically to provide a direct performance comparison.

BUTCHER,T.A.

2004-10-01T23:59:59.000Z

250

Anomaly General Circulation Models  

Science Conference Proceedings (OSTI)

Anomally models based on a spectral general circulation model (GCM) are formulated and applied to study of low-frequency atmospheric variability in the extratropics, and long-range forecasting research. A steady linear version of the anomaly ...

A. Navarra; K. Miyakoda

1988-05-01T23:59:59.000Z

251

Liquid metal electric pump  

DOE Patents (OSTI)

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

252

Condensing Heat Exchangers Optimize Steam Boilers  

E-Print Network (OSTI)

The development of fluorocarbon resin covered tubes has advanced to the point where full scale marketing in connection with condensing heat exchangers has begun. Field installations show simple paybacks of one to one and a half years with resulting steam boiler fuel to steam efficiencies in excess of 90%. The studies and evaluations done to date indicate that units of this type will be cost effective in sizes ranging from 10,000 to 300,0000 steam per hour as long as cold makeup water is available for preheating with the waste flue gases.

Sullivan, B.; Sullivan, P. A.

1983-01-01T23:59:59.000Z

253

Flame Spectral Analysis for Boiler Control  

E-Print Network (OSTI)

An instrument has been developed by Tecogen, Inc., to determine the combustion characteristics of individual burners in multiburner installations. The technology is based on measuring the emissions in the ultraviolet (UV) and infrared (IR) spectral range from the flames and using these measurements to determine the burner operating conditions. Two prototype instruments have been installed on package boilers at a Con Edison powerplant and Polaroid facility, and their performance has been evaluated. These instruments provide data relating to the variations in the IR and UV spectrum with a change in the combustion condition in individuals burners. This paper describes the instruments operation and these tests.

Metcalfe, C. I.; Cole, W. E.; Batra, S. K.

1987-09-01T23:59:59.000Z

254

Failure Analysis of Two 80 HP Multiport Boilers - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Failure Analysis of Two 80 HP Multiport Boilers ... microstructure and the scale collected suggested overheating of the boiler during service.

255

Sigma Phase Embrittlement of a Boiler Tube Lug - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Sigma Phase Embrittlement of a Boiler Tube Lug ... which dissolves in temperatures above 1800 F. Boilers commonly operate at 1800- 2100...

256

Heat Flux Electrochemical Studies of Underdeposit Boiler Tube Corrosion  

Science Conference Proceedings (OSTI)

Boiler water-side corrosion in fossil plants represents a key cause of availability loss and performance degradation, with underdeposit corrosion (UDC) being a major damage mechanism. UDC results from concentration of impurities and contaminants within the structure of the deposit residing on the heated internal surfaces of boiler waterwall tubing. The EPRI cycle chemistry guidelines provide control curves based on ...

2013-09-10T23:59:59.000Z

257

Boiler Gold Rush Prof. Johnny Brown (MATH 700)  

E-Print Network (OSTI)

Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;#12;#12;David McCullough, Jr help Always be prepared #12;Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;

Brown, Johnny E.

258

Modelling of a Utility Boiler Using Parallel Computing  

Science Conference Proceedings (OSTI)

A mathematical model for the simulation of the turbulent reactive flow and heat transfer in a power station boiler has been parallelized. The mathematical model is based on the numerical solution of the governing equations for mass, momentum, energy ... Keywords: boilers, computational fluid dynamics, discrete ordinates, parallel processing, radiative heat transfer, turbulent reactive flows

P. J. Coelho; P. A. Novo; M. G. Carvalho

1999-03-01T23:59:59.000Z

259

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

260

Base load fuel comsumption with radiant boiler simulation  

Science Conference Proceedings (OSTI)

The operating point of an oil fired radiant boiler, 580 Megawatt capacity, is critical in maximizing the availability, performance, reliability, and maintainability of a power producing system. Operating the unit above the design operating point causes outages to occur sooner than scheduled. When the boiler is operated below the design operating point, fuel is wasted because the quantity of fuel required to operate a radiant boiler is the same, whether the design setpoint is maintained or not. This paper demonstrates by means of simulation software that the boiler design setpoints is critical to fuel consumption and optimum output megawatts. A boiler with this capacity is used to provide a portion of the base load of an electric utility in order to sustain revenues and maintain reliable generation.

Shwehdi, M.H. (Pennsylvania State Univ., Wilkes-Barre, Lehman, PA (United States)); Hughes, C.M. (Naval Aviation Depot, NAS Jacksonville, Jacksonville, FL (United States)); Quasem, M.A. (Howard Univ. School of Business, Washington, DC (United States))

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-04-23T23:59:59.000Z

262

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-01-31T23:59:59.000Z

263

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

2003-04-21T23:59:59.000Z

264

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-01-31T23:59:59.000Z

265

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-04-27T23:59:59.000Z

266

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-01-23T23:59:59.000Z

267

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-04-20T23:59:59.000Z

268

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-07-17T23:59:59.000Z

269

Boiler Materials For Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-09-30T23:59:59.000Z

270

PRESSURE DROP EVALUATION OF THE HYDROGEN CIRCULATION SYSTEM FOR JSNS  

SciTech Connect

In J-PARC, an intense spallation neutron source (JSNS) driven by a proton beam of 1 MW has selected supercritical hydrogen with a temperature of around 20 K and the pressure of 1.5 MPa as a moderator material. A hydrogen-circulation system, which consists of two pumps, an ortho-para hydrogen converter, a heater, an accumulator and a helium-hydrogen heat exchanger, has been designed to provide supercritical hydrogen to the moderators and remove the nuclear heating there. A hydrogen-circulation system is cooled through the heat exchanger by a helium refrigerator with the refrigeration power of 6.45 kW at 15.5 K. It is important for the cooling design of the hydrogen-circulation system to understand the pressure drops through the equipments. In this work, the pressure drop through each component was analyzed by using a CFD code, STAR-CD. The correlation of the pressure drops through the components that can describe the analytical results within 14% differences has been derived. It is confirmed that the pressure drop in the hydrogen circulation system would be estimated to be 37 kPa for the circulation flow rate of 160 g/s by using the correlations derived here, and is sufficiently lower than the allowable pump head of 100 kPa.

Tatsumoto, H.; Aso, T.; Ohtsu, K.; Kato, T.; Futakawa, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)

2010-04-09T23:59:59.000Z

271

NREL: Learning - Pumped Hydropower  

NLE Websites -- All DOE Office Websites (Extended Search)

Pumped Hydropower Pumped Hydropower Pumped hydro facilities use off-peak electricity to pump water from a lower reservoir into one at a higher elevation. When the water stored in the upper reservoir is released, it is passed through hydraulic turbines to generate electricity. The off-peak electrical energy used to pump the water up hill can be stored indefinitely as gravitational energy in the upper reservoir. Thus, two reservoirs in combination can be used to store electrical energy for a long period of time, and in large quantities. Utilities generally prefer to operate large coal and nuclear power stations at full power all the time (referred to as "baseload generation"), so in the middle of the night, these plants often produce more power than is needed. Pumped hydro energy storage can be used to smooth out the demand

272

Electrokinetic pumps and actuators  

DOE Green Energy (OSTI)

Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

Phillip M. Paul

2000-03-01T23:59:59.000Z

273

Detection of pump degradation  

SciTech Connect

This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

1995-08-01T23:59:59.000Z

274

Minimize pump downtime  

Science Conference Proceedings (OSTI)

In refineries and petrochemical plants, centrifugal pumps usually lead the list of equipment that is most susceptible to failure. Using guidelines, maintenance mechanics can improve troubleshooting methods when investigating pump bedplates, underlying concrete foundations and grouting problems. Too often, mechanics may improperly diagnose a misalignment--caused by grouting problems--as an unbalance or a bearing-wearing problem when troubleshooting pump failure. Result: bearing, shaft and seal failures occur from a flawed maintenance procedure. Identifying mounting-surface problems can improve pump performance and decrease unit downtime.

Myers, R.D. [ITW Escoweld Systems, Kingwood, TX (United States)

1995-06-01T23:59:59.000Z

275

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

276

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

277

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

278

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

279

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

280

NOx Control for Utility Boiler OTR Compliance  

Science Conference Proceedings (OSTI)

Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

Hamid Farzan

2003-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SNAP I MERCURY BOILER DEVELOPMENT, JANUARY 1957 TO JUNE 1959  

SciTech Connect

The mercury-boiler development program was undertaken to develop a system that would utilize the heat of radioisotope decay to boil and superheat mercury vapor for use with a small turbine-generator package. Through the use of a Rankine cycle, the mercury vapor can be provided continuously to power a turbine-driven alternator and produce electricity for extended periods of time. This mercury boiler and the related power-conversion system was planned for a satellite that would orbit the earth. This system design and development program was designated as SNAP-I. Development of the mercury boiler is described and a chronological description of the various mercury-boiler concepts is presented. The applicable results of an extensive literature survey of mercury are included. The mercury-boiler experimental-test-program description provides complete coverage of each experimental boiler and its relation to the system design of that period. A summary of all mercury boilers and their final disposition is also given. (auth)

Jicha, J.; Keenan, J.J.

1960-06-01T23:59:59.000Z

282

CHP Integrated with Burners for Packaged Boilers  

SciTech Connect

The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the projects subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

Castaldini, Carlo; Darby, Eric

2013-09-30T23:59:59.000Z

283

Advanced Materials for Ultra Supercritical Boiler Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Patricia a. Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Robert M. Purgert Prime Contractor and Administrator Energy Industries of Ohio 6100 Oak Tree Boulevard, Suite 200 Independence, OH 44131-6914 216-643-2952 purgert@msn.com AdvAnced MAteriAls for UltrA sUpercriticAl Boiler systeMs Description A consortium led by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) has conducted the first phase of a multiyear program to develop materials technology for use in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of

284

Rapid ignition of fluidized bed boiler  

DOE Patents (OSTI)

A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

Osborn, Liman D. (Alexandria, VA)

1976-12-14T23:59:59.000Z

285

Boiler Efficiency--Consider All the Angles  

E-Print Network (OSTI)

The cost of steam has become a very real part of Product cost. U.S. Industry strives to become more fuel efficient, while increasing productivity. At the same time it must adhere to stringent emission regulations. The plant manager is faced with a bewildering number of avenues to explore to achieve efficiency improvements through the use of the widest conceivable array of products. These range from simple fuel additives to highly sophisticated Computer Programs. Each has merit. This paper recognizes that only a small percentage of plant managers have an in-depth understanding of combustion processes and presents simple yet factual measurements for the determination of boiler combustion, operating and maintenance efficiencies.

Blakeley, C. P.

1981-01-01T23:59:59.000Z

286

Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler  

SciTech Connect

Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)

2011-02-15T23:59:59.000Z

287

An optical boiler generating singlet oxygen O{sub 2} (a{sup 1{Delta}}{sub g})  

SciTech Connect

An ecologically perfect generator of singlet oxygen O{sub 2} (a{sup 1{Delta}}{sub g}) is proposed which fundamentally differs from existing singlet-oxygen generators. Excited O{sub 2} (a{sup 1{Delta}}{sub g}) molecules are generated due to interaction of the O{sub 2} (X{sup 3}{Sigma}{sup -}{sub g}) molecules with a quasi-monochromatic field, which is supplied from an external source to a closed volume - an optical boiler containing oxygen. It is shown that, by pumping continuously the optical boiler by the light field of power {approx}3x10{sup 5} W, it is possible to accumulate up to 40% of singlet oxygen (O{sub 2}(b{sup 1}{Sigma}{sup +}{sub g})) + (O{sub 2} (a{sup 1}{Delta}{sub g})) in the boiler volume during {approx}10{sup -2} s. (laser applications and other topics in quantum electronics)

Lipatov, N I; Gulyamova, E S [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Biryukov, A S [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

2008-12-31T23:59:59.000Z

288

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

Drumheller, Douglas S. (Cedar Crest, NM)

1998-01-01T23:59:59.000Z

289

Portable oven air circulator  

DOE Patents (OSTI)

A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

1983-01-01T23:59:59.000Z

290

Modern Boiler Control and Why Digital Systems are Better  

E-Print Network (OSTI)

Steam generation in petrochemical plants and refineries is in a state of change. Expensive fuels have resulted in greater use of waste heat recovery boilers and other energy conservation measures. As a result, many conventional boilers have been mothballed. Improved flue gas analyzers and digital controls are replacing less efficient and less reliable control hardware. As the production of steam becomes decentralized, control systems needed to meet expanded plant objectives must be installed. Production, engineering and maintenance personnel are finding increased need to learn more about this specialized control area. This article will discuss conventional controls systems common in industrial boilers plus improvements made possible with currently available hardware.

Hughart, C. L.

1983-01-01T23:59:59.000Z

291

Improved Process control of wood waste fired boilers  

DOE Green Energy (OSTI)

This project's principal aim was the conceptual and feasibility stage development of improved process control methods for wood-waste-fired water-tube boilers operating in industrial manufacturing applications (primarily pulp and paper). The specific objectives put forth in the original project proposal were as follows: (1) fully characterize the wood-waste boiler control inter-relationships and constraints through data collection and analysis; (2) design an improved control architecture; (3) develop and test an appropriate control and optimization algorithm; and (4) develop and test a procedure for reproducing the approach and deriving the benefits on similar pulp and paper wood-waste boilers. Detailed tasks were developed supporting these objectives.

Process Control Solutions, Inc.

2004-01-30T23:59:59.000Z

292

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

293

NEUTRONIC REACTOR FUEL PUMP  

DOE Patents (OSTI)

A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

Cobb, W.G.

1959-06-01T23:59:59.000Z

294

Detection of pump degradation  

Science Conference Proceedings (OSTI)

There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

Casada, D.

1994-12-31T23:59:59.000Z

295

NORMETEX PUMP ALTERNATIVES STUDY  

SciTech Connect

A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying resistances to ionizing radiation - aromatic polymers such as polyimide Vespel (TM) and the elastomer EPDM (ethylene propylene diene monomer) have been found to be more resistant to degradation in tritium than other polymers. This report presents information to help select replacement pumps for Normetex pumps in tritium systems. Several pumps being considered as Normetex replacement pumps are discussed.

Clark, Elliot A.

2013-04-25T23:59:59.000Z

296

Granby Pumping Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

297

New industrial heat pump applications to an integrated thermomechanical pulp and paper mill  

Science Conference Proceedings (OSTI)

Application of pinch technology US industries in an early screening study done by TENSA Services (DOE/ID/12583-1) identified potential for heat pumps in several industrial sectors. Among these, processes with large evaporation units were found to be some of the most promising sectors for advanced heat pump placement. This report summarizes the results of a study for Bowater Incorporated, Carolina Division. The units selected for this study are the thermo-mechanical pulper (TMP), kraft digester, evaporators, boiler feed water (BFW) train and pulp dryer. Based on the present level of operation, the following recommendations are made: 1. Install a mechanical vapor compression (MVR) heat pump between the TMP mill and {number sign}3 evaporator. This heat pump will compress the 22 psig steam from the TMP heat recovery system and use it to replace about 70% of the 60 psig steam required in {number sign} evaporator. The boiler feed water heat losses (in the low pressure deaerator) will be supplied by heat available in the TMR's zero psig vent steam. 2. Study the digester to verify the practicality of installing an MVR heat pump which will compress the dirty weapons from the cyclone separator. The compressed vapors can be directly injected into the digester and thus reduce the 135 psig steam consumption. 31 figs., 9 tabs.

Not Available

1991-01-01T23:59:59.000Z

298

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

299

Open-Cycle Vapor Compression Heat Pump System  

E-Print Network (OSTI)

In many industrial processes, large quantities of energy are often wasted in the form of low pressure steam and low-grade heat. Economical recovery of these waste energy sources is often difficult due to such factors as low temperature levels and contamination of the steam. In industrial processes that utilize steam directly or as a mode of energy transport, waste energy can be efficiently recovered and upgraded in the form of high-pressure steam by means of an open-cycle steam heat pump system. Recovery and upgrading of these waste steam or heat sources offer a great potential for energy conservation. Thermo Electron has developed, under sponsorship by the Gas Research Institute, Southern California Gas Company, and the Consolidated Natural Gas Service Company, an open-cycle steam heat pump to recover this waste energy in the form of high-pressure process steam. The system utilizes excess low-pressure steam (or that produced from an excess heat source with a waste heat boiler) and compresses this steam to the desired pressure level for process use. The compressor is driven by a gas turbine or gas engine prime mover. To enhance the system performance, the prime mover exhaust and/or cooling jacket heat is recovered to generate additional process steam or hot water. Utilizing the Thermo Electron system, fuel consumption can be 30 percent lower in comparison to a direct-fired boiler. Simple payback periods of 1 to 3 years are generally found for most applications.

Pasquinelli, D. M.; Becker, F. E.

1983-01-01T23:59:59.000Z

300

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

302

Commonwealth Small Pellet Boiler Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Maximum Rebate $15,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 03/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Base Grant: $7,000 Automated Conveyance of Fuel Adder: $3,000 Thermal Storage Adder: $2,000 Solar Thermal Hybrid System Adder: $1,000 Moderate Income Adder or Moderate Home Value Adder: $2,000 Maximum Grant: $15,000 Provider Massachusetts Clean Energy Center The Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER) are offering the Commonwealth Small Pellet Boiler

303

FIELD PERFORMANCE OF EROSION RESISTANT MATERIALS ON BOILER INDUCED...  

Office of Scientific and Technical Information (OSTI)

15 Fan design data for units 5 - 9 ... 16 FIELD P E R F O R M A N C E OF ' EROSION RESISTANT MATERIALS ON BOILER INDUCED D R A F T F A N...

304

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

305

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

306

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

307

Evaluation of Methods to Identify Boiler Air Inleakage Sources  

Science Conference Proceedings (OSTI)

The information contained in this technical update report represents a first-of-a-kind study to evaluate different methods used to identify boiler air inleakage. The study begins to outline the cost and benefits of using those different methods in addition to describing their application. The collection and assemblage of this information will provide a reference for plant engineering and management personnel as their units experience the problems associated with boiler air inleakage. Through the use of t...

2011-09-23T23:59:59.000Z

308

Passive Corrosion Probe Testing at Dairyland Power's Genoa #3 Boiler  

Science Conference Proceedings (OSTI)

Environmental Protection Agency (EPA) regulations require significant reductions on emissions of nitrogen oxides (NOx) for utility boilers. A preferred method to achieve this uses burner systems that reduce NOx formation. Such burner systems create reducing zones in the lower furnace, especially in staged conditions, using overfire air (OFA) ports. Waterwall wastage has increased significantly in such boilers. EPRI has sponsored research to define wastage mechanisms and to predict wastage rates based on ...

2003-10-20T23:59:59.000Z

309

Technical Progress Report on Boiler Materials Development for USC Plants  

Science Conference Proceedings (OSTI)

A major, 5-year, national effort is being sponsored by the Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) to develop/evaluate materials for advanced ultrasupercritical (AUSC) boilers capable of operating with steam up to 760C (1400F), 35 MPa (5000 psia). This work is being carried out by a consortium comprised of Energy Industries of Ohio (EIO), EPRI, Oak Ridge National Laboratory (ORNL), and all domestic boiler manufacturers. The scope of the materials evaluation includes mechani...

2009-03-31T23:59:59.000Z

310

Evaluation of Explosive Cleaning Damage in Ferritic Boiler Tubes  

Science Conference Proceedings (OSTI)

Utilities have reported boiler tube damage after explosive cleaning to control or remove slag deposits. The damage typically consists of tube crushing, denting, microcracking, and inner diameter (ID) initiated cracking. Because the latter two might not propagate through tube wall thickness initially, these types of cracking are not commonly detected during the cleaning process. However, tube failures after the boiler resumed service have been attributed to these ID-related cracking. Many utilities have r...

2010-10-29T23:59:59.000Z

311

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

312

Heat pumps | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Heat pumps Jump to: navigation, search TODO: Add description List of Heat pumps Incentives Retrieved from "http:en.openei.orgw...

313

Pressure charged airlift pump  

DOE Patents (OSTI)

A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

Campbell, Gene K. (Las Vegas, NV)

1983-01-01T23:59:59.000Z

314

Simulation of Combustion and Thermal Flow in an Industrial Boiler  

E-Print Network (OSTI)

Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand the combustion and thermal flow behaviors inside the boiler. This study performs a detailed simulation of combustion and thermal flow behaviors inside an industrial boiler. The simulations are conducted using the commercial CFD package FLUENT. The 3-D Navier-Stokes equations and five species transport equations are solved with the eddy-breakup combustion model. The simulations are conducted in three stages. In the first stage, the entire boiler is simulated without considering the steam tubes. In the second stage, a complete intensive calculation is conducted to compute the flow and heat transfer across about 496 tubes. In the third stage, the results of the saturator/superheater sections are used to calculate the thermal flow in the chimney. The results provide insight into the detailed thermal-flow and combustion in the boiler and showing possible reasons for superheater tube rupture. The exhaust gas temperature is consistent with the actual results from the infrared thermograph inspection.

Saripalli, R.; Wang, T.; Day, B.

2005-01-01T23:59:59.000Z

315

Notice of construction for proposed backup package boiler  

Science Conference Proceedings (OSTI)

The Hanford Site steam plant consists of coal-fired boilers located at the 200 East and the 200 West Areas. These boilers have provided steam to heat and cool facilities in the 200 Areas since the early 1940`s. As part of Project L-017, ``Steam System Rehabilitation, Phase II``, the 200 West Area coal-fired boilers will be permanently shut down. The shut down will only occur after a proposed package backup boiler (50,000 pounds per hour (lb/hr) steam, firing No. 2 oil) is installed at the 200 West Area. The proposed backup boiler will provide back-up services when the 200 East Area steam line, which provides steam to the 200 West Area, is down for maintenance or, when the demand for steam exceeds the supply available from the 200 East Plant. This application is a request for approval to construct and operate the package backup boiler. This request is being made pursuant to Washington Administration Code (WAC) Chapter 173-400, ``General Regulations for Air Pollution Sources``, and Chapter 173-460, ``Controls for New Sources of Toxic Air Pollutants``.

Not Available

1993-10-01T23:59:59.000Z

316

Improved Boiler System Operation with Real-time Chemical Control  

E-Print Network (OSTI)

The steam boiler system is a critical component of most manufacturing processes. Steam production reliability is often a key component in product quality and overall production efficiency. Hourly steam load demands can swing by as much as 500% in some plants, making responsive water treatment of the boiler system difficult. This challenging production environment is made even more so by volatile economic forces in today's world. New technologies have been developed that help steam operations staff achieve more consistent, proactive boiler feedwater treatment by detecting system variability, determining the correct chemical or operational action, and delivering measurable environmental return on investment (ROI). These new technologies will be described and several case histories presented. The steam boiler system is a critical component of most manufacturing processes. Steam production reliability is often a key component in product quality and overall production efficiency. Hourly steam load demands can swing by as much as 500% in some plants, making responsive water treatment of the boiler system difficult. This challenging production environment is made even more so by volatile economic forces in today's world. New technologies have been developed that help steam operations staff achieve more consistent, proactive boiler feedwater treatment by detecting system variability, determining the correct chemical or operational action, and delivering measurable environmental return on investment (ROI). These new technologies will be described and several case histories presented.

Bloom, D.; Jenkins, B.

2010-01-01T23:59:59.000Z

317

Cofiring Wood and Coal to Stoker Boilers in Pittsburgh  

DOE Green Energy (OSTI)

The prime objective of the University of Pittsburgh's overall wood/coal cofiring program is the successful introduction of commercial cofiring of urban wood wastes into the stoker boilers of western Pennsylvania. Central to this objective is the demonstration test at the Pittsburgh Brewing Company. In this test the project team is working to show that two commercially-available clean wood wastes - tub-ground pallet waste and chipped clearance wood - can be included in the fuel fed daily to an industrial stoker boiler. Irrespective of its economic outcome, the technical success of the demonstration at the brewery will allow the local air quality regulation agency to permit a parametric test at the Bellefield Boiler Plant. The objective of this test is to obtain comprehensive data on all key parameters of this operational boiler while firing wood with coal. The data would then be used for thorough generic technical and economic analyses. The technical analysis would be added to the open literature for the general planning and operational guidance for boiler owners and operators. The economic analysis would gage the potential for providing this stoker fuel commercially in an urban setting and for purchasing it regularly for combustion in an urban stoker boiler.

Cobb, J.T., Jr.; Elder, W.W.

1997-07-01T23:59:59.000Z

318

RENEWABLE LIQUID GETTERING PUMP  

DOE Patents (OSTI)

A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

Batzer, T.H.

1962-08-21T23:59:59.000Z

319

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

320

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Design and Fabrication of a Vertical Pump Multiphase Flow Loop  

E-Print Network (OSTI)

A new centrifugal pump has been devised to handle two-phase flow. However, it requires full scale testing to allow further development. Testing is required to verify performance and to gain information needed to apply this design in the field. Further, testing will allow mathematical models to be validated which will allow increased understanding of the pump's behavior. To perform this testing, a new facility was designed and constructed. This facility consists of a closed flow loop. The pump is supplied by separate air and water inlet flows that mix just before entering the pump. These flows can be controlled to give a desired gas volume fraction and overall flow rate. The pump outlet flows into a tank which separates the fluids allowing them to re-circulate. Operating inlet pressures of up to three hundred PSIG will be used with a flow rate of twelve hundred gallons per minute. A two-hundred fifty horsepower electric motor is used to power the pump. The loop is equipped with instrumentation to measure temperature, pressure, flow rate, pump speed, pump shaft horsepower, shaft torque, and shaft axial load. The pump itself has a clear inlet section and a clear section allowing visualization of the second stage volute interior as well as numerous pressure taps along the second stage volute. This instrumentation is sufficient to completely characterize the pump. Design and construction details are provided as well as a history of the initial operating experiences and data collected. A discussion of lessons learned is given in the conclusions. Future projects intended to use this facility are also given. Finally, detailed design drawings are supplied as well as operating instructions and checklists.

Kirkland, Klayton 1965-

2012-12-01T23:59:59.000Z

322

World Class Boilers and Steam Distribution System  

E-Print Network (OSTI)

World class is a term used to describe steam systems that rank in the top 20% of their industry based on quantitative system performance data and energy management for the facility. The rating is determined through a proceduralized assessment process that includes technical features such as boiler efficiency and the percentage of failed steam traps. Management features such as the internal metrices and adequate staffing and training area also included in the assessment. These results are compared with benchmarks for the subject industry. Chemical plants are compared with other chemical plants instead of aggregated data from refining, food processing, health care, etc. This approach provides relevant comparisons and realistic performance targets. The assessment process and industry benchmarks have been developed through sources that include those in the public domain and proprietary industry data. Periodic review and updates are used to ensure that the data accurately represents the relevant industrial profile. Some companies may question why they should upgrade their system. The most obvious answer will be found in the benefits that derive from more efficient operations. Costs are reduced, reliability is improved, and adverse environmental impacts are mitigated. Successful upgrading and maintenance of the energy system requires management support. This may necessitate changes in current practices, technical upgrades to equipment, additional personnel, or other resources. Managers must communicate the message that they want energy management at their plant to be world class.

Portell, V. P.

2002-04-01T23:59:59.000Z

323

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

324

State emissions limitations for boilers: particulate matter  

SciTech Connect

This document summarizes regulations applicable to boilers as reflected in current state and local air regulations. Not all of these regulations are officially part of Federally-approved State Implementation Plans (SIPs). Several regulations have only recently been adopted by the State and are now undergoing EPA review for incorporation into the SIP. Each summary also contains local regulations more stringent than the State rules. Most local regulations in this handbook are included in the State Implementation Plan. Site-specific emission limits (variances from State limits or limits more stringent than State limits) are not included in these summaries. Appendix A contains maps showing the location of Air Quality Control Regions or other districts by which several States regulate emissions. Appendix B contains a summary of National Ambient Air Quality Standards, which States are required to meet as a minimum. Appendix C contains a description and summary of Federal New Source Performance Standards. Appendix D contains formulas for conversion of emmissions limits expressed in one set of units to the most common units - No. PM/MMBtu. Appendix E contains Figure 2 of ASME APS-1, used for determining particulate emissions limits in some States.

Not Available

1980-01-01T23:59:59.000Z

325

Predictive modelling of boiler fouling. Final report.  

SciTech Connect

A spectral element method embodying Large Eddy Simulation based on Re- Normalization Group theory for simulating Sub Grid Scale viscosity was chosen for this work. This method is embodied in a computer code called NEKTON. NEKTON solves the unsteady, 2D or 3D,incompressible Navier Stokes equations by a spectral element method. The code was later extended to include the variable density and multiple reactive species effects at low Mach numbers, and to compute transport of large particles governed by inertia. Transport of small particles is computed by treating them as trace species. Code computations were performed for a number of test conditions typical of flow past a deep tube bank in a boiler. Results indicate qualitatively correct behavior. Predictions of deposition rates and deposit shape evolution also show correct qualitative behavior. These simulations are the first attempts to compute flow field results at realistic flow Reynolds numbers of the order of 10{sup 4}. Code validation was not done; comparison with experiment also could not be made as many phenomenological model parameters, e.g., sticking or erosion probabilities and their dependence on experimental conditions were not known. The predictions however demonstrate the capability to predict fouling from first principles. Further work is needed: use of large or massively parallel machine; code validation; parametric studies, etc.

Chatwani, A

1990-12-31T23:59:59.000Z

326

High Temperature Oxidation Issues in Fossil Boilers  

SciTech Connect

This report covers the conclusion of a multi-year project that examined the oxidation resistance of Al-rich coatings and a new project examining the effect of higher CO{sub 2} contents on corrosion mechanisms in oxy-fired coal-fueled boilers. The coating work primarily examined diffusion coatings for the steam side of typical ferritic (9-12%Cr) and austenitic (e.g., Type 304L) tube materials in accelerated testing at 650-800 C in wet air. The final phase of this work has attempted to obtain additional coating failures to determine a critical Al content (at coating failure) as a function of exposure temperature. However, no failures have been observed for austenitic substrates including >25 kh at 700 C and >6 kh at 800 C. Preliminary results are presented from the oxy-firing project, where the initial focus is on ferritic alloys. Initial coal-ash experiments were conducted at 600 C to evaluate some of the test parameters and three different levels of CO{sub 2} were investigated. An in-situ creep rig is being constructed to evaluate the effect of environment on creep properties. Initial ex-situ creep experiments are presented as a baseline.

Pint, Bruce A [ORNL; Bestor, Michael A [ORNL; Dryepondt, Sebastien N [ORNL; Zhang, Ying [Tennessee Technological University

2010-01-01T23:59:59.000Z

327

Multiple boiler steam blending control system for an electric power plant  

SciTech Connect

A steam blending control is provided for two or more boilers in an electric power plant. To blend an oncoming boiler with an online boiler, the oncoming boiler is fired to a pressure ramp setpoint and outlet steam is isolated from the plant turbine and directed through position controlled bypass valve means. When steam temperature and pressure conditions are matched, the oncoming boiler isolation valve is opened and the bypass flow then existing is stored in a memory. The oncoming boiler bypass flow is cut back with total oncoming boiler steam flow controlled to the memorized flow valve as a setpoint. Flow from the on-line boiler is cut back under load control as the oncoming boiler flow to the plant turbine is increased. Deblending is implemented in a similar manner.

Binstock, M.H.; Criswell, R.L.

1981-12-22T23:59:59.000Z

328

GAS METERING PUMP  

DOE Patents (OSTI)

A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

George, C.M.

1957-12-31T23:59:59.000Z

329

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremesfrom scorching heat in...

330

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

331

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

332

Direct nuclear pumped laser  

DOE Patents (OSTI)

There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

1978-01-01T23:59:59.000Z

333

Heat Pump Systems  

Energy.gov (U.S. Department of Energy (DOE))

Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate...

334

Nucla circulating atmospheric fluidized bed demonstration project. Final report  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

335

Comments on the use of boiler efficiencies to determine unit heat rate  

SciTech Connect

The expression for boiler efficiency defined in ASME PTC4.1 was developed for evaluating boiler performance, carrying out acceptance tests on boilers and computing the effects of changes in parameters such as fuel characteristics on boiler performance. While satisfactory for applications such as these, this particular definition of boiler efficiency can result in substantial errors when used for computing unit performance. Sample calculations are presented for a 600 MW coal fired unit which show errors in net unit heat rate of 1 to 3 percent due to inconsistent definitions for boiler efficiency.

Levy, E.K.; Sarunac, N. (Lehigh Univ., Bethlehem, PA (USA). Energy Research Center); Leyse, R. (Electric Power Research Inst., Palo Alto, CA (USA))

1990-01-01T23:59:59.000Z

336

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

337

Full-scale facility for evaluating lost circulation materials and techniques  

DOE Green Energy (OSTI)

Sandia National Laboratories has designed and built a full-scale facility for the evaluation of lost circulation materials and techniques under simulated down-hole geothermal wellbore conditions. System capabilities include a maximum temperature of 400/sup 0/F, maximum allowed working pressure of 1150 psi, and a variable pumping rate up to 280 gpm at 1000 psi. The system will be utilized to evaluate candidate lost circulation materials and techniques that may be useful to solving geothermal well drilling lost circulation problems.

Loeppke, G.E.; Caskey, B.C.

1983-01-01T23:59:59.000Z

338

Pumping performance of a new type of hybrid molecular pump  

Science Conference Proceedings (OSTI)

A new type of hybrid molecular pump of high performance and reliability has been developed. The pumps rotational speed is 18?000 rpm. The pump is constructed with eleven stages of a turbomolecular pump and a drum multigroove drum molecular pump in which the clearance between rotor and stationary part is 0.35 mm; the rotors deformation forms a cuneiform channel of the proper working clearance to ensure the pumps performance and working reliability. The pump can operate within the pressure range of 510210?6 Pa for a oil?free vacuum with the maximum speed of 400 l/s. The maximum compression ratio for H2 is over 4000. It can be widely used in vacuum processes

Dechun Ba; Naiheng Yang; Xiaodong Wang; Shijin Pang; Yu Zhu; Xiaozhen Wang

1992-01-01T23:59:59.000Z

339

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

340

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

Mechanical compression heat pumping is not new in industrial applications. In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical foundation for heat pumps and present the mechanical and thermal requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling proceed along parallel demand paths. The case history will examine the system flexibility and the economic advantages realized in a barley malting process.

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

342

Lost Circulation Technology Development Status  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the U.S. Department of Energy. The goal of the program is to reduce lost circulation costs by 30-50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1991-March, 1992.

Glowka, David A.; Schafer, Diane M.; Loeppke, Glen E.; Scott, Douglas D.; Wernig, Marcus D.; Wright, Elton K.

1992-03-24T23:59:59.000Z

343

Lost circulation technology development status  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.

1992-01-01T23:59:59.000Z

344

Lost circulation technology development status  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.

1992-07-01T23:59:59.000Z

345

Boiler steam engine with steam recovery and recompression  

SciTech Connect

A boiler type of steam engine is described which uses a conventional boiler with an external combustion chamber which heats water in a pressure chamber to produce steam. A mixing chamber is used to mix the steam from the boiler with recovered recompressed steam. Steam from the mixing chamber actuates a piston in a cylinder, thereafter the steam going to a reservoir in a heat exchanger where recovered steam is held and heated by exhaust gases from the combustion chamber. Recovered steam is then recompressed while being held saturated by a spray of water. Recovered steam from a steam accumulator is then used again in the mixing chamber. Thus, the steam is prevented from condensing and is recovered to be used again. The heat of the recovered steam is saved by this process.

Vincent, O.W.

1980-12-23T23:59:59.000Z

346

Steam boiler control specification problem: A TLA solution  

E-Print Network (OSTI)

. Our solution to the specification problem in the specification language TLA+ is based on a model of operation where several components proceed synchronously. Our first specification concerns a simplified controller and abstracts from many details given in the informal problem description. We successively add modules to build a model of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed controller specification and prove that it refines the abstract controller. We also address the relationship between the physical state of the steam boiler and the model maintained by the controller and discuss the reliability of failure detection. Finally, we discuss the implementability of our specification. 1 Introduction We propose a solution to the steam boiler control specification problem [AS] by means of a formal specification in the specification language TLA+, which is based on Lamport's Temporal Logic of Actions TLA [L94]. The overall str...

Frank Leke; Stephan Merz

1995-01-01T23:59:59.000Z

347

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

348

A Boiler Plant Energy Efficiency and Load Balancing Survey  

E-Print Network (OSTI)

Daily energy use data was used to perform an energy efficiency survey of a medium-sized university boiler plant. The physical plant operates centralized mechanical plants to provide both chilled water and steam for building conditioning. Steam is used for heating buildings and to operate a 4000-ton steam-driven chiller. There are five natural gas-fired steam boilers that have rated capacities ranging from 40,000 lb/hr to 100,000 lb/hr at an operating pressure of 125 psig. This paper discusses the operating characteristics of the boiler and potential energy efficiency improvements. Results from the study included that reducing excess air levels to recommended minimums would save over $15,000 per year.

Nutter, D. W.; Murphy, D. R.

1997-04-01T23:59:59.000Z

349

Climate Wise Boiler and Steam Efficiency Wise Rules  

E-Print Network (OSTI)

Climate Wise is an industrial energy efficiency program sponsored by the U.S. EPA, and supported by the U.S. DOE, working in partnership with more than 400 industrial companies. Many Climate Wise Partners are evaluating or implementing boiler and steam system efficiency measures and have requested assistance in quickly estimating the impacts of these projects through the Wise Line. Climate Wise has developed the Wise Rules for Industrial Efficiency (Wise Rules Tool Kit) to provide companies with simple rules of thumb, or Wise Rules, for estimating potential energy, cost, and greenhouse gas emissions savings from key industrial energy efficiency measures for a broad range of end uses, including boilers and steam systems. This paper presents excerpts from the Wise Rules Tool Kit on boiler and steam system efficiency measures.

Milmoe, P. H.; Winkelman, S. R.

1998-04-01T23:59:59.000Z

350

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Eligibility Multi-Family Residential...

351

Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application of a Moving Line Heat Source  

Science Conference Proceedings (OSTI)

Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proved to be very labor intensive and slow. ...

Cramer K. Elliott; Winfree William P.

2000-01-01T23:59:59.000Z

352

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money!  

NLE Websites -- All DOE Office Websites (Extended Search)

Tune-ups: Tune-ups: Improve efficiency, reduce pollution, and save money! ____________________________________________________ Did you know . . . * Inefficient industrial, commercial, and institutional (ICI) boilers waste money and pollute? * There are over 1.5 million ICI boilers in the United States? * Boilers burning coal, oil, biomass, and other solid fuels and liquid are a major source of toxic air pollution? * New federal Clean Air Act rules require certain boilers to get regular tune-ups? * Keeping your boilers tuned-up can reduce hazardous air pollution? Energy Management, Tune-ups and Energy Assessment Reducing the amount of fuel used by boilers is one of the most cost effective ways to control hazardous air pollution. Tuning-up a boiler optimizes the air-fuel mixture for the operating range of the boiler

353

EIS-0284: Low-Emission Boiler System (LEBS) Proof-of-Concept...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Low-Emission Boiler System (LEBS) Proof-of-Concept System, Elkhart, Illinois EIS-0284: Low-Emission Boiler System (LEBS) Proof-of-Concept System, Elkhart, Illinois Summary This...

354

Damage Modeling and Life Extending Control of a Boiler-Turbine System1  

E-Print Network (OSTI)

Damage Modeling and Life Extending Control of a Boiler-Turbine System1 Donglin Li Tongwen Chen2 hierarchical LEC structure and apply it to a typ- ical boiler system. There are two damage models

Marquez, Horacio J.

355

B. TRANSPORTATION, CIRCULATION AND PARKING B. TRANSPORTATION, CIRCULATION AND  

E-Print Network (OSTI)

B. TRANSPORTATION, CIRCULATION AND PARKING 231 B. TRANSPORTATION, CIRCULATION AND PARKING on transportation and connectivity issues common to UCSF as a whole. Please refer to Chapter 5, Plans for Existing characteristics specific to each individual UCSF site. DETERMINANTS OF THE 1996 LRDP The transportation

Mullins, Dyche

356

Ocean General Circulation Models  

SciTech Connect

1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earths climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

Yoon, Jin-Ho; Ma, Po-Lun

2012-09-30T23:59:59.000Z

357

Boiler Tube Corrosion Characterization With a Scanning Thermal Line  

E-Print Network (OSTI)

Wall thinning due to corrosion in utility boiler waterwall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler waterwalls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system ...

Elliott Cramer National; K. Elliott Cramer; Langley Blvd; Ronald Jacobstein; Thomas Reilly

2001-01-01T23:59:59.000Z

358

COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS  

SciTech Connect

The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

2001-04-01T23:59:59.000Z

359

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

360

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

362

Acoustical heat pumping engine  

DOE Patents (OSTI)

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1983-08-16T23:59:59.000Z

363

Acoustical heat pumping engine  

DOE Patents (OSTI)

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

364

Computational Modeling and Assessment of Nanocoatings for Ultra-Supercritical Boilers  

Science Conference Proceedings (OSTI)

Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler water walls and tubing. Reliable coatings are required for ultra-supercritical application to mitigate corrosion because these boilers will operate at much higher temperatures and pressures than in supercritical boilers.Computational modeling efforts have been undertaken to design and assess potentialFe-Cr-Ni-Al systems to produce stable nanocrystalline ...

2012-12-12T23:59:59.000Z

365

Field Test of a Semi-Continuous Fly Ash Unburned Carbon Monitor: Cyclone Boiler Application  

Science Conference Proceedings (OSTI)

Unburned carbon (UBC) is the measure of the carbon level in the fly ash of a coal-fired boilerwith increased carbon indicating less-complete and less-efficient combustion. Boiler design is one important factor that affects UBC levels. Cyclone boilers burn coal at high combustion temperatures (ca. 1650C) and exhibit relatively high, but quite variable, fly ash UBC levels. Recently, because of competitive fuel pricing and reduced SO2 and NOX emissions, cyclone boilers ...

2013-12-17T23:59:59.000Z

366

Mitigation of Boiler Tubing Damage from Use of Explosive Cleaning Methods  

Science Conference Proceedings (OSTI)

Combustion of fossil fuels results in formation of slags that cover boiler tubes. Efficient boiler operation requires periodic removal of these slags, and explosive cleaning is an excellent cleaning method. While boiler tube cleaning using explosives is an established technology, a number of cases of tube damage have been reported, including cracking and denting of boiler tubes. This report details the work accomplished in Phase I of this project to capture the current understanding and practice of explo...

2008-01-01T23:59:59.000Z

367

Wood-Coal Fired "Small" Boiler Case Study  

E-Print Network (OSTI)

Galaxy Carpet Corporation installed a coal and wood waste fired boiler approximately twelve months ago. Its first year net savings were $195,000.00 Total capital investment was paid off in 1.9 years. 20% investment tax credits were granted by the Federal Government. Galaxy Carpet Corporation has been sufficiently impressed with performance, both economically and technically, to place a follow-up order of $1,500,000.00 for a second solid fuel fired boiler system at its Dalton, Georgia Dye House operation.

Pincelli, R. D.

1980-01-01T23:59:59.000Z

368

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

Science Conference Proceedings (OSTI)

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Powers Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: scale up of gas to solid heat transfer high temperature finned surface design the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

369

Bed inventory overturn in a circulating fluid bed riser with pant-leg structure  

Science Conference Proceedings (OSTI)

The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure. 15 refs., 10 figs., 1 tab.

Jinjing Li; Wei Wang; Hairui Yang; Junfu Lv; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2009-05-15T23:59:59.000Z

370

Research on water level optimal control of boiler drum based on dual heuristic dynamic programming  

Science Conference Proceedings (OSTI)

Boiler drum system is an important component of a thermal power plant or industrial production, and the water level is a critical parameter of boiler drum control system. Because of non-linear, strong coupling and large disturbance, it is difficult to ... Keywords: BP neural network, boiler drum level, dual heuristic dynamic programming, optimal control

Qingbao Huang; Shaojian Song; Xiaofeng Lin; Kui Peng

2011-05-01T23:59:59.000Z

371

Application of Phast in the Quantitative Consequence Analysis for the Boiler BLEVE  

Science Conference Proceedings (OSTI)

Boilers BLEVE are among the most devastating accidents likely in chemical process industry, which lead to shock waves and rocketing fragments of ruptured vessels. The prediction of the boiler explosion energy and its impact is fairly helpful to the prevention ... Keywords: boiler, BLEVE, Phast, quantitative assessment, blast-wave overpressure, positive phase impulse

Qu Fang, Zuo Zhe, Si Qingmin

2013-01-01T23:59:59.000Z

372

Boiler Room Coal Drying Heat Exchanger Numerical Computational Simulation and Analysis  

Science Conference Proceedings (OSTI)

Northeast area city district heating boiler room of coal with high moisture content, have caused a large number of waste of coal resources. Boiler coal drying heat exchanger is a long design cycle, testing workload and investment is more equipment. In ... Keywords: District heating boiler room, Dry heat exchanger, Numerical simulation, Heat transfer calculation

Zhao Xuefeng, Xiong Wen-zhuo

2012-07-01T23:59:59.000Z

373

An Algebraic Speci cation of the Steam-Boiler Control System  

E-Print Network (OSTI)

An Algebraic Speci#12;cation of the Steam-Boiler Control System Michel Bidoit 1 , Claude Chevenier describe how to derive an algebraic speci#12;cation of the Steam-Boiler Control System starting from to specify the detection of the steam-boiler fail- ures. Finally we discuss validation and veri#12;cation

Bidoit, Michel

374

welcome to university residences Boiler Gold Rush Check-In...........................Saturday, August 13 and  

E-Print Network (OSTI)

welcome to university residences #12;Boiler Gold Rush Check-In...........................Saturday, August 13 and Sunday, August 14, 2011 Boiler Gold Rush residence hall systems in the United States. weLcomE! 1 #12;Boiler GoLD Rush ParticiPants Your regular

Fernández-Juricic, Esteban

375

Decentralized robust control of a class of nonlinear systems and application to a boiler system  

E-Print Network (OSTI)

Decentralized robust control of a class of nonlinear systems and application to a boiler system Keywords: Asymptotic disturbance rejection Boiler systems Decentralized robust control Descriptor systems problem, a decentralized controller for the system can be calculated. In order to control a utility boiler

Marquez, Horacio J.

376

Supercritical Boiler Tube Wall Temperature Test Base on the Power Plant Control System Database  

Science Conference Proceedings (OSTI)

In order to precisely learn the working condition of 600MW supercritical boiler, new temperature measuring points are set on the super-heater tube wall inner the flue. Since the working condition of 600MW supercritical boiler is quite severe, the temperature ... Keywords: supercritical boiler, database, temperature test, super-heater

Yu Yanzhi; Zhang Liangbo; Xu Haichuan; Chen Duogang; Dong Gongjun; Shen Bo; Liu Sheng

2010-06-01T23:59:59.000Z

377

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING  

E-Print Network (OSTI)

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING APPROACH ANDREW KUSIAK to analyze events leading to plug- gage of a boiler. The proposed approach involves statistics, data. The proposed approach has been tested on a 750 MW commercial coal-fired boiler affected with an ash fouling

Kusiak, Andrew

378

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20  

E-Print Network (OSTI)

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

379

Assertional Specification and Verification using PVS of the Steam Boiler Control System  

E-Print Network (OSTI)

Assertional Specification and Verification using PVS of the Steam Boiler Control System Jan Vitt 1 of the steam boiler control system has been derived using a formal method based on assumption/commitment pairs Introduction The steam boiler control system, as described in chapter AS of this book, has been designed

Hooman, Jozef

380

Gain-scheduled `1 -optimal control for boiler-turbine dynamics  

E-Print Network (OSTI)

Gain-scheduled `1 -optimal control for boiler-turbine dynamics with actuator saturation Pang; accepted 2 June 2003 Abstract This paper presents a gain-scheduled approach for boiler-turbine controller the magnitude and rate saturation constraints on actuators. The nonlinear boiler-turbine dynamics is brought

Shamma, Jeff S.

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Corrections to "Proving Safety Properties of the Steam Boiler Controller" Correction Sheet  

E-Print Network (OSTI)

Corrections to "Proving Safety Properties of the Steam Boiler Controller" 1 Correction Sheet After our paper "Proving Safety Properties of the Steam Boiler Controller" went already to print, Myla address http://theory.lcs.mit.edu/tds/boiler.html. Following are the corrections to these errors and some

Lynch, Nancy

382

MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC APPROACH  

E-Print Network (OSTI)

MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC mathematically and prac- tically tractable. Boilers are industrial units, which are used for gener- ating steam of fuel. Boiler operation is a complex operation in which hot water must be delivered to a turbine

Rizvi, Syed Z.

383

Refining Abstract Machine Specifications of the Steam Boiler Control to Well Documented  

E-Print Network (OSTI)

Refining Abstract Machine Specifications of the Steam Boiler Control to Well Documented Executable the steam boiler control specification problem to il­ lustrate how the evolving algebra approach and Specification, in June 1995, to control the Karlsruhe steam boiler simulator satisfactorily. The abstract

Börger, Egon

384

Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented  

E-Print Network (OSTI)

Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented Executable the steam boiler control speci cation problem to il- lustrate how the evolving algebra approach to the speci, in June 1995, to control the Karlsruhe steam boiler simulator satisfactorily. The abstract machines

Börger, Egon

385

Development and Application of Gas Sensing Technologies to Enable Boiler Balancing  

E-Print Network (OSTI)

01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

Dutta, Prabir K.

386

INTERACTIVE SIMULATION AND ANALYSIS OF EMISSION REDUCTION SYSTEMS IN COMMERCIAL BOILERS  

E-Print Network (OSTI)

INTERACTIVE SIMULATION AND ANALYSIS OF EMISSION REDUCTION SYSTEMS IN COMMERCIAL BOILERS Darin an emission reduction sys- tem for commercial boilers. The interactive environment is used to optimize for commercial boilers and incinerators. This work has been done as part of a collaboration between Nalco Fuel

387

Predictive control and thermal energy storage for optimizing a multi-energy district boiler  

E-Print Network (OSTI)

Predictive control and thermal energy storage for optimizing a multi- energy district boiler Julien of the OptiEnR research project, the present paper deals with optimizing the multi-energy district boiler to the complexity of the district boiler as a whole and the strong interactions between the sub-systems, previous

Paris-Sud XI, Université de

388

Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1  

E-Print Network (OSTI)

Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1 , Horacio J. Marquez b, and the concept is applied to a boiler-turbine unit to analyze its dynamics. It is shown that the unit shows. Keywords: Boiler-turbine unit; Nonlinearity measure; Gap metric; Anti-windup bumpless transfer techniques

Marquez, Horacio J.

389

Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co-Firing  

E-Print Network (OSTI)

ACERC-2008 Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co based measurements methods #12;Objective Minor impact of biomass cofiring with coal on boiler operation) · Experimentally demonstrate the existence of stratified flows in boilers Indication: SO2, ash composition, straw

390

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37  

E-Print Network (OSTI)

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

391

Environmental impact of small scale pellets boilers in the context of Belgian quality labeling  

E-Print Network (OSTI)

Environmental impact of small scale pellets boilers in the context of Belgian quality labeling of pellet boilers in standard laboratory and in field conditions. This part had three main targets were identified. Pollutants emissions and efficiency of a multi- fuel boiler was compared

Glineur, François

392

Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation  

E-Print Network (OSTI)

Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation. In this paper, we apply this modeling principle to a well known case study, the steam boiler problem which has model and to assess the difficulty of such a process in a realistic case study. The steam boiler case

Paris-Sud XI, Université de

393

Boiler Kids Camp Parent Manual Division of Recreational Sports Mission Statement  

E-Print Network (OSTI)

Boiler Kids Camp Parent Manual Division of Recreational Sports Mission Statement The Division which fosters an appreciation for a healthy lifestyle and promotes lifelong learning. Boiler Kids Camp Mission Statement Boiler Kids Camp is an interactive, summer day camp designed for children ranging

Holland, Jeffrey

394

The Steam Boiler Case Study: Competition of Formal Program Speci cation and Development  

E-Print Network (OSTI)

The Steam Boiler Case Study: Competition of Formal Program Speci#12;cation and Development Methods the design of a steam boiler control, which realizes the informal speci#12;cation handed out. The steam boiler-control speci#12;cation problem was sent out to the partici- pants nine months before

Börger, Egon

395

Development program for heat balance analysis fuel to steam efficiency boiler and data wireless transfer  

Science Conference Proceedings (OSTI)

This research aim to improve a combustion system of boiler within increase combustion efficiency and use all out of the energy. The large boilers were used in the industrial factories which consume a lot of energy for production. By oil and gas fuel ... Keywords: boiler, cogeneration energy, heat balance, steam efficiency, wireless data transfer

Nattapong Phanthuna; Warunee Srisongkram; Sunya Pasuk; Thaweesak Trongtirakul

2009-02-01T23:59:59.000Z

396

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA  

E-Print Network (OSTI)

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA Submitted to Dr. Bi By Bernard Chan Pellets for UBC Boilers Replacing Natural Gas" By Bernard Chan, Brian Chan, and Christopher Young Abstract This report studies the feasibility of replacing natural gas with wood pellets for UBC boilers. A gasification

397

A thermal computation program of process steam boilers obtained with reusable equipments and plants  

Science Conference Proceedings (OSTI)

This paper presents a process steam boiler dimensioned by means of two computer programs. The first computer program entitled "thermal computation of the chamber furnace of boiler" provides the utilization of the Boltzmann criterion. This computer program ... Keywords: boiler, chamber furnace, computer program, heat exchanger

Aurel Gaba; Ion-Florin Popa; Alexis-Daniel Negrea

2010-05-01T23:59:59.000Z

398

Pumped oil feed systems for rotary vacuum pumps  

Science Conference Proceedings (OSTI)

Pumped oil feed systems developed by the authors and their colleagues provide positive lubrication under all inlet pressure conditions

H. Wycliffe; B. D. Power

1981-01-01T23:59:59.000Z

399

Status of lost circulation research  

DOE Green Energy (OSTI)

This paper describes progress made in the Lost Circulation Technology Development Program over the period March, 1992--April, 1993. The program is sponsored at Sandia National Laboratories by the US Department of Energy, Geothermal division. The goal of the program is to develop technology to reduce lost circulation costs associated with geothermal drilling by 30--50%.

Glowka, D.A.; Schafer, D.M.; Wright, E.K.; Whitlow, G.L.; Bates, C.W.

1993-06-01T23:59:59.000Z

400

NOx Control for Utility Boiler OTR Compliance  

SciTech Connect

Babcock & Wilcox Power Generation Group (B&W) and Fuel Tech, Inc. (Fuel Tech) teamed to evaluate an integrated solution for NO{sub x} control comprised of B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a selective non-catalytic reduction (SNCR) technology, capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu. In a previous project sponsored by the U.S. Department of Energy (DOE), promising results were obtained with this technology from large-scale testing in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) which simulates the conditions of large coal-fired utility boilers. Under the most challenging boiler temperatures at full load conditions, NO{sub x} emissions of 0.19 lb/10{sup 6} Btu were achieved firing Powder River Basin coal while controlling ammonia slip to less than 5 ppm. At a 40 million Btu/hr firing rate, NO{sub x} emissions were as low as 0.09 lb/10{sup 6} Btu. Improved performance with this system was proposed for this new program with injection at full load via a convective pass multiple nozzle lance (MNL) in front of the superheater tubes or in the convective tube bank. Convective pass lances represent the current state-of-the-art in SNCR and needed to be evaluated in order to assess the full potential of the combined technologies. The objective of the program was to achieve a NO{sub x} level below 0.15 lb/10{sup 6} Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign} System. Commercial installations of B&W's low-NO{sub x} burner, in combination with overfire air ports using PRB coal, have demonstrated a NO{sub x} level of 0.15 to 0.2 lb/10{sup 6} Btu under staged combustion conditions. The proposed goal of the combustion system (no SNCR) for this project is a NO{sub x} level at 0.15 lb/10{sup 6} Btu. The NO{sub x} reduction goal for SNCR is 25% from the low-NO{sub x} combustion emission levels. Therefore, overall NO{sub x} emissions would approach a level of 0.11 lb/10{sup 6} Btu in commercial installation. The goals of the program were met. At 100% load, using the MNL for very low baseline NO{sub x} (0.094 to 0.162 lb/10{sup 6} Btu depending on burner stoichiometry), an approximately 25% NO{sub x} reduction was achieved (0.071 to 0.124 lb/10{sup 6} Btu) while maintaining NH{sub 3} slip less than 6.4 ppm. At 60% load, using MNL or only wall-injectors for very low baseline NO{sub x} levels, more than 30% NO{sub x} reduction was achieved. Although site specific economic evaluation is required for each unit, our economic evaluation of DRB-4Z{reg_sign} burner and SNCR for a 500 MW{sub e} plant firing PRB shows that the least cost strategy is low-NO{sub x} burner and OFA at a cost of $210 to $525 per ton of NO{sub x} removed. Installation of SNCR allows the utilities to sell more NO{sub x} credit and it becomes economical when NO{sub x} credit cost is more than $5,275 per ton of NO{sub x}.

Hamid Farzan; Jennifer L. Sivy

2005-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report  

Science Conference Proceedings (OSTI)

The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

Not Available

1983-09-01T23:59:59.000Z

402

Explosively pumped laser light  

DOE Patents (OSTI)

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

403

Shrouded inducer pump  

DOE Patents (OSTI)

An improvement in a pump is described including a shrouded inducer, the improvement comprising first and second sealing means which cooperate with a first vortex cell and a series of secondary vortex cells to remove any tangential velocity components from the recirculation flow. 3 figs.

Meng, S.Y.

1989-08-08T23:59:59.000Z

404

Linear induction pump  

DOE Patents (OSTI)

Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

Meisner, John W. (Newbury Park, CA); Moore, Robert M. (Canoga Park, CA); Bienvenue, Louis L. (Chatsworth, CA)

1985-03-19T23:59:59.000Z

405

Indexes of pumps for oil field pumping units  

Science Conference Proceedings (OSTI)

As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

Ibragimov, E.S.

1995-07-01T23:59:59.000Z

406

Pumped Hydro | Open Energy Information  

Open Energy Info (EERE)

search Introduction caption:Pumped Storage diagram at TVA's Racoon mountain Pumped Hydro is an energy storage technique where water is used as a medium in order to store...

407

SURVEY OF SODIUM PUMP TECHNOLOGY  

SciTech Connect

A review is presented of the current status of sodium pump development as related to nuclear power applications. A description is given of the design features and performance characteristics of the more important types of sodium and sodium-- potassium alloy (NaK) pumps. Some requirements for sodium pumps for future large liquid metal reactor systems are presented with some preliminary consideration of the potential of various pump types to meet these requirements. (auth)

Nixon, D.R.

1963-06-01T23:59:59.000Z

408

Simulation of air flow in the typical boiler windbox segments  

Science Conference Proceedings (OSTI)

Simulation of turbulent air flow distribution in CFBC furnace, wherein primary air is entrained through inlet duct system called windbox, is attempted through state of art CAD/CFD softwares. Establishment of flow in windbox channel, distributed plate ... Keywords: CFBC boiler, air flow, combustor geometry, distributed plate nozzles, multi-block grids, recirculation flow, simulation of flow, unequal air flow, windbox channel

C. Bhasker

2002-12-01T23:59:59.000Z

409

Evaluation of Circumferential Cracking on Supercritical Boiler Waterwalls  

Science Conference Proceedings (OSTI)

Circumferential cracking of the fireside surfaces of supercritical waterwalls remains a problem for many coal-fired boilers. Two parallel test programs at Pennsylvania Power and Light's (PPL) Brunner Island Unit 3 attempted to correlate operating conditions with the development and propagation of circumferential cracks.

2008-03-31T23:59:59.000Z

410

Choosing the right boiler air fans at Weston 4  

SciTech Connect

When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

Spring, N.

2009-04-15T23:59:59.000Z

411

Hybrid System for fouling control in biomass boilers  

Science Conference Proceedings (OSTI)

Renewable energy sources are essential paths towards sustainable development and CO"2 emission reduction. For example, the European Union has set the target of achieving 22% of electricity generation from renewable sources by 2010. However, the extensive ... Keywords: Biomass, Boiler fouling, Hybrid system

Luis M. Romeo; Raquel Gareta

2006-12-01T23:59:59.000Z

412

THE IMPORTANCE OF PROPER LOADING OF REFUSE FIRED BOILERS  

E-Print Network (OSTI)

an explanation for the unusually high maintenance costs, not as a criticism of Thermal's management. All parties in 1980, the same year that Thermal management uprated the boilers. Annual oper ating and maintenance of the overfire air system, the maintenance expenses due to tube wastage and stoker failures, would

Columbia University

413

Natural Gas as a Boiler Fuel of Choice in Texas  

E-Print Network (OSTI)

Natural gas is abundant, clean burning, and cost competitive with other fuels. In addition to superior economic fundamentals, the expanded use of natural gas will be enhanced by political and industry leaders. Natural gas therefore will continue to be the boiler fuel choice for Texas electric generating companies.

Kmetz, W. J.

1992-04-01T23:59:59.000Z

414

Integrated boiler, superheater, and decomposer for sulfuric acid decomposition  

DOE Patents (OSTI)

A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

2010-01-12T23:59:59.000Z

415

Post-test examination of a pool boiler receiver  

DOE Green Energy (OSTI)

A subscale pool boiler test apparatus to evaluate boiling stability developed a leak after being operated with boiling NaK for 791.4 hr at temperatures from 700 to 750 {degrees}C. The boiler was constructed using Inconel 625 with a type 304L stainless steel wick for the boiler and type 316 stainless steel for the condenser. The boiler assembly was metallurgically evaluated to determine the cause of the leak and to assess the effects of the NaK on the materials. It was found that the leak was caused by insufficient (about 30 percent) joint penetration in a butt joint. There was no general corrosion of the construction materials, but the room temperature ductility of the Inconel 625 was only about 6.5 percent. A crack in the heat affected zone of the Inconel 625 near the Inconel 625 to type 316 stainless steel butt joint was probably caused by excessive heat input. The crack was observed to have a zone depleted of iron at the crack surface and porosity below that zone. The mechanism of the iron depletion was not conclusively determined. 3 refs.

Dreshfield, R.L.; Moore, T.J.; Bartolotta, P.A.

1992-04-01T23:59:59.000Z

416

Gas Cofiring Assessment for Coal Fired Utility Boilers  

Science Conference Proceedings (OSTI)

This study evaluates gas co-firing as one option for coal-fired utility boilers. It provides electric power generators an objective review of the potential, experience to date, and economics of five gas co-firing technologies, plus a sixth pilot-scale application.

2000-08-23T23:59:59.000Z

417

ENVIRONMENTAL EMISSIONS FROM A SUSPENSION FIRED BOILER WHILE BURNING  

E-Print Network (OSTI)

, are not given in any of the tables. 4. The fouling of the boiler tubes while co firing RDF is a confirmation of European experi ence which showed that co-firing of MSW (with #12;lower ash fusion point) with coal

Columbia University

418

Integrated Boiler Tube Failure Reduction/Cycle Chemistry Improvement Program  

Science Conference Proceedings (OSTI)

Boiler tube failures (BTF) and cycle chemistry corrosion and deposition problems remain the leading causes of availability losses in fossil-fired steam plants worldwide. This report describes techniques developed during a 20-year EPRI project to assist utilities in substantially reducing availability and performance losses due to these problems.

2006-05-16T23:59:59.000Z

419

Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama  

E-Print Network (OSTI)

The objective of this paper is to provide an overview of the economic benefits realized by Amoco's Decatur plant from the utilization of Honeywell's Industrial Boiler Control solution and Turbo Economic Load Allocation packages on an integrated four boiler system. The boiler control scheme, integrated header pressure control scheme, boiler efficiency measurement, the concepts involved in the economic load allocation problem and the solution to this problem, as applied to the Amoco Decatur site will be discussed. In addition, actual fuel savings achieved from the use of a DCS boiler control solution coupled with the application of economic load allocation will be presented, based on several months of plant data.

Winter, J.

1998-04-01T23:59:59.000Z

420

Polymer grouts for plugging lost circulation in geothermal wells.  

DOE Green Energy (OSTI)

We have concluded a laboratory study to evaluate the survival potential of polymeric materials used for lost circulation plugs in geothermal wells. We learned early in the study that these materials were susceptible to hydrolysis. Through a systematic program in which many potential chemical combinations were evaluated, polymers were developed which tolerated hydrolysis for eight weeks at 500 F. The polymers also met material, handling, cost, and emplacement criteria. This screening process identified the most promising materials. A benefit of this work is that the components of the polymers developed can be mixed at the surface and pumped downhole through a single hose. Further strength testing is required to determine precisely the maximum temperature at which extrusion through fractures or voids causes failure of the lost circulation plug.

Galbreath, D. (Green Mountain International, Waynesvile, NC); Mansure, Arthur James; Bauer, Stephen J.

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers  

Science Conference Proceedings (OSTI)

Coal-fired power plants are a significant part of the nation???¢????????s power generating capacity, currently accounting for more than 55% of the country???¢????????s total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760???????°C (1400???????°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

David W. Gandy; John P. Shingledecker

2011-05-11T23:59:59.000Z

422

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

Science Conference Proceedings (OSTI)

This document reviews the work performed during the quarter January-March 2003. The main objectives of the project are: To demonstrate the feasibility of the full-oxy combustion with flue gas recirculation on Babcock & Wilcox's 1.5MW pilot boiler, To measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection strategies, To perform an economical feasibility study, comparing this solution with alternate technologies, and To design a new generation, full oxy-fired boiler. The main objective of this quarter was to initiate the project, primarily the experimental tasks. The contractor and its subcontractors have defined a working plan, and the first tasks have been started. Task 1 (Site Preparation) is now in progress, defining the modifications to be implemented to the boiler and oxygen delivery system. The changes are required in order to overcome some current limitations of the existing system. As part of a previous project carried out in 2002, several changes have already been made on the pilot boiler, including the enrichment of the secondary and tertiary air with oxygen or the replacement of these streams with oxygen-enriched recycled flue gas. A notable modification for the current project involves the replacement of the primary air with oxygen-enriched flue gas. Consequently, the current oxygen supply and flue gas recycle system is being modified to meet this new requirement. Task 2 (Combustion and Emissions Performance Optimization) has been initiated with a preliminary selection of four series of tests to be performed. So far, the project schedule is on-track: site preparation (Task 1) should be completed by August 1st, 2003 and the tests (Task 2) are planned for September-October 2003. The Techno-Economic Study (Task 3) will be initiated in the following quarter.

Ovidiu Marin; Fabienne Chatel-Pelage

2003-04-01T23:59:59.000Z

423

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

424

LOW COST HEAT PUMP WATER HEATER (HPWH)  

Science Conference Proceedings (OSTI)

Water heating accounts for the second largest portion of residential building energy consumption, after space conditioning. Existing HPWH products are a technical success, with demonstrated energy savings of 50% or more compared with standard electric resistance water heaters. However, current HPWHs available on the market cost an average of $1000 or more, which is too expensive for significant market penetration. What is needed is a method to reduce the first cost of HPWHs, so that the payback period will be reduced from 8 years to a period short enough for the market to accept this technology. A second problem with most existing HPWH products is the reliability issue associated with the pump and water loop needed to circulate cool water from the storage tank to the HPWH condenser. Existing integral HPWHs have the condenser wrapped around the water tank and thus avoid the pump and circulation issues but require a relatively complex and expensive manufacturing process. A more straightforward potentially less costly approach to the integral, single package HPWH design is to insert the condenser directly into the storage tank, or immersed direct heat exchanger (IDX). Initial development of an IDX HPWH met technical performance goals, achieving measured efficiencies or energy factors (EF) in excess of 1.79. In comparison conventional electric water heaters (EWH) have EFs of about 0.9. However, the initial approach required a 2.5" hole on top of the tank for insertion of the condenser - much larger than the standard openings typically provided. Interactions with water heater manufacturers indicated that the non standard hole size would likely lead to increased manufacturing costs (at least initially) and largely eliminate any cost advantage of the IDX approach. Recently we have been evaluating an approach to allow use of a standard tank hole size for insertion of the IDX condenser. Laboratory tests of a prototype have yielded an EF of 2.02.

Mei, Vince C [ORNL; Baxter, Van D [ORNL

2006-01-01T23:59:59.000Z

425

Reduce Pumping Costs through Optimum Pipe Sizing  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency by reducing pumping costs through optimum pipe sizing.

2005-10-01T23:59:59.000Z

426

Select an Energy-Efficient Centrifugal Pump  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency by selecting an energy-efficient centrifugal pump.

2005-10-01T23:59:59.000Z

427

SHINE VACUUM PUMP TEST VERIFICATION  

Science Conference Proceedings (OSTI)

Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ?Normetex replacement?) pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ?booster? pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ?booster? pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ?booster pump? is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of ? inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.

Morgan, G.; Peters, B.

2013-09-30T23:59:59.000Z

428

Oregon Hospital Heats Up with a Biomass Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Julie McAlpin Communications Liaison, State Energy Program Why biomass? Wood was the first energy source used and man's main fuel source until the Industrial Revolution.

429

Pump Systems Optimization: Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Pump Systems Optimization: Energy Efficiency and Bottom-Line Savings Host this one-day course to help participants learn how to identify and reduce hidden operation and energy costs. Participants will: * Identify energy savings * Increase profitability * Increase reliability * Earn seven PDH credits Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve centrifugal pump system efficiency to reduce energy and operating costs while earning seven professional development hour (PDH) credits from the Hydraulic Institute. Topics covered include:* * Why Efficient Pump Systems Are Important

430

Dual valve well pump installation  

SciTech Connect

A reciprocating electric motor-pump assembly for lifting well fluid on downstroke of the motor pump assembly, the pump including a barrel below the motor having dual combined inlet and outlet valve means at the lower end thereof, the pump piston moving in the barrel having annular grooves therearound to prevent differential pressure sticking, the electric cable supplying the electric motor being tubular to vent the pump and prevent vacuum or gas lock, there being a packer about the valve barrel separating the outlet valve means thereabove from the inlet valve means therebelow and a packer above the motor about a production tubing including an upper standing valve.

Holm, D. R.

1985-10-22T23:59:59.000Z

431

Save by absorption heat pumping  

SciTech Connect

The author compares absorption heat pumping (AHP) to mechanical vapor compressor (MVC) heat pumping. The moving part of the AHP is a pump easy to maintain and inexpensive to spare. The mechanical component of the MVC is a vapor compressor which requires more maintenance and is cost-prohibitive to spare. Also, in the MVC system, a purified product stream is heat pumped in an open compressor, thus risking product contamination. In the AHP system, the cold and hot utilities are heat pumped. Therefore, product integrity with an AHP system is well protected as in a conventional fractionation column.

Davidson, W.F.; Campagne, W.V.L.

1987-12-01T23:59:59.000Z

432

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

433

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, M.G.

1984-04-20T23:59:59.000Z

434

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

435

Hydride heat pump  

DOE Patents (OSTI)

Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

Cottingham, James G. (Center Moriches, NY)

1977-01-01T23:59:59.000Z

436

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

437

A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))  

DOE Green Energy (OSTI)

A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

Tatro, C.A.

1986-10-01T23:59:59.000Z

438

Thermodynamic Analysis of Ocean Circulation  

Science Conference Proceedings (OSTI)

Calculating a streamfunction as function of depth and density is proposed as a new way of analyzing the thermodynamic character of the overturning circulation in the global ocean. The sign of an overturning cell in this streamfunction directly ...

J. Nycander; J. Nilsson; K. Ds; G. Brostrm

2007-08-01T23:59:59.000Z

439

Residual Circulation and Tropopause Structure  

Science Conference Proceedings (OSTI)

The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied ...

Thomas Birner

2010-08-01T23:59:59.000Z

440

Secondary Instabilities in Langmuir Circulations  

Science Conference Proceedings (OSTI)

Finite-amplitude Langmuir circulation in the form of rolls parallel to the wind direction is shown to be subject to three-dimensional instability under certain circumstances. Density stratification is not required for instability to manifest. The ...

Amit Tandon; Sidney Leibovich

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE lost circulation technology development  

DOE Green Energy (OSTI)

Lost circulation is a problem common in both the geothermal and the solution mining industries. In both cases, drilling is on a relatively large scale (geothermal holes can be as large as 26 inches). Lost circulation technology development for geothermal drilling has been in progress at Sandia National Laboratories for more than 15 years. The initial work centered on lost circulation materials, but testing and modeling indicated that if the aperture of a loss zone is very large (larger than the drill bit nozzles) it cannot be plugged by simply adding materials to the drilling fluid. Thus, the lost circulation work evolved to include: (1) Development of metering techniques that accurately measure and characterize drilling fluid inflow and outflow for rapid diagnosis of los circulation and/or fluid balance while drilling. (2) Construction of a laboratory facility for testing drillable straddle packers (to improve the plugging efficiency of cementing operations) and the actual testing of components of the straddle packer. (3) Construction of a laboratory facility for the testing of candidate porous fabrics as a part of a program to develop a porous packer that places polyurethane foam into a loss zone. (4) Implementing (with Halliburton and CalEnergy Company), a program to test cementitious lost circulation material as an alternative to Portland cement.

Glowka, D.A.; Staller, G.E.; Sattler, A.R.

1996-09-01T23:59:59.000Z

442

Ground-coupled heat pump systems: a pumping analysis.  

E-Print Network (OSTI)

??Ground-coupled heat pump (GCHP) systems use the ground as a heat source or sink that absorbs heat from or rejects heat to the soil, respectively; (more)

Mays, Cristin Jean

2012-01-01T23:59:59.000Z

443

Analysis of drying wood waste fuels with boiler exhaust gases: simulation, performance, and economics  

DOE Green Energy (OSTI)

This study evaluates the feasibility of retrofitting a rotary dryer to a hog fuel boiler, using the boiler exhaust gases as the drying medium. Two simulation models were developed. Each model accurately predicts system performance given site-specific parameters such as boiler steam demand, fue moisture content, boiler exhaust temperature and combustion excess air. Three rotary dryers/hog fuel boilers currently in operation in the forest products industry were analyzed. The data obtained were used to validate te accuracy of the simulation models and to establish the performance of boiler/dryer systems under field conditions. The boiler exhaust temperatures observed ranged from 340 to 500/sup 0/F and indicated that significant drying could be realized at moderate stack temperatures, as substantitated by experimental moisture content data. The simulation models were used to evaluate a general boiler/dryer system's sensitivity to variation in operating conditions. The sensitivity analyses indicated that under moderate conditions (400/sup 0/F boiler exhaust, etc.) the installation of a rotary dryer results in a 15% increase in boiler efficiency and a 13% decrease in fuel consumption. Both the field data and sensitivity analyses indicated that a greater increase in boiler efficiency could be realized at higher stack temperatures, approximately a 30% increase in boiler efficiency for a stack temperature of 600/sup 0/F. The cash flow basis payback periods based on hog fuel savings due to dryer installation ranged from 2.7 years for a used dryer to 3.9 years for a new dryer. The payback periods for equivalent BTU savings of gas and oil ranged from 1.2 to 2.0 for gas and from 1.3 to 2.1 years for oil. This study concludes that retrofitting a rotary dryer to an existing hog fuel boiler is an economically feasible option to the forest products industry. 31 references, 24 figures, 18 tables.

Kirk, R.W.; Wilson, J.B.

1984-09-01T23:59:59.000Z

444

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

445

Tighten water-chemistry control after boiler layup  

Science Conference Proceedings (OSTI)

The potential for internal deposition and corrosion can affect boiler reliability by reducing thermal efficiency, tube integrity, and the time between chemical cleanings. While chemical control specifications for normal operation have been developed by consensus of manufacturers and industry, their impact on shutdowns, layups, and startups is not always appreciated. The discussion of chemical-control options applies to boiler systems operating in the medium- and high-pressure ranges. Identification and correction of root causes underlying the chemistry problems encountered and application of the principles involved should result in shorter startup times, improved control over phosphate hideout, and reduced need for chemical cleaning. Each of these has a significant cost impact; together, they are the true measure of a successful chemistry-control program.

Brestel, L.

1994-01-01T23:59:59.000Z

446

Build, Own, Operate and Maintain (BOOM) Boiler Systems  

E-Print Network (OSTI)

"Overview: The article addresses the growing trend in outsourcing boiler equipment, installation, operation, maintenance and ownership by large corporations, colleges and universities. Issues: To remain competitive and provide for growth, corporations and not-for-profit (NFP) organizations have changed the way they look at their energy systems: They are only allocating capital to ""core"" assets. In most cases, thennal, electric and air energy systems are not considered ""core"" assets resulting in the need to find ""other"" solutions to providing the needed energy. Reduced staffing has resulted in fewer experienced and knowledgeable boiler operating and maintenance personnel. Fluctuating energy costs make it difficult to accurately plan and budget. Constantly changing emissions standards and regulations add operational cost burdens. Objective: Find a solution to these pressures that does not require capital investment."

Henry, T.

2003-05-01T23:59:59.000Z

447

Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler  

DOE Green Energy (OSTI)

The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

1999-09-12T23:59:59.000Z

448

An Algebraic Specification of the Steam-Boiler Control System  

E-Print Network (OSTI)

We describe how to derive an algebraic specification of the Steam-Boiler Control System starting from the informal requirements provided to the participants of the Dagstuhl Meeting Methods for Semantics and Speci cation, organized jointly by Jean-Raymond Abrial, Egon Brger and Hans Langmaack in June 1995. The aim of this formalization process is to analyze the informal requirements, to detect inconsistencies and loose ends, and to translate the requirements into a formal, algebraic, specification. During this process we have to provide interpretations for the unclear or missing parts. We explain how we can keep track of these additional interpretations by localizing very precisely in the formal specification where they lead to specific axioms. Hence we take care of the traceability issues. We also explain how the formal specification is obtained in a stepwise way by successive refinements. Emphasis is put on how to specify the detection of the steam-boiler failures. Finally...

Michel Bidoit; Claude Chevenier; Christine Pellen

1996-01-01T23:59:59.000Z

449

Protecting the Investment in Heat Recovery with Boiler Economizers  

E-Print Network (OSTI)

Many people consider energy to be a crisis in remission -- even with continuing high fuel costs. Some voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability of an economizer or air heater to continue to perform efficiently without corrosion. The recognized economic advantages of an economizer result from its ability to convert heat losses into sources of energy. One of the most productive means of obtaining reduced energy costs lies in the improvements of the efficiency of steam generating boilers. Industrial and institutional boilers operating at pressures of 75 psig or greater are excellent applications. The maximum gain that can be safely achieved is governed by a number of technical and physical limitations. Among these are considerations of the economics, temperatures of the flue gas and water, and the potential for corrosion. This paper will discuss the economic and practical considerations of an economizer installation.

Roethe, L. A.

1985-05-01T23:59:59.000Z

450

Technology for the Examination of Boiler Tubing Dissimilar Metal Welds  

Science Conference Proceedings (OSTI)

In an effort to determine the optimum method for examination of fossil power plant dissimilar metal boiler tube welds, researchers obtained several samples removed from service, and applied various ultrasonic examination technology to these samples. The welds in these samples were made with either austenitic stainless steel weld metal or by the induction pressure method. The welds were then subjected to conventional and advanced ultrasonic examination in the laboratory. For all examination methods, there...

2011-12-07T23:59:59.000Z

451

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1982-01-01T23:59:59.000Z

452

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1984-01-01T23:59:59.000Z

453

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1985-05-01T23:59:59.000Z

454

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size and unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1986-06-01T23:59:59.000Z

455

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1983-01-01T23:59:59.000Z

456

Boiler Water Deposition Model, Part 1: Feasibility Study  

Science Conference Proceedings (OSTI)

Many sources of availability and performance losses in fossil units involve deposition on water- and steam-touched surfaces, with the most acute effects occurring in boilers and turbines. Earlier deposition state-of-knowledge assessments sponsored by EPRI established three broad classifications of deposition phenomena (EPRI reports 1004194 and 1004930). However, within these classifications are many processes and influencing factors that need to be considered in order to make meaningful improvements in d...

2004-11-17T23:59:59.000Z

457

CRBR pump water test experience  

Science Conference Proceedings (OSTI)

The hydraulic design features and water testing of the hydraulic scale model and prototype pump of the sodium pumps used in the primary and intermediate sodium loops of the Clinch River Breeder Reactor Plant (CRBRP) are described. The Hydraulic Scale Model tests are performed and the results of these tests are discussed. The Prototype Pump tests are performed and the results of these tests are discussed.

Cook, M.E.; Huber, K.A.

1983-01-01T23:59:59.000Z

458

FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS  

DOE Green Energy (OSTI)

This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

Jeffrey J. Sweterlitsch; Robert C. Brown

2002-07-01T23:59:59.000Z

459

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

460

FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS  

SciTech Connect

This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

Jeffrey J. Sweterlitsch; Robert C. Brown

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiler circulation pumps" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Microhydropower Turbines, Pumps, and Waterwheels  

Energy.gov (U.S. Department of Energy (DOE))

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity.

462

Heat Pumps | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces...

463

Geothermal heat pump analysis article  

U.S. Energy Information Administration (EIA)

heat pump transfers heat from the ground or ground water to provide space heating. In the summer, the heat transfer process is reversed; the ground or groundwater

464

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

465

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaven, FL)

1977-01-01T23:59:59.000Z

466

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

467

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

468

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

469

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

470

Heat pump apparatus  

DOE Patents (OSTI)

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

471

San Francisco Turns Up The Heat In Push To Eliminate Old Boilers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Francisco Turns Up The Heat In Push To Eliminate Old Boilers Francisco Turns Up The Heat In Push To Eliminate Old Boilers San Francisco Turns Up The Heat In Push To Eliminate Old Boilers February 8, 2011 - 5:37pm Addthis Before and after shots of a new boiler system | courtesy of the Office of Weatherization and Intergovernmental Programs Before and after shots of a new boiler system | courtesy of the Office of Weatherization and Intergovernmental Programs Johanna Sevier Project Officer, Golden Field Office San Francisco's extensive stock of multifamily properties is getting some critical assistance in replacing old and inefficient boilers with new, high-efficiency heating systems using Energy Efficiency and Conservation Block Grant (EECBG) funds. By providing financial incentives to property owners, new heating systems result in energy savings, job creation for

472

Work plan, AP-102 mixer pump removal and pump replacement  

DOE Green Energy (OSTI)

The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ``green house`` will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken.

Jimenez, R.F.

1994-09-01T23:59:59.000Z

473

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers  

SciTech Connect

Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

David W. Gandy; John P. Shingledecker

2011-04-11T23:59:59.000Z

474