Sample records for board leaking underground

  1. Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel

    SciTech Connect (OSTI)

    Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

    2012-07-01T23:59:59.000Z

    The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C,

  2. Evaluation of responsiveness of a California Central Coast Leaking Underground Fuel Tank Program

    SciTech Connect (OSTI)

    Hoover, M.F. (Hoover Associates, Inc., Santa Barbara, CA (United States))

    1994-04-01T23:59:59.000Z

    The Coalition of Labor, Agriculture, and Business (COLAB) appointed a task force during 1993 to evaluate changes to the Santa Barbara County's LUFT and SMU programs to make them more responsive to the RP's needs, more cost efficient, more expeditious, and to regain local control of the LUFT program without sacrificing environmental quality or jeopardizing the health and safety of the local residents. The COLAB task force provided the County Health Care Services director with a comprehensive report recommending 25 changes to the LUFT/SMU guidance document and to department policy. These recommendations included the appointment of an advisory committee to review department policy and guidelines, limiting LUFT/SMU staff efforts that duplicate consultant activities, the development of a deminimus rule that would immediately close sites with insignificant levels and quantities of soil and/or groundwater contamination, adopt guidelines for the use of fate and transport models and risk assessments as a mechanism for site closure, speed review of work plans, develop uniform standards for sampling and reporting, consolidation of county permits for contaminated sites into one or two departments, grant exemptions for some permit requirements, develop a policy for distributing responsibility for commingled plumes among several parties, and to develop an appeals board for resolving disagreements between the responsible parties' consultants and the county. Various personnel changes were recommended with the intention of increasing the level of technical expertise and professionalism of the county's staff, and making the staff more responsive to the public. These recommendations included hiring an individual licensed in the field of engineering geology or hydrogeology, developing guidelines for conflict of interest, and hiring of an individual to aid the responsible parties in obtaining reimbursement from the state fund set up for that purpose pursuant to AB 2004.

  3. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    SciTech Connect (OSTI)

    Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

    1996-11-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

  4. Investigating leaking underground storage tanks

    E-Print Network [OSTI]

    Upton, David Thompson

    1989-01-01T23:59:59.000Z

    and characterizing sites at which releases have been reported. The proposed requirements very nearly parallel those prepared by the E. P. A. , contained in 40 CFR parts 280 and 281. By their nature, these requirements necessitate that a thorough site investigation... be performed before the Texas Water Commission's concerns can be adequately addressed in the final site characterization and assessment report. However, the contents of these regulations do not indicate appropriate procedures for conducting such site...

  5. Legislation pertaining to underground storage tanks

    SciTech Connect (OSTI)

    Goth, W. (Ventura County Environmental Health Division, CA (United States))

    1994-04-01T23:59:59.000Z

    Statutory authority in California for cleanup of contaminated soil and groundwater to protect water quality is the Porter Cologne Water Quality Control Act (Water Code 1967). Two state laws regulating underground hazardous material storage tanks, passed in late 1983 and effective on January 1, 1984, were AB-2013 (Cortese) and AB-1362 (Sher). Both require specific actions by the tank owners. AB-2013 requires all tank owners to register them with the state Water Resources Control Board (SWCB) and to pay a registration fee. AB-1362, Health and Safety Code Section 25280 et seq., requires tank owners to obtain a Permit to Operate, pay a fee to the local agency, and to install a leak detection system on all existing tanks. New tanks installation requires a Permit to install and provide provide secondary containment for the tank and piping. For tank closures, a permit must be obtained from the local agency to clean out the tank, remove it from the ground, and collect samples from beneath the tank for evidence of contamination. In 1988, state law AB-853 appropriated state funds to be combined with federal EPA money to allow SWRCB to initiate rapid cleanups of leaks from underground tank sites by contracting with local agencies to oversee assessment and cleanup of underground tank releases. Locally, in Ventura County, there are more than 400 leaking underground tank sites in which petroleum products have entered the groundwater. To date, no public water supplies have been contaminated; however, action in necessary to prevent any future contamination to our water supply. Over 250 leaking tank sites have completed cleanup.

  6. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-05-01T23:59:59.000Z

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  7. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-03-01T23:59:59.000Z

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  8. Reducing Your Leak Rate Without Repairing Leaks 

    E-Print Network [OSTI]

    Beals, C.

    2005-01-01T23:59:59.000Z

    As plant personnel know, repairing compressed air leaks can be an expensive, labor intensive and never-ending process. This article discusses ways plant personnel can reduce and maintain their leak rate at a lower level ...

  9. Reducing Your Leak Rate Without Repairing Leaks

    E-Print Network [OSTI]

    Beals, C.

    2005-01-01T23:59:59.000Z

    . It discusses how pressure/flow controllers, variable speed and variable displacement compressors, automation, and addressing critical plant pressures allow plant personnel to lower the header pressure, which eliminates artificial demand and controls the leak...

  10. Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas

    E-Print Network [OSTI]

    Shaw, Joseph A.

    Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

  11. Leak detection/verification

    SciTech Connect (OSTI)

    Krhounek, V.; Zdarek, J.; Pecinka, L. [Nuclear Research Institute, Rez (Czech Republic)

    1997-04-01T23:59:59.000Z

    Loss of coolant accident (LOCA) experiments performed as part of a Leak Before Break (LBB) analysis are very briefly summarized. The aim of these experiments was to postulate the leak rates of the coolant. Through-wall cracks were introduced into pipes by fatigue cycling and hydraulically loaded in a test device. Measurements included coolant pressure and temperature, quantity of leaked coolant, displacement of a specimen, and acoustic emission. Small cracks were plugged with particles in the coolant during testing. It is believed that plugging will have no effect in cracks with leak rates above 35 liters per minute. The leak rate safety margin of 10 is sufficient for cracks in which the leak rate is more than 5 liters per minute.

  12. Leak detection aid

    DOE Patents [OSTI]

    Steeper, Timothy J. (Graniteville, SC)

    1989-01-01T23:59:59.000Z

    A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port.

  13. Leak detection aid

    DOE Patents [OSTI]

    Steeper, T.J.

    1989-12-26T23:59:59.000Z

    A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port. 2 figs.

  14. Underground Exploration

    E-Print Network [OSTI]

    Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . 14 Use rail to support tunnel boring machine operation . . . . . . . . . 14 Excavate smaller diameter tunnels outside the portal-to-portal loop . 15 Use a tunnel boring machine to excavate the core test area

  15. Gaseous leak detector

    DOE Patents [OSTI]

    Juravic, Jr., Frank E. (Aurora, IL)

    1988-01-01T23:59:59.000Z

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  16. Improved gaseous leak detector

    DOE Patents [OSTI]

    Juravic, F.E. Jr.

    1983-10-06T23:59:59.000Z

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  17. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01T23:59:59.000Z

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  18. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01T23:59:59.000Z

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  19. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20T23:59:59.000Z

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  20. Aspects of leak detection

    SciTech Connect (OSTI)

    Chivers, T.C. [Berkeley Technology Centre, Glos (United Kingdom)

    1997-04-01T23:59:59.000Z

    A requirement of a Leak before Break safety case is that the leakage from the through wall crack be detected prior to any growth leading to unacceptable failure. This paper sets out to review some recent developments in this field. It does not set out to be a comprehensive guide to all of the methods available. The discussion concentrates on acoustic emission and how the techniques can be qualified and deployed on operational plant.

  1. Leak test fitting

    DOE Patents [OSTI]

    Pickett, Patrick T. (Kettering, OH)

    1981-01-01T23:59:59.000Z

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  2. Underground storage tank management plan

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  3. Leaking Pipelines: Doctoral Student Family Formation

    E-Print Network [OSTI]

    Serrano, Christyna M.

    2008-01-01T23:59:59.000Z

    Sari M. “Why the Academic Pipeline Leaks: Fewer Men thanone reason the academic pipeline leaks. 31 Blair-Loy, Mary.to leak out of the “academic pipeline. ” The term “academic

  4. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  5. Analysis of SX farm leak histories -- Historical leak model (HLM)

    SciTech Connect (OSTI)

    Fredenburg, E.A.

    1998-08-20T23:59:59.000Z

    This report uses readily available historical information to better define the volume, chemical composition, and Cs-137/Sr-90 amounts for leaks that have occurred in the past for tanks SX-108, SX-109, SX-111, and SX-112. In particular a Historical Leak Model (HLM) is developed that is a month by month reconciliation of tank levels, fill records, and calculated boil-off rates for these tanks. The HLM analysis is an independent leak estimate that reconstructs the tank thermal histories thereby deriving each tank`s evaporative volume loss and by difference, its unaccounted losses as well. The HLM analysis was meant to demonstrate the viability of its approach, not necessarily to establish the HLM leak estimates as being definitive. Past leak estimates for these tanks have invariably resorted to soil wetting arguments but the extent of soil contaminated by each leak has always been highly uncertain. There is also a great deal of uncertainty with the HLM that was not quantified in this report, but will be addressed later. These four tanks (among others) were used from 1956 to 1975 for storage of high-level waste from the Redox process at Hanford. During their operation, tank waste temperatures were often as high as 150 C (300 F), but were more typically around 130 C. The primary tank cooling was by evaporation of tank waste and therefore periodic replacement of lost volume with water was necessary to maintain each tank`s inventory. This active reflux of waste resulted in very substantial turnovers in tank inventory as well as significant structural degradation of these tanks. As a result of the loss of structural integrity, each of these tanks leaked during their active periods of operation. Unfortunately, the large turnover in tank volume associated with their reflux cooling has made a determination of leak volumes very difficult. During much of these tanks operational histories, inventory losses because of evaporative cooling could have effectively masked any volume loss due to leak. However, careful comparison with reported tank levels during certain periods clearly show unaccounted volume losses for many tanks. As a result of the HLM analysis, SX-108, SX-109, SX-111, and SX-112 all show clear evidence of unaccounted volume losses during the period 1958 to 1975. Likewise, the HLM does not show similar unaccounted volume losses for tank SX-105, a tank with no reported leak history, verifying that the HLM is consistent with SX-105 not leaking. These unaccounted volume losses establish the leak start date and rate, and when propagated over time show that SX-108 lost 203 kgal followed by SX-109 at 111. SX-111 at 55, and SX-112 at 44 kgal.0664 These leak volumes represent maximum or upper bounds estimates of each leak and are in total volume about six times the previous leak estimates.

  6. Underground Injection Control (Louisiana)

    Broader source: Energy.gov [DOE]

    The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

  7. 18 IEEE Transactions onPower Delivery, Vol. 14, No.1, January 1999 Leak Location in Fluid Filled Cables

    E-Print Network [OSTI]

    , dielectric fluid leaks, fluid-filled cable. Introduction High Pressure Fluid Filled (HPFF), pipe-type cable length ofthe underground transmission cable in the country. An HPFF cable system is comprised of a steel. HPFF cable systems have proven to be very reliable. However, in some cases due to various causes

  8. Location of Leaks in Pressure Testable Direct Burial Steam Distribution Conduits

    E-Print Network [OSTI]

    Sittel, M. G.; Messock, R. K.

    are ~xcavated for repair. We have successfully used this system at several locations, and in a variety of soil conditions. Tracer gas leak testing provides an effective and inexpensive method to evaluate underground conduit systems. Performed on a regular... containing all equipment to accomplish the testing is also described. ~iAACERGAS Sulfur hexaflouride (SF6) has been chosen as a tracer gas because: a) it is chemically inert, non-toxic, and has negligible pollution potential; b) it is highly...

  9. Detecting Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    See if you can rattle them, since movement means possible air leaks. If you can see daylight around a door or window frame, then the door or window leaks. You can usually seal...

  10. Stochastic Consequence Analysis for Waste Leaks

    SciTech Connect (OSTI)

    HEY, B.E.

    2000-05-31T23:59:59.000Z

    This analysis evaluates the radiological consequences of potential Hanford Tank Farm waste transfer leaks. These include ex-tank leaks into structures, underneath the soil, and exposed to the atmosphere. It also includes potential misroutes, tank overflow

  11. Leak detection capability in CANDU reactors

    SciTech Connect (OSTI)

    Azer, N.; Barber, D.H.; Boucher, P.J. [and others

    1997-04-01T23:59:59.000Z

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  12. Underground Injection Control (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by...

  13. Vacuum leak detector and method

    DOE Patents [OSTI]

    Edwards, Jr., David (7 Brown's La., Bellport, NY 11713)

    1983-01-01T23:59:59.000Z

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  14. Leak detection on an ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-12-31T23:59:59.000Z

    A model-based leak detection system has been in operation on the Solvay et Cie ethylene pipeline from Antwerp to Jemeppe on Sambre since 1989. The leak detection system, which is the commercial product PLDS of Modisette Associations, Inc., was originally installed by the supplier. Since 1991, all system maintenance and configuration changes have been done by Solvay et Cie personnel. Many leak tests have been performed, and adjustments have been made in the configuration and the automatic tuning parameters. The leak detection system is currently able to detect leaks of 2 tonnes/hour in 11 minutes with accurate location. Larger leaks are detected in about 2 minutes. Leaks between 0.5 and 1 tonne per hour are detected after several hours. (The nominal mass flow in the pipeline is 15 tonnes/hour, with large fluctuations.) Leaks smaller than 0.5 tonnes per hour are not detected, with the alarm thresholds set at levels to avoid false alarms. The major inaccuracies of the leak detection system appear to be associated with the ethylene temperatures.

  15. High sensitivity leak detection method and apparatus

    DOE Patents [OSTI]

    Myneni, G.R.

    1994-09-06T23:59:59.000Z

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1 [times] 10[sup [minus]18] atm cc sec[sup [minus]1]. 2 figs.

  16. High sensitivity leak detection method and apparatus

    DOE Patents [OSTI]

    Myneni, Ganapatic R. (Grafton, VA)

    1994-01-01T23:59:59.000Z

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1.times.10.sup.-18 atm cc sec.sup.-1.

  17. Saving Money with Air and Gas Leak Surveys

    E-Print Network [OSTI]

    Woodruff, D.

    2010-01-01T23:59:59.000Z

    uncorrected air leaks and gas leaks cost your businesses time and money as well as being environmentally unfriendly. ? Air Leak Surveys ? Nitrogen Leak Surveys ? Gas Leak Survey (H2, O2, Natural Gas) ? Steam Leak Surveys ? Steam Trap Surveys ? Safe... sites per year ? Member of ISNetworld, and Browz. ? Security Checks o Petro Chemical Energy employee background checks performed by DISA ? Drugs & Alcohol Free Workplace o Petro Chemical Energy employees are tested for Drugs and Alcohol prior...

  18. Leak checker data logging system

    DOE Patents [OSTI]

    Gannon, Jeffrey C. (Arlington, TX); Payne, John J. (Waterman, IL)

    1996-01-01T23:59:59.000Z

    A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time.

  19. Leak checker data logging system

    DOE Patents [OSTI]

    Gannon, J.C.; Payne, J.J.

    1996-09-03T23:59:59.000Z

    A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time. 18 figs.

  20. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  1. Underground and under scrutiny

    E-Print Network [OSTI]

    Lee, Leslie

    2014-01-01T23:59:59.000Z

    2 txH2O Summer 2014 Story by Leslie Lee The Frio River, located in the Texas Hill Country, is spring-fed and therefore affected by groundwater pumping. Photo from istock.com. Underground and under scrutiny A changing state increasingly... their geological features is more multifaceted. Consider that each aquifer in Texas has different geological and hydrological character- istics, and therefore varying recharge rates, water quality and regional needs, and the complexity heightens. From a legal...

  2. ENVIRONMENTAL MONITORING OF LEAKS USING TIME LAPSED LONG ELECTRODE ELECTRICAL RESISTIVITY

    SciTech Connect (OSTI)

    MYERS DA; RUCKER DF; FINK JB; LOKE MH

    2009-12-16T23:59:59.000Z

    Highly industrialized areas pose challenges for surface electrical resistivity characterization due to metallic infrastructure. The infrastructure is typically more conductive than the desired targets and will mask the deeper subsurface information. These challenges may be minimized if steel-cased wells are used as long electrodes in the area near the target. We demonstrate a method of using long electrodes to electrically monitor a simulated leak from an underground storage tank with both synthetic examples and a field demonstration. The synthetic examples place a simple target of varying electrical properties beneath a very low resistivity layer. The layer is meant to replicate the effects of infrastructure. Both surface and long electrodes are tested on the synthetic domain. The leak demonstration for the field experiment is simulated by injecting a high conductivity fluid in a perforated well within the S tank farm at Hanford, and the resistivity measurements are made before and after the leak test. All data are processed in four dimensions, where a regularization procedure is applied in both the time and space domains. The synthetic test case shows that the long electrode ERM could detect relative changes in resistivity that are commensurate with the differing target properties. The surface electrodes, on the other hand, had a more difficult time matching the original target's footprint. The field results shows a lowered resistivity feature develop south of the injection site after cessation of the injections. The time lapsed regularization parameter has a strong influence on the differences in inverted resistivity between the pre and post injection datasets, but the interpretation of the target is consistent across all values of the parameter. The long electrode ERM method may provide a tool for near real-time monitoring of leaking underground storage tanks.

  3. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  4. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  5. Underground Storage Tank Program (Vermont)

    Broader source: Energy.gov [DOE]

    These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

  6. Underground Injection Control Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

  7. Underground Injection Control Rule (Vermont)

    Broader source: Energy.gov [DOE]

    This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

  8. Saving an Underground Reservoir 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01T23:59:59.000Z

    significant part of the region?s agricultural economy. Though the area has few rivers and lakes, underneath it lies a supply of water that has provided groundwater for developing this economy. This underground water, the Ogallala Aquifer, is a finite... resource. The amount of water seeping back into the aquifer is much less than the water taken out, especially in the southern half of the aquifer, which spreads out from western Kansas to the High Plains of Texas. ?Water levels are declining 2 to 4...

  9. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  10. Adversaries and Information Leaks Geoffrey Smith

    E-Print Network [OSTI]

    Smith, Geoffrey

    Adversaries and Information Leaks (Tutorial) Geoffrey Smith School of Computing and Information-Verlag Berlin Heidelberg 2008 #12;384 G. Smith ­ The program c has direct access to the sensitive information

  11. Multinational underground nuclear parks

    SciTech Connect (OSTI)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01T23:59:59.000Z

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  12. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Program Authorized Injection Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground...

  13. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  14. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  15. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  16. Preliminary Notice of Violation, Pacific Underground Construction...

    Broader source: Energy.gov (indexed) [DOE]

    Pacific Underground Construction, Inc. - WEA-2009-02 Preliminary Notice of Violation, Pacific Underground Construction, Inc. - WEA-2009-02 April 7, 2009 Issued to Pacific...

  17. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    SciTech Connect (OSTI)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25T23:59:59.000Z

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

  18. ENVIRONMENTAL MONITORING OF LEAKS USING TIME LAPSED LONG ELECTRODE ELECTRICAL RESISTIVITY

    SciTech Connect (OSTI)

    RUCKER DF; FINK JB; LOKE MH; MYERS DA

    2009-11-05T23:59:59.000Z

    Highly industrialized areas pose significant challenges for surface based electrical resistivity characterization and monitoring due to the high degree of metallic infrastructure. The infrastructure is typically several orders of magnitude more conductive than the desired targets, preventing the geophysicist from obtaining a clear picture of the subsurface. These challenges may be minimized if steel-cased wells are used as long electrodes. We demonstrate a method of using long electrodes in a complex nuclear waste facility to monitor a simulated leak from an underground storage tank. The leak was simulated by injecting high conductivity fluid in a perforated well and the resistivity measurements were made before and after the leak test. The data were processed in four dimensions, where a regularization procedure was applied in both the time and space domains. The results showed a lowered resistivity feature develop south of the injection site. The time lapsed regularization parameter had a strong influence on the differences in inverted resistivity between the pre and post datasets, potentially making calibration of the results to specific hydrogeologic parameters difficult.

  19. Water intrusion in underground structures

    E-Print Network [OSTI]

    Nazarchuk, Alex

    2008-01-01T23:59:59.000Z

    This thesis presents a study of the permissible groundwater infiltration rates in underground structures, the consequences of this leakage and the effectiveness of mitigation measures. Design guides and codes do not restrict, ...

  20. Multi-Spectral imaging of vegetation for detecting CO2 leaking from underground

    SciTech Connect (OSTI)

    Rouse, J.H.; Shaw, J.A.; Lawrence, R.L.; Lewicki, J.L.; Dobeck, L.M.; Repasky, K.S.; Spangler, L.H.

    2010-06-01T23:59:59.000Z

    Practical geologic CO{sub 2} sequestration will require long-term monitoring for detection of possible leakage back into the atmosphere. One potential monitoring method is multi-spectral imaging of vegetation reflectance to detect leakage through CO{sub 2}-induced plant stress. A multi-spectral imaging system was used to simultaneously record green, red, and near-infrared (NIR) images with a real-time reflectance calibration from a 3-m tall platform, viewing vegetation near shallow subsurface CO{sub 2} releases during summers 2007 and 2008 at the Zero Emissions Research and Technology field site in Bozeman, Montana. Regression analysis of the band reflectances and the Normalized Difference Vegetation Index with time shows significant correlation with distance from the CO{sub 2} well, indicating the viability of this method to monitor for CO{sub 2} leakage. The 2007 data show rapid plant vigor degradation at high CO{sub 2} levels next to the well and slight nourishment at lower, but above-background CO{sub 2} concentrations. Results from the second year also show that the stress response of vegetation is strongly linked to the CO{sub 2} sink-source relationship and vegetation density. The data also show short-term effects of rain and hail. The real-time calibrated imaging system successfully obtained data in an autonomous mode during all sky and daytime illumination conditions.

  1. Opportunities in underground coal gasification

    SciTech Connect (OSTI)

    Bloomstran, M.A.; Davis, B.E.

    1984-06-01T23:59:59.000Z

    A review is presented of the results obtained on DOE-sponsored field tests of underground coal gasification in steeply-dipping beds at Rawlins, Wyoming. The coal gas composition, process parameters, and process economics are described. Steeply-dipping coal resources, which are not economically mineable using conventional coal mining methods, are identified and potential markets for underground coal gasification products are discussed. It is concluded that in-situ gasification in steeply-dipping deposits should be considered for commercialization.

  2. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  3. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  4. School Land Board (Texas)

    Broader source: Energy.gov [DOE]

    The School Land Board oversees the use of land owned by the state or held in trust for use and benefit by the state or one of its departments, boards, or agencies. The Board is responsible for...

  5. acoustic leak detection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLoS ONE 9(10): e Lawrence, Rick L. 8 Design and fabrication of a maneuverable robot for in-pipe leak detection MIT - DSpace Summary: Leaks in pipelines have been causing...

  6. New system pinpoints leaks in ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A. [Solvay et Cie, Jemeppe sur Sambre (Belgium); Condacse, V.; Modisette, J. [Modisette Associates, Inc., Houston, TX (United States)

    1995-04-01T23:59:59.000Z

    A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

  7. Managing an Effective Leak Sealing Program

    E-Print Network [OSTI]

    Rinz, W. H.

    1980-01-01T23:59:59.000Z

    An on-line leak sealing program is an extremely effective method of cost savings to industrial plants. The dollars a plant saves can be direct and dramatic as in an avoided system shut-down or subtle and analytical as in a long term maintenance...

  8. Waste transfer leaks technical basis document

    SciTech Connect (OSTI)

    ZIMMERMAN, B.D.

    2003-03-22T23:59:59.000Z

    This document provides technical support for the onsite radiological and toxicological, and offsite toxicological, portions of the waste transfer leak accident presented in the Documented Safety Analysis. It provides the technical basis for frequency and consequence bin selection, and selection of safety SSCs and TSRs.

  9. Experiences with leak rate calculations methods for LBB application

    SciTech Connect (OSTI)

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G. [and others

    1997-04-01T23:59:59.000Z

    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.

  10. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  11. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    SciTech Connect (OSTI)

    Washenfelder, Dennis J.

    2014-04-10T23:59:59.000Z

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

  12. Method for mapping a natural gas leak

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2009-02-03T23:59:59.000Z

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formatted into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimposed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  13. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  14. Underground coal gasification: environmental update

    SciTech Connect (OSTI)

    Dockter, L.; Mcternan, E.M.

    1985-01-01T23:59:59.000Z

    To evaluate the potential for ground water contamination by underground coal gasification, extensive postburn groundwater monitoring programs are being continued at two test sites in Wyoming. An overview of the environmental concerns related to UCG and some results to date on the two field sites are presented in this report.

  15. TSUAHXETSUAHXE UndergroUnd tank

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    USer waterheatexchange waterheatexchange general exhaUSt lab exhaUSt warmairexhaUSt radiant panel heat radiant panel heat by night air, then stored underground. cold water travels through floors and ceiling panels to absorb heat rain and snowmelt in toilets saves water and reduces stormwater runoff photovoltaic panels turn solar

  16. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28T23:59:59.000Z

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  17. LEAK: A source term generator for evaluating release rates from leaking vessels

    SciTech Connect (OSTI)

    Clinton, J.H.

    1994-09-01T23:59:59.000Z

    An interactive computer code for estimating the rate of release of any one of several materials from a leaking tank or broken pipe leading from a tank is presented. It is generally assumed that the material in the tank is liquid. Materials included in the data base are acetonitrile, ammonia, carbon tetrachloride, chlorine, chlorine trifluoride, fluorine, hydrogen fluoride, nitric acid, nitrogen tetroxide, sodium hydroxide, sulfur hexafluoride, sulfuric acid, and uranium hexafluoride. Materials that exist only as liquid and/or vapor over expected ranges of temperature and pressure can easily be added to the data base file. The Fortran source code for LEAK and the data file are included with this report.

  18. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB monthly board meeting is open to the public. The board will receive an update on the Community Reuse Organization of East Tennessee efforts at the East Tennessee Technology Park.

  19. One-Piece Leak-Proof Battery

    DOE Patents [OSTI]

    Verhoog, Roelof (Bordeaux, FR)

    1999-03-23T23:59:59.000Z

    The casing of a leak-proof one-piece battery is made of a material comprising a mixture of at least a matrix based on polypropylene and an alloy of a polyamide and a polypropylene. The ratio of the matrix to the alloy is in the range 0.5 to 6 by weight. The alloy forms elongate arborescent inclusions in the matrix such that, on average, the largest dimension of a segment of the arborescence is at least twenty times the smallest dimension of the segment.

  20. ANNUAL MAINTENANCE AND LEAK TESTING FOR THE 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Trapp, D.

    2014-08-25T23:59:59.000Z

    The purpose of this document is to provide step-by-step instructions for the annual helium leak test certification and maintenance of the 9975 Shipping Package.

  1. Best Management Practice #3: Distribution System Audits, Leak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaks in distribution systems are caused by a number of factors, including pipe corrosion, high system pressure, construction disturbances, frost damage, damaged joints, and...

  2. Margins in high temperature leak-before-break assessments

    SciTech Connect (OSTI)

    Budden, P.J.; Hooton, D.G.

    1997-04-01T23:59:59.000Z

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  3. GRI highlights underground gasification effort

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    A consortium headed by the Gas Research Institute is supporting major underground coal gasification tests to take place over the next two years at a site near Hanna, Wyoming. About 200 tons of coal will be gasified per day. Directional drilling will be used to form the horizontal gasification pathways linking the injection and production wells. The objectives of the program include a further evaluation of the controlled-retracting-injection-point technology. The technology involves the use of a device that is capable of igniting successive coal zones as it is retracted through a borehole in the coal seam. Comparable data will also be obtained during the test in sections where a linked-vertical-well concept will be used instead of the retracting-injection method. The linked-vertical-well concept, which has been used in most coal gasification tests, involves drilling a series of vertical wells into the coal seam gasification pathway for the ignition of successive coal zones. A parallel program will be conducted to evaluate environmental control technology applicable to underground coal gasification and to define the process requirements that must be satisfied to meet environmental quality standards. The results of these combined programs will provide the process and environmental data bases necessary to assess the economic potential of underground coal gasification from various US locations for a variety of end-product applications.

  4. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  5. A new blowdown compensation scheme for boiler leak detection

    E-Print Network [OSTI]

    Marquez, Horacio J.

    considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advancesA new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent in identification-based leak detection techniques of boiler steam- water systems. Keywords: Industrial Boilers, Tube

  6. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    SciTech Connect (OSTI)

    Boomer, Kayle D. [Washington River Protection Solutions, LLC (United States); Engeman, Jason K. [Washington River Protection Solutions, LLC (United States); Gunter, Jason R. [Washington River Protection Solutions, LLC (United States); Joslyn, Cameron C. [Washington River Protection Solutions, LLC (United States); Vazquez, Brandon J. [Washington River Protection Solutions, LLC (United States); Venetz, Theodore J. [Washington River Protection Solutions, LLC (United States); Garfield, John S. [AEM Consulting (United States)

    2014-01-20T23:59:59.000Z

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line.

  7. Heat exchanger with leak detecting double wall tubes

    SciTech Connect (OSTI)

    Bieberbach, George (Tampa, FL); Bongaards, Donald J. (Seminole, FL); Lohmeier, Alfred (Tampa, FL); Duke, James M. (St. Petersburg, all of, FL)

    1981-01-01T23:59:59.000Z

    A straight shell and tube heat exchanger utilizing double wall tubes and three tubesheets to ensure separation of the primary and secondary fluid and reliable leak detection of a leak in either the primary or the secondary fluids to further ensure that there is no mixing of the two fluids.

  8. Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,

    E-Print Network [OSTI]

    Jackson, Robert B.

    Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

  9. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon...

  10. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  11. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  12. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"Montana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"Iowa Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"Pennsylvania Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"Oregon Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"Colorado Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"Indiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"Kansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"Washington Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"Alabama Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. Pipelines and Underground Gas Storage (Iowa)

    Broader source: Energy.gov [DOE]

    These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

  1. Wells, Borings, and Underground Uses (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits...

  2. Pressure Change Measurement Leak Testing Errors

    SciTech Connect (OSTI)

    Pryor, Jeff M [ORNL] [ORNL; Walker, William C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  3. ORSSAB Monthly Board Meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB Monthly Board meeting is open to the public. This month, participants will be briefed on the East Tennessee Technology Park Zone 1 Soils Proposed Plan.

  4. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB monthly board meeting is open to the public. This month, participants will receive an update on the U-233 Project.

  5. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    Board members and participants will hear a presentation and updates about "Sufficient Waste Disposal Capacity on the Oak Ridge Reservation." The meeting is open to the public.

  6. Quality Assurance Corporate Board | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Assurance Corporate Board Quality Assurance Corporate Board The Office of Environmental Management (EM) Quality Assurance Corporate Board is an executive board that includes both...

  7. UNDERGROUND MUONS IN SUPER-KAMIOKANDE

    E-Print Network [OSTI]

    Tokyo, University of

    HE 4.1.23 UNDERGROUND MUONS IN SUPER-KAMIOKANDE The Super-Kamiokande Collaboration, presented by J The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been for muons ver- sus zenith angle in Super-Kamiokande. The lled region is for muons with more than 1.7 Ge

  8. Carbon Allocation in Underground Storage Organs

    E-Print Network [OSTI]

    Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

  9. Appendix 4. Board Member Compensation PA State Board

    E-Print Network [OSTI]

    Sibille, Etienne

    Agricultural Advisory Board 1 Agricultural Land Preservation Board, State 1 Agricultural Lands Condemnation for Water and Wastewater Systems and Operators, State Board for 1 Certified Real Estate Appraisers, State

  10. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

  11. Emissions and Durability of Underground Mining Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given at...

  12. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota EA-1943: Long Baseline Neutrino FacilityDeep Underground Neutrino...

  13. Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi)

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations for the Certification of Persons who Install, Alter, and Remove Underground Storage Tanks applies to any project that will install, alter or remove...

  14. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01T23:59:59.000Z

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  15. Statistical approaches to leak detection for geological sequestration

    E-Print Network [OSTI]

    Haidari, Arman S

    2011-01-01T23:59:59.000Z

    Geological sequestration has been proposed as a way to remove CO? from the atmosphere by injecting it into deep saline aquifers. Detecting leaks to the atmosphere will be important for ensuring safety and effectiveness of ...

  16. Design of a Novel In-Pipe Reliable Leak Detector

    E-Print Network [OSTI]

    Chatzigeorgiou, Dimitris

    Leakage is the major factor for unaccounted losses in every pipe network around the world (oil, gas, or water). In most cases, the deleterious effects associated with the occurrence of leaks may present serious economical ...

  17. allowable leak rates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A; Provot, N 2011-01-01 36 Journal of Bioenergetics and Biomembranes, Vol. 31, No. 5, 1999 Mitochondrial Proton Leak and the Uncoupling Proteins Biology and Medicine Websites...

  18. The feasibility of electrophoretic repair of impoundment leaks

    E-Print Network [OSTI]

    Han, Ji-Seok

    2002-01-01T23:59:59.000Z

    finding, repairing and testing the leaks, are tedious, expensive, and dangerous to workers. Electrophoretic repair technique is an innovative, economic, and safe method to repair the leakage of impoundments. A suspension of clay particles is induced...

  19. Robot design for leak detection in water-pipe systems

    E-Print Network [OSTI]

    Choi, Changrak

    2012-01-01T23:59:59.000Z

    Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

  20. CHRPR Neutron Board Replacement Manual

    SciTech Connect (OSTI)

    Erikson, Rebecca L.; Myjak, Mitchell J.

    2013-03-31T23:59:59.000Z

    This document will walk through the steps to exchange the neutron channel boards with gamma channel boards in the CHRPR box.

  1. 225-B Pool Cell 5 Liner Leak Investigation

    SciTech Connect (OSTI)

    Rasmussen, J.H., Westinghouse Hanford

    1996-06-07T23:59:59.000Z

    This document describes the actions taken to confirm and respond to a very small (0.046 ml/min) leak in the stainless steel liner of Hanford`s Waste Encapsulation and Storage Facility (WESF) storage pool cell 5 in Building 225-B. Manual level measurements confirmed a consistent weekly accumulation of 0.46 liters of water in the leak detection grid sump below the pool cell 5 liner. Video inspections and samples point to the capsule storage pool as the source of the water. The present leak rate corresponds to a decrease of only 0.002 inches per week in the pool cell water level, and consequently does not threaten any catastrophic loss of pool cell shielding and cooling water. The configuration of the pool cell liner, sump system, and associated risers will limit the short-term consequences of even a total liner breach to a loss of 1 inch in pool cell level. The small amount of demineralized pool cell water which has been in contact with the concrete structure is not enough to cause significant structural damage. However, ongoing water-concrete interaction increases. The pool cell leak detection sump instrumentation will be modified to improve monitoring of the leak rate in the future. Weekly manual sump level measurements continue in the interim. Contingency plans are in place to relocate the pool cell 5 capsules if the leak worsens.

  2. Underground cosmic-ray experiment EMMA T. Enqvista

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    Authority ­ STUK, Helsinki, Finland d Centre for Underground Physics at Pyh¨asalmi (CUPP), University

  3. Underground Injection Control Fee Schedule (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit fees for state under?ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is...

  4. Underground Gas Storage Reservoirs (West Virginia)

    Broader source: Energy.gov [DOE]

    Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas is stored as well as map and data requirements,...

  5. Underground Storage of Natural Gas (Kansas)

    Broader source: Energy.gov [DOE]

    Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

  6. Prince George's County Underground Storage Act (Maryland)

    Broader source: Energy.gov [DOE]

    A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the...

  7. Arkansas Underground Injection Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the...

  8. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    SciTech Connect (OSTI)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01T23:59:59.000Z

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  9. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    Board members and participants will hear a presentation and updates about the "Y-12 Mercury Cleanup Strategy and Plan for a Y-12 Water Treatment Plant." The meeting is open to the public.

  10. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    Board members and participants will hear a presentation and updates about the "Selection of a Remediation Strategy for Trench 13 in Melton Valley." The meeting is open to the public.

  11. Underground infrastructure damage for a Chicago scenario

    SciTech Connect (OSTI)

    Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  12. SURFACE GEOPHYSICAL EXPLORATION DEVELOPING NONINVASIVE TOOLS TO MONITOR PAST LEAKS AROUND HANFORD TANK FARMS

    SciTech Connect (OSTI)

    MYERS DA; RUCKER DF; LEVITT MT; CUBBAGE B; NOONAN GE; MCNEILL M; HENDERSON C

    2011-06-17T23:59:59.000Z

    A characterization program has been developed at Hanford to image past leaks in and around the underground storage tank facilities. The program is based on electrical resistivity, a geophysical technique that maps the distribution of electrical properties of the subsurface. The method was shown to be immediately successful in open areas devoid of underground metallic infrastructure, due to the large contrast in material properties between the highly saline waste and the dry sandy host environment. The results in these areas, confirmed by a limited number of boreholes, demonstrate a tendency for the lateral extent of the underground waste plume to remain within the approximate footprint of the disposal facility. In infrastructure-rich areas, such as tank farms, the conventional application of electrical resistivity using small point-source surface electrodes initially presented a challenge for the resistivity method. The method was then adapted to directly use the buried infrastructure as electrodes for both transmission of electrical current and measurements of voltage. For example, steel-cased wells that surround the tanks were used as long electrodes, which helped to avoid much of the infrastructure problems. Overcoming the drawbacks of the long electrode method has been the focus of our work over the past seven years. The drawbacks include low vertical resolution and limited lateral coverage. The lateral coverage issue has been improved by supplementing the long electrodes with surface electrodes in areas devoid of infrastructure. The vertical resolution has been increased by developing borehole electrode arrays that can fit within the small-diameter drive casing of a direct push rig. The evolution of the program has led to some exceptional advances in the application of geophysical methods, including logistical deployment of the technology in hazardous areas, development of parallel processing resistivity inversion algorithms, and adapting the processing tools to accommodate electrodes of all shapes and locations. The program is accompanied by a full set of quality assurance procedures that cover the layout of sensors, measurement strategies, and software enhancements while insuring the integrity of stored data. The data have been shown to be useful in identifying previously unknown contaminant sources and defining the footprint of precipitation recharge barriers to retard the movement of existing contamination.

  13. Depleted argon from underground sources

    SciTech Connect (OSTI)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01T23:59:59.000Z

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  14. 382-1 underground gasoline storage tank soil-gas survey

    SciTech Connect (OSTI)

    Jacques, I.D.

    1993-08-27T23:59:59.000Z

    A soil-gas survey was conducted near the 382 Pump House in the 300 Area of the Hanford Site. The objective of the soil-gas survey was to characterize the extent of petroleum product contamination in the soil beneath the 382-1 underground gasoline storage tank excavation. The tank was discovered to have leaked when it was removed in September 1992. The results of this soil-gas survey indicate petroleum products released from the 382-1 tank are probably contained in a localized region of soil directly beneath the tank excavation site. The soil-gas data combined with earlier tests of groundwater from a nearby downgradient monitoring well suggest the spilled petroleum hydrocarbons have not penetrated the soil profile to the water table.

  15. Geosphere in underground coal gasification

    SciTech Connect (OSTI)

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01T23:59:59.000Z

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  16. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  17. Apparatus and method for detecting leaks in piping

    DOE Patents [OSTI]

    Trapp, Donald J. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A method and device for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe.

  18. Apparatus and method for detecting leaks in piping

    DOE Patents [OSTI]

    Trapp, D.J.

    1994-12-27T23:59:59.000Z

    A method and device are disclosed for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe. 2 figures.

  19. Potential method for measurement of CO2 leakage from underground sequestration fields using radioactive tracers

    SciTech Connect (OSTI)

    Bachelor, Paula P.; McIntyre, Justin I.; Amonette, James E.; Hayes, James C.; Milbrath, Brian D.; Saripalli, Prasad

    2008-07-01T23:59:59.000Z

    Reduction of anthropogenic carbon dioxide (CO2) release to the environment is a pressing challenge that should be addressed to avert the potential devastating effects of global warming. Within the United States, the most abundant sources of CO2 emissions are those generate from coal- or gas-fired power plants; one method to control CO2 emissions is to sequester it in deep underground geological formations. From integrated assessment models the overall leakage rates from these storage locations must be less than 0.1% of stored volume per year for long-term control. The ability to detect and characterize nascent leaks, in conjunction with subsequent remediation efforts, will significantly decrease the amount of CO2 released back into the environment. Because potential leakage pathways are not necessarily known a priori, onsite monitoring must be performed; the monitoring region in the vicinity of a CO2 injection well may be as large as 100 km2, which represents the estimated size of a supercritical CO2 bubble that would form under typical injection scenarios. By spiking the injected CO2 with a radiological or stable isotope tracer, it will be possible to detect ground leaks from the sequestered CO2 using fewer sampling stations, with greater accuracy than would be possible using simple CO2 sensors. The relative merits of various sorbent materials, radiological and stable isotope tracers, detection methods and potential interferences will be discussed.

  20. RPP-ENV-39658 Revision 0 Hanford SX-Farm Leak Assessments Report

    E-Print Network [OSTI]

    M. E. Johnson; J. G. Field; Revision Rpp-env

    2010-01-01T23:59:59.000Z

    U.S. Department of Energy developed a process to reassess selected tank leak estimates (volumes and inventories), and to update single-shell tank leak and unplanned release volumes and inventory estimates as emergent field data is obtained (RPP-32681, Process to Assess Tank Farm Leaks in Support of Retrieval and Closure Planning). This process does not represent a formal tank leak assessment in accordance with procedure TFC-ENG-CHEM-D-42, “Tank Leak Assessment Process. ” This report documents reassessment of past leaks in the 241-SX Tank Farm. Tank waste loss events were reassessed for tanks 241-SX-104, 241-SX-107, 241-SX-108,

  1. Leak before break application in French PWR plants under operation

    SciTech Connect (OSTI)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01T23:59:59.000Z

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  2. Local Trip Out Logic Board Out

    E-Print Network [OSTI]

    Evans, Hal

    Board to Logic Board Cables ethernet style cables 1 per comparator board run these USA15toUX15 (~100m

  3. Environmental Management Advisory Board Members | Department...

    Energy Savers [EERE]

    Member Read Bio David W. Swindle, Jr. EMAB Board Member Read Bio Robert J. Thompson EMAB Board Member Read Bio Lenn Vincent EMAB Board Member Read Bio Waste...

  4. The 345 kV underground/underwater Long Island Sound cable project

    SciTech Connect (OSTI)

    Grzan, J.; Hahn, E.I. (New York Power Authority, White Plains, NY (United States)); Casalaina, R.V.; Kansog, J.O.C. (Ebasco Services Inc., Lyndhurst, NJ (United States))

    1993-07-01T23:59:59.000Z

    A high voltage underground/underwater cable system was installed to increase the transmission capacity from the mainland of New York to Long Island. In terms of weight and diameter, the self-contained, fluid-filled (SCFF) cable used for the underwater portion of the project is the largest underwater cable in the world. The use of high-pressure, fluid-filled (HPFF) pipe-type cable on the land portion represents the largest application of paper-polypropylene-paper (PPP) insulated cable in the United States. State-of-the-art technologies were implemented in the use of fiber optic cables for relay protection and SCADA/RTU, temperature monitoring and leak detection systems, SF[sub 6] gas-insulated substations, and underwater cable laying and embedment techniques. This paper discusses the design and installation of a 750 MVA, 43 km (26.6 mi), 345 kV underground/underwater electric transmission system installed by the New York Power Authority (NYPA).

  5. Method for making generally cylindrical underground openings

    DOE Patents [OSTI]

    Routh, J.W.

    1983-05-26T23:59:59.000Z

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  6. NRC Job Code V6060: Extended in-situ and real time monitoring. Task 4: Detection and monitoring of leaks at nuclear power plants external to structures

    SciTech Connect (OSTI)

    Sheen, S. H. (Nuclear Engineering Division)

    2012-08-01T23:59:59.000Z

    In support of Task 4 of the NRC study on compliance with 10 CFR part 20.1406, minimization of contamination, Argonne National Laboratory (ANL) conducted a one-year scoping study, in concert with a parallel study performed by NRC/NRR staff, on monitoring for leaks at nuclear power plants (NPPs) external to structures. The objective of this task-4 study is to identify and assess those sensors and monitoring techniques for early detection of abnormal radioactive releases from the engineered facility structures, systems and components (SSCs) to the surrounding underground environment in existing NPPs and planned new reactors. As such, methods of interest include: (1) detection of anomalous water content of soils surrounding SSCs, (2) radionuclides contained in the leaking water, and (3) secondary signals such as temperature. ANL work scope includes mainly to (1) identify, in concert with the nuclear industry, the sensors and techniques that have most promise to detect radionuclides and/or associated chemical releases from SSCs of existing NPPs and (2) review and provide comments on the results of the NRC/NRR staff scoping study to identify candidate technologies. This report constitutes the ANL deliverable of the task-4 study. It covers a survey of sensor technologies and leak detection methods currently applied to leak monitoring at NPPs. The survey also provides a technology evaluation that identifies their strength and deficiency based on their detection speed, sensitivity, range and reliability. Emerging advanced technologies that are potentially capable of locating releases, identifying the radionuclides, and estimating their concentrations and distributions are also included in the report along with suggestions of required further research and development.

  7. Design and fabrication of a maneuverable robot for in-pipe leak detection

    E-Print Network [OSTI]

    Wu, You, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Leaks in pipelines have been causing a significant amount of financial losses and serious damages to the community and the environment. The recent development of in-pipe leak detection technologies at Massachusetts Institute ...

  8. Analysis and design of an in-pipe system for water leak detection

    E-Print Network [OSTI]

    Chatzigeorgiou, Dimitris M

    2010-01-01T23:59:59.000Z

    Leaks are a major factor for unaccounted water losses in almost every water distribution network. Pipeline leak may result, for example, from bad workmanship or from any destructive cause, due to sudden changes of pressure, ...

  9. Underground coal gasification product quality parameters

    SciTech Connect (OSTI)

    Bruggink, P.R.; Davis, B.E.

    1981-01-01T23:59:59.000Z

    A simplified model is described which will indicate the economic value of the raw product gas from an experimental underground coal gasification test on a real-time basis in order to aid in the optimization of the process during the course of the test. The model relates the properties of the product gas and the injection gas to the cost of producing each of five potential commercial products. This model was utilized to evaluate data during the Gulf-DOE underground coal gasification test at Rawlins, Wyoming in the fall of 1981. 6 refs.

  10. Potential underground risks associated with CAES.

    SciTech Connect (OSTI)

    Kirk, Matthew F.; Webb, Stephen Walter; Broome, Scott Thomas; Pfeifle, Thomas W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2010-10-01T23:59:59.000Z

    CAES in geologic media has been proposed to help 'firm' renewable energy sources (wind and solar) by providing a means to store energy when excess energy was available, and to provide an energy source during non-productive renewable energy time periods. Such a storage media may experience hourly (perhaps small) pressure swings. Salt caverns represent the only proven underground storage used for CAES, but not in a mode where renewable energy sources are supported. Reservoirs, both depleted natural gas and aquifers represent other potential underground storage vessels for CAES, however, neither has yet to be demonstrated as a functional/operational storage media for CAES.

  11. Secretary of Energy Advisory Board

    Office of Environmental Management (EM)

    Secretary of Energy Advisory Board Follow Up Response from the Task Force on High Performance Computing November 30, 2014 On August 18, 2014, the Secretary of Energy Advisory Board...

  12. Harms of Unintentional Leaks during Volume Targeted Pressure Support Ventilation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Harms of Unintentional Leaks during Volume Targeted Pressure Support Ventilation Sonia Khirani1 Background: Volume targeted pressure support ventilation (VT-PSV) is a hybrid mode increasingly used. The objective of the study was to determine the ability of home ventilators to maintain the preset minimal VT

  13. Mineral formation during simulated leaks of Hanford waste tanks

    E-Print Network [OSTI]

    Flury, Markus

    Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a at the US DOE Hanford Site, Washington, caus- ing mineral dissolution and re-precipitation upon contact with subsurface sediments. The main mineral precipitation and transformation pathways were studied in solutions

  14. AIR SEALING Seal air leaks and save energy!

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    AIR SEALING Seal air leaks and save energy! W H A T I S A I R L E A K A G E ? Ventilation is fresh air that enters a house in a controlled manner to exhaust excess moisture and reduce odors and stuffiness. Air leakage, or infiltration, is outside air that enters a house uncontrollably through cracks

  15. T Plant secondary containment and leak detection upgrades

    SciTech Connect (OSTI)

    Carlson, T.A.

    1995-10-19T23:59:59.000Z

    The W-259 project will provide upgrades to the 2706-T/TA Facility to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. The project provides decontamination activities supporting the environmental restoration mission and waste management operations on the Hanford Site.

  16. Methodology to quantify leaks in aerosol sampling system components

    E-Print Network [OSTI]

    Vijayaraghavan, Vishnu Karthik

    2004-11-15T23:59:59.000Z

    and that approach was used to measure the sealing integrity of a CAM and two kinds of filter holders. The methodology involves use of sulfur hexafluoride as a tracer gas with the device being tested operated under dynamic flow conditions. The leak rates...

  17. Forced cooling of underground electric power transmission lines : design manual

    E-Print Network [OSTI]

    Brown, Jay A.

    1978-01-01T23:59:59.000Z

    The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

  18. Underground Natural Gas Storage Wells in Bedded Salt (Kansas)

    Broader source: Energy.gov [DOE]

    These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

  19. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  20. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the...

  1. ACADEMIC BOARD Information for members

    E-Print Network [OSTI]

    University of Technology, Sydney

    Principles and Quality Management Framework........................... 7 Self......................................................... 31 Attachment 2 -- Academic Board Quality Management Framework............. 32 http

  2. Technology Innovation Program Advisory Board

    E-Print Network [OSTI]

    Technology Innovation Program Advisory Board 2009 Annual Report of the Technology Innovation Program Advisory Board 2010 Annual Report of the #12;2010 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology

  3. Hanford Single-Shell Tank Leak Causes and Locations - 241-B Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L. [Washington River Protection Systems, Richland, WA (United States); Harlow, Donald G. [Washington River Protection Systems, Richland, WA (United States)

    2013-07-11T23:59:59.000Z

    This document identifies 241-B Tank Farm (B Farm) leak cause and locations for the 100 series leaking tank (241-B-107) identified in RPP-RPT-49089, Hanford B-Farm Leak Inventory Assessments Report. This document satisfies the B Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  4. Mathematical Properties of Pump-Leak Models of Cell Volume Control and Electrolyte Balance

    E-Print Network [OSTI]

    Weinberger, Hans

    Mathematical Properties of Pump-Leak Models of Cell Volume Control and Electrolyte Balance Yoichiro using pump-leak models, a system of differential algebraic equations that de- scribes the balance and stability of steady states for a general class of pump-leak models. We treat two cases. When the ion channel

  5. Mitochondrial proton leak and the uncoupling protein 1 homologues J.A. Stuart aYb

    E-Print Network [OSTI]

    Stuart, Jeffrey A.

    Review Mitochondrial proton leak and the uncoupling protein 1 homologues J.A. Stuart aYb , S 2000 Abstract Mitochondrial proton leak is the largest single contributor to the standard metabolic rate (SMR) of a rat, accounting for about 20% of SMR. Yet the mechanisms by which proton leak occurs

  6. EMMA a new underground cosmic-ray experiment T. Enqvista

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    and Nuclear Safety Authority ­ STUK, Helsinki, Finland d Centre for Underground Physics at Pyh¨asalmi (CUPP

  7. Design and Field Testing of an Autonomous Underground Tramming System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , the repetitive "load-haul-dump" cycle is well suited to automation. In this case, a vehicle called a load underground mining vehicle. Described is the development of a fast, re- liable, and robust "autotramming in underground mining operations by robotiz- ing some of the functions of underground vehicles. For example

  8. Appendix E: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E: Underground Storage Tank Data E-3 Table E.1. Underground storage tanks (USTs) at the Y-12 Plant Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA NA

  9. Appendix C: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C: Underground Storage Tank Data C-3 Table C.1. Underground storage tanks (USTs) at the Y-12 Plant Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA Case closed

  10. Appendix C: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C: Underground Storage Tank Data C-3 Table C.1. Underground storage tanks (USTs) at the Y-12 Complex Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA Case closed

  11. The Public Perceptions of Underground Coal Gasification (UCG)

    E-Print Network [OSTI]

    Watson, Andrew

    The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

  12. Underground coal gasification simulation. Final report

    SciTech Connect (OSTI)

    Gunn, R.D.

    1984-07-01T23:59:59.000Z

    The underground coal gasification (UCG) process - both forward gasification and reverse combustion linkage - was mathematically modeled. The models were validated with field and laboratory data. They were then used to explain some important UCG phenomena that had not been predictable with other methods. Some views on the UCG technology status are also presented. 3 references, 25 figures, 10 tables.

  13. Minimize environmental impacts when replacing underground pipe

    SciTech Connect (OSTI)

    Miller, L.R. [Ashland Petroleum Co., Catlettsburg, KY (United States); Kroll, T.R. [Insituform Technologies, Inc., Memphis, TN (United States)

    1997-02-01T23:59:59.000Z

    A US refiner urgently needed to repair a 40-year-old oily-water sewer system without disrupting processing operations. Equally important, the refiner wanted to minimize soil and groundwater contamination. In this case history, the refiner elected to use an alternative method--trenchless rehabilitation--to make required underground repairs.

  14. ENVIRONMENTAL MANAGEMENT ADVISORY BOARD

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM STAR Certified Homes,|ASSESSMENT

  15. Mitigated subsurface transfer line leak resulting in a surface pool

    SciTech Connect (OSTI)

    SCOTT, D.L.

    1999-02-08T23:59:59.000Z

    This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values.

  16. MCO combustible gas management leak test acceptance criteria

    SciTech Connect (OSTI)

    SHERRELL, D.L.

    1999-05-11T23:59:59.000Z

    Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10{sup -5} std cc/sec and 1 x 10{sup -7} std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations [within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL).

  17. Leak detection, monitoring, and mitigation technology trade study update

    SciTech Connect (OSTI)

    HERTZEL, J.S.

    1998-11-10T23:59:59.000Z

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  18. Electrical detection of liquid lithium leaks from pipe joints

    SciTech Connect (OSTI)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15T23:59:59.000Z

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k? trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  19. Electrical detection of liquid lithium leaks from pipe joints

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartz, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Jaworski, M. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Mehl, J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA

    2014-11-01T23:59:59.000Z

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k#2; trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  20. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    J. Heise

    2014-01-05T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  1. Dynamic underground stripping. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993.

  2. The Sanford underground research facility at Homestake

    SciTech Connect (OSTI)

    Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

    2014-06-24T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  3. Pumping carbon out of underground coal deposits

    SciTech Connect (OSTI)

    Steinberg, M.

    1999-07-01T23:59:59.000Z

    Thin steam and deep coal deposits are difficult and costly to mine. Underground coal gasification (UCG) with air or oxygen was thought to alleviate this problem. Experimental field tests were conducted in Wyoming and Illinois. Problems were encountered concerning a clear path for the team gasification to take place and removal of gas. The high endothermic heat of reaction requiring large quantities of steam and oxygen makes the process expensive. Safety problems due to incomplete reaction is also of concern. A new approach is proposed which can remedy most of these drawbacks for extracting energy from underground coal deposits. It is proposed to hydrogasify the coal underground with a heated hydrogen gas stream under pressure to produce a methane-rich gas effluent stream. The hydrogasification of coal is essentially exothermic so that no steam or oxygen is required. The gases formed are always in a reducing atmosphere making the process safe. The hydrogen is obtained by thermally decomposing the effluent methane above ground to elemental carbon and hydrogen. The hydrogen is returned underground for further hydrogasification of the coal seam. The small amount of oxygen and sulfur in the coal can be processed out above ground by removal as water and H{sub 2}S. Any CO can be removed by a methanation step returning the methane to process. The ash remains in the ground and the elemental carbon produced is the purest form of coal. The particulate carbon can be slurried with water to produce a fuel stream that can be fed to a turbine for efficient combined cycle power plants with lower CO{sub 2} emissions. Coal cannot be used for combined cycle because of its ash and sulfur content destroys the gas turbine. Depending on its composition of coal seam some excess hydrogen is also produced. Hydrogen is, thus, used to pump pure carbon out of the ground.

  4. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2010-07-27T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  5. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2008-06-24T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  6. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    Heise, Jaret

    2015-01-01T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-sea...

  7. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    Jaret Heise

    2015-03-05T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  8. Revitalized Board Lays Out New Path amid EM's Recent Underground Tank

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository | Department ofEnergyof Energy RevisedServices

  9. Hanford Advisory Board HAB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV andApril 8-9, Advisory Board HAB Annual

  10. Hanford Advisory Board Orientation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV andApril 8-9, Advisory Board HABMember

  11. Hanford Advisory Board Values

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV andApril 8-9, Advisory BoardPageValues

  12. Board of Directors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuel RetreatsforBoard of

  13. Secretary of Energy Advisory Board

    Broader source: Energy.gov [DOE]

    The Board will provide advice and recommendations to the Secretary of Energy on the Department's basic and applied research and development activities, economic and national security policy,...

  14. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13T23:59:59.000Z

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  15. IEAB Independent Economic Analysis Board

    E-Print Network [OSTI]

    IEAB Independent Economic Analysis Board Kenneth L. Casavant, Chair Roger Mann, Vice-Chair Joel R of Independent Economic Analysis Board's Activities and Contributions to NPPC Fish and Wildlife Planning document of achieving the same sound biological objective exist, the alternative with the minimum economic cost

  16. IEAB Independent Economic Analysis Board

    E-Print Network [OSTI]

    IEAB Independent Economic Analysis Board Daniel D. Huppert, Chair Lon L. Peters, Vice-Chair Joel R. Hamilton Kenneth L. Casavant Jack A. Richards Roger Mann Paul C. Sorensen Hans Radtke Economic Review of Instream Water Supply Components of the Salmon Creek Project Independent Economic Analysis Board Northwest

  17. IEAB Independent Economic Analysis Board

    E-Print Network [OSTI]

    IEAB Independent Economic Analysis Board Roger Mann, Chair Noelwah R. Netusil, Vice-Chair Kenneth L. Casavant Daniel D. Huppert Joel R. Hamilton Lon L. Peters Susan S. Hanna Hans Radtke A I - 1 Economic Effects From Columbia River Basin Anadromous Salmonid Fish Production Independent Economic Analysis Board

  18. IEAB Independent Economic Analysis Board

    E-Print Network [OSTI]

    IEAB Independent Economic Analysis Board Hans Radtke, Chair Roger Mann, Vice-Chair Daniel D. Huppert Joel R. Hamilton Susan S. Hanna John Duffield Noelwah R. Netusil Independent Economic Analysis Board Task Number 139 Integrated Hatchery Operations: Fish and Wildlife Program Costs and Other Economic

  19. IEAB Independent Economic Analysis Board

    E-Print Network [OSTI]

    IEAB Independent Economic Analysis Board Daniel D. Huppert, Chair Lon L. Peters, Vice-Chair Joel R and Guidance for Economic Analysis in Subbasin Planning Independent Economic Analysis Board January 2003, document IEAB 2003-2 Summary Subbasin planning may need to consider two types of economic issues; 1

  20. Nutrient Management Advisory Board ~Approved ~

    E-Print Network [OSTI]

    Kaye, Jason P.

    ) to order at 10:06 AM in room 309 of the PDA Building in Harrisburg. The following Board members meeting of the Board is scheduled for April 22, 2010, from 1:00 ­ 4:00 PM, in Room 309 of the Harrisburg

  1. Technology Innovation Program Advisory Board

    E-Print Network [OSTI]

    Magee, Joseph W.

    Technology Innovation Program Advisory Board 2009 Annual Report of the #12;2009 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program February 2010 #12;For Information regarding the Technology

  2. Technology Innovation Program Advisory Board

    E-Print Network [OSTI]

    Technology Innovation Program Advisory Board 2011 Annual Report of the #12;#12;i 2011 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program March 2012 #12;ii For Information regarding the Technology

  3. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  4. Hanford Single-Shell Tank Leak Causes and Locations - 241-U Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-12-02T23:59:59.000Z

    This document identifies 241-U Tank Farm (U Farm) leak causes and locations for the 100 series leaking tanks (241-U-104, 241-U-110, and 241-U-112) identified in RPP-RPT-50097, Rev. 0, Hanford 241-U Farm Leak Inventory Assessment Report. This document satisfies the U-Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  5. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect (OSTI)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22T23:59:59.000Z

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  6. Hanford Single-Shell Tank Leak Causes and Locations - 241-C Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-30T23:59:59.000Z

    This document identifies 241-C Tank Farm (C Farm) leak causes and locations for the 100 series leaking tanks (241-C-101 and 241-C-105) identified in RPP-RPT-33418, Rev. 2, Hanford C-Farm Leak Inventory Assessments Report. This document satisfies the C Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  7. Hanford Single-Shell Tank Leak Causes and Locations - 241-T Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-05-15T23:59:59.000Z

    This document identifies 241-T Tank Farm (T Farm) leak causes and locations for the 100 series leaking tanks (241-T-106 and 241-T-111) identified in RPP-RPT-55084, Rev. 0, Hanford 241-T Farm Leak Inventory Assessment Report. This document satisfies the T Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  8. Long-wave infrared imaging of vegetation for detecting leaking CO2 gas

    E-Print Network [OSTI]

    Shaw, Joseph A.

    Long-wave infrared imaging of vegetation for detecting leaking CO2 gas Jennifer E. Johnson Joseph A for detecting leaking CO2 gas Jennifer E. Johnson,a Joseph A. Shaw,a Rick Lawrence,b Paul W. Nugent,a Laura M of these calibrated imagers is imaging of vegetation for CO2 gas leak detection. During a four-week period

  9. Beyond Leaks: Demand-side Strategies for Improving Compressed Air Efficiency

    E-Print Network [OSTI]

    Howe, B.; Scales, B.

    Beyond Leaks: Demand-side Strategies for Bill Howe, PE Director, Corporate Energy Services E Source, Inc. Boulder, Colorado SUMMARY Staggering amounts of compressed air are wasted or misapplied in otherwise well run manufacturing...-maintained plants lose about 10 percent of compressed air to leaks, while many more lose over 50 percent. In addition to leaks, wasteful application of compressed air can eat up another 5 to 40 percent of compressed air volume-even in otherwise well...

  10. Hanford Single-Shell Tank Leak Causes and Locations - 241-A Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-09-10T23:59:59.000Z

    This document identifies 241-A Tank Farm (A Farm) leak causes and locations for the 100 series leaking tanks (241-A-104 and 241-A-105) identified in RPP-ENV-37956, Hanford A and AX Farm Leak Assessment Report. This document satisfies the A Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  11. A mathematical model for air brake systems in the presence of leaks

    E-Print Network [OSTI]

    Ramaratham, Srivatsan

    2008-10-10T23:59:59.000Z

    of the pneumatic subsystem. . . . . . . . . . . . . . . . . . 20 16 Pressure transients at 722 kPa (90 psi) supply pressure with no leak. 22 17 Schematic of the setup for leak corroboration tests. . . . . . . . . . . 27 18 Comparison of measured and predicted mass... of detecting and locating leaks[6]. Most of the performance tests and visual based inspection tests of the air brake system indirectly correlate pressure in the brake chamber with the torque output, brake pad temperature, push rod strokes etc[7], [8]. More...

  12. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  13. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  14. Alabama Underground Storage Tank And Wellhead Protection Act...

    Broader source: Energy.gov (indexed) [DOE]

    commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental...

  15. ,"Lower 48 States Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. NNSA Commemorates the 20th Anniversary of the Last Underground...

    National Nuclear Security Administration (NNSA)

    Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  17. ,"AGA Producing Region Underground Natural Gas Storage - All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"AGA Western Consuming Region Underground Natural Gas Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"West Virginia Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"AGA Eastern Consuming Region Underground Natural Gas Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"New York Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"New Mexico Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Broader source: Energy.gov (indexed) [DOE]

    and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOEEA-1799). Further...

  4. Progress Continues Toward Closure of Two Underground Waste Tanks...

    Broader source: Energy.gov (indexed) [DOE]

    fiscal year 2013, which ended Sept. 30, SRR reached contract milestones in the Interim Salt Disposition Process, which treats salt waste from the underground storage tanks. Salt...

  5. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    want to model what happens to the crystals' geochemistry when the greenhouse gas carbon dioxide is injected underground for sequestration. Image courtesy of David...

  6. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIEStimes are calculated for a mining and drilling progrilln toof cost and time to compl mining and core drilling for

  7. Leake County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy Resources JumpPrataHill,LeadingLeake

  8. Air Leaks in Unexpected Places | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A Potential PathAddingAhorreLeaks in

  9. Hydrogen Leak Detection - Low-Cost Distributed Gas Sensors | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof Energy Leak Detection - Low-Cost

  10. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-11-19T23:59:59.000Z

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) leak causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105, and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  11. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1997-01-01T23:59:59.000Z

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  12. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1997-12-30T23:59:59.000Z

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  13. T-726:Linux-2.6 privilege escalation/denial of service/information leak

    Broader source: Energy.gov [DOE]

    Vulnerabilities have been discovered in the Linux kernel that may lead to a privilege escalation, denial of service or information leak.

  14. Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    most underground storage tanks for gasoline were made ofwaters, gasoline spills from leaking underground storage

  15. Water pollution control for underground coal gasification

    SciTech Connect (OSTI)

    Humenick, M.J.

    1984-06-01T23:59:59.000Z

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes.

  16. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01T23:59:59.000Z

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  17. 100-N Area underground storage tank closures

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-08-01T23:59:59.000Z

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  18. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

  19. A Brief Technical Critique of Economides and Ehlig-Economides 2010 "Sequestering Carbon Dioxide in a Closed Underground Volume"

    SciTech Connect (OSTI)

    Dooley, James J.; Davidson, Casie L.

    2010-04-07T23:59:59.000Z

    In their 2010 paper, “Sequestering Carbon Dioxide in a Close Underground Volume,” authors Ehlig-Economides and Economides assert that “underground carbon dioxide sequestration via bulk CO2 injection is not feasible at any cost.” The authors base this conclusion on a number of assumptions that the peer reviewed technical literature and decades of carbon dioxide (CO2) injection experience have proven invalid. In particular, the paper is built upon two flawed premises: first, that effective CO2 storage requires the presence of complete structural closure bounded on all sides by impermeable media, and second, that any other storage system is guaranteed to leak. These two assumptions inform every aspect of the authors’ analyses, and without them, the paper fails to prove its conclusions. The assertion put forward by Ehlig-Economides and Economides that anthropogenic CO2 cannot be stored in deep geologic formations is refuted by even the most cursory examination of the more than 25 years of accumulated commercial carbon dioxide capture and storage experience.

  20. Underground coal gasification using oxygen and steam

    SciTech Connect (OSTI)

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01T23:59:59.000Z

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  1. Permanent Closure of the TAN-664 Underground Storage Tank

    SciTech Connect (OSTI)

    Bradley K. Griffith

    2011-12-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  2. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  3. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    SciTech Connect (OSTI)

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30T23:59:59.000Z

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  4. Project uses microphones to detect underwater gas leaks Published: 14 Oct 2011

    E-Print Network [OSTI]

    Sóbester, András

    into developing the technology,' said Leighton. Topics: Research and Development, carbon capture use and storage as naturally occurring methane gas leaks. `The current carbon- capture storage facilities have the ability Key Topics: Technology Scientists at Southampton University are employing hydrophones to monitor leaks

  5. Extension Program Council's Executive Board.

    E-Print Network [OSTI]

    Marshall, Mary G.; Richardson, Burl B.

    1986-01-01T23:59:59.000Z

    ~IB-134'-! II"I~ I~? Extension Program Council's Executive Board Mary G. Marshall and Burl B. Richardson Extension Program Development Specialists The Extension Program Council works with Extension agents to plan, implement, evaluate...

  6. Board of Trustees Dorothy Russell

    E-Print Network [OSTI]

    Marques, Oge

    Board of Trustees Dorothy Russell VP Financial Affairs (Chief Financial Officer) Corey King Interim & Psychological Services Housing and Residential Life Office of the Associate VP for Student Affairs and Dean

  7. Internal dissipation and heat leaks in quantum thermodynamic cycles

    E-Print Network [OSTI]

    Luis A. Correa; José P. Palao; Daniel Alonso

    2015-07-06T23:59:59.000Z

    The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered so as to realize virtually any thermodynamic cycle. In spite of their versatility such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.

  8. Theory of the leak-rate of seals

    E-Print Network [OSTI]

    B. N. J. Persson; C. Yang

    2008-05-06T23:59:59.000Z

    Seals are extremely useful devices to prevent fluid leakage. However, the exact mechanism of roughness induced leakage is not well understood. We present a theory of the leak-rate of seals, which is based on percolation theory and a recently developed contact mechanics theory. We study both static and dynamics seals. We present molecular dynamics results which show that when two elastic solids with randomly rough surfaces are squeezed together, as a function of increasing magnification or decreasing squeezing pressure, a non-contact channel will percolate when the (relative) projected contact area, A/A_0, is of order 0.4, in accor dance with percolation theory. We suggest a simple experiment which can be used to test the theory.

  9. Biological treatment of underground coal gasification wastewaters

    SciTech Connect (OSTI)

    Bryant, C.W. Jr.; Humenick, M.J.; Cawein, C.C.; Nolan, B.T. III

    1985-05-01T23:59:59.000Z

    Biotreatability studies using underground coal gasification (UCG) wastewaters were performed by the University of Arizona and the University of Wyoming. The University of Arizona researchers found that UCG condensate could be effectively treated by activated sludge, using feed wastewaters of up to 50% strength. Total organic carbon (TOC) and chemical oxygen demand (COD) removals approached 90% during this research. The University of Wyoming researchers found that solvent extraction and hot-gas stripping were effective pretreatments for undiluted UCG condensate and that addition of powdered activated carbon enhanced the biotreatment process. TOC and COD removals resulting from the combination of pretreatments and biotreatment were 91% and 95%, respectively. The yield, decay, and substrate removal rate coefficients were greater in the University of Wyoming study than in the University of Arizona study. This was possibly caused by removing bioinhibitory substances, such as ammonia, with pretreatment. 18 refs., 25 figs., 6 tabs.

  10. Rocky Mountain 1 Underground Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Rocky Mountain 1 Underground Coal Gasification Test or Burn was conducted from approximately mid-November, 1987 through February, 1988. After the burn the project began proceeding with the following overall tasks: venting, flushing and cooling of the cavities; subsurface or groundwater cleanup; post-burn coring and drilling; groundwater monitoring, and site restoration/reclamation. By the beginning of 1991 field activities associated with venting, flushing and cooling of the cavities and post-burn coring and drilling had been completed. However, data analysis continued including the University of North Dakota analyzing drilling and coring data, and the US Department of Energy (DOE)/EG G developing a chronological listing of project events.

  11. The Large Underground Xenon (LUX) Experiment

    E-Print Network [OSTI]

    D. S. Akerib; X. Bai; S. Bedikian; E. Bernard; A. Bernstein; A. Bolozdynya; A. Bradley; D. Byram; S. B. Cahn; C. Camp; M. C. Carmona-Benitez; D. Carr; J. J. Chapman; A. Chiller; C. Chiller; K. Clark; T. Classen; T. Coffey; A. Curioni; E. Dahl; S. Dazeley; L. de Viveiros; A. Dobi; E. Dragowsky; E. Druszkiewicz; B. Edwards; C. H. Faham; S. Fiorucci; R. J. Gaitskell; K. R. Gibson; M. Gilchriese; C. Hall; M. Hanhardt; B. Holbrook; M. Ihm; R. G. Jacobsen; L. Kastens; K. Kazkaz; R. Knoche; S. Kyre; J. Kwong; R. Lander; N. A. Larsen; C. Lee; D. S. Leonard; K. T. Lesko; A. Lindote; M. I. Lopes; A. Lyashenko; D. C. Malling; R. Mannino; Z. Marquez; D. N. McKinsey; D. -M. Mei; J. Mock; M. Moongweluwan; M. Morii; H. Nelson; F. Neves; J. A. Nikkel; M. Pangilinan; P. D. Parker; E. K. Pease; K. Pech; P. Phelps; A. Rodionov; P. Roberts; A. Shei; T. Shutt; C. Silva; W. Skulski; V. N. Solovov; C. J. Sofka; P. Sorensen; J. Spaans; T. Stiegler; D. Stolp; R. Svoboda; M. Sweany; M. Szydagis; D. Taylor; J. Thomson; M. Tripathi; S. Uvarov; J. R. Verbus; N. Walsh; R. Webb; D. White; J. T. White; T. J. Whitis; M. Wlasenko; F. L. H. Wolfs; M. Woods; C. Zhang

    2012-11-21T23:59:59.000Z

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\\times 10^{-46}$ cm$^{2}$, equivalent to $\\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

  12. The Large Underground Xenon (LUX) Experiment

    E-Print Network [OSTI]

    Akerib, D S; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Camp, C; Carmona-Benitez, M C; Carr, D; Chapman, J J; Chiller, A; Chiller, C; Clark, K; Classen, T; Coffey, T; Curioni, A; Dahl, E; Dazeley, S; de Viveiros, L; Dobi, A; Dragowsky, E; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Gilchriese, M; Hall, C; Hanhardt, M; Holbrook, B; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Kwong, J; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; Marquez, Z; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Rodionov, A; Roberts, P; Shei, A; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sofka, C J; Sorensen, P; Spaans, J; Stiegler, T; Stolp, D; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Thomson, J; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, D; White, J T; Whitis, T J; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01T23:59:59.000Z

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\\times 10^{-46}$ cm$^{2}$, equivalent to $\\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

  13. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

  14. Studies into the Initial Conditions, Flow Rate, and Containment System of Oil Field Leaks in Deep Water

    E-Print Network [OSTI]

    Holder, Rachel

    2013-07-22T23:59:59.000Z

    to contain an oil leak in the field. The dome was found to have satisfactory entrapment in the designed position....

  15. Detection and location of leaks in district heating steam systems: Survey and review of current technology and practices

    SciTech Connect (OSTI)

    Kupperman, D.S.; Raptis, A.C.; Lanham, R.N.

    1992-03-01T23:59:59.000Z

    This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.

  16. Surface effects of underground nuclear explosions

    SciTech Connect (OSTI)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01T23:59:59.000Z

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  17. Wiener filtering with a seismic underground array at the Sanford Underground Research Facility

    E-Print Network [OSTI]

    Michael Coughlin; Jan Harms; Nelson Christensen; Vladimir Dergachev; Riccardo DeSalvo; Shivaraj Kandhasamy; Vuk Mandic

    2014-08-19T23:59:59.000Z

    A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave detector underground. A major noise source for these detectors would be Newtonian noise, which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the Newtonian noise to below the projected noise floor for future gravitational-wave detectors. In this paper, we use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.05 -- 1\\,Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. We show how this subtraction would benefit proposed future low-frequency gravitational wave detectors. The variation in the Wiener filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise, which gives hope for future gravitational-wave detectors to address Newtonian noise.

  18. Underground reactor containments: An option for the future?

    SciTech Connect (OSTI)

    Forsberg, C.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.; Kress, T.

    1997-02-18T23:59:59.000Z

    Changing world conditions and changing technologies suggest that serious consideration should be given to siting of nuclear power plants underground. Underground siting is not a new concept. Multiple research reactors, several weapons production reactors, and one power reactor have been built underground. What is new are the technologies and incentives that may now make underground siting a preferred option. The conditions and technologies, along with their implications, are discussed herein. Underground containments can be constructed in mined cavities or pits that are then backfilled with thick layers of rock and soil. Conventional above-ground containments resist assaults and accidents because of the strength of their construction materials and the effectiveness of their safety features that are engineered to reduce loads. However, underground containments can provide even more resistance to assaults and accidents because of the inertia of the mass of materials over the reactor. High-technology weapons or some internal accidents can cause existing strong-material containments to fail, but only very-high energy releases can move large inertial masses associated with underground containments. New methods of isolation may provide a higher confidence in isolation that is independent of operator action.

  19. Mass balances for underground coal gasification in steeply dipping beds

    SciTech Connect (OSTI)

    Lindeman, R.; Ahner, P.; Davis, B.E.

    1980-01-01T23:59:59.000Z

    Two different mass balances were used during the recent underground coal gasification tests conducted in steeply dipping coal beds at Rawlins, Wyoming. The combination of both mass balances proved extremely useful in interpreting the test results. One mass balance which assumed char could be formed underground required the solution of 3 simultaneous equations. The assumption of no char decouples the 3 equations in the other mass balance. Both mass balance results are compared to the test data to provide an interpretation of the underground process.

  20. Underground nuclear energy complexes - technical and economic advantages

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

    2010-01-01T23:59:59.000Z

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  1. Muon simulation codes MUSIC and MUSUN for underground physics

    E-Print Network [OSTI]

    V. A. Kudryavtsev

    2008-10-25T23:59:59.000Z

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  2. Leak-Tight Welding Experience from the Industrial Assembly of the LHC Cryostats at CERN

    E-Print Network [OSTI]

    Bourcey, N; Chiggiato, P; Limon, P; Mongelluzzo, A; Musso, G; Poncet, A; Parma, V

    2008-01-01T23:59:59.000Z

    The assembly of the approximately 1700 LHC main ring cryostats at CERN involved extensive welding of cryogenic lines and vacuum vessels. More than 6 km of welding requiring leak tightness to a rate better than 1.10-9 mbar.l.s-1 on stainless steel and aluminium piping and envelopes was made, essentially by manual welding but also making use of orbital welding machines. In order to fulfil the safety regulations related to pressure vessels and to comply with the leak-tightness requirements of the vacuum systems of the machine, welds were executed according to high qualification standards and following a severe quality assurance plan. Leak detection by He mass spectrometry was extensively used. Neon leak detection was used successfully to locate leaks in the presence of helium backgrounds. This paper presents the quality assurance strategy adopted for welds and leak detection. It presents the statistics of non-conformities on welds and leaks detected throughout the entire production and the advances in the use...

  3. Leak detection systems for uranium mill tailings impoundments with synthetic liners

    SciTech Connect (OSTI)

    Myers, D.A.; Tyler, S.W.; Gutknecht, P.J.; Mitchell, D.H.

    1983-09-01T23:59:59.000Z

    This study evaluated the performance of existing and alternative leak detection systems for lined uranium mill tailings ponds. Existing systems for detecting leaks at uranium mill tailings ponds investigated in this study included groundwater monitoring wells, subliner drains, and lysimeters. Three alternative systems which demonstrated the ability to locate leaks in bench-scale tests included moisture blocks, soil moisture probes, and a soil resistivity system. Several other systems in a developmental stage are described. For proper performance of leak detection systems (other than groundwater wells and lysimeters), a subgrade is required which assures lateral dispersion of a leak. Methods to enhance dispersion are discussed. Cost estimates were prepared for groundwater monitoring wells, subliner drain systems, and the three experimental systems. Based on the results of this report, it is suggested that groundwater monitoring systems be used as the primary means of leak detection. However, if a more responsive system is required due to site characteristics and groundwater quality criteria, subliner drains are applicable for ponds with uncovered liners. Leak-locating systems for ponds with covered liners require further development. Other recommendations are discussed in the report.

  4. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-09-04T23:59:59.000Z

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  5. Hanford Single-Shell Tank Leak Causes and Locations - 241-SX Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L. [Washington River Protection Solutions (United States); Harlow, Donald G. [Washington River Protection Solutions (United States)

    2014-01-08T23:59:59.000Z

    This document identifies 241-SX Tank Farm (SX Farm) leak causes and locations for the 100 series leaking tanks (241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114, and 241-SX-115) identified in RPP-ENV-39658, Rev. 0, Hanford SX-Farm Leak Assessments Report. This document satisfies the SX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  6. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  7. Underground barrier construction apparatus with soil-retaining shield

    DOE Patents [OSTI]

    Gardner, Bradley M. (Idaho Falls, ID); Smith, Ann Marie (Pocatello, ID); Hanson, Richard W. (Spokane, WA); Hodges, Richard T. (Deer Park, WA)

    1998-01-01T23:59:59.000Z

    An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

  8. Underground barrier construction apparatus with soil-retaining shield

    DOE Patents [OSTI]

    Gardner, B.M.; Smith, A.M.; Hanson, R.W.; Hodges, R.T.

    1998-08-04T23:59:59.000Z

    An apparatus is described for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment. 17 figs.

  9. advanced underground vehicle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and radiogenic 40Ar production in situ and from external sources, we can derive the ratio of 39Ar to 40Ar in underground sources. We show for the first time that...

  10. aging underground reinforced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and geo-neutrinos, and perform exotic searches, with a 20 kiloton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground...

  11. ,"New Mexico Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:08:54 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NM2"...

  12. amchitka underground nuclear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    searches, with a 20 kiloton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground and to have other rich scientific...

  13. HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Session on Heat Transfer in Nuclear Waste Disposal, C'.heat transfer processes associated with underground nuclear wasteheat transfer and related processes in an un­ derground environment similar to that expected in a mined nuclear waste

  14. Nevada National Security Site Underground Test Area (UGTA) Flow...

    Office of Environmental Management (EM)

    December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation Nevada National Security Site Underground Test Area...

  15. ,"New York Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:17:17 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

  16. ,"New York Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:28 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

  17. ,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:55 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

  18. ,"New York Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:27 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

  19. Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation of natural gas and permits the accumulation of...

  20. Georgia Underground Gas Storage Act of 1972 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and...

  1. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1983-06-01T23:59:59.000Z

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  2. Your Supplies: 1 Plinko Board board tacked with nails

    E-Print Network [OSTI]

    Smith-Konter, Bridget

    numbers of runs with hits to the number of runs with misses. A Run = Bombarding Marble falls down it is not considered a run. A Hit = Bombarding Marble falls down the board and hits at least one target marble. It can hit more than one, but the run is only counted as a single "hit". A Miss = Bombarding Marble falls

  3. Program for large-scale underground-coal-gasification tests

    SciTech Connect (OSTI)

    Hammesfahr, F.W.; Winter, P.L.

    1982-11-01T23:59:59.000Z

    The continuing development of underground coal gasification technology requires extended multi-module field programs in which the output gas is linked to surface usage. This effort was to appraise whether existing surface facilities in the utility, petroleum refinery, or natural gas industries could be used to reduce the cost of such an extended multi-module test and whether regional demand in areas having underground coal gasification coal resources could support the manufacture of transportation fuels from underground coal gasification gases. To limit the effort to a reasonable level but yet to permit a fair test of the concept, effort was focused on five states, Illinois, New Mexico, Texas, Washington, and Wyoming, which have good underground coal gasification reserves. Studies of plant distribution located 25 potential sites within 3 miles of the underground coal gasification amenable reserves in the five states. Distribution was 44% to utilities, 44% to refineries, and 12% to gas processing facilities. The concept that existing surface facilities, currently or potentially gas-capable, might contribute to the development of underground coal gasification technology by providing a low cost industrial application for the gas produced in a multi-module test appears valid. To further test the concept, three industries were reviewed in depth. These were the electric utility, natural gas, and petroleum industries. When looking at a fuel substitution of the type proposed, each industry had its special perspective. These are discussed in detail in the report.

  4. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect (OSTI)

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07T23:59:59.000Z

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  5. Underground storage of hydrocarbons in Ontario

    SciTech Connect (OSTI)

    Carter, T.R.; Manocha, J. [Ontario Ministry of Natural Resources, Ontario (Canada)

    1995-09-01T23:59:59.000Z

    The underground storage of natural gas and liquified petroleum products in geological formations is a provincially significant industry in Ontario with economic, environmental, and safety benefits for the companies and residents of Ontario. There are 21 active natural gas storage pools in Ontario, with a total working storage capacity of approximately 203 bcf (5.76 billion cubic metres). Most of these pools utilize former natural gas-producing Guelph Formation pinnacle reefs. In addition there are seventy-one solution-mined salt caverns utilized for storage capacity of 24 million barrels (3.9 million cubic metres). These caverns are constructed within salt strata of the Salina A-2 Unit and the B Unit. The steadily increasing demand for natural gas in Ontario creates a continuing need for additional storage capacity. Most of the known gas-producing pinnacle reefs in Ontario have already been converted to storage. The potential value of storage rights is a major incentive for continued exploration for undiscovered reefs in this mature play. There are numerous depleted or nearly depleted natural gas reservoirs of other types with potential for use as storage pools. There is also potential for use of solution-mined caverns for natural gas storage in Ontario.

  6. Glass produced by underground nuclear explosions. [Rainier

    SciTech Connect (OSTI)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01T23:59:59.000Z

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10/sup 12/ calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 ..mu..m scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity.

  7. Roof control strategies for underground coal mines

    SciTech Connect (OSTI)

    Smith, W.C. (Bureau of Mines, Denver, CO (United States))

    1993-01-01T23:59:59.000Z

    Roof support, an important aspect of ground control, involves maintaining roof competency to ensure a safe and efficient mining environment. Wide variability in rock quality and stress distributions requires a systematic approach to roof support design that satisfies specific goals. The success of past roof support in reducing the incidence of roof falls has been primarily attributed to safer roof bolting practices. However, roof falls continue to be the number one occupational hazard in underground coal mines. This US Bureau of Mines report presents a general overview of roof bolting and other roof support methods used in the United States. Characteristics of bad roof and associated roof failure theories are briefly presented as background to roof support. Methods of detecting and monitoring roof behavior and/or bolt performance provide essential feedback on roof support requirements. A discussion follows on roof bolt design that assimilates roof and support parameters into useful equations or nomographs to help decide what bolt types to use and how they should be installed under different roof conditions. 35 refs., 8 figs.

  8. Underground Muons in Super-KAMIOKANDE

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; presented by J. G. Learned

    1997-05-24T23:59:59.000Z

    The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been collecting data since April 1996. It is located at a depth of roughly 2.7 kmwe in a zinc mine under a mountain, and has an effective area for detecting entering-stopping and through-going muons of about $1238 m^2$ for muons of $>1.7 GeV$. These events are collected at a rate of 1.5 per day from the lower hemisphere of arrival directions, with 2.5 muons per second in the downgoing direction. We report preliminary results from 229 live days analyzed so far with respect to zenith angle variation of the upcoming muons. These results do not yet have enough statistical weight to discriminate between the favored hypothesis for muon neutrino oscillations and no-oscillations. We report on the search for astrophysical sources of neutrinos and high energy neutrino fluxes from the sun and earth center, as might arise from WIMP annihilations. None are found. We also present a topographical map of the overburden made from the downgoing muons. The detector is performing well, and with several years of data we should be able to make significant progress in this area.

  9. Assessment of crack opening area for leak rates

    SciTech Connect (OSTI)

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01T23:59:59.000Z

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

  10. Further development of an in-pipe leak detection sensor's mobility platform

    E-Print Network [OSTI]

    Moore, Frederick M

    2013-01-01T23:59:59.000Z

    Water leakage is a major global problem and smaller sized leaks are difficult to find despite their prevalence in most water distribution systems. Previous attempts to develop a mobility platform for a sensor in use in ...

  11. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  12. BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010...

    Broader source: Energy.gov (indexed) [DOE]

    40' - June 3 2010 (1 of 4) BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) Addthis Description Footage of the BP Oil Spill Duration 0:15...

  13. BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...

    Broader source: Energy.gov (indexed) [DOE]

    3 of 4) BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) Addthis Description Footage of the BP Oil Spill Duration 0:19...

  14. BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...

    Broader source: Energy.gov (indexed) [DOE]

    2 of 4) BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) Addthis Description Footage of the BP Oil Spill Duration 0:13...

  15. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOE Patents [OSTI]

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11T23:59:59.000Z

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  16. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1995-01-01T23:59:59.000Z

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  17. Calculation Notes for Subsurface Leak Resulting in Pool, TWRS FSAR Accident Analysis

    SciTech Connect (OSTI)

    Hall, B.W.

    1996-09-25T23:59:59.000Z

    This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Subsurface Leaks Resulting in Pool.

  18. Calculation notes for surface leak resulting in pool, TWRS FSAR accident analysis

    SciTech Connect (OSTI)

    Hall, B.W.

    1996-09-25T23:59:59.000Z

    This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Surface Leaks Resulting in Pool.

  19. Intelligent Coatings for Location And Detection of Leaks (IntelliCLAD...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    danger of a gas leak. Ever since the tragic natural gas explosion of 1937 in a New London, Texas school building, various governments have mandated that odorants be added to...

  20. U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012.

    SciTech Connect (OSTI)

    Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

    2013-06-01T23:59:59.000Z

    This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

  1. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01T23:59:59.000Z

    Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.

  2. Risks from Past, Current, and Potential Hanford Single Shell Tank Leaks

    SciTech Connect (OSTI)

    Triplett, Mark B.; Watson, David J.; Wellman, Dawn M.

    2013-05-24T23:59:59.000Z

    Due to significant delays in constructing and operating the Waste Treatment Plant, which is needed to support retrieval of waste from Hanford’s single shell tanks (SSTs), SSTs may now be required to store tank waste for two to three more decades into the future. Many SSTs were built almost 70 years ago, and all SSTs are well beyond their design lives. Recent examination of monitoring data suggests several of the tanks, which underwent interim stabilization a decade or more ago, may be leaking small amounts (perhaps 150–300 gallons per year) to the subsurface environment. A potential leak from tank T-111 is estimated to have released approximately 2,000 gallons into the subsurface. Observations of past leak events, recently published simulation results, and new simulations all suggest that recent leaks are unlikely to affect underlying groundwater above regulatory limits. However, these recent observations remind us that much larger source terms are still contained in the tanks and are also present in the vadose zone from historical intentional and unintentional releases. Recently there have been significant improvements in methods for detecting and characterizing soil moisture and contaminant releases, understanding and controlling mass-flux, and remediating deep vadose zone and groundwater plumes. To ensure extended safe storage of tank waste in SSTs, the following actions are recommended: 1) Improve capabilities for intrusion and leak detection. 2) Develop defensible conceptual models of intrusion and leak mechanisms. 3) Apply enhanced subsurface characterization methods to improve detection and quantification of moisture changes beneath tanks. 4) Maintain a flux-based assessment of past, present, and potential tank leaks to assess risks and to maintain priorities for applying mitigation actions. 5) Implement and maintain effective mitigation and remediation actions to protect groundwater resources. These actions will enable limited resources to be applied to the most beneficial actions. A systems-based approach will support extended safe storage of tank waste, reduce the risks from tank leaks, and protect human health and the environment.

  3. Board Advising Jeffrey L. Colesa

    E-Print Network [OSTI]

    Lin, Xiaodong

    for advising, as measured by firm complexity, increases: (i) both advising quality and total advising increase; and (ii) the sensitivity of firm value to both advising quality and total advising increase by a director individually and by the board overall. We introduce measures of quality of advising and total

  4. IEAB Independent Economic Analysis Board

    E-Print Network [OSTI]

    IEAB Independent Economic Analysis Board Kenneth L. Casavant, Chair Roger Mann, Vice-Chair Joel R Application of the IEAB's Recommendations and Guidance for Economic Analysis in Subbasin Planning improvements related to economic content of the draft Clearwater Subbasin Management Plan (the draft Clearwater

  5. IEAB Independent Economic Analysis Board

    E-Print Network [OSTI]

    . Huppert Noelwah R. Netusil JunJie Wu Cost-Effectiveness of Fish Tagging Technologies and Programs in the Columbia River Basin1 Independent Economic Analysis Board Fish and Wildlife Program Northwest Power and Conservation Council June 2, 2013 1 This report benefitted from the meetings of the Fish Tagging Forum

  6. Senior Leadership Board of Regents

    E-Print Network [OSTI]

    Amin, S. Massoud

    Senior Leadership Board of Regents Associate VP Internal Audits Gail Klatt ADMINISTRATION General to the President, Government & Community Relations Jason Rohloff University of Minnesota Leadership VP Office Athletics Norwood Teague was appointed director of Intercollegiate Athletics in 2012 and oversees leadership

  7. AGREEMENT BETWEEN BOARD OF TRUSTEES

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    AGREEMENT BETWEEN THE BOARD OF TRUSTEES OF THE UNIVERSITY OF MASSACHUSETTS AND THE MASSACHUSETTS of Massachusetts ("Employer") and the Massachusetts Society of Professors/Faculty Staff Union/MTA/NEA ("Union l50E and rules and regulations promulgated thereunder, the parties clearly recognize their statutory

  8. Research of documents pertaining to waste migration from leaking single-shell tanks

    SciTech Connect (OSTI)

    Consort, S.D. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1994-09-30T23:59:59.000Z

    This report contains the results from an investigation of the literature concerning single-shell tank (SST) leaks on the Hanford Site. The purpose of the investigation is to determine if available data confirm or refute the assertion that leaked waste from the SSTs has reached ground water. There are 67 leaking single-shell tanks (SSTs) on the Hanford Site. Although the maximum volume of leaked waste is approximately 4,013,000 L (1,060,000 gal), it is not the only waste in the ground beneath the 200 Area. Before 1966, supernatant solution was intentionally discharged from the cascading SSTs to the ground. Other leaks from piping and surface spills contributed to the waste in the ground. The maximum estimated volume of unintentionally leaked waste from the tanks is less than 1% of the intentionally released liquid waste that was sent to the cribs and trenches from the SSTs. The volume does not include the liquid waste sent intentionally from other facilities directly to the cribs, trenches, and injection wells. The components and concentrations of the intentionally released waste were in compliance with applicable standards at the time of release.

  9. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington are pleased to transmit a technical report prepared by the Nuclear Waste Technical Review Board (Board. Based on its review of data gathered by the DOE and the Center for Nuclear Waste Regulatory Analyses

  10. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington Dear Speaker Pelosi, Senator Byrd, and Secretary Bodman: The Nuclear Waste Technical Review Board, and transporting high-level radioactive waste and spent nuclear fuel. The Board is required to report its findings

  11. Board of Graduate Studies 4 Mill Lane

    E-Print Network [OSTI]

    Zernicka-Goetz, Magdalena

    for prospective students. The Board agreed that a co-ordinated strategy was required both in relation to the two MPhil in Energy Technologies (Paper 4024) The Board approved the introduction of the new MPhil Cambridge 152 3550 External Examiners and employment checks (Paper 4025) The Board was concerned by the UK

  12. Page 1 of 2 ACADEMIC BOARD

    E-Print Network [OSTI]

    Jones, Graeme A.

    Page 1 of 2 ACADEMIC BOARD Type: STATUTORY Nature: Senior academic committee of University Report Line: Authority to act via Articles of Government. Also reports to Board of Governors and Vice-Chancellor Timing: Four per annum Life Cycle: Three years TERMS OF REFERENCE/FUNCTIONS The Academic Board shall

  13. Hanford Advisory Board Draft Advice Topic: Tank Farm Vapors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Safety and Environmental Protection (HSEP) Version 1 : Color: pinkyellowgreensalmonpurpleXblue Background The Hanford Advisory Board (Board) has always...

  14. Viewing Systems for Large Underground Storage Tanks.

    SciTech Connect (OSTI)

    Heckendorn, F.M., Robinson, C.W., Anderson, E.K. [Westinghouse Savannah River Co., Aiken, SC (United States)], Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction.

  15. Leak Detection and H2 Sensor Development for Hydrogen Applications

    SciTech Connect (OSTI)

    Brosha, Eric L. [Los Alamos National Laboratory

    2012-07-10T23:59:59.000Z

    The objectives of this report are: (1) Develop a low cost, low power, durable, and reliable hydrogen safety sensor for a wide range of vehicle and infrastructure applications; (2) Continually advance test prototypes guided by materials selection, sensor design, electrochemical R&D investigation, fabrication, and rigorous life testing; (3) Disseminate packaged sensor prototypes and control systems to DOE Laboratories and commercial parties interested in testing and fielding advanced prototypes for cross-validation; (4) Evaluate manufacturing approaches for commercialization; and (5) Engage an industrial partner and execute technology transfer. Recent developments in the search for sustainable and renewable energy coupled with the advancements in fuel cell powered vehicles (FCVs) have augmented the demand for hydrogen safety sensors. There are several sensor technologies that have been developed to detect hydrogen, including deployed systems to detect leaks in manned space systems and hydrogen safety sensors for laboratory and industrial usage. Among the several sensing methods electrochemical devices that utilize high temperature-based ceramic electrolytes are largely unaffected by changes in humidity and are more resilient to electrode or electrolyte poisoning. The desired sensing technique should meet a detection threshold of 1% (10,000 ppm) H{sub 2} and response time of {approx_equal}1 min, which is a target for infrastructure and vehicular uses. Further, a review of electrochemical hydrogen sensors by Korotcenkov et.al and the report by Glass et.al suggest the need for inexpensive, low power, and compact sensors with long-term stability, minimal cross-sensitivity, and fast response. This view has been largely validated and supported by the fuel cell and hydrogen infrastructure industries by the NREL/DOE Hydrogen Sensor Workshop held on June 8, 2011. Many of the issues preventing widespread adoption of best-available hydrogen sensing technologies available today outside of cost, derive from excessive false positives and false negatives arising from signal drift and unstable sensor baseline; both of these problems necessitate the need for unacceptable frequent calibration.

  16. A LOW-COST GPR GAS PIPE & LEAK DETECTOR

    SciTech Connect (OSTI)

    David Cist; Alan Schutz

    2005-03-30T23:59:59.000Z

    A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

  17. Underground physics without underground labs: large detectors in solution-mined salt caverns

    E-Print Network [OSTI]

    Benjamin Monreal

    2014-09-30T23:59:59.000Z

    A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

  18. Oversight Board | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and BiofuelsOversight Board The Ames Laboratory Oversight

  19. Underground coal gasification: A near-term alternate fuel

    SciTech Connect (OSTI)

    Avasthi, J.; Singleton, A.M.

    1984-06-01T23:59:59.000Z

    Since the beginning of this century underground coal gasification has been considered as an alternative to mining as a means of utilizing the coal resources not recoverable by conventional methods. The energy crunch of the seventies gave a new impetus to it, and several tests were conducted in the U.S. to demonstrate the feasibility of this method in both horizontal and steeply dipping coal resources. Gulf Research and Development Company has conducted two successful underground coal gasification tests near Rawlins, Wyoming, in steeply dipping coal beds. The results of these tests indicate that the present state of the art is advanced enough for utilization of this technique for commercial purposes. A right combination of resource, consumer, and economic factors will dictate future commercialization of underground coal gasification for the U.S. coal resources.

  20. Acceptance test report for the AN valve pit leak detection and low point drain assembly mock up test procedure

    SciTech Connect (OSTI)

    EWER, K.L.

    1999-07-20T23:59:59.000Z

    This document describes The Performance Mock-up Test Procedure for the Valve Pit Leak Detection and Low Point Drain Assembly Performance Mock-Up Test Procedure.

  1. Influence of wetting effect at the outer surface of the pipe on increase in leak rate - experimental results and discussion

    SciTech Connect (OSTI)

    Isozaki, Toshikuni; Shibata, Katsuyuki

    1997-04-01T23:59:59.000Z

    Experimental and computed results applicable to Leak Before Break analysis are presented. The specific area of investigation is the effect of the temperature distribution changes due to wetting of the test pipe near the crack on the increase in the crack opening area and leak rate. Two 12-inch straight pipes subjected to both internal pressure and thermal load, but not to bending load, are modelled. The leak rate was found to be very susceptible to the metal temperature of the piping. In leak rate tests, therefore, it is recommended that temperature distribution be measured precisely for a wide area.

  2. Muon-Induced Background Study for Underground Laboratories

    E-Print Network [OSTI]

    D. -M. Mei; A. Hime

    2005-12-06T23:59:59.000Z

    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from $\\sim$1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.

  3. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    SciTech Connect (OSTI)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik [Korea Power Engineering Company, Seoul (Korea, Republic of)

    1997-04-01T23:59:59.000Z

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  4. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect (OSTI)

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01T23:59:59.000Z

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  5. INDUCED SEISMICITY MONITORING OF AN UNDERGROUND SALT CAVITY UNDER A TRANSIENT PRESSURE EXPERIMENT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INDUCED SEISMICITY MONITORING OF AN UNDERGROUND SALT CAVITY UNDER A TRANSIENT PRESSURE EXPERIMENT to 125 m in cemented boreholes drilled in thé vicinity of thé study area. The underground cavity under

  6. Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the...

  7. A study of the feasibility of construction of underground storage structures in soft soil

    E-Print Network [OSTI]

    Rosner, Stephen Anthony

    1984-01-01T23:59:59.000Z

    CHAPTER I INTRODUCTION Underground construction is a means of providing efficient use of land space. In recent times, the most extensive use of underground construction has been in Sweden. However, possible uses of underground space were recognized... widespread and efficient use of underground space has been in Sweden. This is facilitated in part by the competent rock that is found there. The stratigraphy in Sweden is dominated by Pre-Cambrian and Paleozoic rock with a thin covering of moraine sediment...

  8. The Texas Agricultural Cooperative Board Chairman.

    E-Print Network [OSTI]

    Black, William E.; Knutson, Ronald D.

    1985-01-01T23:59:59.000Z

    19 10 7 100 5 Board chairmen usually purchase most of their supplies from cooperatives. Of the supplies that were handled, board chairmen, on the average, purchased 87 percent from their cooperative. Older board chairmen were better supply... patrons than younger ones. However, all age groups purchased a majority of their supplies from their cooperative. Table 6. Relationship of Age of Chairman to the Percent of Inputs Purcha~ from the Cooperative, Texas, 1985. Percent of Inputs Purchased...

  9. EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS

    SciTech Connect (OSTI)

    Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

    2005-05-01T23:59:59.000Z

    This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

  10. Estimation of Leak Rate from the Emergency Pump Well in L-Area Complex Basin

    SciTech Connect (OSTI)

    Duncan, A

    2005-12-19T23:59:59.000Z

    This report provides an estimate of the leak rate from the emergency pump well in L-basin that is to be expected during an off-normal event. This estimate is based on expected shrinkage of the engineered grout (i.e., controlled low strength material) used to fill the emergency pump well and the header pipes that provide the dominant leak path from the basin to the lower levels of the L-Area Complex. The estimate will be used to provide input into the operating safety basis to ensure that the water level in the basin will remain above a certain minimum level. The minimum basin water level is specified to ensure adequate shielding for personnel and maintain the ''as low as reasonably achievable'' concept of radiological exposure. The need for the leak rate estimation is the existence of a gap between the fill material and the header pipes, which penetrate the basin wall and would be the primary leak path in the event of a breach in those pipes. The gap between the pipe and fill material was estimated based on a full scale demonstration pour that was performed and examined. Leak tests were performed on full scale pipes as a part of this examination. Leak rates were measured to be on the order of 0.01 gallons/minute for completely filled pipe (vertically positioned) and 0.25 gallons/minute for partially filled pipe (horizontally positioned). This measurement was for water at 16 feet head pressure and with minimal corrosion or biofilm present. The effect of the grout fill on the inside surface biofilm of the pipes is the subject of a previous memorandum.

  11. Hanford Advisory Board Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV andApril 8-9, Advisory Board

  12. Hanford Advisory Board Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV andApril 8-9, Advisory BoardPage 1

  13. Hanford Advisory Board Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV andApril 8-9, Advisory BoardPage

  14. Hanna, Wyoming underground coal gasification field test series

    SciTech Connect (OSTI)

    Bartke, T.C.; Gunn, R.D.

    1983-01-01T23:59:59.000Z

    The six in situ coal gasification field tests conducted by LETC near Hanna, WY, demonstrated typical gasification rates of 100 tons/day for continuous operation of about 30 days. Featuring high coal recovery and high product-gas calorific values, the underground process proved to be simple, reliable, and potentially controllable.

  15. Underground Coal Mine Monitoring with Wireless Sensor Networks

    E-Print Network [OSTI]

    Liu, Yunhao

    10 Underground Coal Mine Monitoring with Wireless Sensor Networks MO LI and YUNHAO LIU Hong Kong University of Science and Technology Environment monitoring in coal mines is an important application queries under instable circumstances. A prototype is deployed with 27 mica2 motes in a real coal mine. We

  16. GEOPHYSICAL DETECTION OF UNDERGROUND CAVITIES DRIAD-LEBEAU1

    E-Print Network [OSTI]

    Boyer, Edmond

    GEOPHYSICAL DETECTION OF UNDERGROUND CAVITIES DRIAD-LEBEAU1 Lynda, PIWAKOWSKI2 Bogdan, STYLES3 & Environmental Geophysics Research Group, School of Physical and Geographical Sciences, Keele University, UK; p.lataste@ghymac.u- bordeaux1.fr ABSTRACT: In this paper, we present a synthesis of the geophysical investigations conducted

  17. Underground Mine Communication and Tracking Systems : A Survey

    E-Print Network [OSTI]

    New South Wales, University of

    get carved and come into existence in the due course of the mineral extraction process. · Low loss of the cutting of the mineral faces. · Unstable nature of geological construction : A mineral face consists from the presence of pillars and undulations following the mineral seam. These underground structures

  18. Heat transfer model of above and underground insulated piping systems

    SciTech Connect (OSTI)

    Kwon, K.C.

    1998-07-01T23:59:59.000Z

    A simplified heat transfer model of above and underground insulated piping systems was developed to perform iterative calculations for fluid temperatures along the entire pipe length. It is applicable to gas, liquid, fluid flow with no phase change. Spreadsheet computer programs of the model have been developed and used extensively to perform the above calculations for thermal resistance, heat loss and core fluid temperature.

  19. Underground storage tank 511-D1U1 closure plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01T23:59:59.000Z

    This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

  20. Coal properties and system operating parameters for underground coal gasification

    SciTech Connect (OSTI)

    Yang, L. [China University of Mining & Technology, Xuzhou (China)

    2008-07-01T23:59:59.000Z

    Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

  1. Effect of repository underground ventilation on emplacement drift temperature control

    SciTech Connect (OSTI)

    Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

    1996-02-01T23:59:59.000Z

    The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

  2. Board Advising Jeff Coles, Arizona St. U

    E-Print Network [OSTI]

    Lin, Xiaodong

    .6 6 3 4 5 6 7 2 1 Board of ATW Irwin, John R. Helmerich, Hans S. Burgess, Robert W. Morrissey, William

  3. Gerig to Chair Particle Accelerator School Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Gerig to Chair Particle Accelerator School Board FEBRUARY 23, 2012 Bookmark and Share Rod Gerig (PSC), Deputy...

  4. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    SciTech Connect (OSTI)

    Ru Chen; Ian Kaye

    2012-03-12T23:59:59.000Z

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  5. Development of a cold cathode ion source for a mass spectrometer type vacuum leak detector

    E-Print Network [OSTI]

    Thomas, Harold Albert

    1947-01-01T23:59:59.000Z

    of about 7 cm., discharge voltage of about 2000 volts, discharge current of 10 ma., and a magnetic field strength of approximately 2200 Oersteds. As a leak detector it had a differential sensitivity of one part of helium in 10,000 parts of air ? about... for this ion souree as for the first type tested# Be? cause of the simpler construction and fewer components reauired, it appears that this type of source would have some valuable possibili? ties as a mass spectrometer ion source for the leak detector...

  6. Appendix 8. Gender, Race, and Ethnicity of Board Members PA State Board

    E-Print Network [OSTI]

    Sibille, Etienne

    Council on 21 18 3 2 1 0 0 11 10 Agricultural Advisory Board 23 23 0 0 0 0 0 17 6 Agricultural Land Preservation Board, State 18 18 0 0 0 0 0 15 3 Agricultural Lands Condemnation Approval Board 6 6 0 0 0 0 4 2 0 0 0 0 0 2 2 Certification of Water and Wastewater Systems Operators, State Board for 7 7 0 0 0 0 0

  7. Processing a printed wiring board by single bath electrodeposition

    DOE Patents [OSTI]

    Meltzer, Michael P. (Oakland, CA); Steffani, Christopher P. (Livermore, CA); Gonfiotti, Ray A. (Livermore, CA)

    2010-12-07T23:59:59.000Z

    A method of processing a printed wiring board. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from a bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  8. Processing A Printed Wiring Board By Single Bath Electrodeposition

    DOE Patents [OSTI]

    Meltzer, Michael P. (Oakland, CA); Steffani, Christopher P. (Livermore, CA); Gonfiotti, Ray A. (Livermore, CA)

    2003-04-15T23:59:59.000Z

    A method of processing a printed wiring board by single bath electrodeposition. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from the bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  9. Abbreviations and Acronyms Board U. S. Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    Tuff nonwelded unit SNF spent nuclear fuel SZ saturated zone SZEE saturated zone expert elicitation TCw of the Civilian Radioactive Waste Management Program." Presentation to Nuclear Waste Technical Review Board. MayAbbreviations and Acronyms Board U. S. Nuclear Waste Technical Review Board CFR Code of Federal

  10. SEVENTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    SciTech Connect (OSTI)

    Daugherty, W.

    2012-08-30T23:59:59.000Z

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23 GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 54-72 months, which is still bounding to O-ring temperatures during storage in K-Area Complex (KAC). Based on expectations that the fixtures aging at 200 ºF will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging in 2011 at an intermediate temperature of 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 30 - 36 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51 – 96%. This is greater than seen to date for any packages inspected during KAC field surveillance (24% average). For GLT O-rings, separate service life estimates have been made based on the O-ring fixture leak test data and based on compression stress relaxation (CSR) data. These two predictive models show reasonable agreement at higher temperatures (350 – 400 ºF). However, at 300 ºF, the room temperature leak test failures to date experienced longer aging times than predicted by the CSRbased model. This suggests that extrapolations of the CSR model predictions to temperatures below 300 ºF will provide a conservative prediction of service life relative to the leak rate criterion. Leak test failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining PCV O-ring fixtures.

  11. Heat Leak into Cryostat #1 through 304SS or G10 Supports Robert J. Weggel, Magnet Optimization Research Engineering, LLC

    E-Print Network [OSTI]

    McDonald, Kirk

    Heat Leak into Cryostat #1 through 304SS or G10 Supports Robert J. Weggel, Magnet Optimization for refrigeration to cope with the heat leak through mechanical supports of Type 304 stainless steel (SS) with warm times the cross section of the SS support) requires only 18% as much power for refrigeration

  12. Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio J. Marquez

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio detection in boiler steam-water systems. The algorithm has been tested using real industrial data from Syncrude Canada, and has proven to be effective in detection of boiler tube or steam leaks; proper

  13. HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    M. , and Board, M. , "Rock Properties and Their Effect onof thermal properties of the rock; and (h) different thermalon the mechanical properties of rock re­ ported by a number

  14. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    con144vf UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Dear Speaker Hastert, Senator Thurmond, and Secretary Richardson: The Nuclear Waste Technical Review with provisions of the Nuclear Waste Policy Amendments Act of 1987, Public Law 100-203. The Act requires the Board

  15. Appendix A Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    39 Appendices Appendices #12;Appendix A Nuclear Waste Technical Review Board Members: Curricula to the Nuclear Waste Technical Review Board. President Clinton appointed Dr. Cohon chairman on January 17, 1997, and Asia and on energy facility siting, including nuclear waste ship- ping and storage. In addition to his

  16. Appendix A Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    59 Appendices Appendices #12;Appendix A Nuclear Waste Technical Review Board Members: Curricula Cohon to serve on the Nuclear Waste Technical Review Board. President Clinton appointed Dr. Cohon, and Asia and on energy-facility siting, including nuclear waste shipping and storage. In addition to his

  17. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington.C. 20585 Dear Speaker Hastert, Senator Stevens, and Secretary Bodman: The Nuclear Waste Technical Review Board was created by Congress in the Nuclear Waste Policy Amendments Act (NWPAA) of 1987 and charged

  18. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    JEC187V3 UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 of Energy 1000 Independence Avenue, SW Washington, DC 20585 Dear Secretary O'Leary: At the Nuclear Waste UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington, VA

  19. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    of the overall system for managing spent fuel and defense high-level waste. The Board includes its findingsjlc029va UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300, D.C. 20585 Dear Speaker Gingrich, Senator Thurmond, and Secretary Peña: The Nuclear Waste Technical

  20. BOARD OF TRUSTEES UNIVERSITY OF PUERTO RICO

    E-Print Network [OSTI]

    Quirk, Gregory J.

    BOARD OF TRUSTEES UNIVERSITY OF PUERTO RICO CERTIFICATION NUMBER 45 2006-2007 I, Salvador Antonetti Zequeira, Secretary of the Board of Trustees of the University of Puerto Rico, DO HEREBY CERTIFY THAT of the President of University of Puerto Rico, approved: The System-Wide Policy and Procedures for Responding

  1. DOE appoints four new members to advisory board

    Broader source: Energy.gov [DOE]

    DOE has appointed four new members to its Environmental Management advisory board in Oak Ridge. Leon Baker, Richard Burroughs, Terri Likens and Ed Trujillo were introduced during the Oak Ridge Site Specific Advisory Board’s February meeting.

  2. Application of Metagenomics for Identification of Novel Petroleum Hydrocarbon Degrading Enzymes in Natural Asphalts from the Rancho La Brea Tar Pits

    E-Print Network [OSTI]

    Baquiran, Jean-Paul Mendoza

    2010-01-01T23:59:59.000Z

    underground storage tanks in the US have leaked gasoline andunderground storage tanks in the US have leaked gasoline and

  3. Unaccounted-for gas project. Leak Task Force. Volume 4. Final report

    SciTech Connect (OSTI)

    Cowgill, R.M.; Robertson, J.L.; Grinstead, J.R.; Luttrell, D.J.; Walden, E.R.

    1990-06-07T23:59:59.000Z

    The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. The Leak Task Force quantified unintentional gas losses (leakage and dig-ins). Results show that 1987 gas leakage accounted for less than 5% of the operating UAF.

  4. Problem Type Problem Type Description Air Conditioning Air conditioner not working, leaking, etc

    E-Print Network [OSTI]

    Tennessee, University of

    Problem Type Problem Type Description Air Conditioning Air conditioner not working, leaking, etc, Microfridges Doors and Hardware Door repair/replace Lock, latch or hinge repair, key stuck; Lost or stolen key, repair or replace Shades/Blinds Window treatment - repair or replace Washer/Dryer Washer/Dryer repair

  5. UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas

    E-Print Network [OSTI]

    Fernandez, Eduardo

    UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas for electrical shock. NOTIFY University Police. What should I do if I smell natural or propane gas? LEAVE/Repair line, 7-6333, or CALL the Campus University Police or Security at (561) 297-3500 or 911

  6. UTILITIES PROBLEMS AND FAILURES ELECTRICAL OR PLUMBING FAILURE/FLOODING/WATER LEAK

    E-Print Network [OSTI]

    Fernandez, Eduardo

    UTILITIES PROBLEMS AND FAILURES ELECTRICAL OR PLUMBING FAILURE/FLOODING/WATER LEAK NATURAL GAS - F 8a - 5p HBOI@FAU Security (772) 216-1124 Afterhours, Weekends or Holidays What should I do Police 911. · NOTIFY Building Safety personnel when possible. What should I do if I smell natural

  7. UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or

    E-Print Network [OSTI]

    Fernandez, Eduardo

    UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas Physical Plant (772) 242-2246 M - F 8a - 5p (954) 762-5040 HBOI@FAU Security (772) 216-1124 Afterhours University Police. NOTIFY Building Safety personnel when possible. What should I do if I smell natural

  8. Detecting leak regions through model falsification GAUDENZ MOSER AND IAN F.C. SMITH

    E-Print Network [OSTI]

    Candea, George

    management support. Since a significant percentage of fresh water is lost globally due to leaks in these networks, the challenge to improve performance is compatible with goals of sustainable development is a precious resource that is necessary to preserve. Preservation involves reducing losses in the water

  9. Strontium and cesium radionuclide leak detection alternatives in a capsule storage pool

    SciTech Connect (OSTI)

    Larson, D.E.; Crawford, T.W.; Joyce, S.M.

    1981-08-01T23:59:59.000Z

    A study was performed to assess radionuclide leak-detection systems for use in locating a capsule leaking strontium-90 or cesium-137 into a water-filled pool. Each storage pool contains about 35,000 L of water and up to 715 capsules, each of which contains up to 150 kCi strontium-90 or 80 kCi cesium-137. Potential systems assessed included instrumental chemical analyses, radionuclide detection, visual examination, and other nondestructive nuclear-fuel examination techniques. Factors considered in the assessment include: cost, simplicity of maintenance and operation, technology availability, reliability, remote operation, sensitivity, and ability to locate an individual leaking capsule in its storage location. The study concluded that an adaption of the spent nuclear-fuel examination technique of wet sipping be considered for adaption. In the suggested approoch, samples would be taken continuously from pool water adjacent to the capsule(s) being examined for remote radiation detection. In-place capsule isolation and subsequent water sampling would confirm that a capsule was leaking radionuclides. Additional studies are needed before implementing this option. Two other techniques that show promise are ultrasonic testing and eddy-current testing.

  10. Tank 241-AY-102 Leak Assessment Supporting Documentation: Miscellaneous Reports, Letters, Memoranda, And Data

    SciTech Connect (OSTI)

    Engeman, J. K.; Girardot, C. L.; Harlow, D. G.; Rosenkrance, C. L.

    2012-12-20T23:59:59.000Z

    This report contains reference materials cited in RPP-ASMT -53793, Tank 241-AY-102 Leak Assessment Report, that were obtained from the National Archives Federal Records Repository in Seattle, Washington, or from other sources including the Hanford Site's Integrated Data Management System database (IDMS).

  11. Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas By David Gardner Last updated at 11:32 AM on 3rd June 2010 BP's giant oil slick was bearing down on Florida holidaymakers a year visit Florida and state leaders fear the oil will devastate a tourist industry

  12. Rigorous Simulation of Accidental Leaks from High-Pressure Storage Vessels

    E-Print Network [OSTI]

    Alisha, -

    2014-07-07T23:59:59.000Z

    of nature. The released chemical can form and disperse as vapor cloud leading to fire, explosion, or toxic exposure. The resulting leak could be single phase or multiphase release, choked or non-choked. These releases could result in liquid spills, vapor...

  13. Rigorous Simulation of Accidental Leaks from High-Pressure Storage Vessels 

    E-Print Network [OSTI]

    Alisha, -

    2014-07-07T23:59:59.000Z

    of nature. The released chemical can form and disperse as vapor cloud leading to fire, explosion, or toxic exposure. The resulting leak could be single phase or multiphase release, choked or non-choked. These releases could result in liquid spills, vapor...

  14. Numerical Simulations of Leakage from Underground LPG Storage Caverns

    SciTech Connect (OSTI)

    Yamamoto, Hajime; Pruess, Karsten

    2004-09-01T23:59:59.000Z

    To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

  15. FIFTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    SciTech Connect (OSTI)

    Daugherty, W.; Hoffman, E.

    2010-11-01T23:59:59.000Z

    A series of experiments to monitor the aging performance of Viton{sup reg.} GLT O-rings used in the Model 9975 package has been ongoing for six years at the Savannah River National Laboratory. Sixty-seven mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 F. They were leak-tested initially and have been tested at nominal six month intervals to determine if they meet the criterion of leaktightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 F. High temperature aging continues for 36 GLT O-ring fixtures at 200--350 F. Room temperature leak test failures have been experienced in 5 of the GLT O-ring fixtures aging at 300 and 350 F, and in all 3 of the GLT O-ring fixtures aging at higher temperatures. No failures have yet been observed in GLT O-ring fixtures aging at 200 F for 30--48 months, which is still bounding to O-ring temperatures during storage in KAMS. High temperature aging continues for 6 GLT-S O-ring fixtures at 200--300 F. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 F. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 or 300 F for 19 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51--95%. This is significantly greater than seen to date for packages inspected during KAMS field surveillance (23% average). For GLT O-rings, service life based on the room temperature leak rate criterion is comparable to that predicted by compression stress relaxation (CSR) data at higher temperatures (350--400 F). While there are no comparable failure data yet at aging temperatures below 300 F, extrapolations of the data for GLT O-rings suggests that CSR model predictions provide a conservative prediction of service life relative to the leak rate criterion. Failure data at lower temperatures is needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining fixtures.

  16. Engineering evaluation of alternatives: Managing the assumed leak from single-shell Tank 241-T-101

    SciTech Connect (OSTI)

    Brevick, C.H. [ICF Kaiser Hanford Co., Richland, WA (United States); Jenkins, C. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-02-01T23:59:59.000Z

    At mid-year 1992, the liquid level gage for Tank 241-T-101 indicated that 6,000 to 9,000 gal had leaked. Because of the liquid level anomaly, Tank 241-T-101 was declared an assumed leaker on October 4, 1992. SSTs liquid level gages have been historically unreliable. False readings can occur because of instrument failures, floating salt cake, and salt encrustation. Gages frequently self-correct and tanks show no indication of leak. Tank levels cannot be visually inspected and verified because of high radiation fields. The gage in Tank 241-T-101 has largely corrected itself since the mid-year 1992 reading. Therefore, doubt exists that a leak has occurred, or that the magnitude of the leak poses any immediate environmental threat. While reluctance exists to use valuable DST space unnecessarily, there is a large safety and economic incentive to prevent or mitigate release of tank liquid waste into the surrounding environment. During the assessment of the significance of the Tank 241-T-101 liquid level gage readings, Washington State Department of Ecology determined that Westinghouse Hanford Company was not in compliance with regulatory requirements, and directed transfer of the Tank 241-T-101 liquid contents into a DST. Meanwhile, DOE directed WHC to examine reasonable alternatives/options for safe interim management of Tank 241-T-101 wastes before taking action. The five alternatives that could be used to manage waste from a leaking SST are: (1) No-Action, (2) In-Tank Stabilization, (3) External Tank Stabilization, (4) Liquid Retrieval, and (5) Total Retrieval. The findings of these examinations are reported in this study.

  17. Secretary of Energy Advisory Board Hosts Conference Call on Shale...

    Energy Savers [EERE]

    of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report November 10, 2011 -...

  18. Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale Govan, Departmental Representative to the DNFSB Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale Govan,...

  19. Microsoft Word - EM QA Corporate Board Meeting Minutes - Oct...

    Office of Environmental Management (EM)

    th Environmental Management Quality Assurance Corporate Board Meeting Minutes October 27, 2014 - Nevada Site Office Page 1 of 10 Voting Board Members in Attendance: Randy Kay -...

  20. Microsoft Word - EM QA Corporate Board Meeting Minutes - February...

    Office of Environmental Management (EM)

    th Environmental Management Quality Assurance Corporate Board Meeting Minutes February 11, 2014 - Teleconference Page 1 of 8 Voting Board Members in Attendance: Randy Kay - Idaho...

  1. Feasibility of OnBoard Thermoelectric Generation for Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the...

  2. Type B Accident Investigation Board Report on the September 7...

    Broader source: Energy.gov (indexed) [DOE]

    Accident Investigation Board Report on the September 7, 2001, Burn Accident at Oak Ridge National Laboratory, Building 9210 Type B Accident Investigation Board Report on the...

  3. Proceedings of the eleventh annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Not Available

    1985-12-01T23:59:59.000Z

    The Eleventh Annual Underground Coal Gasification Symposium was sponsored by the Laramie Project Office of the Morgantown Energy Technology Center, US Department of Energy, and hosted by the Western Research Institute, University of Wyoming research Corporation, in Denver, Colorado, on August 11 to 14, 1985. The five-session symposium included 37 presentations describing research on underground coal gasification (UCG) being performed throughout the world. Eleven of the presentations were from foreign countries developing UCG technology for their coal resources. The papers printed in the proceedings have been reproduced from camera-ready manuscripts furnished by the authors. The papers have not been refereed, nor have they been edited extensively. All papers have been processed for inclusion in the Energy Data Base.

  4. Underground gas storage in New York State: A historical perspective

    SciTech Connect (OSTI)

    Friedman, G.M.; Sarwar, G.; Bass, J.P. [Brooklyn College of the City Univ., Troy, NY (United States)] [and others

    1995-09-01T23:59:59.000Z

    New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the major interstate transmission lines. Recent developments in underground gas storage in New York involve mainly carbonate-reef and bedded salt-cavern storage facilities, one in Stuben County and the other in Cayuga County, are expected to begin operation by the 1996-1997 heating season.

  5. Underground coal gasification: a brief review of current status

    SciTech Connect (OSTI)

    Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

    2009-09-15T23:59:59.000Z

    Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

  6. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    E-Print Network [OSTI]

    Kevin T. Lesko; Steven Acheson; Jose Alonso; Paul Bauer; Yuen-Dat Chan; William Chinowsky; Steve Dangermond; Jason A. Detwiler; Syd De Vries; Richard DiGennaro; Elizabeth Exter; Felix B. Fernandez; Elizabeth L. Freer; Murdock G. D. Gilchriese; Azriel Goldschmidt; Ben Grammann; William Griffing; Bill Harlan; Wick C. Haxton; Michael Headley; Jaret Heise; Zbigniew Hladysz; Dianna Jacobs; Michael Johnson; Richard Kadel; Robert Kaufman; Greg King; Robert Lanou; Alberto Lemut; Zoltan Ligeti; Steve Marks; Ryan D. Martin; John Matthesen; Brendan Matthew; Warren Matthews; Randall McConnell; William McElroy; Deborah Meyer; Margaret Norris; David Plate; Kem E. Robinson; William Roggenthen; Rohit Salve; Ben Sayler; John Scheetz; Jim Tarpinian; David Taylor; David Vardiman; Ron Wheeler; Joshua Willhite; James Yeck

    2011-08-03T23:59:59.000Z

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations.

  7. Twenty Years of Underground Research at Canada's URL

    SciTech Connect (OSTI)

    Chandler, N. A.

    2003-02-27T23:59:59.000Z

    Construction of Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) began in 1982. The URL was designed to address the needs of the Canadian nuclear fuel waste management program. Over the years, a comprehensive program of geologic characterization and underground hydrogeologic, geotechnical and geomechanical projects have been performed, many of which are ongoing. The scientific work at the URL has evolved through a number of different phases to meet the changing needs of Canada's waste management program. The various phases of the URL have included siting, site evaluation, construction and operation. Collaboration with international organizations is encouraged at the URL, with the facility being a centre of excellence in an International Atomic Energy Agency (IAEA) network of underground facilities. One of AECL's major achievements of the past 20 year program has been the preparation and public defense of a ten-volume Environmental Impact Statement (EIS) for a conceptual deep geologic repository. Completion of this dissertation on the characterization, construction and performance modeling of a conceptual repository in the granite rock of the Canadian Shield was largely based on work conducted at the URL. Work conducted over the seven years since public defense of the EIS has been directed towards developing those engineering and performance assessment tools that would be required for implementation of a deep geologic repository. The URL continues to be a very active facility with ongoing experiments and demonstrations performed for a variety of Canadian and international radioactive waste management organizations.

  8. Modeling of contaminant transport in underground coal gasification

    SciTech Connect (OSTI)

    Lanhe Yang; Xing Zhang [China University of Mining and Technology, Xuzhou (China). College of Resources and Geosciences

    2009-01-15T23:59:59.000Z

    In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

  9. High frequency electromagnetic burn monitoring for underground coal gasification

    SciTech Connect (OSTI)

    Deadrick, F.J.; Hill, R.W.; Laine, E.F.

    1981-06-17T23:59:59.000Z

    This paper describes the use of high frequency electromagnetic waves to monitor an in-situ coal gasification burn process, and presents some recent results obtained with the method. Both the technique, called HFEM (high frequency electromagnetic) probing, the HFEM hardware used are described, and some of the data obtained from the LLNL Hoe Creek No. 3 underground coal gasification experiment conducted near Gillette, Wyoming are presented. HFEM was found to be very useful for monitoring the burn activity found in underground coal gasification. The technique, being a remote sensing method which does not require direct physical contact, does not suffer from burnout problems as found with thermocouples, and can continue to function even as the burn progresses on through the region of interest. While HFEM does not replace more conventional instrumentation such as thermocouples, the method does serve to provide data which is unobtainable by other means, and in so doing it complements the other data to help form a picture of what cannot be seen underground.

  10. Is the situation and immediate threat to life and health? Spill/Leak/Release Medical Emergency Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor? Possible Fire / Natural Gas

    E-Print Network [OSTI]

    ? Possible Fire / Natural Gas (including chemicals and bio agents") (not including chemicals or bio agents Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor

  11. A Testbed of Magnetic Induction-based Communication System for Underground Applications

    E-Print Network [OSTI]

    Tan, Xin; Akyildiz, Ian F

    2015-01-01T23:59:59.000Z

    Wireless underground sensor networks (WUSNs) can enable many important applications such as intelligent agriculture, pipeline fault diagnosis, mine disaster rescue, concealed border patrol, crude oil exploration, among others. The key challenge to realize WUSNs is the wireless communication in underground environments. Most existing wireless communication systems utilize the dipole antenna to transmit and receive propagating electromagnetic (EM) waves, which do not work well in underground environments due to the very high material absorption loss. The Magnetic Induction (MI) technique provides a promising alternative solution that could address the current problem in underground. Although the MI-based underground communication has been intensively investigated theoretically, to date, seldom effort has been made in developing a testbed for the MI-based underground communication that can validate the theoretical results. In this paper, a testbed of MI-based communication system is designed and implemented in a...

  12. BOARD OF GOVERNORS Tuesday, November 29, 2005

    E-Print Network [OSTI]

    Pedersen, Tom

    :Prof. Jamie Cassels, Mr. Jack Falk, Dr. Valerie Kuehne, Dr. Martin Taylor, Ms. Morag MacNeil 1. Approval. Lynda Farmer for Dr. Valerie Kuehne and Ms. Shannon von Kaldenberg, #12;Board of Governors 2 Minutes

  13. BOARD OF GOVERNORS Tuesday, November 28, 2006

    E-Print Network [OSTI]

    Pedersen, Tom

    : Prof. Jamie Cassels, Ms. Tracy Corbett, Dr. Valerie Kuehne, Ms. Kristi Simpson, Dr. Martin. Mr. Donald and Dr. Kuehne thanked Board members for their participation and support for the event

  14. UNIVERSITY OF MINNESOTA BOARD OF REGENTS POLICY

    E-Print Network [OSTI]

    Amin, S. Massoud

    OF MINNESOTA BOARD OF REGENTS POLICY to advise on matters of policy, procedure or employment decisions. The term; Certain Conduct Not Protected. To be eligible under this policy an employee must

  15. Electric Power Board- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Electric Power Board provides a financial incentive for residential customers to replace old water heaters with new ones which meet the [http://www.eere.energy.gov/buildings/appliance_standards...

  16. ORSSAB monthly board meeting | Department of Energy

    Energy Savers [EERE]

    to 8:30PM EDT Board members and participants will hear a presentation and updates about the "State of the Oak Ridge EM ProgramFY 2016 Budget and Prioritization Planning." The...

  17. Dynamic Digital Menu Boards & the Vividness Construct"

    E-Print Network [OSTI]

    Wurtele, Eve Syrkin

    become pervasive in public spaces due to its low cost, centralized control, ease of deployment in fast food restaurants." · These boards are capable of displaying text/graphics, audio, animation, video

  18. Energy Systems Acquisitions Advisory Board Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-10-28T23:59:59.000Z

    The Notice streamlines the Energy Systems Acquisition Advisory Board (ESAAB) process to ensure informed, objective, and documented Strategic and Major System Critical Decision, Baseline Change Proposal, and site selection final decisions. Does not cancel other directives.

  19. Paducah CAB Board - April | Department of Energy

    Energy Savers [EERE]

    - April Paducah CAB Board - April April 16, 2015 6:00PM to 8:00PM CDT Paducah CAB Office, 111 Memorial Drive, Paducah, KY 42001 Contact Buz Smith, DOE Site Office 270-441-6821...

  20. Transportation Research Board 94th Annual Meeting

    Broader source: Energy.gov [DOE]

    The Transportation Research Board 94th Annual Meeting will be held January 11–15, 2015, in Washington, D.C. at the Walter E. Washington Convention Center. The event covers the entire transportation...

  1. Controlling dust when cutting fibre-cement board

    E-Print Network [OSTI]

    Knowles, David William

    Controlling dust when cutting fibre-cement board Page 1 of 2 Cutting fibre-cement board (e are not typically used when cutting and shaping fibre-cement board. To protect yourself you should: Use one of the methods described above for cutting fibre-· cement board Inspect the dust control equipment before you

  2. Experimental test of airplane boarding methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steffen, Jason H.; Hotchkiss, Jon

    2012-01-01T23:59:59.000Z

    We report the results of an experimental comparison of different airplane boarding methods. This test was conducted in a mock 757 fuselage, located on a Southern California soundstage, with 12 rows of six seats and a single aisle. Five methods were tested using 72 passengers of various ages. We found a significant reduction in the boarding times of optimized methods over traditional methods. These improved methods, if properly implemented, could result in a significant savings to airline companies. The process of boarding an airplane is of interest to a variety of groups. The public is interested both as a curiosity,more »as it is something that they may regularly experience, and as a consumer, as their experiences good or bad can affect their loyalties. Airline companies and their employees also have a stake in an efficient boarding procedure as time saved in the boarding process may result is monetary savings, in the quality of interactions with passengers, and in the application of human resources to the general process of preparing an airplane for departure. A recent study (Nyquist and McFadden, 2008) indicates that the average cost to an airline company for each minute of time spent at the terminal is roughly $30. Thus, each minute saved in the turn-around time of a flight has the potential to generate over $16,000,000 in annual savings (assuming an average of 1500 flights per day). While the boarding process may not be the primary source of delay in returning an airplane to the skies, reducing the boarding time may effectively eliminate passenger boarding as a contributor in any meaningful measure. Consequently, subsequent efforts to streamline the other necessary tasks, such as refueling and maintenance, would be rewarded with a material reduction in time at the gate for each flight.« less

  3. Experimental test of airplane boarding methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steffen, Jason H. [Fermilab; Hotchkiss, Jon [Hotchkiss Industries, Sherman Oaks

    2012-01-01T23:59:59.000Z

    We report the results of an experimental comparison of different airplane boarding methods. This test was conducted in a mock 757 fuselage, located on a Southern California soundstage, with 12 rows of six seats and a single aisle. Five methods were tested using 72 passengers of various ages. We found a significant reduction in the boarding times of optimized methods over traditional methods. These improved methods, if properly implemented, could result in a significant savings to airline companies. The process of boarding an airplane is of interest to a variety of groups. The public is interested both as a curiosity, as it is something that they may regularly experience, and as a consumer, as their experiences good or bad can affect their loyalties. Airline companies and their employees also have a stake in an efficient boarding procedure as time saved in the boarding process may result is monetary savings, in the quality of interactions with passengers, and in the application of human resources to the general process of preparing an airplane for departure. A recent study (Nyquist and McFadden, 2008) indicates that the average cost to an airline company for each minute of time spent at the terminal is roughly $30. Thus, each minute saved in the turn-around time of a flight has the potential to generate over $16,000,000 in annual savings (assuming an average of 1500 flights per day). While the boarding process may not be the primary source of delay in returning an airplane to the skies, reducing the boarding time may effectively eliminate passenger boarding as a contributor in any meaningful measure. Consequently, subsequent efforts to streamline the other necessary tasks, such as refueling and maintenance, would be rewarded with a material reduction in time at the gate for each flight.

  4. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302

    SciTech Connect (OSTI)

    Washenfelder, D. J.; Johnson, J. M.

    2014-12-22T23:59:59.000Z

    Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energy’s Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary liner to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.

  5. The probability of intersystem LOCA: impact due to leak testing and operational changes. Technical report

    SciTech Connect (OSTI)

    Rubin, M.P.

    1980-05-01T23:59:59.000Z

    The Reactor Safety Study (WASH-1400) identified the potential intersystem LOCA in a pressurized water reactor as a significant contributor to the risk resulting from core melt. Similar scenarios are also possible in boiling water reactors. This report evaluates various pressure isolation valve configurations used in reactors to determine the probability of intersystem LOCA. It is shown that periodic leak testing of these valves can substantially reduce intersystem LOCA probability. Specific analyses of the high pressure/low pressure interfaces in the Sequoyah (PWR) and Alan B. Barton (BWR) plants show that periodic leak testing of the pressure isolation check valves will reduce the intersystem LOCA probability to below 0.000001 per year.

  6. Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259

    SciTech Connect (OSTI)

    Hookfin, J.D.

    1995-05-12T23:59:59.000Z

    The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades.

  7. Use of the Niyama Criterion To Predict Shrinkage-Related Leaks in High-Nickel

    E-Print Network [OSTI]

    Beckermann, Christoph

    1 Use of the Niyama Criterion To Predict Shrinkage-Related Leaks in High-Nickel Steel and Nickel by the present authors determined that Nymacro = 1.0 (°C-s)1/2 /mm for nickel-based alloys M30C, M35-1 and CW12MW-shrinkage in high-nickel alloys by determining Nymicro. This is accomplished by performing metallographic analyses

  8. Leaking Interleavers for UEP Turbo Codes Abdul Wakeel, David Kronmueller, Werner Henkel, and Humberto Beltr~ao Neto

    E-Print Network [OSTI]

    Henkel, Werner

    Leaking Interleavers for UEP Turbo Codes Abdul Wakeel, David Kronmueller, Werner Henkel to Turbo coding's exceptional performance. An interleaver provides bit-permutation designed to ensure deterministic randomness. When applying interleavers to unequal error protecting (UEP) Turbo codes, typically

  9. Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations apply to underground storage facilities for petroleum and hazardous waste, and seek to protect water resources from contamination. The regulations establish procedures for the...

  10. Head of EM Visits Waste Isolation Pilot Plant for First Underground...

    Broader source: Energy.gov (indexed) [DOE]

    donning personal protective clothing or respirators. Workers are cleaning and performing preventive maintenance on equipment in the underground and on the surface impacted by the...

  11. A WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground...

    Office of Scientific and Technical Information (OSTI)

    of the surrounding air to prevent condensation. Most of city water, sewage and liquid waste are usually transferred through single or double underground pipe lines. The...

  12. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    SciTech Connect (OSTI)

    Harrington, Stephanie J. [Washington River Protection Systems, Richland, WA (United States); Sams, Terry L. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-06T23:59:59.000Z

    A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints.

  13. Multi Canister Overpack (MCO) Combustible Gas Management Leak Test Acceptance Criteria (OCRWM)

    SciTech Connect (OSTI)

    SHERRELL, D.L.

    2000-10-10T23:59:59.000Z

    The purpose of this document is to support the Spent Nuclear Fuel Project's combustible gas management strategy while avoiding the need to impose any requirements for oxygen free atmospheres within storage tubes that contain multi-canister overpacks (MCO). In order to avoid inerting requirements it is necessary to establish and confirm leak test acceptance criteria for mechanically sealed and weld sealed MCOs that are adequte to ensure that, in the unlikely event the leak test results for any MCO were to approach either of those criteria, it could still be handled and stored in stagnant air without compromising the SNF Project's overall strategy to prevent accumulation of combustible gas mixtures within MCOs or within their surroundings. To support that strategy, this document: (1) establishes combustible gas management functions and minimum functional requirements for the MCO's mechanical seals and closure weld(s); (2) establishes a maximum practical value for the minimum required initial MCO inert backfill gas pressure; and (3) based on items 1 and 2, establishes and confirms leak test acceptance criteria for the MCO's mechanical seal and final closure weld(s).

  14. Determination of crack morphology parameters from service failures for leak-rate analyses

    SciTech Connect (OSTI)

    Wilkowski, G.; Ghadiali, N.; Paul, D. [Battelle Memorial Institute, Columbus, OH (United States)] [and others

    1997-04-01T23:59:59.000Z

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  15. Aerosol penetration of leak pathways : an examination of the available data and models.

    SciTech Connect (OSTI)

    Powers, Dana Auburn

    2009-04-01T23:59:59.000Z

    Data and models of aerosol particle deposition in leak pathways are described. Pathways considered include capillaries, orifices, slots and cracks in concrete. The Morewitz-Vaughan criterion for aerosol plugging of leak pathways is shown to be applicable only to a limited range of particle settling velocities and Stokes numbers. More useful are sampling efficiency criteria defined by Davies and by Liu and Agarwal. Deposition of particles can be limited by bounce from surfaces defining leak pathways and by resuspension of particles deposited on these surfaces. A model of the probability of particle bounce is described. Resuspension of deposited particles can be triggered by changes in flow conditions, particle impact on deposits and by shock or vibration of the surfaces. This examination was performed as part of the review of the AP1000 Standard Combined License Technical Report, APP-GW-GLN-12, Revision 0, 'Offsite and Control Room Dose Changes' (TR-112) in support of the USNRC AP1000 Standard Combined License Pre-Application Review.

  16. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect (OSTI)

    Vehicle Projects LLC

    2003-01-28T23:59:59.000Z

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

  17. Contaminant Boundary at the Faultless Underground Nuclear Test

    SciTech Connect (OSTI)

    Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

    2003-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision analysis (DDA) (Pohll and Mihevc, 2000). This new model includes the uncertainty in the three-dimensional spatial distribution of lithology and hydraulic conductivity from the 1999 model as well as the uncertainty in the other flow and transport parameters from the 2000 DDA model. Additionally, the new model focuses on a much smaller region than was included in the earlier models, that is, the subsurface within the UC-1 land withdrawal area where the 1999 model predicted radionuclide transport will occur over the next 1,000 years. The purpose of this unclassified document is to present the modifications to the CNTA groundwater flow and transport model, to present the methodology used to calculate contaminant boundaries, and to present the Safe Drinking Water Act and risk-derived contaminant boundaries for the Faultless underground nuclear test CAU.

  18. SUNLAB - The Project of a Polish Underground Laboratory

    SciTech Connect (OSTI)

    Kisiel, J.; Dorda, J.; Konefall, A.; Mania, S.; Szeglowski, T. [Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice (Poland); Budzanowski, M.; Haranczyk, M.; Kozak, K.; Mazur, J.; Mietelski, J. W.; Puchalska, M.; Szarska, M.; Tomankiewicz, E.; Zalewska, A. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow (Poland); Chorowski, M.; Polinski, J. [Wroclaw University of Technology, Wroclaw (Poland); Cygan, S.; Hanzel, S.; Markiewicz, A.; Mertuszka, P. [KGHM CUPRUM CBR, Wroclaw (Poland)

    2010-11-24T23:59:59.000Z

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  19. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect (OSTI)

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31T23:59:59.000Z

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

  20. Method for maximizing shale oil recovery from an underground formation

    DOE Patents [OSTI]

    Sisemore, Clyde J. (Livermore, CA)

    1980-01-01T23:59:59.000Z

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  1. New Mexico Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govNThousand CubicUnderground

  2. Colorado Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96 1967-2010 PipelineUnderground

  3. Illinois Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousandUnderground Storage Volume

  4. Indiana Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year Jan Feb MarDecadeUnderground

  5. Delaware Natural Gas Underground Storage Injections All Operators (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0Cubic Feet) Underground Storage

  6. Delaware Natural Gas Underground Storage Net Withdrawals All Operators

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0Cubic Feet) Underground

  7. Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0Cubic Feet) UndergroundWithdrawals

  8. WAC - 173-218 Underground Injection Control Program | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: EnergydbaInformation Underground Injection

  9. AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y625(95)Feet) Underground

  10. Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year%Underground Storage Volume

  11. Maryland Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet)Year Jan

  12. Michigan Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecade

  13. Michigan Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet) Year Jan Feb Mar

  14. Michigan Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet) Year Jan Feb

  15. Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.Year Jan Feb Mar AprUnderground

  16. Montana Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan Feb(MillionYearUnderground

  17. Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYearThousandUnderground

  18. Washington Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas,Underground Storage

  19. Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousandUnderground Storage Volume (Million Cubic

  20. Oregon Fees for Underground Injection Control Program Fact Sheet | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy Information Fees for Underground Injection Control Program

  1. Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECSInput SupplementalYear JanUnderground

  2. Maryland Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet)Year Jan Feb

  3. Montana Underground Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground Storage Tanks Webpage

  4. NAC - 534 Underground Water and Wells | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources Jump to:MuskingumMyers-4 Jump- 534 Underground

  5. EIGHTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    SciTech Connect (OSTI)

    Daugherty, W. L.

    2013-09-03T23:59:59.000Z

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23 GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 61 - 85 months, which is still bounding to O-ring temperatures during storage in KArea Complex (KAC). Based on expectations that the fixtures aging at 200 ºF will remain leaktight for a significant period yet to come, 2 additional fixtures began aging in 2011 at an intermediate temperature of 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 41 - 45 months. Aging and periodic leak testing will continue for the remaining PCV fixtures.

  6. NINTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    SciTech Connect (OSTI)

    Daugherty, W.

    2014-08-06T23:59:59.000Z

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperatures. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23 GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The earliest 300 °F GLT O-ring fixture failure was observed at 34 months. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 72 - 96 months, which bounds O-ring temperatures anticipated during storage in K-Area Complex (KAC). Based on expectations that the 200 ºF fixtures will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging in 2011 at 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures, thus providing additional time to failure data. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 54 - 57 months. No additional O-ring failures have been observed since the last interim report was issued. Aging and periodic leak testing will continue for the remaining PCV fixtures. Additional irradiation of several fixtures is recommended to maintain a balance between thermal and radiation exposures similar to that experienced in storage, and to show the degree of consistency of radiation response between GLT and GLT-S O-rings.

  7. Lawrence Livermore National Laboratory Underground Coal Gasification project

    SciTech Connect (OSTI)

    Thorsness, C.B.; Britten, J.A.

    1989-10-15T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has been actively developing Underground Coal Gasification (UCG) technology for 15 years. The goal of the project has been to develop a fundamental technological understanding of UCG and foster the commercialization of the process. In striving to achieve this goal the LLNL project has carried out laboratory experiments, developed mathematical models, actively participated in technology transfer programs, and conducted field test experiments. As a result of this work the Controlled Retracting Injection Point (CRIP) concept was developed which helps insure optimum performance of an underground gasifier in a flat seam, and provides a means to produce multiple gasification cavities. The LLNL field work culminated in the Rocky Mountain I field test in which a gasifier using the CRIP technology generated gas of a quality equal to that of surface gasifiers. This last test and others preceding it have demonstrated beyond any reasonable doubt, that UCG is technically feasible in moderately thick coal seams at modest depths. 2 refs., 2 tabs.

  8. Underground tank vitrification: Engineering-scale test results

    SciTech Connect (OSTI)

    Campbell, B.E.; Timmerman, C.L.; Bonner, W.F.

    1990-06-01T23:59:59.000Z

    Contamination associated with underground tanks at US Department of Energy sites and other sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes such as underground tanks into a glass and crystalline block, similar to obsidian with crystalline phases. A radioactive engineering-scale test performed at Pacific Northwest Laboratory in September 1989 demonstrated the feasibility of using ISV for this application. A 30-cm-diameter (12-in.-diameter) buried steel and concrete tank containing simulated tank sludge was vitrified, producing a solid block. The tank sludge used in the test simulated materials in tanks at Oak Ridge National Laboratory. Hazardous components of the tank sludge were immobilized or removed and captured in the off-gas treatment system. The steel tank was converted to ingots near the bottom of the block and the concrete walls were dissolved into the resulting glass and crystalline block. Although one of the four moving electrodes froze'' in place about halfway into the test, operations were able to continue. The test was successfully completed and all the tank sludge was vitrified. 7 refs., 12 figs., 5 tabs.

  9. Probing New Physics with Underground Accelerators and Radioactive Sources

    E-Print Network [OSTI]

    Eder Izaguirre; Gordan Krnjaic; Maxim Pospelov

    2014-05-19T23:59:59.000Z

    New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars $\\phi$ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the $0^+$ excited state of $^{16}$O populated via a $(p,\\alpha)$ reaction on fluorine and from radioactive $^{144}$Ce decay where the scalar is produced in the de-excitation of $^{144}$Nd$^*$, which occurs along the decay chain. Subsequent scattering on electrons, $e(\\phi,\\gamma)e$, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental set-up can cover new territory for masses $250\\, {\\rm keV}\\leq m_\\phi \\leq 2 m_e$ and couplings to protons and electrons, $10^{-11} new physics component to the neutrino and nuclear astrophysics programs at underground facilities.

  10. Underground Corrosion of Activated Metals, 6-Year Exposure Analysis

    SciTech Connect (OSTI)

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01T23:59:59.000Z

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. The test uses nonradioactive metal coupons representing the prominent neutron-activated materials buried at the disposal location, namely, Type 304L stainless steel (UNS S30403), Type 316L stainless steel (S31603), nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6 (A96061), and a zirconium alloy (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) are also included in the test. This paper briefly describes the ongoing test and presents the results of corrosion analysis from coupons exposed underground for 1, 3, and 6 years.

  11. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01T23:59:59.000Z

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  12. International Workshop on ecological aspects on underground mining of usable minerals deposits,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    International Workshop on ecological aspects on underground mining of usable minerals deposits, GIG Ecological aspects of underground mining of usable minerals deposits, Szczyrk : Poland (1993)" #12;2/12 I and exemplary programme for the reclamation of opencast mining sites at the Herault Operations Unit

  13. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    SciTech Connect (OSTI)

    Kerry L. Nisson

    2012-10-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  14. Nuclear Waste Technical Review Board Members: Curricula Vitae

    E-Print Network [OSTI]

    mines, and storage projects, primarily in the fields of engineering geology and rock mechanics as an international consultant in the planning, designing, and construction of shafts, tunnels, dams, underground and Scisson and the U.S. Atomic Energy Commission on the design of underground openings for nuclear tests

  15. TACIS 91: Application of leak-before-break concept in VVER 440-230

    SciTech Connect (OSTI)

    Bartholome, G.; Faidy, C.; Franco, C. [and others

    1997-04-01T23:59:59.000Z

    The applicability of the leak-before-break (LBB) concept for primary piping in the first generation of WWER type plants in Russia is investigated. The procedures for LBB behavior used in France and Germany are applied, and the evaluation is discussed within the framework of the European Technical Assistance for the Community of Independent States (TACIS) project. Emphasis is placed on experimental validation of national and international engineering practice for evaluating and optimizing existing installations. Design criteria of WWER plants are compared to western standard design.

  16. A probabilistic method for leak-before-break analysis of CANDU reactor pressure tubes

    SciTech Connect (OSTI)

    Puls, M.P.; Wilkins, B.J.S.; Rigby, G.L. [Whiteshell Labs., Pinawa (Canada)] [and others

    1997-04-01T23:59:59.000Z

    A probabilistic code for the prediction of the cumulative probability of pressure tube ruptures in CANDU type reactors is described. Ruptures are assumed to result from the axial growth by delayed hydride cracking. The BLOOM code models the major phenomena that affect crack length and critical crack length during the reactor sequence of events following the first indications of leakage. BLOOM can be used to develop unit-specific estimates of the actual probability of pressure rupture in operating CANDU reactors and supplement the existing leak before break analysis.

  17. The leak resistance of 2-inch N-80 API treaded tubular connection

    E-Print Network [OSTI]

    Weiner, Peter Douglas

    1961-01-01T23:59:59.000Z

    -UPS OF 2-INCH N-80 EUE TUBING 15 17 13 FRONTAL VIEW OF TEST TANK 14 TEST TA1K 15 PRESSURE TEST DATA SHEET 16 LONG DURATION TANK 18 19 21 22 THE LEAK RESISTANCE OF 2-INCH N-80 API ~ED TUBULAR CONNECTION INTROI3UCTION In recent years, well depths... tension until an equivalent pull of 18, 000 feet of tubing was exerted. on the tubing. Each specimen was subJected to from 50 to 100 thermocycles to simulate the shut-in and. flow conditions in an oil well and to increase the severity of the pressure...

  18. The concepts of leak before break and absolute reliability of NPP equipment and piping

    SciTech Connect (OSTI)

    Getman, A.F.; Komarov, O.V.; Sokov, L.M. [and others

    1997-04-01T23:59:59.000Z

    This paper describes the absolute reliability (AR) concept for ensuring safe operation of nuclear plant equipment and piping. The AR of a pipeline or component is defined as the level of reliability when the probability of an instantaneous double-ended break is near zero. AR analysis has been applied to Russian RBMK and VVER type reactors. It is proposed that analyses required for application of the leak before break concept should be included in AR implementation. The basic principles, methods, and approaches that provide the basis for implementing the AR concept are described.

  19. Assessments of fluid friction factors for use in leak rate calculations

    SciTech Connect (OSTI)

    Chivers, T.C. [Berkeley Technology Centre, Glos (United Kingdom)

    1997-04-01T23:59:59.000Z

    Leak before Break procedures require estimates of leakage, and these in turn need fluid friction to be assessed. In this paper available data on flow rates through idealized and real crack geometries are reviewed in terms of a single friction factor k It is shown that for {lambda} < 1 flow rates can be bounded using correlations in terms of surface R{sub a} values. For {lambda} > 1 the database is less precise, but {lambda} {approx} 4 is an upper bound, hence in this region flow calculations can be assessed using 1 < {lambda} < 4.

  20. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOE Patents [OSTI]

    Daily, William D. (Livermore, CA); Laine, Daren L. (San Anotonio, TX); Laine, Edwin F. (Penn Valley, CA)

    2001-01-01T23:59:59.000Z

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  1. Oak Ridge Site Specific Advisory Board Contacts | Department...

    Office of Environmental Management (EM)

    Advisory Board Contacts Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-91 Oak Ridge, TN 37831 Phone Numbers (865) 241-4583, (865) 241-4584 (800) 382-6938,...

  2. Colorado Forestry Advisory Board Members: Don Ament Tom Stone

    E-Print Network [OSTI]

    #12;Colorado Forestry Advisory Board Members: Don Ament Tom Stone Commissioner of Agriculture As Chairperson of Colorado's newly created Forestry Advisory Board, I would like to thank you for taking the time

  3. Third Radiation Effects Research Foundation Board of Councilors...

    Broader source: Energy.gov (indexed) [DOE]

    Third Radiation Effects Research Foundation Board of Councilors Meeting Held in Hiroshima The third Board of Councilors (BOC) meeting was held on June 18-19 at the Hiroshima...

  4. Management Board Briefing Note 16 October 2009 BRIEFING NOTE

    E-Print Network [OSTI]

    -Rector (Commercial Development), and the College Secretary. The Board also received a Health and Safety update. The Board also received the Minutes of the PRB Meeting held on 21 September 2009; the Annual Report on Value

  5. Board independence and corporate governance: evidence from director resignations

    E-Print Network [OSTI]

    Gupta, Manu

    2005-08-29T23:59:59.000Z

    As evident from recent changes in NYSE and Nasdaq listing requirements, board independence is considered an important constituent of firms?? corporate governance structures. However, the empirical evidence regarding the impact of board structure...

  6. BioDiesel Content On-board monitoring

    Broader source: Energy.gov (indexed) [DOE]

    2008 - all rights reserved 1 (tm) BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring August 6th, 2008 Copyright SP3H 2007 -- all rights reserved 2 Biofuel...

  7. Arco's research and development efforts in underground coal gasification

    SciTech Connect (OSTI)

    Bell, G.J.; Bailey, D.W.; Brandenburg, C.F.

    1983-01-01T23:59:59.000Z

    Arco has studied underground coal gasification (UCG) since the mid-1970's in an attempt to advance the technology. This paper is a review of past and present UCG research and development efforts, starting with Arco's Rocky Hill No. 1 test. Although this first experiment gave Arco invaluable experience for conducting UCG in the deep, wet, thick coal resources of the Powder River Basin in Wyoming, many formidable questions remain to be addressed with the operation of a larger-scale, multi-well test. Unresolved issues include such items as site selection, well design, well linking, overburden subsidence, ground water protection, surface treatment of product gas, and the interaction of simultaneously operating modules.

  8. Proceedings of the ninth annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

    1983-12-01T23:59:59.000Z

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  9. Method and apparatus for constructing an underground barrier wall structure

    DOE Patents [OSTI]

    Dwyer, Brian P. (Albuquerque, NM); Stewart, Willis E. (W. Richland, WA); Dwyer, Stephen F. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

  10. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect (OSTI)

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01T23:59:59.000Z

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  11. Thermophysical models of underground coal gasification and FEM analysis

    SciTech Connect (OSTI)

    Yang, L.H. [China University of Mining & Technology, Xuzhou (China)

    2007-11-15T23:59:59.000Z

    In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

  12. Large-block experiments in underground coal gasification

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    A major objective of the nation's energy program is to develop processes for cleanly producing fuels from coal. One of the more promising of these is underground coal gasification (UCG). If successful, UCG would quadruple recoverable U.S. coal reserves. Under the sponsorship of the Department of Energy (DOE), Lawrence Livermore National Laboratory (LLNL) performed an early series of UCG field experiments from 1976 through 1979. The Hoe Creek series of tests were designed to develop the basic technology of UCG at low cost. The experiments were conducted in a 7.6-m thick subbituminous coal seam at a relatively shallow depth of 48 m at a site near Gillette, Wyoming. On the basis of the Hoe Creek results, more extensive field experiments were designed to establish the feasibility of UCG for commercial gas production under a variety of gasification conditions. Concepts and practices in UCG are described, and results of the field tests are summarized.

  13. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, WY. Three different linking methods were used: explosive fracturing, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  14. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    In three underground coal gasification experiments at the Hoe Creek site near Gillette, WY, LLNL applied three different linking methods: explosive fracture, reverse burning, and directional drilling. Air was injected in all three experiments; a steam/oxygen mixture, during 2 days of the second and most of the third experiment. Comparison of results show that the type of linking method did not influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters but declined from its initial value over a period of time because of heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  15. A sweep efficiency model for underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Edgar, T.F.; Himmelblau, D.M.

    1985-01-01T23:59:59.000Z

    A new model to predict sweep efficiency for underground coal gasification (UCG) has been developed. The model is based on flow through rubble in the cavity as well as through the open channel and uses a tanks-in-series model for the flow characteristics. The model can predict cavity growth and product gas composition given the rate of water influx, roof collapse, and spalling. Self-gasification of coal is taken into account in the model, and the coal consumption rate and the location of the flame front are determined by material and energy balances at the char surface. The model has been used to predict the results of the Hoe Creek III field tests (for the air gasification period). Predictions made by the model such as cavity shape, product gas composition, temperature profile, and overall reaction stoichiometry between the injected oxygen and the coal show reasonable agreement with the field test results.

  16. NOTICE OF PUBLIC HEARINGS BOARD OF REGENTS

    E-Print Network [OSTI]

    the section to include the online parking permit application process, and Section 20-12-6, HAR, "Chancellor for permits, passes, daily and hourly parking, and reserved parking within the Board approved rate structure permit rates at UH Mnoa each year over a five-year period. Employee parking permit rates for upper campus

  17. *****I* ****f?* Fusion Programme Evaluation Board

    E-Print Network [OSTI]

    of the Community's programme in the field of Controlled Thermonuclear Fusion; to appraise the environmental, safety*****I* ****f?* Report of the Fusion Programme Evaluation Board prepared for the Commission . . . . . . . . . . . . 11 CHAPTER ONE: NUCLEAR FUSION AND ITS POTENTIAL CONTRIBUTION TO THE WORLD'S ENERGY NEEDS 1

  18. United States Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    Programs to Manage High-Level Radioactive Waste and Spent Nuclear Fuel in the United States and Other-Level Radioactive Waste and Spent Nuclear Fuel in the United States and Other Countries A Report to CongressUnited States Nuclear Waste Technical Review Board Experience Gained From Programs to Manage High

  19. Student Disability Services Student Advisory Board

    E-Print Network [OSTI]

    Gallo, Linda C.

    reported that the Storm Hall construction crew sometimes opens the staging area gate to wide and it blocks access to the wheelchair ramp by AL 204. Facilities Services needs to talk to the construction company:30 to 5pm. Patty went to the meeting as the Board's representative, but no one was there. Teresa called

  20. Advisory Board College of Health Sciences

    E-Print Network [OSTI]

    Care Hospital Dr. A. Ray Pentecost, III President Design & Health Mrs. Linda Rohrer President/Owner DPSAdvisory Board College of Health Sciences Old Dominion University 2013-2014 Chair, Ms. Jo-Ann Burke Vice President of Patient Care Services Children's Hospital of the King's Daughters Mr. Larry L. Boyles