Sample records for bmc utility products

  1. CMC/ BMC Utility Products | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska:CDMValencia JumpLtdCIS

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion by-products #12;3 generated by using both conventional and clean-coal technologies. A clean-coal that obtained from clean-coal technology, are not utilized in cast-concrete masonry products (bricks, blocksCenter for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of coal fly ash, coal bottom ash, and used foundry sand in concrete, bricks, blocks, and8 paving stones, Wisconsin. She is involved in management,11 disposal, and sale of coal-combustion by-products. She alsoCenter for By-Products Utilization UNDER-UTILIZED COAL-COMBUSTION PRODUCTS IN PERMEABLE ROADWAY

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLYASHAND CLEAN-COAL ASHBLENDS FOR CAST CONCRETE PRODUCTS Authors: TarunR.Naik, Director, Center,Illinois Clean Coal Institute RudolphN.Kraus, Research Associate, UWM Center forBy-Products Utilization Shiw S

  5. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization DRAFT REPORT CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS-MILWAUKEE #12;CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS PRODUCTS Progress Report by Tarun R. Naik, Rakesh of Carbon Dioxide Sequestration Technologies

  6. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    clean coal technology, are not extensively utilized in the cast concrete masonry products (bricks both conventional and clean coal technologies. A clean coal ash is defined as the ash derived from SO2Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST

  7. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Fellow at the UWM-CBU. His research interests include the use of coal fly ash, coal bottom ash, and used in management, disposal, and sale of coal-combustion by-Center for By-Products Utilization USE OF UNDER-UTILIZED COAL- COMBUSTION PRODUCTS IN PERMEABLE

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Milwaukee, P.O. Box 784, Milwaukee, WI 53201 d Project Manager, Illinois Clean Coal Institute * Director UWM products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much products that utilize clean coal ash. With increasing federal regulations on power plant emissions, finding

  9. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CLEAN COAL BY-PRODUCTS UTILIZATION IN ROADWAY, EMBANKMENTS-fueled plants, particularly use of eastern coals, has lead to the use of clean coal and using advanced sulfur dioxide control technologies. Figure 1 shows clean coal technology benefits(2) . In 1977, the concept

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization PROPERTIES OF CONCRETE CONTAINING SCRAP TIRE RUBBER in a variety of rubber and plastic products, thermal incineration of waste tires for production of electricity rubber in asphalt mixes, (ii) thermal incineration of worn-out tires for the production of electricity

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of Wisconsin-Milwaukee Submitted to the Electric Power Research Institute August 2009 UWM Center for By-Products-Strength Materials) for help in reducing global warming. Concrete mixtures having slump in the range of three to fourCenter for By-Products Utilization CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS PRODUCTS By Tarun R

  12. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF COAL-COMBUSTION PRODUCTS IN PERMEABLE PAVEMNET BASE and Published at the Raymundo Rivera International Symposium on Durability of Concrete, Monterrey, N. L., Mexico THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;Use of Coal-Combustion Products in Permeable Pavement Base1 2 3 4 5 6 7

  13. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion by-products (such as clean-coal ash) from power plants. Maximum recycling of such by- products regulations and increasing use of low-grade coal, the number of coal-fired power plants with flue gasCenter for By-Products Utilization USE OF CLEAN-COAL ASH FOR MANAGING ASR By Zichao Wu and Tarun R

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Products Utilization E-mail: ymchun@uwm.edu and F. D. Botha Project Manager, Illinois Clean Coal Institute 5776 Coal, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. 4 Project Manager, Illinois Clean Coal Institute

  15. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. PRODUCING CRUMB RUBBER MODIFIER (CRM) FROM USED TIRES . . . . . 3 2.1 PRODUCTION OF CRM THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE

  16. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce for manufacture of cement-based products using ashes generated from combustion of high-sulfur coals. A clean coal

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND OF WISCONSIN ­ MILWAUKEE #12;2 Use of Clean Coal Ash as Setting Time Regulator in Portland Cement by Zichao Wu as setting time regulator for portland cement production. In this paper a source of clean coal ash (CCA

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    . Naik, Rudolph N. Kraus, Shiw S. Singh, Lori- Lynn C. Pennock, and Bruce Ramme Report No. CBU-2001 with numerous projects on the use of by-product materials including utilization of used foundry sand and fly ash;2 INTRODUCTION Wood FA is generated due to combustion of wood for energy production at pulp and paper mills, saw

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Issued to the Illinois Clean Coal Institute For Project 02-1/3.1D-2 Department of Civil Engineering of technology and market development for controlled low-strength material (CLSM) slurry using Illinois coal ashCenter for By-Products Utilization IMPLEMENTATION OF FLOWABLE SLURRY TECHNOLOGY IN ILLINOIS

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    technologies. A clean-coal ash is defined as the ash derived from SOxand NOxcontrol technologies, and FBC that obtained from clean-coal technology, are not utilized in cast-concrete masonry products (bricks, blocks conventional and clean-coal technologies. Fifteen high-sulfur coal ash samples were obtained from eight

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CARBON DIOXIDE SEQUESTRATION IN NO-FINES CONCRETE By Tarun R;CARBON DIOXIDE SEQUESTRATION IN NO-FINES CONCRETE ABSTRACT By Tarun, R. Naik, Yoon-moon Chun, Rudolph N. Kraus, and Fethullah Canpolat This paper presents a detailed experimental study on the sequestration

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , compressive strength, concrete testing, fly ash, high-performance concrete, hot weather, permeability, silica Testing of Concrete", Committee 214, "Evaluation of Results of Strength Tests of Concrete", and CommitteeCenter for By-Products Utilization STRENGTH AND DURABILITY OF HIGH- PERFORMANCE CONCRETE SUBJECTED

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ash to solve the concerns associated with its disposal. Wood ash consists of two different types ash and coal fly ash for use in concrete, was used to determine general suitability of wood ashCenter for By-Products Utilization WOOD ASH: A NEW SOURCE OF POZZOLANIC MATERIAL By Tarun R. Naik

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    the concerns associated with its disposal. Wood ash consists of two different types of materials: fly ash for use as construction materials. Therefore, ASTM C 618, developed for volcanic ash and coal fly ashCenter for By-Products Utilization WOOD ASH: A NEW SOURCE OF POZZOLANIC MATERIAL By Tarun R. Naik

  5. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    beneficial uses of wood ash to meet the challenges associated with its disposal. Wood ash consists of two C 618 [13] developed for volcanic ash and coal fly ash for use in concrete, was used to determineCenter for By-Products Utilization RECYCLING OF WOOD ASH IN CEMENT-BASED CONSTRUCTION MATERIALS

  6. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -air entrained concrete without fly ash. Detailed results are presented. Keywords: carbon dioxide sequestrationCenter for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE ABSTRACT by Tarun, R. Naik, Yoon-moon Chun, Rudolph N. Kraus

  7. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik and Applied Science THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;1 CO2 SEQUESTRATION IN NON-AIR ENTRAINED-moon Chun The objectives of this project were to sequester carbon dioxide (CO2) in concrete and study

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CO2 SEQUESTRATION IN NO-FINES CONCRETE By Tarun R. Naik, Timir C Science THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;1 CO2 SEQUESTRATION IN NO-FINES CONCRETE ABSTRACT of this project were to sequester carbon dioxide (CO2) in concrete and study the effects of carbonation

  9. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    wood with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and coke to generateCenter for By-Products Utilization DEVELOPMENT OF CLSM USING COAL ASH AND WOOD ASH, A SOURCE OF NEW

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Presentationand Publicationat the CBIP International Conference onFly Ash Disposal & Utilization,New Delhi, India, January 1998 foundry sand and slag. Most of these by-products are landfilled, primarily due to non-availability of economically attractive use options. Landfilling is not a desirable option because it not only causes huge

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    tires generated during the year 1990 - 1991 were reused, recycled, or recovered [4]. A number of usesCenter for By-Products Utilization CONSTRUCTION MATERIALS INCORPORATING DISCARDED TIRES By Tarun R - MILWAUKEE #12;CONSTRUCTION MATERIALS INCORPORATING DISCARDED TIRES* By Tarun R. Naik Director, Center for By

  12. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CHARACTERIZATION AND APPLICATION OF CLASSF FLY ASHCOAL AND CLEAN-COAL #12;-1- CHARACTERIZATION AND APPLICATION OF CLASSF FLYASHCOAL AND CLEAN-COAL ASHFOR CEMENT -Milwaukee (UWM) Daniel D.Banerjee, Project Manager,Illinois Clean Coal Institute RudolphN.Kraus, Research

  13. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Rafat Siddique of HVFA Concrete Containing Clean-Coal Ash and Class F Fly Ash By Tarun R. Naik Director, UWM Center for By-Products Utilization and Francois Botha Project Manager, Illinois Clean Coal Institute Synopsis

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    flue gas. Detailed results are presented. Keywords: carbon dioxide sequestration, carbonation, carbonCenter for By-Products Utilization CO2 SEQUESTRATION IN FOAMED CONTROLLED LOW STRENGTH MATERIALS #12;1 CO2 SEQUESTRATION IN FOAMED CONTROLLED LOW STRENGTH MATERIALS by Tarun R. Naik, Rudolph N. Kraus

  15. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    was produced by Wisconsin Electric's coal-fired power plants. The criteria for selecting these mixtures was to utilize minimal cost materials, such as coal combustion by-products (fly ash, bottom ash, etc coal combustion waste material (fly ash) to the maximum extent possible while minimizing costs (e

  16. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    and paper mills in concrete. INTRODUCTION Concrete is a porous solid that is created by combining four basicCenter for By-Products Utilization CURING TEMPERATURE EFFECTS ON HIGH-PERFORMANCE CONCRETE By Tarun For presentation and publication at the symposium entitled "High-Performance Concrete and Concrete for Marine

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    International Conference onFly Ash Disposal and Utilization,onJanuary 20-22, 1998, New Delhi, India. COAL ASH and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;COAL ASH GENERATIONANDUTILIZATION: A REVIEW and utilization of coal ash in many parts of the world. The utilization potential for coal ash generated from

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    subbituminous and lignite coals. It is anticipated that increased number of coal- fired plants will utilize subbituminous and lignite coals to reduce sulfur-related emissions. Some correlation exists between chemical

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -fired power plants derive energy by burning coal in their furnaces. These power plants generally use either. The by-product materials include coal combustion by-products, wood ash, pulp and paper industry by recycling and research needs are discussed. #12;3 2.0 MATERIALS 2.1 COAL-COMBUSTION BY-PRODUCTS Coal

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    evaluation of dredged material from Newark harbor............................ 7 Soil stabilization utilizing environment in a cost effective way while producing necessary chemicals such as lime. Lime is one of the most purchasing fabric filter bag collectors are emission regulations, capital cost and operating cost [1

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ash in concrete (structural grade concrete, compressive strength up to 4000 psi) and flowable slurry and performance specifications for structural concrete and flowable slurry products for every day construction use developed by UWM- CBU in the past for other by-products and sources of coal ash not meeting

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ash or CFAs. Based on these properties, a number of constructive use options such as #12;pollution by saw mills, pulp mills, and the wood-products industry, by burning a combination of wood products control [3], land application [9,10,11], construction materials [13,14], have been reported. However, most

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    on "Management & Use of Coal Combustion Products (CCPS)" held in San Antonio, TX, January 2001. Department concrete mixtures were produced for and at the production plant of an architectural precast concrete. Majority of the foundry sand generated in Wisconsin and elsewhere are landfilled at high disposal costs

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -first Century, Hyderabad, India, February 1999. Department of Civil EngineeringandMechanics College) of foundry by-products, including foundry sand and slag. Most of these by-products are landfilled, primarily due to non-availability of economically attractive use options. Landfilling is not a desirable option

  5. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion by-products are generated due to the combustion of coal in coal-fired electric power plants as carbon from unburnt coal, fire polished sand, thin-walled hollow spheres and their fragments, magnetic of HVFA concrete to establish mixture proportions for commercial production. #12;INTRODUCTION Coal

  6. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , ready- mixed concrete, and low-strength flowable concrete and slurry. The major topics included are; freezing and thawing durability; strength; sulfate resistance. #12;2 INTRODUCTION Coal is the most widely amounts of coal combustion products (CCPs), which include fly ash, bottom ash, boiler slag, and flue gas

  7. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    limestone quarry in Wisconsin generates over 125,000 tons of quarry fines and quarry bag-house dust each limestone quarry fines and quarry bag-house dust, to reduce costs, as well as to reduce the use of expensive be used in SCC. Use of quarry by-products in SCC will lead to economical and ecological benefits

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ;2 INTRODUCTION Fly ash and bottom ash are generated due to combustion of coal in electric power plants. The annual production of fly ash and bottom ash by coal-burning power plants in the United States/bronze foundries, etc. Currently, large volumes of fly ash, bottom ash, and used foundry sand are disposed

  9. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    in a combination with a number of fuels including coal, petroleum coke, natural gas, etc. In the mid 1990s, the unit was firing a combination of coal and petroleum coke to generate energy. It has been established;1 PROJECT 1 - COAL COMBUSTION BY-PRODUCTS: CHARACTERIZATION AND USE OPTIONS Introduction An AFBC system

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -product of combustion from wood-fired boilers, at a typical paper mills and other wood burning facilities. Approximately %) of wood ash and coal fly ash; (3) non-air- entrained structural-grade concrete (up to 60 MPa 28-day compressive strength) with wood ash or its blends with coal fly ash (up to 40 %) as partial replacement

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    plants are the major source of generation of electricity. Coal-fired power plants derive energy by burning coal in their furnaces. These power plants generally use either pulverized coal-fired furnaces. 2.0 MATERIALS 2.1 COAL-COMBUSTION BY-PRODUCTS In most of the countries coal- fired thermal power

  12. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ­ Milwaukee, Milwaukee, WI and Ronald H. Carty Director Illinois Clean Coal Institute Carterville, IL ABSTRACT, Naik and Singh [16] summarized various applications of fly ash generated from conventional and clean coal technologies. Uses of coal combustion by- products can be categorized into three classes: high-volum

  13. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of coal in conventional and/ or advanced clean coal technology combustors. These include fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) by-products from advanced clean coal technology clean coal technology combustors. Over 60% of the CCBs are generated as fly ash. An estimate

  14. By By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By By-Products Utilization THE ROLE OF FLOWABLE SLURRY IN SUSTAINABLE DEVELOPMENTS of Flowable Slurry in Sustainable Developments in Civil Engineering Tarun R. Naik and Rudolph N. Kraus Materials (CLSM) incorporating industrial by-products (coal fly ash, and used foundry sand). CLSM reference

  15. BMC{trademark}: Baseline report

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    Barrier Membrane Containment (BMC){trademark} is a high-density polyethylene membrane (HOPE) groundwater barrier and pass-through system, with applications ranging from plume control and containment to groundwater manipulation coupled with in-site treatment. BMC{trademark} system can function as a permeable or impermeable reaction wall, a cut-off wall, interceptor trenches, a barrier with collection and/or monitoring system and a pass-through in a funnel and gate configuration. BMC{trademark} can be inspected with a down-hole video camera, producing a permanent VHS format tape, insuring the integrity of the wall and the interlocking joints. The joints are sealed with a ``U``-packing elastomeric gasket to prevent the flow of fluids or gases.

  16. BMC{trademark}: Baseline report; Greenbook (chapter)

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    Barrier Membrane Containment (BMC){trademark} is a high-density polyethylene membrane (HDPE) groundwater barrier and pass-through system, with applications ranging from plume control and containment to groundwater manipulation coupled with in-site treatment. BMC{trademark} system can function as a permeable or impermeable reaction wall, a cut-off wall, interceptor trenches, a barrier with collection and/or monitoring system, and a pass-through in a funnel and gate configuration. BMC{trademark} can be inspected with a down-hole video camera, producing a permanent VHS format tape, insuring the integrity of the wall and the interlocking joints.

  17. BMC{trademark}: Baseline report; Summary

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    Barrier Membrane Containment (BMC{trademark}) is a high-density polyethylene membrane (HDPE) groundwater barrier and pass-through system, with applications ranging from plume control and containment, to groundwater manipulation, coupled with in-site treatment. BMC{trademark} system can function as a permeable or impermeable reaction wall, a cut-off wall, interceptor trenches, a barrier with collection and/or monitoring system, and a pass-through in a funnel and gate configuration. BMC{trademark} can be inspected with a down-hole video camera, producing a permanent VHS format tape, insuring the integrity of the wall and the interlocking joints. The joints are sealed with a ``U``-packing elastomeric gasket to prevent the flow of fluids or gases.

  18. ADVANCED GASIFICATION BY-PRODUCT UTILIZATION

    SciTech Connect (OSTI)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

    2005-04-01T23:59:59.000Z

    The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  19. Advanced Gasification By-Product Utilization

    SciTech Connect (OSTI)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Harold Schobert

    2006-02-01T23:59:59.000Z

    With the recent passing of new legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2004 to August 31, 2005. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  20. Advanced Gasification By-Product Utilization

    SciTech Connect (OSTI)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31T23:59:59.000Z

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The objectives of this collaborative effort between the University of Kentucky Center for Applied Energy Research (CAER), The Pennsylvania State University Energy Institute, and industry collaborators supplying gasifier char samples were to investigate the potential use of gasifier slag carbons as a source of low cost sorbent for Hg and NOX capture from combustion flue gas, concrete applications, polymer fillers and as a source of activated carbons. Primary objectives were to determine the relationship of surface area, pore size, pore size distribution, and mineral content on Hg storage of gasifier carbons and to define the site of Hg capture. The ability of gasifier slag carbon to capture NOX and the effect of NOX on Hg adsorption were goals. Secondary goals were the determination of the potential for use of the slags for cement and filler applications. Since gasifier chars have already gone through a devolatilization process in a reducing atmosphere in the gasifier, they only required to be activated to be used as activated carbons. Therefore, the principal objective of the work at PSU was to characterize and utilize gasification slag carbons for the production of activated carbons and other carbon fillers. Tests for the Hg and NOX adsorption potential of these activated gasifier carbons were performed at the CAER. During the course of this project, gasifier slag samples chemically and physically characterized at UK were supplied to PSU who also characterized the samples for sorption characteristics and independently tested for Hg-capture. At the CAER as-received slags were tested for Hg and NOX adsorption. The most promising of these were activated chemically. The PSU group applied thermal and steam activation to a representative group of the gasifier slag samples separated by particle sizes. The activated samples were tested at UK for Hg-sorption and NOX capture and the most promising Hg adsorbers were tested for Hg capture in a simulated flue gas. Both UK and PSU tested the use of the gasifier slag samples as fillers. The CAER analyzed the slags for possible use in cement applications

  1. Center for By-Products Utilization High Durability Concrete Using

    E-Print Network [OSTI]

    Saldin, Dilano

    TESTING · Fresh Concrete Properties ·Unit Weight (ASTM C 138) ·Air Content (ASTM C 237) ·Slump (ASTM C 143Center for By-Products Utilization High Durability Concrete Using High-Carbon Fly Ash and Pulp Mill-Products Utilization Durable Concrete in Northern Climates · Producing durable concrete in a freezing and thawing

  2. An Update on Ethanol Production and Utilization in Thailand

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2009-10-01T23:59:59.000Z

    Thailand has continued to promote domestic biofuel utilization. Production and consumption of biofuel in Thailand have continued to increase at a fast rate due to aggressive policies of the Thai government in reducing foreign oil import and increasing domestic renewable energy utilization. This paper focuses on ethanol production and consumption, and the use of gasohol in Thailand. The paper is an update on the previous paper--Biofuel Infrastructure Development and Utilization in Thailand--in August 2008.

  3. Maximizing Light Utilization Efficiency and Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report UCB will minimize, or truncate, the chlorophyll antenna size in green algae to maximize photobiological solar conversion efficiency and H2-production....

  4. Center for By-Products Utilization CARBONATION: AN EFFICIENT

    E-Print Network [OSTI]

    Saldin, Dilano

    -based materials. #12;Center for By-Products Utilization Carbon Dioxide Sequestration in Cement-based Materials Early age carbonation curing for the sequestration of CO2 in cement-based products is most adopted. Recently a practical and easy way of carbon dioxide sequestration in cement-based materials has been

  5. Maximum Utility Product Pricing Models and Algorithms Based on ...

    E-Print Network [OSTI]

    2007-04-16T23:59:59.000Z

    Apr 15, 2007 ... We consider a revenue management model for pricing a product line with several customer segments .... in a tie (in terms of the underlying utilities) for the best price for a customer segment. Without ...... However, the heuristic appears to make very few reassignments in practice. ...... CPLEX 9.1 User Manual.

  6. Center for By-Products Utilization CO2 SEQUESTRATION

    E-Print Network [OSTI]

    Saldin, Dilano

    climate change, reduced GHGs, improved air quality, CO2 reduction & sequestration, and carbon offsets. #12 for the development of a technology for the carbon dioxide (CO2) sequestration in non-air entrained concreteCenter for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik

  7. Center for By-Products Utilization Sustainable Concrete with

    E-Print Network [OSTI]

    Saldin, Dilano

    , and emission of greenhouse gases, by using recycled materials. · The global potential for CO2 reduction through; Responsible for about 7% of total anthropogenic CO2 emissions; and, Each construction activity involving-Products Utilization Why Sustainable Concrete? (cont'd) Global CO2 emissions from fossil fuels use and cement

  8. Effect of anesthesia on glucose production and utilization in rats

    SciTech Connect (OSTI)

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-03-01T23:59:59.000Z

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using (3-/sup 3/H) glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-(1-/sup 3/H) deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain.

  9. PP/OP 02.07 BMC Addendum

    E-Print Network [OSTI]

    Gelfond, Michael

    PP/OP 02.07 BMC Addendum Attachment A 01/05/2011 ATTACHMENT A LOCKOUT/TAGOUT PROCEDURES FOR BUILDING MAINTENANCE AND CONSTRUCTION PERSONNEL A. General: Lockout is the preferred method of isolating the requirements of OSHA standard, however, the following simple procedure is provided for use in both lockout

  10. PP/OP 02.07 BMC Addendum

    E-Print Network [OSTI]

    Gelfond, Michael

    PP/OP 02.07 BMC Addendum 01/05/2011 LOCKOUT AND TAGOUT POLICY BUILDING MAINTENANCE AND CONSTRUCTION ADDENDUM Specifications for and Usage of Lockout and Tagout Devices: 1. Procedures: Only designated supervisors, operators, or maintenance personnel will perform lockout and tagout procedures. The supervisor

  11. Canadian offshore oil production solution gas utilization alternatives

    SciTech Connect (OSTI)

    Wagner, J.V.

    1999-07-01T23:59:59.000Z

    Oil and gas development in the Province of Newfoundland and Labrador is in its early stage and the offshore industry emphasis is almost exclusively on oil production. At the Hibernia field, the Gravity Base Structure (GBS) is installed and the first wells are in production. The Terra Nova project, based on a Floating Production Storage Offloading (FPSO) ship shaped concept, is in its engineering and construction stage and first oil is expected by late 2000. Several other projects, such as Husky's White Rose and Chevron's Hebron, have significant potential for future development in the same area. It is highly probably that these projects will employ the FPSO concept. It is also expected that the solution gas disposal issues of such second generation projects will be of more significance in their regulatory approval process and of such second generation projects will be of more significance in their regulatory approval process and the operators may be forced to look for alternatives to gas reinjection. Three gas utilization alternatives for a FPSO concept based project have been considered and evaluated in this paper: liquefied natural gas (LNG), compressed natural gas (CNG), and gas-to-liquids conversion (GTL). The evaluation and the relative ranking of these alternatives is based on a first pass screening type of study which considers the technical and economical merits of each alternative. Publicly available information and in-house data, compiled within Fluor Daniel's various offices, was used to establish the basic parameters.

  12. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect (OSTI)

    John Groppo; Thomas Robl

    2006-09-30T23:59:59.000Z

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station.

  13. An Update on Ethanol Production and Utilization in Thailand—2014

    SciTech Connect (OSTI)

    Bloyd, Cary N.; Foster, Nikolas AF

    2014-09-01T23:59:59.000Z

    In spite of the recent political turmoil, Thailand has continued to develop its ethanol based alternative fuel supply and demand infrastructure. Its support of production and sales of ethanol contributed to more than doubling the production over the past five years alone. In April 2014, average consumption stood at 3.18 million liter per day- more than a third on its way to its domestic consumption goal of 9 million liters per day by 2021. Strong government incentives and the phasing out of non-blended gasoline contributed substantially. Concurrently, exports dropped significantly to their lowest level since 2011, increasing the pressure on Thai policy makers to best balance energy independency goals with other priorities, such as Thailand’s trade balance and environmental aspirations. Utilization of second generation biofuels might have the potential to further expand Thailand’s growing ethanol market. Thailand has also dramatically increased its higher ethanol blend vehicle fleet, with all new vehicles sold in the Thai market now being E20 capable and the number of E85 vehicles increasing three fold in the last year from 100,000 in 2013 to 300,000 in 2014.

  14. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    None

    1999-07-01T23:59:59.000Z

    The project has switched focus this quarter from pilot plant operations to product testing. Last quarter extensive pilot plant work had occurred and testing objectives had been met. Also last quarter technology demonstrations were also performed for Potomac Electric Power, Virginia Power, and Wisconsin Electric. We had reported that groundbreaking for the PEPCo fly ash treatment facility was to begin in August. Recent conversations with the technology's licensee, Mineral Resource Technology, have resulted in changes. Long term contract negotiations between MRT and Potomac Electric Power have caused delays. Most recent estimates are that contract negotiations should be finished in August, detailed engineering is to begin in September, and groundbreaking to begin in early Spring. The commercialization of the technology is going forward, just not as fast as we or MRT had anticipated. As this is being written we have received inquiries from Plastics Technology Magazine about fly ash utilization in plastics. We are anticipating working with one of their editors to provide an upcoming article.

  15. Ethanol production using xylitol synthesis mutant of xylose-utilizing zymomonas

    DOE Patents [OSTI]

    Viitanen, Paul V.; McCutchen, Carol M.; Emptage, Mark; Caimi, Perry G.; Zhang, Min; Chou, Yat-Chen

    2010-06-22T23:59:59.000Z

    Production of ethanol using a strain of xylose-utilizing Zymomonas with a genetic modification of the glucose-fructose oxidoreductase gene was found to be improved due to greatly reduced production of xylitol, a detrimental by-product of xylose metabolism synthesized during fermentation.

  16. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect (OSTI)

    Thomas Robl; John Groppo

    2005-09-01T23:59:59.000Z

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. A mobile demonstration unit has been designed and constructed for field demonstration. The demonstration unit was hauled to the test site on trailers that were place on a test pad located adjacent to the ash pond and re-assembled. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities. Representative feed ash for the operation of the filed testing unit was excavated from a location within the lower ash pond determined from coring activities. Approximately 150 tons of ash was excavated and pre-screened to remove +3/8 inch material that could cause plugging problems during operation of the demonstration unit.

  17. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect (OSTI)

    Thomas Robl; John Groppo

    2007-03-31T23:59:59.000Z

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. Phase 1 was completed successfully, but the project did not continue on to Phase 2 due to withdrawal of CEMEX from the project. Attempts at replacing CEMEX were not successful. Problematic to the continuation of the project was its location in the Ohio Valley which is oversupplied and has low prices for fly ash and the change in CEMEX priorities due to merger and acquisitions. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007.

  18. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect (OSTI)

    Andrew Jackura; John Groppo; Thomas Robl

    2006-12-31T23:59:59.000Z

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The market study for the products of the processing plant (Subtask 1.6), conducted by Cemex, is reported herein. The study incorporated simplifying assumptions and focused only on pozzolan and ultra fine fly ash (UFFA). It found that the market for pozzolan in the Ghent area was oversupplied, with resultant poor pricing structure. Reachable export markets for the Ghent pozzolan market were mostly locally served with the exception of Florida. It was concluded that a beneficiated material for that market may be at a long term disadvantage. The market for the UFFA was more complex as this material would compete with other beneficiated ash and potential metakaolin and silica fume as well. The study concluded that this market represented about 100,000 tons of sales per year and, although lucrative, represented a widely dispersed niche market.

  19. Utilization of by-product gypsum in construction 

    E-Print Network [OSTI]

    Stephenson, Angela Lorraine

    1987-01-01T23:59:59.000Z

    as a by-product (called phosphogypsum) during acidulation of phosphate rock in the manufacture phosphoric acid. The sulfate is produced in either a dihydrate or a hemihydrate form depending on the operating conditions. Phosphogypsum produced... by Mobil Chemi- cal Company (Pasadena, Texas) is in the dihydrate form and was previously studied. Phosphogypsum produced by Occidental Chemical Company (White Springs, Florida), on the other hand, is produced in a hemihydrate form and transforms...

  20. Reducing power production costs by utilizing petroleum coke. Annual report

    SciTech Connect (OSTI)

    Galbreath, K.C.

    1998-07-01T23:59:59.000Z

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  1. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  2. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect (OSTI)

    Thomas Robl; John Groppo

    2009-06-30T23:59:59.000Z

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

  3. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    A.M. HEIN; J.Y. HWANG; M.G. MCKIMPSON; R.C. GREENLUND; X. HUANG

    1998-10-01T23:59:59.000Z

    Potomac Electric Power Company (PEPCo) Class F fly ash is the first material to be worked on in this project. A head sample was taken and a screen analysis performed. Each size fraction was evaluated for LOI content. Table 1 shows the distribution of the as-received material by size and LOI content. From the data, 80% of the as-received material is finer than 400 mesh and the LOI content goes from high at coarse fractions and decreases to a low at the finest size fraction. SEM chemical analysis identified the as-received fly ash to mainly consist of silica (46%), aluminum oxide (21%), and iron in various forms (16%). The high iron content presents an extreme case as compared to other fly ash samples we have evaluated previously. Its effect on product testing applications could identify physical and chemical limitations as product testing progresses. Because of the high iron content, it was realized that magnetic separation would be incorporated into the early part of the pilot plant flowsheet to remove magnetic iron and, hopefully, reduce the total iron content. More analytical data will be presented in the next reporting period.

  4. Xylitol synthesis mutant of xylose-utilizing zymomonas for ethanol production

    SciTech Connect (OSTI)

    Viitanen, Paul V.; Chou, Yat-Chen; McCutchen, Carol M.; Zhang, Min

    2010-06-22T23:59:59.000Z

    A strain of xylose-utilizing Zymomonas was engineered with a genetic modification to the glucose-fructose oxidoreductase gene resulting in reduced expression of GFOR enzyme activity. The engineered strain exhibits reduced production of xylitol, a detrimental by-product of xylose metabolism. It also consumes more xylose and produces more ethanol during mixed sugar fermentation under process-relevant conditions.

  5. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    SciTech Connect (OSTI)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01T23:59:59.000Z

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  6. The utilization of flue gas desulfurization waste by-products in construction brick

    E-Print Network [OSTI]

    Berryman, Charles Wayne

    1992-01-01T23:59:59.000Z

    APPENDIX D. TEST PROCEDURES APPENDIX E. CONVERSION TABLES VITA 85 90 93 96 99 LIST OF FIGURES Figure Page Model for FGD Waste By-Product Research Unconfined Compressive Strength for Fly Ash Mixed with Various Inductions of Portland Cement 15... properties such as weight, durability, strength, density, etc. Varying mixes of bottom ash, fly ash, portland cement, and sand will be tested for possible enhancement of the hemihydrate. Also, a mix design that best utilizes all the waste by...

  7. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17T23:59:59.000Z

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  8. The ENCOAL project: Initial commercialization shipment and utilization of both solid and liquid products. Topical report

    SciTech Connect (OSTI)

    McCord, T.G.

    1995-03-01T23:59:59.000Z

    ENCOAL is co-funding a mild gasification project and shipping the products to customers. The ENCOAL Corporation has shipped, to two utility customers, over 500 rail cars (six partial trains and two full trains) of solid product (PDF) from its plant located at Triton Coal Company`s Buckskin Mine near Gillette Wyoming. Shipments span a range of blends from 15% to essentially unblended PDF. Utility handling of these shipments is comparable to that of run-of-mine Buckskin coal. Results related to spontaneous combustion and generation of fugitive dust are particularly favorable. Combustion tests were performed both in a pulverized-fired boiler and in a cyclone-fired boiler. Commercialization utilization of the liquid product (CDL) depends on customer facility capabilities and the source of any blending fuel, as expected. A total of 56 tank cars have been sent to three customers. The 1994 test program met or exceeded ENCOAL`s major objectives of transporting and burning both PDF and CDL in existing customer facilities.

  9. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    None

    2010-07-15T23:59:59.000Z

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  10. Licensing for tritium production in a commercial light water reactor: A utility view

    SciTech Connect (OSTI)

    Chardos, J.S.; Sorensen, G.C.; Erickson, L.W.

    2000-07-01T23:59:59.000Z

    In a December 1995 Record of Decision for the Final Programmatic Environmental Impact Statement for Tritium Supply and Recycling, the US Department of Energy (DOE) decided to pursue a dual-track approach to determine the preferred option for future production of tritium for the nuclear weapons stockpile. The two options to be pursued were (a) the Accelerator Production of Tritium and (b) the use of commercial light water reactors (CLWRs). DOE committed to select one of these two options as the primary means of tritium production by the end of 1998. The other option would continue to be pursued as a backup to the primary option. The Tennessee Valley Authority (TVA) became involved in the tritium program in early 1996, in response to an inquiry from Pacific Northwest National Laboratory (PNNL) for an expression of interest by utilities operating nuclear power plants (NPPs). In June 1996, TVA was one of two utilities to respond to a request for proposals to irradiate lead test assemblies (LTAs) containing tritium-producing burnable absorber rods (TPBARs). TVA proposed that the LTAs be placed in Watts Bar NPP Unit 1 (WBN). TVA participated with DOE (the Defense Programs Office of CLWR Tritium Production), PNNL, and Westinghouse Electric Company (Westinghouse) in the design process to ensure that the TPBARs would be compatible with safe operation of WBN. Following US Nuclear Regulatory Commission (NRC) issuance of a Safety Evaluation Report (SER) (NUREG-1607), TVA submitted a license amendment request to the NRC for approval to place four LTAs, containing eight TPBARs each, in WBN during the September 1997 refueling outage. In December 1998, DOE announced the selection of the CLWR program as the primary option for tritium production and identified the TVA WBN and Sequoyah NPP (SQN) Units 1 and 2 (SQN-1 and SQN-2, respectively) reactors as the preferred locations to perform tritium production. TVA will prepare license amendment requests for the three plants (WBN, SQN-1, and SQN-2). While the TPBARs replace discreet burnable absorbers in the reactor cores, there are differences in the reactions that occur in the absorber material (lithium aluminate versus boron). At end of life, the lithium aluminate provides considerably more reactivity holddown than the standard boron-containing burnable absorbers. Therefore, it will be necessary for the TVA plant engineering and fuels staffs, working with the fuel vendors, to define the appropriate core loading (number of fresh fuel assemblies, enrichment, etc.) to maintain safe operating limits under both operating and accident conditions. It is recognized that the irradiation of TPBARs in the TVA reactors will also require additional radiological and chemistry program upgrades.

  11. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

  12. Environmental chamber measurements of mercury flux from coal utilization by-products

    SciTech Connect (OSTI)

    Pekney, N.J.; Martello, D.V.; Schroeder, K.T.; Granite, E.J.

    2009-05-01T23:59:59.000Z

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

  13. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

  14. T-556: BMC PATROL Agent Service Daemon stack-based buffer overflow

    Broader source: Energy.gov [DOE]

    Stack-based buffer overflow in BMC PATROL Agent Service Daemon for in Performance Analysis for Servers, Performance Assurance for Servers, and Performance Assurance for Virtual Servers 7.4.00 through 7.5.10; Performance Analyzer and Performance Predictor for Servers 7.4.00 through 7.5.10; and Capacity Management Essentials 1.2.00 (7.4.15) allows remote attackers to execute arbitrary code via a crafted length value in a BGS_MULTIPLE_READS command to TCP port 6768.

  15. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    SciTech Connect (OSTI)

    Joseph, Brian

    2013-12-31T23:59:59.000Z

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the PCM material was consistently 2 to 5°C warmer than the control pond. This difference did not seem to increase significantly over time. During phase transitions for the PCM, the magnitude of the difference between the daily minimum and maximum temperatures decreased, resulting in smaller daily temperature fluctuations. A thin layer of PCM material reduced overall water loss by 74% and consistently provided algae densities that were 80% greater than the control pond.

  16. Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980

    SciTech Connect (OSTI)

    Singh, B.

    1980-05-01T23:59:59.000Z

    The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

  17. Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron

    E-Print Network [OSTI]

    Milton, Kim

    significant probably are acceptance modifications, due to changes in energy loss, but we expectLimits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors the quantization of electric charge e in terms of the Dirac quantization condition [1] eg = n�hc/2, n = ±1, ±2

  18. Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron

    E-Print Network [OSTI]

    Milton, Kim

    probably are acceptance modifications, due to changes in energy loss, but we expect the quantitative impactLimits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors the quantization of electric charge e in terms of the Dirac quantization condition [1] eg = n¯hc/2, n = ±1, ±2

  19. Brilli et al. BMC Genomics 2013, 14:309 http://www.biomedcentral.com/1471-2164/14/309

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Brilli et al. BMC Genomics 2013, 14:309 http://www.biomedcentral.com/1471-2164/14/309 RESEARCH ARTICLE Open Access Short and long-term genome stability analysis of prokaryotic genomes Matteo Brilli1 the variability of this trait and the possible correlations with life-style. Two kinds of events affect genome

  20. Nagarajan et al. BMC Genomics 2010, 11:242 http://www.biomedcentral.com/1471-2164/11/242

    E-Print Network [OSTI]

    DeSalle, Rob

    Nagarajan et al. BMC Genomics 2010, 11:242 http://www.biomedcentral.com/1471-2164/11/242 Open Finishing genomes with limited resources: lessons from an ensemble of microbial genomes Niranjan Nagarajan*1 ushered in an era where microbial genomes can be easily sequenced, the goal of routinely producing high

  1. This PDF of U.S. Utility Patent 5031053 provided by Patent Fetcher , a product of Patent Logistics, LLC -Page 1 of 25

    E-Print Network [OSTI]

    Chamzas, Christodoulos

    Logistics, LLC - Page 1 of 25 #12;This PDF of U.S. Utility Patent 5031053 provided by Patent Fetcher TM , a product of Patent Logistics, LLC - Page 2 of 25 #12;This PDF of U.S. Utility Patent 5031053 provided by Patent Fetcher TM , a product of Patent Logistics, LLC - Page 3 of 25 #12;This PDF of U.S. Utility Patent

  2. RESEARCH NEEDS IN MINERAL BY-PRODUCTS UTILIZATION: FLY ASH, SILICA FUME AND SLAG

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of coal in electric power plants. It is captured by either mechanical separators, electrostatic. 2.0 Research Needs Concerning Fly Ash Utilization 2.1 CLSM Fly Ash Slurry Controlled low strength materials (CLSM), as classified by ACI Committee 229, have been produced using fly ash slurry [9

  3. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOE Patents [OSTI]

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02T23:59:59.000Z

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  4. Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOE Patents [OSTI]

    Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

    2013-10-29T23:59:59.000Z

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  5. Development of a Low Input and sustainable Switchgrass Feedstock Production System Utilizing Beneficial Bacterial Endophytes

    SciTech Connect (OSTI)

    Mei, Chuansheng [IALR; Nowak, Jerzy [VPISU; Seiler, John [VPISU

    2014-10-24T23:59:59.000Z

    Switchgrass represents a promising feedstock crop for US energy sustainability. However, its broad utilization for bioenergy requires improvements of biomass yields and stress tolerance. In this DOE funded project, we have been working on harnessing beneficial bacterial endophytes to enhance switchgrass performance and to develop a low input feedstock production system for marginal lands that do not compete with the production of food crops. We have demonstrated that one of most promising plant growth-promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize roots and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, greenhouse, as well as field conditions. Furthermore, PsJN bacterization improved growth and development of switchgrass seedlings, significantly stimulated plant root and shoot growth, and tiller number in the field, and enhanced biomass accumulation on both poor (p<0.001) and rich (p<0.05) soils, with more effective stimulation of plant growth in low fertility soil. Plant physiology measurements showed that PsJN inoculated Alamo had consistently lower transpiration, lower stomatal conductance, and higher water use efficiency in greenhouse conditions. These physiological changes may significantly contribute to the recorded growth enhancement. PsJN inoculation rapidly results in an increase in photosynthetic rates which contributes to the advanced growth and development. Some evidence suggests that this initial growth advantage decreases with time when resources are not limited such as in greenhouse studies. Additionally, better drought resistance and drought hardening were observed in PsJN inoculated switchgrass. Using the DOE-funded switchgrass EST microarray, in a collaboration with the Genomics Core Facility at the Noble Foundation, we have determined gene expression profile changes in both responsive switchgrass cv. Alamo and non-responsive cv. Cave-in-Rock (CR) following PsJN bacterization. With the MapMan software to analyze microarray data, the number of up- and down-regulated probes was calculated. The number of up-regulated probes in Alamo was 26, 14, 14, and 12% at 0.5, 2, 4 and 8 days after inoculation (DAI) with PsJN, respectively while the corresponding number in CR was 24, 22, 21, and 19%, respectively. In both cultivars, the largest number of up-regulated probes occurred at 0.5 DAI. Noticeable differences throughout the timeframe between Alamo and CR were that the number was dramatically decreased to half (12%) in Alamo but remained high in CR (approximately 20%). The number of down regulated genes demonstrated different trends in Alamo and CR. Alamo had an increasing trend from 9% at 0.5 DAI to 11, 17, and 28% at 2, 4, and 8 DAI, respectively. However, CR had 13% at 0.5 and 2 DAI, and declined to 10% at 4 and 8 DAI. With the aid of MapMan and PageMan, we mapped the response of the ID probes to the observed major gene regulatory network and major biosynthetic pathway changes associated with the beneficial bacterial endophyte infection, colonization, and early growth promotion process. We found significant differences in gene expression patterns between responsive and non-responsive cultivars in many pathways, including redox state regulation, signaling, proteolysis, transcription factors, as well as hormone (SA and JA in particular)-associated pathways. Form microarray data, a total of 50 key genes have been verified using qPCR. Ten of these genes were chosen for further functional study via either overexpression and/or RNAi knockout technologies. These genes were calmodulin-related calcium sensor protein (CAM), glutathione S-transferase (GST), histidine-containing phosphotransfer protein (H-221), 3 different zinc finger proteins (ZF-371, ZF131 and ZF242), EF hand transcription factor (EF-622), peroxidase, cellulose synthase catalytic submit A2 (CESA2), and Aux/IAA family. A total of 8 overexpression and 5 RNAi transgenic plants have been regenerated, and their gene expression levels determined using qPCR. Consequently

  6. Transforming commercial aerospace supply chain management practices by utilizing Toyota production system principles, practices, and methodologies

    E-Print Network [OSTI]

    Patneaude, Steven M

    2008-01-01T23:59:59.000Z

    This thesis examines The Toyota Motor Corporation's core precepts, management principles, supply chain architecture, product development methods, leveraged practice of supplier partnerships and procurement practices, all ...

  7. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect (OSTI)

    None

    1980-03-01T23:59:59.000Z

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  8. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  9. Utilizing Distributed Temperature and Pressure Data To Evaluate The Production Distribution in Multilateral Wells

    E-Print Network [OSTI]

    Al Zahrani, Rashad Madees K.

    2012-07-16T23:59:59.000Z

    -intensive and involve operational risks. An alternative way to measure the production from each lateral is to use Distributed Temperature Sensing (DTS) technology. Recent advances in DTS technology enable measuring the temperature profile in horizontal wells with high...

  10. Practical Training in Microalgae Utilization with Key Industry Engineering Group Key Industry Engineering Group s.r.o. has developed a biotechnology for the production of an animal

    E-Print Network [OSTI]

    Practical Training in Microalgae Utilization with Key Industry Engineering Group Key Industry on a suspension of Planktochlorella microalgae. The product consists of a suspension of algae in the growing

  11. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect (OSTI)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31T23:59:59.000Z

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

  12. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01T23:59:59.000Z

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  13. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31T23:59:59.000Z

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  14. Barriers to the increased utilization of coal combustion/desulfurization by-products by government and commercial sectors - Update 1998

    SciTech Connect (OSTI)

    Pflughoeft-Hassett, D.F.; Sondreal, E.A.; Steadman, E.N.; Eylands, K.E.; Dockter, B.A.

    1999-07-01T23:59:59.000Z

    The following conclusions are drawn from the information presented in this report: (1) Joint efforts by industry and government focused on meeting RTC recommendations for reduction/removal of barriers have met with some success. The most notable of these are the changes in regulations related to CCB utilization by individual states. Regionally or nationally consistent state regulation of CCB utilization would further reduce regulatory barriers. (2) Technology changes will continue to be driven by the CAAA, and emission control technologies are expected to continue to impact the type and properties of CCBs generated. As a result, continued RD and D will be needed to learn how to utilize new and changing CCBs in environmentally safe, technically sound, and economically advantageous ways. Clean coal technology CCBs offer a new challenge because of the high volumes expected to be generated and the different characteristics of these CCBs compared to those of conventional CCBs. (3) Industry and government have developed the RD and D infrastructure to address the technical aspects of developing and testing new CCB utilization applications, but this work as well as constant quality control/quality assurance testing needs to be continued to address both industry wide issues and issues related to specific materials, regions, or users. (4) Concerns raised by environmental groups and the public will continue to provide environmental and technical challenges to the CCB industry. It is anticipated that the use of CCBs in mining applications, agriculture, structural fills, and other land applications will continue to be controversial and will require case-by-case technical and environmental information to be developed. The best use of this information will be in the development of generic regulations specifically addressing the use of CCBs in these different types of CCB applications. (5) The development of federal procurement guidelines under Executive Order 12873 titled ''Federal Acquisition, Recycling and Waste Prevention,'' in October 1993 was a positive step toward getting CCBs accepted in the marketplace. Industry needs to continue to work with EPA to develop additional procurement guidelines for products containing CCBs--and to take advantage of existing guidelines to encourage the use of CCBs in high-profile projects. (6) Accelerated progress toward increased utilization of CCBs can be made only if there is an increased financial commitment and technical effort by industry and government. The framework for this has been set by the successful cooperation of industry and government under DOE leadership. Cooperation should continue, with DOE fulfilling its lead role established in the RTC. It is clear that the RTC recommendations continue to have validity with respect to increasing CCB utilization and continue to provide guidance to industry and government agencies.

  15. Properties of Field Manufactured Cast-Concrete Products Utilizing Recycled Materials

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    in appropriate concrete mixtures, thus reducing the need to landfill or otherwise dispose it. Fly ash from coal, coal-combustion bottom ash, and used foundry sand. A total of 18 mixture proportions with and without for these products or even improving these properties. Although coal- combustion fly ash, bottom ash, and used

  16. Optimization of Jatropha Oil Extraction and Its By-Product Utilization by Pyrolysis Method 

    E-Print Network [OSTI]

    Kongkasawan, Jinjuta 1987-

    2012-08-20T23:59:59.000Z

    and biodiesel. Biofuels are derived from biomass feedstock and usually blend with gasoline or diesel fuel, but they can also be used directly on the engines (EIA, 2011b). One can categorize the biofuels by their source and type. Biofuels may be obtained from... of Jatropha Seed and Oil .................................................................8! 2.2.2. Potential of Jatropha Oils for Biofuels Production ........................................12! 2.2 Mechanical Extraction...

  17. European legislation in the United Kingdom: a threat to coal-fired power station product utilization?

    SciTech Connect (OSTI)

    Sear, K.A. [Quality Ash Association (United Kingdom)

    2006-07-01T23:59:59.000Z

    The author considers that the European Union has not taken the approach adopted in the USA where environmental regulators are keen to promote the use of coal-fired power station ash by-product and recycled materials. The United Kingdom has seen, with some dismay, the effects EU legislation is having on the ash industry. This article outlines only some of the problems being tackled. The Waste Framework Directive is difficult to interpret and fails to define critical aspects of the problem. This directive is discussed at some length in the article. A total of nine directives effect the operation of coal-fired power plant. Many are imprecise and open to interpretation and cause a deal of frustration, delays and confusion to the ash supplier and contractor. This is causing markets to suffer.

  18. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),

    2003-01-01T23:59:59.000Z

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  19. Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994

    SciTech Connect (OSTI)

    None

    1996-02-01T23:59:59.000Z

    The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

  20. WOOD PRODUCTS AND UTILIZATION

    E-Print Network [OSTI]

    Standiford, Richard B.

    not require extensive cultivation and extraction methods, and it uses less manmade energy to manufacture, these trees are a vital component of wildlife and plant ecosystems, water quality, recreation, and esthetic and firewood harvesting are two activities that consume large quantities of wood from oak woodlands. Finding

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    in self-compacting concrete is expected to provide significant economic benefits to quarries, coal-compacting slurry has been gaining increasing acceptance (2). However, such flowable slurry typically has

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    slurry(Controlled Low Strength Materials, CLSM) through an initial laboratory evaluation followed advantage of available alkalies in wood ash to activate the Class C coal ash for enhanced performance. Three

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    application is discussed. A typical and very successful high- volume application of coal ash is in controlled low-strength materials (CLSM) or flowable slurry. Reviews of the state-of-the-art information on CLSM rate of CCPs. Keywords: admixtures, CLSM concrete, compaction, durability, flowable slurry, fly ash

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ) and flowable slurry (Controlled Low Strength Materials, CLSM) through an initial laboratory evaluation followed in wood ash to activate coal ash. Based on the results of lab manufacturing of CLSM and concrete mixtures

  5. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    mineral addition to coal, and spraying coal to minimize dusting due to coal handling, transportation be used in clean-coal applications for the removal of sulfur dioxide emissions from flue gas. Since also be used in flowable slurry with or without crushed limestone fine sand. RECOMMENDATIONS

  6. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    after combustion of coal in conventional and advanced clean-coal technology combustors. These include and advanced clean-coal technology combustors. Although 560 million tonnes (Mt) of fly ash, bottom ash use either pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology

  7. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    clean-coal technologies such as SO2 Control Systems, NOx Control Technology, Fluidized Bed Combustion Project Manager, Illinois Clean Coal Institute, 5776 Coal Drive, Suite 200, Carterville, IL 62918-sulfur coal. Ponded ash is usually a mixture of fly ash and bottom ash or boiler slag. Concrete was made

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    is defined as the ash derived from thermal power plants using clean-coal technologies such as SO2 Control of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, WI 53201. 4 Project Manager, Illinois Clean Coal Institute Systems, NOx Control Technology, Fluidized Bed Combustion, and Gasification Combined Cycle for reducing

  9. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion of coal in conventional and advanced clean-coal technology combustors. These include fly ash clean-coal technology combustors. Although 560 million tonnes (Mt) of fly ash, bottom ash, and boiler furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    and Objectives This testing work will evaluate use of high-carbon fly ash in non-air entrained concrete in the concrete mixture. The testing work for this project will involve laboratory testing of mechanical varied types for concrete construction applications. Specific objectives for this testing work

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of New York is approximately 28% composed of leaves, grass, yard, food, and other organic waste. New York) of MSW generated per year were landfilled, 14.0% were combusted, and 31% were recycled or composted). Recycling of MSW increased 9% and composting of MSW increased 5% from 1990 to 2003, totaling 7

  12. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    that over 80,000 tons of gypsum wallboard is disposed each year in Wisconsin from new construction.I. has recently established a technology of using a gypsum-containing cementitious material from coal gypsum wallboard, Class C fly ash, and cement will be used as a cementitious material; and, the mixture

  13. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    the ability of future generations to meet their own requirements (13). As a business model, this means is ecologically unfriendly: it consumes much energy and natural resources, and emits a number of undesirable air AND ECO-EFFICIENCY The definition of "sustainability", following the World Commission on Environment

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Institute of Mexico Symposium "World of Concrete - Mexico", Guadalajara, Mexico, June 4-7, 1997. Department;-4- low interconnectivity, these pores are relatively impermeable to water. However, water removal from

  15. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    suitable for highway construction applications. 1.0 INTRODUCTION Scrapped tires are produced in the U. At the present time, landfilling is the major technique for scrap tire disposal in the country. Scrap tires used as economic advantages. Scrap tires are primarily composed of natural rubber, steel, synthetic rubber

  16. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    their tanks to meet minimum design standards, (2) test their tanks for leaks and provide controls for spills hydrocarbons (RFWI and UM 1993; API 1989). These hydrocarbons can be categorized as: gasoline and light, and mobile in the subsurface environment [API 1989]. Oxygenated compounds (oxygenates), such as alcohols

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    from the University of Wisconsin, Madison. INTRODUCTION Increasing cost of construction has-situ concrete strength can reduce construction time and cost by efficient movement of forms. Furthermore it also Milwaukee, WI 53201 Synopsis: The maturity method computes maturity of the concrete as an index to predict

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    is expected to provide significant economic benefits to quarries, coal-fired power plants, and concrete

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Abstract: Several new coal-fired combustion system modifications have been designed to improve the quality/or ammonia removal. These new processes have been demonstrated at various Wisconsin Electric coal fired Electric Power Company (WE) has developed three new coal ash beneficiation processes for carbon and

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    . The carbonation reaction of the CLSM would also have the potential to reduce carbon dioxide emissions at a coal-fired gas. This mixed gas was used to simulate a typical flue gas generated from the combustion of coal

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    in this country is mostly generated by coal-fired electric power plants. These plants produce huge amounts of ash (slag) produced from coal-fired power plants increases yearly along with the development and huge demand. Naik* ABSTRACT China has one of the largest coal mining industries in the world. Electricity

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ), at 28 days, using various sources of ASTM Class F and clean coal fly ashes. For each reference mixture

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -19 REP-443 November 2001 Final Technical Report Issued to the Illinois Clean Coal Institute For Project

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    with the combination of Class C fly ash and clean coal ash. Two percent to four percent sodium sulfate anhydrite

  5. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -28 REP-482 November 2002 Final Technical Report Issued to the Illinois Clean Coal Institute For Project

  6. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ", Portland Cement Association Skokie, IL, pp. 1-10. 11. Burnham, J. C., Bennet, G. F., and Logan, T. J., 1990

  7. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    .4 April 2000 A Mid-Year Project Management Report Issued to the Illinois Clean Coal Institute for Project for evaluation. Clean coal fly ash was obtained from Southern Illinois University and a wet collected Class F fly and Quarters Cumulative$ Cumulative Project Budget Total Illinois Clean Coal Institute Award $ 86,095 Estimated

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    to establish and demonstrate technical benefits of porous, low-strength concrete that uses large amounts of non in construction materials. Porous concrete mixtures do not require air entrainment for freezing and thawing resistance. Therefore, high-carbon ash could be used in such concretes. Porous concrete mixtures were first

  9. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Science THE UNIVERSITY OF WISCONSIN-MILWAUKEE #12;DOE F 4600.6 (10-94) Replaces EIA-459F All Other. A market survey was developed as part of the activities of the first quarter of the project. This survey

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of Engineering and Applied Science THE UNIVERSITY OF WISCONSIN-MILWAUKEE #12;DOE F 4600.6 (10-94) Replaces EIA residuals concrete of comparable workability and strength with a reference concrete. A market survey producers and affiliated members of the National and state ready-mixed concrete associations. The survey

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    generated at mill and inert solids rejected during chemical recovery processes become part of the primary residual. The water clarified by the primary treatment is passed on to the secondary treatment. Secondary dioxide and water while consuming oxygen. Secondary residual is mainly microbial biomass (called also

  12. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ). In some cases, ash generated at mill and inert solids rejected during chemical recovery processes become on to the secondary treatment. Secondary treatment is usually a biological process in which micro-organisms convert soluble organic matter to carbon dioxide and water while consuming oxygen. Secondary residual is mainly

  13. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    generated by the mill and inert #12;solids rejected during chemical recovery processes become part of the primary residual. The water clarified by the primary treatment is passed on to the secondary treatment. The secondary treatment is usually a biological process in which micro-organisms convert soluble organic matter

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    generated at mill and inert solids rejected during chemical recovery processes become part of the primary residual. The water clarified by the primary treatment is passed on to the secondary treatment. Secondary dioxide and water while consuming oxygen. Secondary residual is mainly microbial biomass (also called

  15. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    solids rejected during chemical recovery processes become part of the primary residual. The water clarified by the primary treatment is passed on to the secondary treatment. Secondary treatment is usually consuming oxygen. Secondary residual is mainly microbial biomass (also called biosolids) grown during

  16. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Report No. 321 August 1997-15 Department of Civil Engineering and Mechanics College of Engineering and sand to produce concrete. The United States consumes approximately 90 million tons of Portland cement annually. The manufacture of cement is quite energy intensive. It requires approximately 3000 kJ of energy

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    PRACTICE By Rudolph N. Kraus, Tarun R. Naik, and Yoon-moon Chun Report No. CBU-2006-12 REP-611 April 2006 to be mined, cement continues to be manufactured or imported, and energy is consumed in the processing briefly describes the uses of coal ash, wood ash, and used foundry sand, in concrete. Typically, one

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Monosi, Giacomo Moriconi, and Tarun R. Naik Report No. CBU-2007-11 REP-632 June 2007 Presented of paper mill sludge: as a secondary raw material to produce blended cements, as a very fine sand addition energy for internal use. Such combustion fumes carry fly ashes which are collected and available as a new

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -QUALITY CONCRETE (HQC)CONSTRUCTION By Tarun R.Naik Report No.CBU REP-318 May 1997 Presented andpublished with proper use of form oil to allow migration of released air pockets. Sand content should be increased]. External vibrators consume greater amounts of energy and are less effective compared to internal vibrators

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    from a SO2 control technology (dry desulphuring process), and Project II deals with RCC pavement (RCCP

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    control technology (dry desulphuring process), and Project II deals with RCC pavement (RCCP) containing 30

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    #12;ACI member Bruce W. Ramme, P.E., Manager- Environmental Land Quality, Wisconsin Electric Power Materials, 230 Soil Cement, 232 Fly Ash and Natural Pozzolans, and 555 Recycled Materials. He is a member of ASCE, NSPE, and other professional organizations. Haifang Wen is a Transportation Engineer at Bloom

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , calcium carbonate, and/or titanium dioxide) and the biomass from biological treatment of wastewater. Fiber wastewater-treatment residuals; wood fibers. #12;Naik, Chun, & Kraus Flowable Slurry Made With Class C Fly include wastewater-treatment residuals (also called sludge), fiber reclaim, and screening rejects

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ), India (45 million tons), South Africa (30 million tons), Poland (25 million tons), Germany (20 million 232, Fly Ash and Natural Pozzolans. #12;4 INTRODUCTION Coal is the most widely used source of energy

  5. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    cementitious material content exhibited higher autogenous shrinkage and lower drying shrinkage compared, specifications containing recommendations on the use of dosage rate of shrinkage-reducing admixtures and amount on Sustainable Development. He was Chairman of the ASCE Technical Committee on Emerging Materials (1995- 2000

  6. Abdou-Arbi et al. BMC Systems Biology 2014, 8:8 http://www.biomedcentral.com/1752-0509/8/8

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abdou-Arbi et al. BMC Systems Biology 2014, 8:8 http://www.biomedcentral.com/1752 study of precursor sets for system outputs Oumarou Abdou-Arbi1,2,3, Sophie Lemosquet4,5, Jaap Van Milgen information [2]. With a complementary approach, one © 2014 Abdou-Arbi et al.; licensee BioMed Central Ltd

  7. The production and utilization of a clean, abundant, and renewable energy source is widely accepted as one of the key challenges facing mankind today. Population

    E-Print Network [OSTI]

    Bruck, Jehoshua (Shuki)

    The production and utilization of a clean, abundant, and renewable energy source is widely accepted-splitter and may one day be used as a source of clean energy.The components include (a) Membrane assembly of underdeveloped nations will increase our current demand for energy. Although fossil fuels may power the planet

  8. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  9. Water Content Determination of Rubber Stoppers Utilized for Sealing Lyophilized Pharmaceutical Products: Assessment of Two Karl Fischer Titration Methods

    E-Print Network [OSTI]

    Voth, Laura Marie

    2013-08-31T23:59:59.000Z

    In the pharmaceutical industry, the success of a new drug product is strongly impacted by the stability of the drug formulation. For many formulations, stability is governed by the drug product's water content, thus the ...

  10. Utilization of geothermal energy for methane production for J. A. Albertson Land and Cattle Company. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    The feasibility of an integrated system to utilize a geothermal resource for a bioconversion plant. This integrated facility would use the manure from approximately 30,000 head of feedlot cattle as a feedstock for an anaerobic digestion plant. The findings on engineering design, geological assessment, environmental, economic, and institutional requirements of the proposed project are summarized. (MHR)

  11. Proceedings of Office of Surface Mining Coal Combustion By-product Government/Regulatory Panel: University of Kentucky international ash utilization symposium

    SciTech Connect (OSTI)

    Vories, K.C. (ed.)

    2003-07-01T23:59:59.000Z

    Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal mine sites (K.C. Vories). The questions and answers are also included.

  12. Characterization of the chemical variation of feed coal and coal combustion products from a power plant utilizing low sulfur Powder River Basin coal

    SciTech Connect (OSTI)

    Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.; Brownfield, I.K.

    2000-07-01T23:59:59.000Z

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placed on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.

  13. Public Utilities (Florida)

    Broader source: Energy.gov [DOE]

    Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the...

  14. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  15. Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation 

    E-Print Network [OSTI]

    Adegoke, Adesola Ayodeji

    2006-10-30T23:59:59.000Z

    The Gas-to-liquids (GTL) processes produce a large fraction of by-products whose disposal or handling ordinarily becomes a cost rather than benefit. As an alternative strategy to market stranded gas reserves, GTL...

  16. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    SciTech Connect (OSTI)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01T23:59:59.000Z

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  17. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  18. Characterization and utilization of hydrotreated products produced from the Whiterocks (Utah) tar sand bitumen-derived liquid

    SciTech Connect (OSTI)

    Tsai, C.H.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.

    1991-12-31T23:59:59.000Z

    The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the mined and crushed ore from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor. The purpose was to determine the extent of upgrading as a function of process operating variable. A sulfided nickel-molybendum on alumina hydrodenitrogenation catalyst was used in all experiments. Moderately severe operating conditions were employed; that is, high reaction temperature (617--680 K) high reactor pressure (11.0--17.1 MPa) and low liquid feed rate (0.18--0.77 HSV); to achieve the desired reduction in heteroatom content. Detailed chemical structures of the bitumen-derived liquid feedstock and the hydrotreated total liquid products were determined by high resolution gas chromatography - mass spectrometry analyses. The compounds identified in the native bitumen included isoprenoids; bicyclic, tricycle, and tetracyclic terpenoids; steranes; hopanes; and perhydro-{beta}-carotenes. In addition, normal and branched alkanes and alkenes and partially dehydrogenated hydroaromatics were identified in the bitumen-derived liquid. The dominant pyrolysis reactions were: (1) the dealkylation of long alkyl side chains to form {alpha} - and isoolefins; and (2) the cleavage of alkyl chains linking aromatic and hydroaromatic clusters. Olefinic bonds were not observed in the hydrotreated product and monoaromatic hydrocarbons were the predominant aromatic species. The properties of the jet fuel fractions from the hydrotreated products met most of the jet fuel specifications. The cetane indices indicated these fractions would be suitable for use as diesel fuels.

  19. Characterization and utilization of hydrotreated products produced from the Whiterocks (Utah) tar sand bitumen-derived liquid

    SciTech Connect (OSTI)

    Tsai, C.H.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.

    1991-01-01T23:59:59.000Z

    The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the mined and crushed ore from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor. The purpose was to determine the extent of upgrading as a function of process operating variable. A sulfided nickel-molybendum on alumina hydrodenitrogenation catalyst was used in all experiments. Moderately severe operating conditions were employed; that is, high reaction temperature (617--680 K) high reactor pressure (11.0--17.1 MPa) and low liquid feed rate (0.18--0.77 HSV); to achieve the desired reduction in heteroatom content. Detailed chemical structures of the bitumen-derived liquid feedstock and the hydrotreated total liquid products were determined by high resolution gas chromatography - mass spectrometry analyses. The compounds identified in the native bitumen included isoprenoids; bicyclic, tricycle, and tetracyclic terpenoids; steranes; hopanes; and perhydro-{beta}-carotenes. In addition, normal and branched alkanes and alkenes and partially dehydrogenated hydroaromatics were identified in the bitumen-derived liquid. The dominant pyrolysis reactions were: (1) the dealkylation of long alkyl side chains to form {alpha} - and isoolefins; and (2) the cleavage of alkyl chains linking aromatic and hydroaromatic clusters. Olefinic bonds were not observed in the hydrotreated product and monoaromatic hydrocarbons were the predominant aromatic species. The properties of the jet fuel fractions from the hydrotreated products met most of the jet fuel specifications. The cetane indices indicated these fractions would be suitable for use as diesel fuels.

  20. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    SciTech Connect (OSTI)

    Doyle, T.A.

    1998-01-31T23:59:59.000Z

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  1. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01T23:59:59.000Z

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  2. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  3. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06T23:59:59.000Z

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  4. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  5. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  6. Solar photoproduction of hydrogen. IEA technical report of the IEA Agreement of the Production and Utilization of Hydrogen

    SciTech Connect (OSTI)

    Bolton, J.R. [Dept. of Chemistry, Univ. of Western Ontario, London, Ontario (CA) N6A 5B7

    1996-09-30T23:59:59.000Z

    The report was prepared for the International Energy Agency (IEA) Hydrogen Program and represents the result of subtask C, Annex 10 - Photoproduction of Hydrogen. The concept of using solar energy to drive the conversion of water into hydrogen and oxygen has been examined, from the standpoints of potential and ideal efficiencies, measurement of (and how to calculate) solar hydrogen production efficiencies, a survey of the state-of-the-art, and a technological assessment of various solar hydrogen options. The analysis demonstrates that the ideal limit of the conversion efficiency for 1 sun irradiance is {approximately}31% for a single photosystem scheme and {approximately}42% for a dual photosystem scheme. However, practical considerations indicate that real efficiencies will not likely exceed {approximately}10% and {approximately}16% for single and dual photosystem schemes, respectively. Four types of solar photochemical hydrogen systems have been identified: photochemical systems, semiconductor systems, photobiological systems, and hybrid and other systems. A survey of the state-of-the-art of these four types is presented. The four types (and their subtypes) have also been examined in a technological assessment, where each has been examined as to efficiency, potential for improvement, and long-term functionality. Four solar hydrogen systems have been selected as showing sufficient promise for further research and development: (1) Photovoltaic cells plus an electrolyzer; (2) Photoelectrochemical cells with one or more semiconductor electrodes; (3) Photobiological systems; and (4) Photodegradation systems. The following recommendations were presented for consideration of the IEA: (1) Define and measure solar hydrogen conversion efficiencies as the ratio of the rate of generation of Gibbs energy of dry hydrogen gas (with appropriate corrections for any bias power) to the incident solar power (solar irradiance times the irradiated area); (2) Expand support for pilot-plant studies of the PV cells plus electrolyzer option with a view to improving the overall efficiency and long-term stability of the system. Consideration should be given, at an appropriate time, to a full-scale installation as part of a solar hydrogen-based model community; (3) Accelerate support, at a more fundamental level for the development of photoelectrochemical cells, with a view to improving efficiency, long-term performance and multi-cell systems for non-biased solar water splitting; (4) Maintain and increase support for fundamental photobiological research with the aim of improving long-term stability, increasing efficiencies and engineering genetic changes to allow operation at normal solar irradiances; and (5) Initiate a research program to examine the feasibility of coupling hydrogen evolution to the photodegradation of waste or polluting organic substances.

  7. Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

    1993-12-31T23:59:59.000Z

    This research was aimed at testing and developing the expansion potential of solid residues (slag) from gasification of Illinois coals to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing perlite or vermiculite ores and have unit weights in the 5--12 lb/ ft{sup 3} range. These materials sell for approximately $200/ton ($1.00/ft{sup 3}) and have numerous applications. The incentive for this effort was based on previous experimental results in which lightweight aggregates (LWA) with unit weights of 25--55 lb/ft{sup 3} were produced from Illinois slag using a direct-fired furnace. In this program, bench-scale expansion tests conducted with two Illinois coal slags resulted in product unit weights of 12 and 18.5 lb/ ft{sup 3}, thus confirming the feasibility of producing ULWA from Illinois slags. During initial pilot vertical shaft furnace test runs, two Illinois slags were expanded to generate products with unit weights of 12.5--26.5 and 20--52 lb/ ft{sup 3}. Further attempts to lower the product unit weights resulted in fusion of the slag. This problem could be overcome by methods including surface treatment of the slag, blending the slag with other materials, or utilization of indirect firing methods. To lower the product unit weights, an indirect-fired horizontal shaft furnace was used and products with unit weights of 12.4--52.0 lb/ft{sup 3} were generated, thus indicating that this method can be used to produce a wide range of expanded products. A large batch of expanded slag was produced using an 18-in. diameter x 12-ft long indirect-fired pilot furnace. A sample from this batch was characterized. Specimens of insulating concrete made from expanded slag had a unit weight 43.3 lb/ft{sup 3} and thermal conductivity of 1.34 Btu-in./h/ft{sup 2}/{degrees}F. This compares well with a value of 1. 2 Btu-in./h/ft{sup 2}/{degrees}F for insulating concrete of a similar weight made from perlite, as per ASTM C 332-82.

  8. Article for Modern Casting The University of Wisconsin-Milwaukee's Center for By-Products Utilization (CBU) is one of the

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    . Formed in 1988, by companies interested primarily in coal ash utilization, the CBU is dedicated environmental regulations to significantly reduce the amount of foundry waste disposed in landfills

  9. Xylose utilization in recombinant Zymomonas

    DOE Patents [OSTI]

    Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2013-01-07T23:59:59.000Z

    Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.

  10. Xylose utilization in recombinant zymomonas

    DOE Patents [OSTI]

    Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

    2014-03-25T23:59:59.000Z

    Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

  11. agriculture cea utilizing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan ofthe Ukiah Electric Utility (Ukiah), as required for compliance Procurement Plan that requires the utility to procure a minimum quantity of electricity products from...

  12. GMP- Biomass Electricity Production Incentive

    Broader source: Energy.gov [DOE]

    Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products,...

  13. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  14. Utility Partnerships Webinar Series: Gas Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs gasutilityeewebinarnov2...

  15. Fact Sheet: DOE/National Association of Regulatory Utility Commissione...

    Office of Environmental Management (EM)

    Fact Sheet: DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Summary: Building on many years of productive...

  16. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility  http://omics.pnl.gov/software/NETPredictionUtility.php 

  17. Sustainability of the cement and concrete industries UWM Center for By-Products Utilization, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Sustainability of the cement and concrete industries T.R. Naik UWM Center for By of the most widely used construction materials in the world. However, the production of portland cement); production of one ton of portland cement produces about one ton of CO2 and other GHGs. The environmental

  18. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  19. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  20. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30T23:59:59.000Z

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  1. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    SciTech Connect (OSTI)

    Wang, D. I.C.

    1980-09-01T23:59:59.000Z

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  2. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25T23:59:59.000Z

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

  3. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  4. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  5. adult scoliosis utilizing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik") UTILIZING CLEAN-COAL ASH 1 This project was for the...

  6. advanced hydrogen utilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik") UTILIZING CLEAN-COAL ASH 1 This project was for the...

  7. aldouronate utilization gene: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik") UTILIZING CLEAN-COAL ASH 1 This project was for the...

  8. analyses utilizing erts-1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik") UTILIZING CLEAN-COAL ASH 1 This project was for the...

  9. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  10. Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program

    SciTech Connect (OSTI)

    None

    1984-08-01T23:59:59.000Z

    The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of a variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.

  11. Russian prospects for plutonium utilization

    SciTech Connect (OSTI)

    Kudriavtsev, E.G.; Mikerin, E.I. [Ministry for Atomic Energy of Russian Federation, Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    The main figures and options are given in this paper on plutonium build-up under various conditions of the Russian nuclear fuel cycle final stage. The real possibility of useful utilization of plutonium being recovered at the NPP fuel radiochemical reprocessing or becoming available as a result of disarmament, is connected with its involvement into the BN-800 and VVER-1000 fuel cycles. A reviews of the main installations for production of MOX-fuel for scientific studies and pilot testing on plutonium utilization in fast reactors has been made. The trends for investigations and developments being designed and aimed at plutonium optimum utilization in nuclear power engineering of the Russian Federation are presented.

  12. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  13. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  14. Mississippi Public Utility Act

    Broader source: Energy.gov [DOE]

    The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN)...

  15. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24T23:59:59.000Z

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  16. GSA- Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  17. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  18. Un Seminar On The Utilization Of Geothermal Energy For Electric...

    Open Energy Info (EERE)

    Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search...

  19. PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

  20. Wells Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for its commercial and industrial custome...

  1. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  2. "List of Covered Electric Utilities" under the Public Utility...

    Energy Savers [EERE]

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  3. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 4, A laboratory study conducted in fulfillment of Phase 2, Objective 1 titled: Inhibition of acid production in coal refuse amended with calcium sulfite and calcium sulfate - containing FGD solids

    SciTech Connect (OSTI)

    none,

    1998-06-30T23:59:59.000Z

    Control of S02 emission from coal combustion requires desulfurization of coal before its combustion to produce coal refuse. Alternatively, gaseous emissions from coal combustion may be scrubbed to yield flue gas desulfurization (FGD) by-products that include calcium sulfite (CaSO3?0.5H2O or simply CaS03). Acid production in coal refuse due to pyrite oxidation and disposal of large amounts of FGD can cause environmental degradation. Addition of CaS03 and CaS03-containing FGD to coal refuse may reduce the amounts of oxygen and ferric ion available to oxidize pyrite because the sulfite moiety in CaS03 is a strong reductant and thus may mitigate acid production in coal refuse. In Chapter 1, it was shown that CaS03 efficiently scavenged dissolved oxygen and ferric ion in water under the conditions commonly encountered in a coal refuse disposal environment. In the presence ofCaS03, the concentration of dissolved oxygen in water exposed to the atmosphere declined to below 0.01 mg L"1 at pH <8.0. In Chapter 2, it was demonstrated that CaS03 prevented a pH drop in coal refuse slurry when 0.2 gCaS03 was added to a 2% fresh coal refuse slurry every three days. Calcium sulfite also inhibited acid leaching from fresh coal refuse in bench-scale columns under controlled conditions. During the initial 13 weeks of leaching, the total amounts of titratable acidity, soluble H\\ Fe, and Al from CaS03-treated refuse (6.4 gin 50 g fresh coal refuse) were only 26%,10%, 32%, and 39% of those of the control columns, respectively. A combination of CaS03 with CaC03 or fly ash enhanced the inhibitory effect of CaS03 on acid leaching. Calcium sulfite-containing FGD which combined CaS03, CaC03, fly ash, and gypsum showed a much stronger inhibitory effect on acid leaching than CaS03 alone. This combination effect was partially due to the positive interaction of CaS03 with CaC03 and fly ash on inhibition of acid leaching. In Chapter 3, CaS03-containing FGD was found to inhibit acid leaching from both fresh and aged coal refuse in large scale columns under simulated field conditions. During 39 weeks of leaching, the reduction of leachate acidity and Fe concentration and the increase ofleachate pH were significant (p <0.05) for the 22% FGD treatment with a linear response to increasing FGD rates (0%, 5.5%, 11%, and 22%). I conclude that CaS03 and CaS03-containing FGD have the ability to inhibit acid production in coal refuse and the inhibitory effect shown in this experiment is likely to occur under field conditions. Thus, the research results present a potential new method for mitigation of acid production in coal refuse and another beneficial utilization of FGD by-products.

  4. Energy Utilization in Fermentation Ethanol Production

    E-Print Network [OSTI]

    Easley, C. E.

    be fermented to ethanol. The energy usage for this design is about 20,900 Btu per gallon of ethanol produced. WATER PARTIAL CONDENSER GRAIN MEA MIX 140?F 360?F FLASH TANK COOLING STEAM MALT COOKER FIGURE 1 - OLD STYLE MASHING SYSTEM Energy savings... ethanol. The basic process for fuel ethanol. as shown in Figure 3. involves steam stripping and rectification to produce 95 volume percent ethanol which is near the ethanol-water azeotropic composition. Except for the modest heat recovery provided...

  5. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage Presentation3 DATE: March 14,62008 U.S.!1

  6. Coal ash utilization in India

    SciTech Connect (OSTI)

    Michalski, S.R.; Brendel, G.F.; Gray, R.E. [GAI Consultants, Inc., Pittsburgh, PA (United States)

    1998-12-31T23:59:59.000Z

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  7. Zymomonas with improved xylose utilization in stress conditions

    DOE Patents [OSTI]

    Caimi, Perry G; Emptage, Mark; Li, Xu; Viitanen, Paul V; Chou, Yat-Chen; Franden, Mary Ann; Zhang, Min

    2013-06-18T23:59:59.000Z

    Strains of xylose utilizing Zymomonas with improved xylose utilization and ethanol production during fermentation in stress conditions were obtained using an adaptation method. The adaptation involved continuously growing xylose utilizing Zymomonas in media containing high sugars, acetic acid, ammonia, and ethanol.

  8. Utilization of Ash Fractions from Alternative Biofuels used in Power Plants

    E-Print Network [OSTI]

    Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

  9. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  10. Utility Data Collection Service

    Broader source: Energy.gov [DOE]

    Presentation covers the utility data collection service and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

  11. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  12. Utility Regulation (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control...

  13. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  14. Municipal Utility Districts (Texas)

    Broader source: Energy.gov [DOE]

    Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

  15. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    None

    1989-02-01T23:59:59.000Z

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  16. Rates for Alternate Energy Production Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    The Utilities Board may require public utilities furnishing gas, electricity, communications, or water to public consumers, to own alternate energy production facilities, enter into long-term...

  17. Public Utilities Act (Illinois)

    Broader source: Energy.gov [DOE]

    This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports...

  18. Cogeneration - A Utility Perspective

    E-Print Network [OSTI]

    Williams, M.

    1983-01-01T23:59:59.000Z

    Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics...

  19. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  20. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  1. Extraction Utility Design Specification

    Energy Savers [EERE]

    Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All...

  2. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  3. "List of Covered Electric Utilities" under the Public Utility...

    Office of Environmental Management (EM)

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  4. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  5. Analytical approaches to photobiological hydrogen production in unicellular green algae

    E-Print Network [OSTI]

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01T23:59:59.000Z

    production activity after a sudden dark–light shift. This screening utilizes the characteristics of tungsten

  6. Utility View of Risk Assessment

    E-Print Network [OSTI]

    Bickham, J.

    This paper will address a utility perspective in regard to risk assessment, reliability, and impact on the utility system. Discussions will also include the critical issues for utilities when contracting for energy and capacity from cogenerators...

  7. Utility Power Plant Construction (Indiana)

    Broader source: Energy.gov [DOE]

    This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

  8. GSA-Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the General Service Administration's (GSA's) utility interconnection agreements.

  9. BBEE Public Utility Conference Call

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BBEE Public Utility Conference Call May 19, 2011 - Summary Summer Goodwin, BPA, welcomed public utility representative participants, asked them to introduce themselves, and...

  10. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  11. INTRODUCTION Ukiah Electric Utility

    E-Print Network [OSTI]

    INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

  12. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  13. Physical Plant Utility Department

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    of Massachusetts Amherst Electrical Distribution & Outdoor Lighting 3.0 Table of Contents Page 1 UMass Medium buses at the Eastside sub-station. The Eastside sub-station is comprised of two separate buses with a normally open bus tie. Each bus is automatically backed up by separate utility feeds. The Eastside Sub-station

  14. Utility spot pricing, California

    E-Print Network [OSTI]

    Schweppe, Fred C.

    1982-01-01T23:59:59.000Z

    The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

  15. Utility downsizings pose a dilemma for regulators

    SciTech Connect (OSTI)

    Cross, P.S.

    1993-08-01T23:59:59.000Z

    A utility's job-generating potential is critical to most local economies. At the same time, however, high utility employment levels maintain an upward pressure on rates, an effect that does not escape regulators' notice, especially during an economic slowdown. More than on regulator has been heard to say that hard-hit ratepayers should not be called on to support what some may seen as a bloated utility workforce scaled to better times. To complicate things even more, popular cost-cutting goals that include improving productivity and relying more on conservation could mean fewer jobs, at least at the utility. What's more, utility rates play a significant role in how local industries and businesses respond to an economic slowdown. This interplay of economic forces has complicated the ratemaking process. The size of a utility's workforce is an issue of growing significance in rate hearings. Forecasts for test-period salary and wage expenses are less reliable. Early retirement plans promise future savings for ratepayers, but at a cost today.

  16. STEP Utility Bill Analysis Report

    Broader source: Energy.gov [DOE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  17. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  18. Utility Energy Services Contracts: Enabling Documents Overview...

    Energy Savers [EERE]

    Utility Energy Services Contracts: Enabling Documents Overview Utility Energy Services Contracts: Enabling Documents Overview Presentation covers the utility energy service...

  19. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  20. Microsoft Word - Tritium Production and Environmental Impacts...

    National Nuclear Security Administration (NNSA)

    Production and Environmental Impacts The production of tritium in a commercial light water reactor (CLWR) is technically straightforward. Most existing CLWRs utilize 12-foot-long...

  1. ash dispersion utilizing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the USA for all coal ashes was approximately 34% in the year products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much...

  2. ash utilization symposium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST Report No.CBU-1996-07 July 1996 Presented and Published at the...

  3. Utility Maximization under Uncertainty

    E-Print Network [OSTI]

    Li, Jian

    2010-01-01T23:59:59.000Z

    Motivated by several search and optimization problems over uncertain datasets, we study the stochastic versions of a broad class of combinatorial problems where either the existences or the weights of the elements in the input dataset are uncertain. The class of problems that we study includes shortest paths, minimum weight spanning trees, and minimum weight matchings over probabilistic graphs; top-k queries over probabilistic datasets; and other combinatorial problems like knapsack. By noticing that the expected value is inadequate in capturing different types of risk-averse or risk-prone behaviors, we consider a more general objective which is to maximize the expected utility of the solution for some given utility function. For weight uncertainty model, we show that we can obtain a polynomial time approximation algorithm with additive error eps for any eps>0, if there is a pseudopolynomial time algorithm for the exact version of the problem. Our result generalizes several prior works on stochastic shortest ...

  4. activation utilizing auto-catalytic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik") UTILIZING CLEAN-COAL ASH 1 This project was for the...

  5. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28T23:59:59.000Z

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  6. POWER-GEN '91 conference papers: Volume 7 (Non-utility power generation) and Volume 8 (New power plants - Gas and liquid fuels/combustion turbines). [Independent Power Production

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This is book 4 of papers presented at the Fourth International Power Generation Exhibition and Conference on December 4-6, 1991. The book contains Volume 7, Non-Utility Power Generation and Volume 8, New Power Plants - Gas and Liquid Fuels/Combustion Turbines. The topics of the papers include PUHCA changes and transmission access, financing and economics of independent power projects, case histories, combustion turbine based technologies, coal gasification, and combined cycle.

  7. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  8. Industrial - Utility Cogeneration Systems

    E-Print Network [OSTI]

    Harkins, H. L.

    1979-01-01T23:59:59.000Z

    Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional...

  9. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30T23:59:59.000Z

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: • Demand-side management – This refers to efforts to reduce energy use through energy efficiency and conservation measures. • Off-grid, facility and household scale renewable energy systems – These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. • Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. • Medium to large scale renewable energy development for sale to the grid – In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. • Facility scale, net metered renewable energy systems – These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

  10. Extraction Utility Design Specification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon GenerationExtraction Utility Design

  11. Utilize Available Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize Available Resources Print As soon as you arrive

  12. Utility spot pricing study : Wisconsin

    E-Print Network [OSTI]

    Caramanis, Michael C.

    1982-01-01T23:59:59.000Z

    Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

  13. System for utilizing oil shale fines

    DOE Patents [OSTI]

    Harak, Arnold E. (Laramie, WY)

    1982-01-01T23:59:59.000Z

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  14. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  15. Dispute Resolution Process Utility Owner

    E-Print Network [OSTI]

    Minnesota, University of

    State One Call (GSOC) for "Design Call" Provide "as-builts", marked plans or field locates MnDOT Utility? Underground Utility? Contact Minnesota Office of Pipeline Safety Minnesota Office of Pipeline Safety Step 1 - Utility Identification for Construction Investigate and take appropriate action up to and including

  16. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  17. Annexure C Monthly Utility and Other Related Charges 1. RENTAL RATES

    E-Print Network [OSTI]

    Retail space with little or no production area, linked to a main retail outlet R60.00 2. UTILITY RATES

  18. Glycomimetic affinity-enrichment proteomics identifies partners for a clinically-utilized iminosugar

    E-Print Network [OSTI]

    Davis, Ben G.

    Glycomimetic affinity-enrichment proteomics identifies partners for a clinically and utilize a natural product-derived glycomimetic iminosugar probe in a Glycomimetic Affinity-enrichment

  19. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01T23:59:59.000Z

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  20. Industrial Load Shaping: A Utility Strategy to Deal with Competition

    E-Print Network [OSTI]

    Bules, D.

    manufacturing facilities. Both the customer and the utility should realize benefits from these changes. There are five generic load shaping categories: rescheduling operations, capacity additions, product storage, automation and flexible manufacturing... Implementation * Program Monitoring LOAD SHAPE ALTERNATIVES General categories of load shape alternatives include process rescheduling, capacity additions, product storage, automation and flexible manufacturing and electrotechnologies. Process rescheduling...

  1. ORIGINAL ARTICLE Utilization of diets containing graded levels of ethanol

    E-Print Network [OSTI]

    to manufacture fuel ethanol (Rosentrater and Muthukumarappan, 2006). In 2008, 174 operating ethanol plantsORIGINAL ARTICLE Utilization of diets containing graded levels of ethanol production co-Pascual, 2000), fuel-based DDGS are a co-product of dry mill pro- cessing, where primarily corn is used

  2. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Wohlbach, Dana J.

    2011-01-01T23:59:59.000Z

    et al. (2009) Comparative genomics of the fungal pathogensComparative genomics of xylose-fermenting fungi for enhancedapplications. BMC Genomics Wisselink HW, Toirkens MJ, Wu Q,

  3. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01T23:59:59.000Z

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  4. Technology and economics of gas utilization: Methanol

    SciTech Connect (OSTI)

    Seddon, D.

    1994-12-31T23:59:59.000Z

    The paper reviews the current and emerging technology for the conversion of natural gas into methanol and assesses its impact on the production economics. Technologies of potential use for offshore developments of large gas reserves or associated gas are discussed. New technologies for the production of methanol synthesis-gas, such as autothermal reforming and GHR technology, are described and the economic advantages over conventional steam reforming are quantified. New methanol synthesis technology, such as slurry phase reactors, are outlined but appear to offer little advantage over conventional technology for offshore gas utilization. The purification of methanol for fuel and chemical grade product is outlined and the cost of transport presented. The data presented gives an overview of the production costs for production of methanol from large gas reserves (> 1Tcf, 25--35PJ/a) and smaller scale reserves (10--20MMscfd, 4--10PJ/a). The variation of the production cost of methanol with gas price indicates that the gas price is the principal economic consideration. However, adoption of new technology will improve production economics by an amount equivalent to an incremental gas cost of about $0.5/GJ. For gas reserves of low development cost, the adoption of new technology is not a prerequisite to economic viability.

  5. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Broader source: Energy.gov [DOE]

    '''''Note: The municipal electric utilities serving New Castle, Clayton, Lewes, Middletown, Smyrna, and Seaford do not offer any rebates for individual renewable energy systems. Please see the...

  6. Gas and Electric Utilities Regulation (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the Public Utilities Commission a document regarding...

  7. Business Owners: Prepare for Utility Disruptions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other...

  8. Effective Strategies for Participating in Utility Planning |...

    Energy Savers [EERE]

    Strategies for Participating in Utility Planning Effective Strategies for Participating in Utility Planning Better Buildings Neighborhood Program Working with Utilities Peer...

  9. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Utility Partnership Working Group Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility...

  10. Sandia National Laboratories: Utility Operations and Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market TransformationUtility Operations and Programs Utility Operations and Programs Utilities need to understand how solar generating technologies will behave on their systems...

  11. BMC Medicine BioMed Central

    E-Print Network [OSTI]

    William Hamilton; Robert Lancashire; Debbie Sharp; Tim J Peters; Tom Marshall

    2009-01-01T23:59:59.000Z

    Research article The risk of colorectal cancer with symptoms at different ages and between the sexes: a case-control study

  12. Utility solar water heating workshops

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1992-01-01T23:59:59.000Z

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  13. The Public Utility and Industry: A Customer- Supplier Relationship for Long-Term Survival

    E-Print Network [OSTI]

    Janson, J. R.

    The entire country is undergoing a significant change in customer attitide toward services and products. This change is geared toward a quality service/ product for the least cost. Industry and the utility sector need to apply the aspects of quality...

  14. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    tariffs can re a market for power during the time when it has sult in benefits to industry, to the electric abundant capacity available. From the other rate utility, and to other ratepayers on the electric payers' perspective, there will be a continued...INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic...

  15. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In Montana, regulated electric utilities are required to offer customers the option of purchasing electricity generated by certified, environmentally-preferred resources that include, but are not...

  16. Austin Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt;...

  17. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  18. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC), through its Solar Program, offers to purchase the environmental attributes or renewable energy credits (RECs) from customers who install a photovoltaic (PV)...

  19. Utility lighting summit proves illuminating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-lighting-summit-proves-illuminating Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

  20. Utilization of coal-associated minerals. Final report

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-01-01T23:59:59.000Z

    Under contract number DE-AS21-77ET10533 with the US-DOE several methods of utilizing coal associated by-products were examined for potential commercial use. Such use could transform a costly waste disposal situation into new materials for further use and could provide incentive for the adoption of new coal utilization processes. Several utilization processes appear to have merit and are recommended for further study. Each process is discussed separately in the text of this report. Common coal cleaning processes were also examined to determine the effect of such processes on the composition of by-products. Data obtained in this portion of the research effort are reported in the Appendix. Information of this type is required before utilization processes can be considered. A knowledge of the mineral composition of these materials is also required before even simple disposal methods can be considered.

  1. Helping Utilities Make Smart Solar Decisions Utility Barriers

    E-Print Network [OSTI]

    Homes, Christopher C.

    #12;About SEPA Developed by utilities to facilitate the integration of solar electric power. SEPA (insurance, disconnects, metering) · Balanced vs. best interconnection and net metering regimes #12;Managing Solar DecisionsSource: SEPA 2010 1,717 MW of utility scale solar or 63 % · Nevada & New Mexico 659 MW

  2. Improving alternative fuel utilization: detailed kinetic combustion...

    Energy Savers [EERE]

    Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

  3. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect (OSTI)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01T23:59:59.000Z

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  4. ENERGY COMMISSION PUBLIC UTILITIES COMMISSION

    E-Print Network [OSTI]

    . Specifically, the Proposed Final Opinion: · Reaffirms a commitment to pursue all cost-effective energy, however, utility costs may be reduced compared with business as usual, after accounting for significantCALIFORNIA ENERGY COMMISSION CALIFORNIA PUBLIC UTILITIES COMMISSION FOR IMMEDIATE RELEASE

  5. Supply-side utility economics

    SciTech Connect (OSTI)

    Platt, H.D.

    1985-06-27T23:59:59.000Z

    This article makes two main points: that electricity is a necessary resource, and that utilities respond to incentives as do individuals. From them, the author deduces that the US will have a power shortage within the foreseeable future unless utility regulators begin to consider future power plant needs realistically.

  6. Running Process Plant Utilities Like a Business

    E-Print Network [OSTI]

    Pavone, A.

    ........ 5700 '0IIII( 440 OJIIII( '0IIII( 9400 20000 1300 3400 3500 1500 6200 2500 Agua de Enfriamienlo (m3) Energia Electrica (kwh) Vapor de Alta (ton) Vapor de Media (Ion) Vapor de Baja (ton) Vapor de 60 kg/cm2 (ton) 114 ESL-IE-95....U1m.1 6766862...1Z Total Vapor Production mtlD Servjcios Agua Enlrjamiento a Va po m.Mm! Utility Consumptjon Energia Electrica a Vapor Ini.hL.m..l 4_4_6_21__~ DOWNTIME (HRS) 4 ? Real Programado 2 Fallas mecaoicas 2 Disparios De Planta...

  7. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    SciTech Connect (OSTI)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01T23:59:59.000Z

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  8. Utilization of pulverized fuel ash in Malta

    SciTech Connect (OSTI)

    Camilleri, Josette [Department of Building and Civil Engineering, Faculty of Architecture and Civil Engineering, University of Malta, Msida (Malta); Sammut, Michael [Department of Pathology, St. Luke's Hospital, G'Mangia (Malta); Montesin, Franco E. [Department of Building and Civil Engineering, Faculty of Architecture and Civil Engineering, University of Malta, Msida (Malta)]. E-mail: franco.montesin@um.edu.mt

    2006-07-01T23:59:59.000Z

    In Malta all of the waste produced is mixed and deposited at various sites around the island. None of these sites were purpose built, and all of the waste is above groundwater level. The landfills are not engineered and do not contain any measures to collect leachate and gases emanating from the disposal sites. Another waste, which is disposed of in landfills, is pulverized fuel ash (PFA), which is a by-product of coal combustion by the power station. This has been disposed of in landfill, because its use has been precluded due to the radioactivity of the ashes. The aim of this study was to analyze the chemical composition of the pulverized fuel ash and to attempt to utilize it as a cement replacement in normal concrete mixes in the construction industry. The levels of radiation emitted from the ashes were measured by gamma spectrometry. The results of this study revealed that although at early ages cement replacement by PFA resulted in a reduction in compressive strength (P = 0), when compared to the reference concrete at later ages the strengths measured on concrete cores were comparable to the reference concrete (P > 0.05). The utilization of PFA up to 20% cement replacement in concrete did not raise the radioactivity of the concrete. In conclusion, utilization of PFA in the construction industry would be a better way of disposing of the ashes rather than controlling the leachate and any radioactivity emitted by the landfilled ashes.

  9. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  10. Electric Utility Measurement & Verification Program

    E-Print Network [OSTI]

    Lau, K.; Henderson, G.; Hebert, D.

    Electric Utility Measurement & Verification Program Ken Lau, P.Eng., CMVP Graham Henderson, P.Eng., CMVP Dan Hebert, P.Eng.,CMVP Mgr, Measurement & Verification Engineering Team Leader Senior Engineer BC Hydro Burnaby, BC Canada...

  11. Gas Utility Pipeline Tax (Texas)

    Broader source: Energy.gov [DOE]

    All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

  12. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible...

  13. Utility Lines and Facilities (Montana)

    Broader source: Energy.gov [DOE]

    These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

  14. Ukiah Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  15. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In addition to meeting the requirements of the state [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... renewables portfolio standard], New Mexico investor-owned utilities...

  16. Deregulating the electric utility industry

    E-Print Network [OSTI]

    Bohn, Roger E.

    1982-01-01T23:59:59.000Z

    Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

  17. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  18. Utilization FLY ASH INFORMATION FROM

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Products In European power plants, using spray-dry absorption techniques for desulphurization of the flue

  19. Utility+Utility Access Map | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUser pageUtility+Utility Access Map Home

  20. Analysis of Pre-Retrofit Building and Utility Data

    SciTech Connect (OSTI)

    Prahl, D.; Beach, R.

    2014-12-01T23:59:59.000Z

    IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all electric production-built homes' was modeled. The homes were in two communities -- one built in the 1970s and the other in the mid-2000s.

  1. Availability and Utilization of Cardiac Resuscitation Centers

    E-Print Network [OSTI]

    Mumma, Bryn E.; Diercks, Deborah B.; Holmes, James F.

    2014-01-01T23:59:59.000Z

    15 Last, our data reflect availability and utilization ofNovember 2014 Mumma et al. Availability and Utilization ofB rief R esearch R eport Availability and Utilization of

  2. Utility Systems Management and Operational Optimization

    E-Print Network [OSTI]

    Dhole, V.; Seillier, D.; Garza, K.

    simultaneously within the context of an integrated utilities management objective. Aspen Utilities™ provides a single environment to optimize business processes relating to utilities management and substantially improves financial performance typically equivalent...

  3. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  4. The top 100 electric utilities

    SciTech Connect (OSTI)

    Warkentin, D.

    1995-10-01T23:59:59.000Z

    This has been an extremely interesting market during the past year or so due to the Energy Policy Act of 1992 (EPACT) and the US FERC actions since then to make it more competitive. A major move was a 1994 proposal to open up access to the nation`s privately owned transmission grid to make it easier for buyers and sellers of wholesale electricity to do business. Overall, the wholesale market in the US generates about $50 billion in annual revenues. That compares with a retail market about four times that size. The term retail refers to electricity sales to ultimate consumers, while wholesale refers to bulk power transactions among utilities or purchases by utilities from NUGs. The data in this report can be considered a baseline look at the major utility players in the wholesale market. Results of wholesale deregulation have not really been felt yet, so this may be the last look at the regulated market.

  5. Utility reregulation: The ESCO fit

    SciTech Connect (OSTI)

    Hansen, S.J. [Kiona International, Annapolis, MD (United States); Weisman, J.C. [Hansen Associates, Inc., Atlanta, GA (United States)

    1998-10-01T23:59:59.000Z

    No one can think energy, and more particularly energy efficiency, these days without wondering what the impact of utility deregulation and competition will be on his or her operation. Suddenly, owners must get smart about buying power and making choices. The complexities inherent in this new era make what was learned through the deregulation of the telephone and natural gas industries look like rehearsals for the command performance. For ESCOs, the whole scenario becomes a crucial part of doing business. There is no question that changes in the new utility market place will have a significant impact on the way ESCOs do business. The market segments an ESCO strives to serve will change. In the near term, large industrial customers will have little interest in the relatively small action on the demand side of the meter when rate/price negotiations on the supply side can make a big difference in the utility bill.

  6. Federal Energy Efficiency through Utility Partnerships

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Two-page fact sheet on FEMP's Federal Utility Program that works with federal agencies and their utilities to reduce energy use.

  7. Federal Utility Partnership Working Group Participants

    Broader source: Energy.gov [DOE]

    The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in a utility energy service contract project.

  8. Studying the Communications Requirements of Electric Utilities...

    Office of Environmental Management (EM)

    Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

  9. Sustainable Business Models - Utilities and Efficiency Partnerships...

    Energy Savers [EERE]

    Sustainable Business Models - Utilities and Efficiency Partnerships Sustainable Business Models - Utilities and Efficiency Partnerships Provides an overview and lessons learned on...

  10. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01T23:59:59.000Z

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  11. Virginia Electric Utility Regulation Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation...

  12. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not...

  13. Selecting Your Subcontractors (for the Utility)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcontractors (for the Utility) Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida * Energy Service Companies - Act as your...

  14. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Environmental Management (EM)

    Meeting Chairman's Corner Federal Utility Partnership Working Group Meeting Chairman's Corner Presentation-given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG)...

  15. Federal Utility Partnership Working Group Meeting: Washington...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Utility Partnership Working Group Meeting: Washington Update fupwgspring12unruh.pdf More Documents & Publications Federal Utility Partnership Working Group Meeting:...

  16. Better Buildings Neighborhood Program Working with Utilities...

    Broader source: Energy.gov (indexed) [DOE]

    August 2, 2012 Better Buildings Neighborhood Program Working with Utilities Peer Exchange Call: Effective Strategies for Participating in Utility Planning Call Slides and...

  17. Federal Utility Partnership Working Group Participants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participants Federal Utility Partnership Working Group Participants The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in...

  18. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  19. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  20. Utility Energy Services Contracts: Enabling Documents DRAFT ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DRAFT Utility Energy Services Contracts: Enabling Documents DRAFT Presentation on Cyber Security given at the Federal Utility Partnership Working Group Fall 2008 meeting in...

  1. Industrial Customer Perspectives on Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Customer Perspectives on Utility Energy Efficiency Programs Industrial Customer Perspectives on Utility Energy Efficiency Programs These presentations from ATK Aerospace Systems,...

  2. Electric utility research and development

    SciTech Connect (OSTI)

    Not Available

    1982-10-25T23:59:59.000Z

    Nineteen papers presented at a seminar held by the National Association of Regulatory Utility Commissioners (NARUC) at North Carolina State University during October, 1982 represent an opportunity for an exchange of research information among regulators, utility officials, and research planners. The topics range from a regulatory perspective of research and development to a review of new and evolving technologies. Separate abstracts were prepared for each of the papers for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis.

  3. Utility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohn Keeler,Washington

  4. Public Utilities Commission Consumer Programs

    E-Print Network [OSTI]

    California Public Utilities Commission Consumer Programs Water Programs The CPUC regulates privately owned water companies, which may provide specific as- sistance programs that are unique to each about consumer programs. For infor- mation on income eligibility limits and for a list of water

  5. OETR OETR Symposium Utilization of

    E-Print Network [OSTI]

    Tokyo, University of

    OETR OETR Symposium Utilization of Offshore Wind Energy for a New Landscape of Beautiful Japan OETR + OEAJ Two keys, Bankability and Public Acceptance A leading veri cation project for offshore wind eld 2 FIT program for offshore wind-power In order to further accelerate this momentum, two vital

  6. Zymomonas with improved xylose utilization

    DOE Patents [OSTI]

    Viitanen, Paul V. (West Chester, PA); Tao, Luan (Havertown, PA); Zhang, Yuying (New Hope, PA); Caimi, Perry G. (Kennett Square, PA); McCutchen, Carol M. (Wilmington, DE); McCole, Laura (East Fallowfield, PA); Zhang, Min (Lakewood, CO); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO)

    2011-08-16T23:59:59.000Z

    Strains of Zymomonas were engineered by introducing a chimeric xylose isomerase gene that contains a mutant promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene. The promoter directs increased expression of xylose isomerase, and when the strain is in addition engineered for expression of xylulokinase, transaldolase and transketolase, improved utilization of xylose is obtained.

  7. Departmental Energy and Utilities Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-04-15T23:59:59.000Z

    To establish requirements and responsibilities for managing Department of Energy (DOE) energy and utility supplies and services. Cancels paragraphs 6d(2), 6h, 7b(1), 7b(2), and 7e(16) of DOE O 430.1A) Cancels: DOE O 430.2, DOE O 430.1A (in part)

  8. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01T23:59:59.000Z

    been established. Fluidized and Fixed Bed Gasifiers The adv~of fluidized-bed and fixed-bed gasifiers must be examineda simple low-entrainment fixed-bed unit, the fixed-bed

  9. Gulf Cordgrass Production, Utilization, and Nutritional Value Following Burning.

    E-Print Network [OSTI]

    Oefinger, R.D.; Scifres, F.J.

    1977-01-01T23:59:59.000Z

    compared to the same criteria on the unburned areas. Soils on each site were characterized relative to selected chemical and physical characteristics . The study areas were evaluated, based on the selected variables, approximately at monthly intervals... and species of Acacia) on the uplands to the west. Soil Characteristics Physical and Chemical Components The loamy sand sites, burned in fall 1974 were characterized by a near neutral soil surface, becoming more basic to 30 centimeters deep (Table 1...

  10. Efficient Heuristic Algorithms for Maximum Utility Product Pricing ...

    E-Print Network [OSTI]

    2012-11-19T23:59:59.000Z

    Nov 19, 2012 ... [5] V. Guruswami, J. Hartline, A. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On profit- maximizing envy-free pricing. Proceedings of the ...

  11. Master Thesis: Collaboration between Utility Systems and Production

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    ) Electricity Natural GasElectricity Generation (Power Plant) 1. Abbreviations: CO (coke oven), SP (sinter plant and LF) Casting (CC) Storage (SY) Reheating (RF) Rolling (HSM) Meltshop Hot Rolling Mill Coal Iron Ore) Meltshop Hot Rolling Mill Coal Iron Ore Slabs CO and BF Gas BOF Gas Given: Hot rolling mill produces set

  12. Utilization of CO{sub 2} in production of polycarbonate

    SciTech Connect (OSTI)

    Beckman, E. J.

    1994-12-31T23:59:59.000Z

    Our original thrust, that of developing a direct route to diphenyl carbonate (the monomer for bisphenol A polycarbonate) using carbon dioxide as a raw material, was unsuccessful. The appendix describes the experiments that were tried in this regard. The primary problem was that we were unable to replicate the literature results of Yamazaki, et al, despite using their conditions and reactants, which form the basis for the proposed work. Despite this setback, we have derived a new route to diphenyl carbonate, which we have described in a proposal to the NSF/EPA partnership for environmental research (the sustainable technology section) which was submitted in April 1995. This route would incorporate carbon dioxide into a dialkyl carbonate using a tin catalyst, followed by transesterification using an enzyme to diphenyl carbonate. Thus, this work may continue on the future. However, despite the setbacks in the original proposed work, we set up two new collaborations with both Miles (now Bayer) and Exxon which employ CO{sub 2} as both monomer and solvent in polymer processing.

  13. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01T23:59:59.000Z

    Pressure on the Steam Gasification of Biomass," Departmentof Energy, Catalytic Steam Gasification of Biomass, 11 AprilII. DISCUSSION III. GASIFICATION/LIQUEFACTION DESIGN BASIS

  14. Utilization of accelerators for transmutation and energy production

    SciTech Connect (OSTI)

    Sheffield, Richard L [Los Alamos National Laboratory

    2010-09-24T23:59:59.000Z

    Given the increased concern over reliable, emission-free power, nuclear power has experienced a resurgence of interest. A sub-critical accelerator driven system (ADS) can drive systems that have either safety constraints (waste transmutation) or reduced fissile content (thorium reactor). The goals of ADS are some or all of the following: (1) to significantly reduce the generation or impacts due to the minor actinides on the packing density and long-term radiotoxicity in the repository design, (2) preserve/use the energy-rich component of used nuclear fuel, and (3) reduce proliferation risk. ADS systems have been actively studied in Europe and Asia over the past two decades and renewed interest is occurring in the U.S. This talk will cover some of the history, possible applicable fuel cycle scenarios, and general issues to be considered in implementing ADS systems.

  15. Utilization of by-product gypsum in construction

    E-Print Network [OSTI]

    Stephenson, Angela Lorraine

    1987-01-01T23:59:59.000Z

    . Neutralization processes with NaOH and Ca(OH) & were studied and stabilization with commercial grade types of portland cement and fly ash was investigated (after different curing periods) to compare relative strengths as applied to road construction.... For phosphogypsum stabilized by portland cement, initial and intermediate stages of strength development obtained for the material, cured for 3 and 7 days at approximate pH levels of 4, 6, and 8 and cement contents of 34 and 64, yielded strengths which increase...

  16. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    A.M. HEIN; J.Y. HWANG; X. HUANG

    1998-08-01T23:59:59.000Z

    Plastic fillers and powder-based aluminum composites typically use fly ash with a particle size of less than five microns. Clean ash classification generates a fine fraction, {approximately}5 microns, and a coarse fraction, {approximately}30 microns. There is a need to find additional uses for the coarser size fraction. Concrete is one area being studied in this project. Other possible applications in which a 30-micron ceramic particle with good flowability is desired include ceramic slurries for investment casting, ceramic coatings for metal casting sand molds, and for use as a surfacing sand. If more information is obtained about these or other applications, it may be included in these reports.

  17. Analysis of the Jobs Resource Utilization on a Production System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ; Optimiza- tion; High Performance Computing 1 General Context High Performance Computing (HPC) platforms

  18. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01T23:59:59.000Z

    Cost Estimates for a Medium BTU Gasification Plant Using A4.6 D /Dt / D Sus 0.7 (=) Btu/H 2 hr °F h ~ _3_,.5. ,..-thennal conductivity (=) Btu-ft/ ft2 hroF l)_ "' p particle

  19. Maximizing Light Utilization Efficiency and Hydrogen Production in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOEDepartment ofMicroalgal Cultures, DOE

  20. Production of Materials with Superior Properties Utilizing High Magnetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 BrProcurementRaw Materials - EnergyField -

  1. Hercules Municipal Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    '''''Note: This program has been temporarily suspended. Contact the utility for more information.'''''

  2. General Services Administration Public Utility Contracting

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the government utility bill, utility service characteristics, utility energy service contract (UESC) requirements, supplier diversity requirement, subcontracting plan requirements, reporting requirements, and the Subcontracting Orientation and Assistance Reviews (SOARs).

  3. Aggregated Data for Investor-Owned Utilities, Publicly Owned Utilities, and Combined Utilities

    E-Print Network [OSTI]

    Utilities: Electric Energy Consumption Electric Peak Demand Natural Gas Consumption #12;Sources: Data,000 300,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Year GWh CEC 2007 Forecast-Staff Draft that the incremental savings is kept equal to the annual savings in 2013. The CEC 2007 Forecast has incorporated

  4. Effective Distribution Policies Utilizing Logistics Contracting Hyun-Soo Ahn Osman Engin Alper Philip Kaminsky

    E-Print Network [OSTI]

    Kaminsky, Philip M.

    Effective Distribution Policies Utilizing Logistics Contracting Hyun-Soo Ahn · Osman Engin Alper@ieor.berkeley.edu · kaminsky@ieor.berkeley.edu Logistics outsourcing is becoming a more widely utilized practice across many of a production- distribution system with stochastic demand and logistics outsourcing. For our initial

  5. Public Utility Regulatory Policies Act of 1978 (PURPA) | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Utility Regulatory Policies Act of 1978 (PURPA) Public Utility Regulatory Policies Act of 1978 (PURPA) "List of Covered Electric Utilities" under the Public Utility...

  6. Utility Partnerships Webinar Series: State Policies to Promote...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Webinar Series: State Policies to Promote Utility Energy Efficiency Programs Utility Partnerships Webinar Series: State Policies to Promote Utility Energy...

  7. The Utility-Industry Partnership for Economic Development: A Troubled Marriage?

    E-Print Network [OSTI]

    Haeri, M. H.; Shaffer, S.

    The electric utilities' relationship with their industrial customers and the importance of the product and services that they offer, uniquely position them as an influential player in the economy of the communities that they serve. Traditionally...

  8. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization 

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  9. Microprocessor Based Combustion Monitoring and Control Systems Utilizing in Situ Opacity, Oxygen and CO Measurement

    E-Print Network [OSTI]

    Molloy, R. C.

    1981-01-01T23:59:59.000Z

    , self-diagnostics, field programmable memory, and improved operator interface. By measuring the products of combustion utilizing the latest In Situ Opacity, Oxygen, and CO Monitoring technology, the fuel air mixture ratio of industrial fuel burning...

  10. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  11. International symposium on peat utilization

    SciTech Connect (OSTI)

    Fuchsman, C.H.; Spigarelli, S.A. (eds.)

    1983-01-01T23:59:59.000Z

    This symposium was designed to provide a forum for peat scientists and engineers to discuss recent developments in the utilization of peat. It is thus the second international peat symposium to be held in Bemidji, the first having occurred two years earlier. Delegates to the 1983 Symposium represented eight nations (Finland, Sweden, Ireland, The Netherlands, Poland, Hungary, Canada, and the US), and a broad spectrum of peat interests. The objective was to survey world-wide activities in peat utilization and to report interesting developments and research results. A separate abstract was prepared for each of 50 items; all will appear in the Energy Data Base, 2 in Energy Research Abstracts, and 16 in Energy Abstracts for Policy Analysis. One paper was processed earlier.

  12. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh [Purdue] [Purdue

    2014-01-21T23:59:59.000Z

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  13. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  14. Property:OpenEI/UtilityRate/Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResultsUtility Jump to:

  15. OpenEI Community - Utility+Utility Access Map

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff thedrivingGiven Utility ID

  16. Nulljob product

    SciTech Connect (OSTI)

    Hughart, N.; Ritchie, D.

    1987-08-01T23:59:59.000Z

    The ever increasing demand for more CPU cycles for data analysis on the authors' Central VAX Cluster led them to investigate new ways to utilize more fully the resources that were available. A review of the experiment and software development VAX systems on site revealed many unused computing cycles. Furthermore, these systems were all connected by DECnet which would allow easy file transfer and remote batch job submission. A product was developed to allow jobs to be submitted on the Central VAX Cluster but actually to be run on one of the remote systems. The processing of the jobs was arranged, to the greatest extent possible, to be transparent to the user and to have minimal impact on both the Central VAX Cluster and remote systems.

  17. NULLJOB product

    SciTech Connect (OSTI)

    Hughart, N.; Ritchie, D.

    1987-05-01T23:59:59.000Z

    The ever increasing demand for more CPU cycles for data analysis on our Central VAX Cluster led us to investigate new ways to utilize more fully the resources that were available. A review of the experiment and software development VAX systems on site revealed many unused computing cycles. Furthermore, these systems were all connected by DECnet which would allow easy file transfer and remote batch job submission. A product was developed to allow jobs to be submitted on the Central VAX Cluster but actually to be run on one of the remote systems. The processing of the jobs was arranged, to the greatest extent possible, to be transparent to the user and to have minimal impact on both the Central VAX Cluster and remote systems.

  18. The Price of Feed Utilities.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1924-01-01T23:59:59.000Z

    'point of view of thr chemist. ref If Figure 1-Prices of digestible protein. and productive energy in cent5 a pound. Methods Suggested Several 'methods have been used for solving some of the problems erred to above. The cottonseed crushers use the protein... of the proteins of various feeds. The productive energy of a feed, expressed in therms or fat, meas- es its power of furnishing heat or energy to the animal, or of furnish- ing material or energy for the production of fat, or for work or for other uses...

  19. State power plant productivity programs

    SciTech Connect (OSTI)

    Not Available

    1981-02-01T23:59:59.000Z

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  20. Utility Green Pricing Programs: Design, Implementation, and Consumer Response

    SciTech Connect (OSTI)

    Bird, L.; Swezey, B.; Aabakken, J.

    2004-02-01T23:59:59.000Z

    The term green pricing refers to programs offered by utilities in traditionally regulated electricity markets, which allow customers to support the development of renewable energy sources by paying a small premium on their electric bills. Since the introduction of the concept in the United States, the number of unique utility green pricing programs has expanded from just a few programs in 1993 to more than 90 in 2002. About 10% of U.S. utilities offered a green pricing option to about 26 million consumers by the end of 2002. This report provides: (1) aggregate industry data on consumer response to utility programs, which indicate the collective impact of green pricing on renewable energy development nationally; and (2) market data that can be used by utilities as a benchmark for gauging the relative success of their green pricing programs. Specifically, the paper presents current data and trends in consumer response to green pricing, as measured by renewable energy sales, participants, participation rates, and new renewable energy capacity supported. It presents data on various aspects of program design and implementation, such as product pricing, ownership of supplies, retention rates, marketing costs, the effectiveness of marketing techniques, and methods of enrolling and providing value to customers.

  1. Maryville Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:MarinWisconsin:Maryville Utilities

  2. Hustisford Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy Development CoHustisford Utilities Jump

  3. Cannelton Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway ElectricCambridgeCannelton Utilities Jump

  4. Pnp gene modification for improved xylose utilization in Zymomonas

    DOE Patents [OSTI]

    Caimi, Perry G G; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2014-12-16T23:59:59.000Z

    The endogenous pnp gene encoding polynucleotide phosphorylase in the Zymomonas genome was identified as a target for modification to provide improved xylose utilizing cells for ethanol production. The cells are in addition genetically modified to have increased expression of ribose-5-phosphate isomerase (RPI) activity, as compared to cells without this genetic modification, and are not limited in xylose isomerase activity in the absence of the pnp modification.

  5. The development and implementation of a production information collection and reporting system

    E-Print Network [OSTI]

    Liu, Haitao, 1975-

    2004-01-01T23:59:59.000Z

    Production information, which includes production counts and line downtime information, is of great importance for automobile assembly plants to diagnose equipment problems and improve line utilization. Outdated information ...

  6. Federal Utility Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

  7. Partnering with Utilities for Energy Efficiency & Security

    Broader source: Energy.gov [DOE]

    Presentation covers partnering with utilities for energy efficiency and security and presenting it at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  8. RCx Insights and Best Practices from Utilities

    Broader source: Energy.gov [DOE]

    Presentation covers the RCx Insights and Best Practices from Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  9. PPL Electric Utilities- Custom Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If applicants do not have one, they should contact the utility at the phone or...

  10. Spot pricing of public utility services

    E-Print Network [OSTI]

    Bohn, Roger E.

    1982-01-01T23:59:59.000Z

    This thesis analyzes how public utility prices should be changed over time and space. Earlier static and non spatial models of public utility pricing emerge as special cases of the theory developed here. Electricity is ...

  11. Industrial Low Temperature Waste Heat Utilization

    E-Print Network [OSTI]

    Altin, M.

    1981-01-01T23:59:59.000Z

    In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

  12. Improving alternative fuel utilization: detailed kinetic combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Salvador Aceves, Daniel Flowers, Bill Pitz, Charlie Westbrook, Emma Silke,...

  13. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    on Residential Energy Efficiency Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Collaborating With Utilities on Residential Energy...

  14. Innovative Utility Partnership at Fort Lewis, Washington

    SciTech Connect (OSTI)

    Not Available

    2000-07-01T23:59:59.000Z

    Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals

  15. Utility Energy Services Contract Data Collection Confidentiality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract Data Collection Confidentiality Statement Utility Energy Services Contract Data Collection Confidentiality Statement Document shows the confidentiality statement for...

  16. Utility Rebates and Incentive Programs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the Federal Utility Partnership Working Group (FUPWG), including group objectives, activities, and services.

  17. Utility of Choice: An Information Theoretic Approach to Investment Decision-making

    E-Print Network [OSTI]

    M. Khoshnevisan; Sukanto Bhattacharya; Florentin Smarandache

    2002-12-10T23:59:59.000Z

    In this paper we have devised an alternative methodological approach for quantifying utility in terms of expected information content of the decision-maker's choice set. We have proposed an extension to the concept of utility by incorporating extrinsic utility; which we have defined as the utility derived from the element of choice afforded to the decision-maker by the availability of an object within his or her object set. We have subsequently applied this extended utility concept to the case of investor utility derived from a structured, financial product - an custom-made investment portfolio incorporating an endogenous capital-guarantee through inclusion of cash as a risk-free asset, based on the Black-Scholes derivative-pricing formulation.

  18. Types of Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    Several types of contracts are used as utility energy service contracts (UESCs). Many agency sites procure electricity services under a contract with the local utility, and most of these contracts have provisions that can also cover energy efficiency projects. Agencies not covered by such agreements may enter contracts with the utility for the sole purpose of implementing energy projects.

  19. Trends in Utility Green Pricing Programs (2005)

    SciTech Connect (OSTI)

    Bird, L.; Brown, E.

    2006-10-01T23:59:59.000Z

    This report presents year-end 2005 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.

  20. January/February 1997 21 Utility Green

    E-Print Network [OSTI]

    of scale that favored a single provider--the electric utility--have been exhausted. Nonutility companies to choose their electricity suppliers. Anticipating this competition, some electric utility companies have pricing program. #12;22 SOLAR TODAY In an early effort to break the histori- cal utility monopoly

  1. A. Peled, and B. Mobasher, "Cement Based Pultruded Composites with Fabrics," Proceedings,7th International Symposium on Brittle Matrix Composites (BMC7), Warsaw, Poland, pp. 505-514, 2003.

    E-Print Network [OSTI]

    Mobasher, Barzin

    A. Peled, and B. Mobasher, "Cement Based Pultruded Composites with Fabrics," Proceedings,7th TECHNOLOGY FOR THE PRODUCTION OF FABRIC-CEMENT COMPOSITES (a) Alva PELED and (b) Barzin MOBASHER (a-mail:barzin@asu.edu ABSTRACT Use of reinforcement in thin cement based elements is essential in order to improve the tensile

  2. SAGEWASP. Optimal Electric Utility Expansion

    SciTech Connect (OSTI)

    Clark, P.D.II; Ullrich, C.J. [Lakeland Electric and Water, FL (United States)

    1989-10-10T23:59:59.000Z

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansion configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.

  3. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers

    SciTech Connect (OSTI)

    Wills, R.H. [Solar Design Associates, Harvard, MA (United States)

    1994-06-01T23:59:59.000Z

    Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

  4. Utilization of Agricultural WasteUtilization of Agricultural Waste for Composite Panelsfor Composite Panels

    E-Print Network [OSTI]

    Utilization of Agricultural WasteUtilization of Agricultural Waste for Composite Panelsfor to increase. There is potential for agricultural residue fiber toThere is potential for agricultural residue. The benefits of utilizing agricultural residues for woodbenefits of utilizing agricultural residues for wood

  5. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect (OSTI)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01T23:59:59.000Z

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  6. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    SciTech Connect (OSTI)

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01T23:59:59.000Z

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  7. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

    1995-12-01T23:59:59.000Z

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  8. A utility`s perspective of the market for IGCC

    SciTech Connect (OSTI)

    Black, C.R. [Tampa Electric Co., FL (United States)

    1993-08-01T23:59:59.000Z

    I believe, in the short-term U. S. market that IGCC`s primary competition is, natural gas-fired combined cycle technology. I believe that in order for IGCC to compete on a commercial basis, that natural gas prices have to rise relative to coal prices, and that the capital cost of the technology must come down. While this statement may seem to be somewhat obvious, it raises two interesting points. The first is that while the relative pricing of natural gas and coal is not generally within the technology supplier`s control, the capital cost is. The reduction of capital cost represents a major challenge for the technology suppliers in order for this technology to become commercialized. The second point is that the improvements being achieved with IGCC efficiencies probably won`t help it outperform the effects of natural gas pricing. This is due to the fact that the combined cycle portion of the IGCC technology is experiencing the most significant improvements in efficiency. I do see, however, a significant advantage for IGCC technology compared to conventional pulverized coal-fired units. As IGCC efficiencies continue to improve, combined with their environmentally superior performance, I believe that IGCC will be the ``technology of choice`` for utilities that install new coal-fired generation. We have achieved economic justification of our project by virtue of the DOE`s funding of $120 million awarded in Round III of their Clean Coal Technology Program. This program provides the bridge between current technology economics and those of the future. And Tampa Electric is pleased to be taking a leadership position in furthering the IGCC knowledge base.

  9. Structure, constitution and utilization of low rank Indian coal

    SciTech Connect (OSTI)

    Iyengar, M.S.; Iyengar, V.A. [M.S. Iyengar and Associates, New Delhi (India)

    1996-12-31T23:59:59.000Z

    This paper briefly reviews the work done on lignite and sub-bituminous coals. Surface area and moisture adsorption dependency on functional group is described. The role of hydrogen bonding in the briquetting of lignite and of alkyl groups in inducing caking properties are discussed. The dualistic behavior of abnormal coals as both a low and high rank coal is also discussed in relation to the nature of their sulphur groups. On the utilization side, processes are described for: (1) Utilization of non-caking coal in the reduction of iron ore. Coal is first briquetted using a lime-tar binder. It is then carbonized for reducing iron ore. The bar is recovered and recycled. (2) Production of carbon black from low rank coals. In this process, coal is carbonized at high temperature in a fluidized bed. Carbon black, for tire industry, is obtained with char as by-product. (3) Utilization of flue gases of industry is also discussed. In this new approach, the flue gas is reduced to synthesis gas by additional fuel and the inevitable surplus heat. The viability of the process is illustrated by details of a recent study in a cement plant. In addition to the above, the implication of recycling flue gas in automobile engines to make them more environment friendly and cost effective, is also discussed.

  10. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26T23:59:59.000Z

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  11. advanced energy utilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  12. Renewable Energy: Utility-Scale Policies and Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Policies & Programs Renewable Energy: Utility-Scale Policies and Programs Renewable Energy: Utility-Scale Policies and Programs Utility-scale renewable energy projects are...

  13. ENERGY STAR Portfolio Manager and Utility Benchmarking Programs...

    Energy Savers [EERE]

    ENERGY STAR Portfolio Manager and Utility Benchmarking Programs: Effectiveness as a Conduit to Utility Energy Efficiency Programs ENERGY STAR Portfolio Manager and Utility...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  15. Geology in coal resource utilization

    SciTech Connect (OSTI)

    Peters, D.C. (ed.)

    1991-01-01T23:59:59.000Z

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

  16. Utility competition with small business. Final report

    SciTech Connect (OSTI)

    D'Addario, P.J.

    1986-06-10T23:59:59.000Z

    The purpose of the study is to take a further, and broader, look at the competition issue between utilities and small businesses of energy-related utility programs. The contractor examined in greater depth the reasons for utility interest in diversifying into nonregulated, and competitive, energy-related fields; the elements of utility subsidization of these non-regulated activities; the potential remedies that small businesses have to counter unfair or illegal competition; the scope of the cross-subsidy problem; and the effectiveness of specific actions taken by small businesses against utilities. The purpose of the report is, therefore, to address these five areas, including five key case studies of actual small business complaints against alleged unfair or illegal utility competition.

  17. Separation of regenerated catalyst from combustion products

    SciTech Connect (OSTI)

    Benslay, R. M.

    1984-10-16T23:59:59.000Z

    A method and apparatus for separating regenerated catalyst from gaseous combustion products within a regenerator. The apparatus comprises a downcomer within the regenerator vessel through which the catalyst and gaseous combustion products flow. Means are provided at the lower end of the downcomer for utilizing the momentum of the catalyst particles to separate them from the gaseous combustion products.

  18. A FRAMEWORK FOR MEASURING SUPERCOMPUTER PRODUCTIVITY1

    E-Print Network [OSTI]

    Bader, David A.

    A FRAMEWORK FOR MEASURING SUPERCOMPUTER PRODUCTIVITY1 10/30/2003 Marc Snir2 and David A. Bader3 Abstract We propose a framework for measuring the productivity of High Performance Computing (HPC) systems, based on common economic definitions of productivity and on Utility Theory. We discuss how

  19. Utility Conservation Programs: Opportunities and Strategies

    E-Print Network [OSTI]

    Norland, D. L.; Wolf, J. L.

    . The utility may promote conservation through a variety of means that will be discussed -- traditional forms of financial incen tives such as loans or rebates or new institutional arrangements such as subsidiaries offering share-the -savings programs... the strategy the utility chooses to promote conservation investment. For example, a significant asset a utility possesses is the know ledge of the end-use patterns of its customers. Especially for commercial and industrial customers, demand characteristics...

  20. BBEE Public Utility Conference Call

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments3/2008ConstructionUseBBEE

  1. Dover Public Utilities- Green Energy Program Incentives

    Broader source: Energy.gov [DOE]

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  2. MEASURING ENERGY CONSERVATION WITH UTILITY BILLS

    E-Print Network [OSTI]

    Deckel, Walter

    2013-01-01T23:59:59.000Z

    A Program of Energy Conservation for the Community CollegeLBL-7836, May 1978, Energy Conservation on Campus", FEA/D-Journal MEASURING ENERGY CONSERVATION WITH UTILITY BILLS

  3. Rochester Public Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Rochester Public Utilities provides incentives for residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt...

  4. Combustion & Fuels Waste Heat Recovery & Utilization Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion & Fuels Waste Heat Recovery & Utilization Project Project Technical Lead - Thermoelectric Analysis & Materials 27 February 2008 2008 DOE OVT Annual Merit Review 2008...

  5. Utility Contract Buydown and Buyout Prepayment Approaches

    Broader source: Energy.gov [DOE]

    Several recommended buydown and buyout approaches exist that allow Federal agencies to leverage prepayments to get the best value from utility energy service contracts (UESCs).

  6. Development Operations Hypersaline Geothermal Brine Utilization...

    Open Energy Info (EERE)

    Hypersaline Geothermal Brine Utilization Imperial County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Operations Hypersaline...

  7. Sustainable Energy Utility- Business Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The District of Columbia's Sustainable Energy Utility (DCSEU) administers the Business Energy Rebate Program. Rebates are available to businesses and institutions for the installation of energy...

  8. Trends in Utility Green Pricing Programs (2005)

    Broader source: Energy.gov [DOE]

    This report presents year-end 2005 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs. It is important to note that this report covers only a portion of voluntary markets for renewable energy. It does not cover green power sold by independent marketers except for cases in which the marketers work in conjunction with utilities or default electricity suppliers.

  9. Dynamic Network Utility Maximization with Delivery Contracts

    E-Print Network [OSTI]

    Nikolaos Trichakis

    2007-09-30T23:59:59.000Z

    Sep 30, 2007 ... Dynamic Network Utility Maximization with Delivery Contracts. Nikolaos ... We briefly describe a heuristic, based on model predictive control, ...

  10. TVA Partner Utilities- eScore Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) in partnership with local electric utilities offers eScore program, which provides homeowners financial incentives to increase the energy efficiency of existing...

  11. Campus Utility Upgrades | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will provide essential support for the Argonne Leadership Computing Facility high performance computing upgrades, expected to occur in FY 2018. Campus utility upgrades also support...

  12. Electric Utilities and Electric Cooperatives (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and...

  13. Savings by Design (Offered by five Utilities)

    Broader source: Energy.gov [DOE]

    In conjunction with the California Department of Public Utilities, Savings by Design offers services and incentives to help owners and designers of commercial buildings raise energy performance....

  14. Sharyland Utilities- Residential Standard Offer Program

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  15. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6...

  16. Lassen Municipal Utility District- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

  17. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Energy Savers [EERE]

    Energy in Southwest States WASHINGTON - Today, the Department of Energy's Western Area Power Administration (Western) and a group of Arizona utilities celebrated the energizing of...

  18. Optimizing Asset Utilization and Operating Efficiency Efficiently...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also part of the solution for Smart Grid Optimizing Asset Utilization and Operating Efficien Efficientl More Documents & Publications Metrics for Measuring Progress Toward...

  19. Sharyland Utilities- Commercial Standard Offer Program (Texas)

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  20. Maximizing expected utility over a knapsack constraint

    E-Print Network [OSTI]

    2014-08-11T23:59:59.000Z

    f(t)=1 ? e??t for ? > 0, and power utility f(t) = tp for 0 true stochastic problem of similar relative error.

  1. Utility Energy Services Contracts: Enabling Documents Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update Utility Energy Services Contracts: Enabling Documents Update Presentation covers the FUPWG Fall Meeting, held on November 28-29, 2007 in San Diego, California....

  2. Sandia National Laboratories: utility-scale power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utility-scale power Sandia Has Signed a Memorandum of Understanding with Case Western Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy...

  3. Utility FGD Survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  4. Colorado Springs Utilities- Energy Efficient Builder Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR® qualified homes within the CSU service area. The incentive range...

  5. Hutchinson Utilities Commission- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Hutchinson Utilities Commission (HUC) offers rebates to commercial customers in Hutchinson who perform energy conservation improvements to their businesses. These rebates are limited to one...

  6. Utility Locating in the DOE Environment

    SciTech Connect (OSTI)

    Clark Scott; Gail Heath

    2006-04-01T23:59:59.000Z

    Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

  7. Efficient Anonymizations with Enhanced Utility Jacob Goldberger

    E-Print Network [OSTI]

    Beimel, Amos

    Efficient Anonymizations with Enhanced Utility Jacob Goldberger School of Engineering Bar the correlation between the original public data and the generalized public data. We, bearing in mind

  8. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobalUtilityUtility

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility Rate HomeUtility

  10. Impacts of new coal-using technologies on coal markets and electric utilities

    SciTech Connect (OSTI)

    Stauffer, C.H.

    1982-06-01T23:59:59.000Z

    ICF's Coal and Electric Utilities Model (CEUM) was used to make forecasts on the impact of new coal technologies and markets and utilities. The new technologies include the gasifier/ combined cycle (GCC), the atmospheric fluidized bed combustor (AFBC), and the retrofit of synthetic coal-fluids on advanced combined cycle capacity. National production by the year 2000 will increase slightly. Impact of technology will be negligible due to the offsetting effects of GCC (it uses less coal) and synthetic coal fluids. Regional production will increase in synthetic coal fluid regions, decrease in sulphur coal regions. In utilities, coal additions by GCC are favored in the east, by AFBC in the west. SO/sub 2/ emissions will start to decline in 1995, NOx emissions will continue to rise, but not as sharply. Overall costs of utilities are expected to fall slightly by the year 2010.

  11. Cryo Utilities Room Cooling System

    SciTech Connect (OSTI)

    Ball, G.S.; /Fermilab

    1989-01-26T23:59:59.000Z

    Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

  12. History of energy sources and their utilization in Nigeria

    SciTech Connect (OSTI)

    Ogunsola, O.I. (Dept. of Petroleum Engineering, Univ. of Port Harcourt, Port Harcourt (NG))

    1990-01-01T23:59:59.000Z

    Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956 and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.

  13. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect (OSTI)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01T23:59:59.000Z

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  14. Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel with the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)

  15. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    SciTech Connect (OSTI)

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01T23:59:59.000Z

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  16. Nutrient digestibility and protein utilization by heifers and steers fed high molasses-urea diets

    E-Print Network [OSTI]

    Pina, Angel Modesto

    1973-01-01T23:59:59.000Z

    Directed by: Professor J. K. Riggs Experiments were conducted to study the effect of roughage level on nutrient digestibility of high molasses- urea diets and to evaluate the level of fish meal best utilized by animals in such diets. The animals.... Some developing countries in tropical areas have a readily available source of energy in the form of blackstrap molasses, a by-product of the sugar cane industry. Presently much exported at comparatively have been made to utilize of the blackstrap...

  17. Utilization of Lightweight Materials Made from Coal Gasificaiton Slags

    SciTech Connect (OSTI)

    Choudhry, V.; Hadley, S. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1996-12-31T23:59:59.000Z

    The integrated gasification combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power; however, it generates solid waste materials in relatively large quantities. For example, a 400-MW power plant using 4000 tons of 10% ash coal per day may generate over 440 tons/day of solid waste of slag, consisting of vitrified mineral matter and unburned carbon. The disposal of the wastes represents significant costs. Regulatory trends with respect to solid wastes disposal, landfill development costs and public concern make utilization of solid wastes a high-priority issue. As coal gasification technologies find increasing commercial applications for power generation or production of chemical feed stocks, it becomes imperative that slag utilization methods be developed, tested and commercialized in order to offset disposal costs. Praxis is working on a DOE/METC funded project to demonstrate the technical and economic feasibility of making lightweight and ultra-lightweight aggregates from slags left as solid by-products from the coal gasification process. The project objectives are to develop and demonstrate the technology for producing slag-based lightweight aggregates (SLA), to produce 10 tons of SLA products with different unit weights from two slags, to collect operational and emissions data from pilot-scale operations, and to conduct laboratory and commercial scale evaluations of SLA with conventional lightweight and ultra-lightweight aggregates.

  18. UV Curable Coatings in Aluminum Can Production 

    E-Print Network [OSTI]

    Donhowe, E. T.

    1994-01-01T23:59:59.000Z

    based coatings. The Coors Brewing Company Can Manufacturing Plant has been utilizing this technology in full scale aluminum can production since 1975, and therefore has had the opportunity to evaluate practical operations of the UV technology...

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) -...

  20. Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized Materials and Rapid Assays. Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized...

  1. Fact Sheet: DOE/National Association of Regulatory Utility Commissione...

    Office of Environmental Management (EM)

    DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Fact Sheet: DOENational Association of Regulatory Utility...

  2. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31T23:59:59.000Z

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

  3. The Utility Battery Storage Systems Program Overview

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  4. Grid Reliability- An Electric Utility Company's Perspective

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Southern Company's business continuity, North American Electric Reliability Corporation (NERC) cybersecurity, and homeland security as well as physical recovery after a major outage, and five questions to ask your local utility.

  5. Risk Aversion Asymptotics for Power Utility Maximization

    E-Print Network [OSTI]

    Nutz, Marcel

    Risk Aversion Asymptotics for Power Utility Maximization Marcel Nutz ETH Zurich, Department consider the economic problem of optimal consumption and in- vestment with power utility. We study consumption is obtained for general semimartingale mod- els while the convergence of the optimal trading

  6. Home Health and Informal Care Utilization

    E-Print Network [OSTI]

    Home Health and Informal Care Utilization and Costs Over Time in Alzheimer's Disease Carolyn W. Zhu, NY 10468 (E-mail: Carolyn.zhu@mssm.edu). Home Health Care Services Quarterly, Vol. 27(1) 2008, and (3) estimate possible interdependence of home health and informal care utilization. Methods

  7. Utility planning tools catalog. Final report

    SciTech Connect (OSTI)

    Diamond, M.

    1985-02-01T23:59:59.000Z

    Planning methods new to the industry can help utilities steer a sound course in today's complex business environment. This catalog offers an overview of 23 innovative techniques drawn from other industries. The tools selected focus on supporting strategic analysis and decision making for utilities.

  8. Utility programs for substation diagnostics development

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This article is a brief overview of the opening remarks of the utility panel. These remarks developed a number of interesting substation diagnostic activities and concepts in which the electric utilities are engaged and outlined the considerations which must accompany development of diagnostic sensors and systems. These area include transformer diagnostics, circuit breaker diagnostics, and testing/cost of diagnostic systems.

  9. Utilization of Wind Energy at High Altitude

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-10T23:59:59.000Z

    Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

  10. CDOT Utility Accommodation Code Rule 2.2 - Utility Permits and...

    Open Energy Info (EERE)

    Accommodation Code Rule 2.2 - Utility Permits and Utility Relocation Permits to the State Highway Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  11. Research results and utility experience workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This workshop was sponsored by the Distributed Utility Valuation (DUV) Project-a joint effort of the National Renewable Energy Laboratory (NREL) Department of Energy (DOE), Electric Power Research Institute (EPRI), Pacific Northwest Laboratory (PNL) Department of Energy (DOE), and Pacific Gas & Electric Company (PG&E). The purpose of the workshop is to provide a forum for utilities, other research organizations, and regulatory agencies to share results and data on Distributed Utility (DU)-related research and applications. Up-to-date information provided insight into the various technologies available to utilities, the methods used to select the technologies, and case study results. The workshop was divided into three sessions: Planning Tools; Utility Experience; and Policy and Technology Implications. Brief summaries of the individual presentations from each session are attached as appendices.

  12. New Concept for Industrial Energy/Utility Values

    E-Print Network [OSTI]

    O'Brien, W. J.

    -up for emergencies and waste heat ooiler outages. It is also inflated because all steam fran waste heat ooilers is credited at full offsite boiler steam cost. Detennining an equitable value for a utility, particularly steam, is a canp1ex problem involving many... with three 500 klb/hr offsite boilers i operating normally at 400 klb/hr total in at system that has 1150 klb/hr of CO and waste t boiler steam production. I lao PSIG o---%-.~7~::-----,-....L_----r-_--I.._+---o 1&0 PSIG o--'--:";-;:::--~':'::'-"T:"13...

  13. Utilization of oilseed proteins in precooked breakfast sausage 

    E-Print Network [OSTI]

    Harward, Eugene Rees

    1979-01-01T23:59:59.000Z

    links (control and protein-added) were made in which vary- ing levels of raw meat were replaced with an equivalent weight of soy or cottonseed proteins which were calculated to contain approximately 16% protein on a hydrated basis. In Experiment 1..., 10% of the raw meat was replaced indi- vidually with soy or cottonseed proteins. In Experiment 2 10%, 20% or 30% of the raw meat was replaced with a 1:1 ratio of textured to non-textured protein products. Experiment 3 utilized varying ratios of SI...

  14. Waste to Wisdom: Utilizing forest residues for the production of bioenergy and biobased products

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLEofConservationDepartment ofBalanceWaste

  15. Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-08-29T23:59:59.000Z

    The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.

  16. DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2003-04-01T23:59:59.000Z

    During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

  17. Trends in Utility Green Pricing Programs (2004)

    SciTech Connect (OSTI)

    Bird, L.; Brown, E.

    2005-10-01T23:59:59.000Z

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.

  18. Utility Energy Services Contracts: Enabling Documents Update

    Broader source: Energy.gov (indexed) [DOE]

    use of RE and EE products 2916. Sale of electricity from alternate energy and cogeneration production 2917. Development of geothermal on military lands 2918. Fuel sources for...

  19. Utility FGD survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    This is Volume 2 part 2, of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. This volume particularly contains basic design and performance data.

  20. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > Posts byUtility

  1. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > PostsUtility Rate

  2. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > PostsUtility

  3. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate >Utility Rate Home

  4. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate >Utility Rate

  5. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate >Utility

  6. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobal AtlasUtility

  7. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobalUtility Rate Home

  8. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobalUtility Rate

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobalUtility

  10. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility Rate Home >

  11. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility Rate Home

  12. Utility Scale Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility RatePalo Alto,

  13. Utilization Technology Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility RatePalo

  14. Antitrust concerns in the modern public utility environment

    SciTech Connect (OSTI)

    Meeks, J.E. [Ohio State Univ., Columbus, OH (United States). Coll. of Law

    1996-04-01T23:59:59.000Z

    Direct regulation of public utility activity and behavior has been the predominant approach to protect the public interest in this country. Changes in technology, as well as new thinking about the optimum role of regulation, have created a changing atmosphere in all of the traditional public utility industries. Competitive markets for many of the products and services in these industries have been developing. While monopoly power will continue to exist in certain parts of these industries and require direct regulation, in many areas a growing reliance upon competition as the best method of serving the public interest is developing. With this shift in emphasis from regulation to free markets, the antitrust laws take on new importance for these industries. In the absence of direct regulator control, those laws are society`s primary method of insuring the markets necessary to make competition an effective device for protecting the public interest. This study provides an overview of the antitrust laws, briefly describes the applicable theoretical underpinnings, and then turns to areas where public utility activity may pose special problems or conflicts with prevailing antitrust policy.

  15. The Energy Services Provider as Corporate Engineer: A Partnership in Developing a Productive, Sustainable Energy Management Program

    E-Print Network [OSTI]

    Imel, M.; Gromacki, M.

    2007-01-01T23:59:59.000Z

    . Burns & McDonnell (BMcD) is a large, multi-disciplined engineering firm with design-build and energy services capabilities. The firms have worked in the past on process design, environmental, and construction projects....

  16. Financing for Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    Financing is a significant portion of utility energy service contract (UESC) costs. Experience shows several things the Federal Government can do to get the best value by reducing UESC financial transaction costs and interest.

  17. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01T23:59:59.000Z

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  18. Utilizing optimization in municipal stormwater management

    E-Print Network [OSTI]

    Dorman, Stephen Paul

    1995-01-01T23:59:59.000Z

    planning methodology which utilizes an optimization routine as its primary decision making tool. A thorough literature review presents the historical and current trends in the general area of stormwater quality. A detailed explanation and analysis...

  19. Risk Management Strategies for Electric Utilities

    E-Print Network [OSTI]

    Sheets, E.

    The Pacific Northwest has gone through an enormously expensive lesson in both the uncertainty and risk associated with power planning. The difficult lessons we have learned may benefit other parts of the country. In the 1970s, utility planners...

  20. Federal Utility Partnership Working Group Industry Commitment

    Broader source: Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...