National Library of Energy BETA

Sample records for blvd po box

  1. Oak Ridge Operations PO. Box E

    Office of Legacy Management (LM)

    PO. Box E Oak Ridge,Tennessee 37830 E. 6. DeLaney, DRAP, NE-24 COMPLETION OF DECONTAMINATION OF GILMAN HALL, UNIVERSITY OF CALIFORNIA AT BERKELEY Attached is a copy of the final report covering the remedial actions and associated radiological survey work on Gilman Hall. Your attention is called to the last paragraph of the attached letter from Mr. Davis (SAN) which states: "Completion of this work has fulfilled OR's obligation under the Formerly Utilized Sites Remedial Action Program

  2. OFFICE OF RIVER PROTECTION P.O. Box 450, MSIN H6-60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy Office of River Protection Office of River Protection P.O. Box 45) P.O. Box 450 Richland WA 99352 MS: H6-60 Richland WA 99352 8. NAME AND ADDRESS OF...

  3. P.O. Box 117, Oak Ridge, TN 37831

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Box 117, Oak Ridge, TN 37831 g (865) 241-8893 g IVsurveys@orau.org On the Web: www.orau.orgenvironmental-assessments-health-physics Oak Ridge Associated Universities (ORAU) is a...

  4. T U.S. Department of Energy P.O. Box 450, MSIN H6-60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy P.O. Box 450, MSIN H6-60 Richland, Washington 99352 AES OCT 1 12012 12-CPM-0 144 Dr. J. G. Hwang, Project Manager Advanced Technologies and Laboratories...

  5. 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507 cliff.whyte@netl.doe.gov  Voice (304) 285-2098  Fax (304) 285-4403  www.netl.doe.gov A l b a ny, O R * M o rg a n tow n , W V * Pi t t s b u rg h , PA February 24, 2015 Dear Reader: The U.S. Department of Energy (DOE) has prepared a supplement analysis (SA) to the Texas Clean Energy Project (TCEP) Final Environmental Impact Statement (EIS). This document was prepared in accordance with the National Environmental Policy Act of

  6. Westinghouse P.O. Box 1970 Hanford COlTlpany Richland, Washington 99352

    Office of Scientific and Technical Information (OSTI)

    Westinghouse P.O. Box 1970 Hanford COlTlpany Richland, Washington 99352 Hanford Operations and Engineering Contractor for the U S . Department of Energy under Contract DE-AC06-87RL10930 Approved for Public Release o-vrrorr 91: WHC-MR-0293 Revision 2 _-- Legend and Legacy: Fifty Years of Defense Production at the Hanford Site M. S. Gerber Date Published September 1992 Prepared for the U.S. Department of Energy Office of Environmental Restoration and Waste Manage men t 3 e f e r e n c e WHC-c:

  7. Oak Ridge Site Specific Advisory Board * P.O. Box 2001, EM-91, Oak Ridge, TN 37831

    Office of Environmental Management (EM)

    April 12, 2012 Susan Cange Acting Manager for Environmental Management DOE-Oak Ridge Office P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Ms. Cange: Recommendation # 209: Recommendation on Fiscal Year 2014 DOE Oak Ridge Environmental Management Budget Request At our April 11, 2012, meeting the Oak Ridge Site Specific Advisory Board approved the enclosed recommendation regarding the FY 2014 DOE-Oak Ridge Environmental Management Budget Request. The board's Environmental Management Budget &

  8. Oak Ridge Site Specific Advisory Board * P.O. Box 2001, EM-91, Oak Ridge, TN 37831

    Office of Environmental Management (EM)

    Ridge Site Specific Advisory Board * P.O. Box 2001, EM-91, Oak Ridge, TN 37831 Phone: 865-241-4583, 865-241-4584, 1-800-382-6938 * Fax: 865-241-6932 * Internet: www.oakridge.doe.gov/em/ssab M Ma an ny y V Vo oi ic ce es s W Wo or rk ki in ng g f fo or r t th he e C Co om mm mu un ni it ty y O O a a k k R R i i d d g g e e S S i i t t e e S S p p e e c c i i f f i i c c A A d d v v i i s s o o r r y y B B o o a a r r d d September 11, 2014 Susan Cange Acting Manager Oak Ridge Office of

  9. P.O. Box A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bill Taylor, DOE, (803) 952-8564 bill.taylor@srs.gov Energy Department Adds Two-Years to Liquid Waste Management Contract at Savannah River Site Aiken, SC (April 29, 2015) -- The...

  10. BUREAU OF LAND MANAGEMENT Farmington District Office 6251 College Blvd., Suite A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior BUREAU OF LAND MANAGEMENT Farmington District Office 6251 College Blvd., Suite A NMNM 122352 Farmington, New Mexico 87402 www.blm.gov/nm 2920 (21240-mr) Dear Render: Enclosed ror your review and comment is the Draft Environmental Impact Statement (Draft EIS) for the proposed San Juan Basin Energy Connect Project (Project). The Bureau of Land Management (BLM) prepared a Draft EIS in consultation with cooperating agencies and in accordance with the National Environmental Policy Act

  11. Major Gary Widner Illinois National Guard Camp Lincoln 1301 N. McArthur Blvd.

    Office of Legacy Management (LM)

    Gary Widner Illinois National Guard Camp Lincoln 1301 N. McArthur Blvd. Springfield, Illinois 62702 Dear Major Widner: As we discussed during our telecon of December 5, 1985, I am enclosing two letters and their attachments (Enclosures 1 and 2) relative to information on the National Guard Armory at Chicago, Illinois. In response to your questions on previous notification of surveys and the associated results, we have nothjng in our earlier files or those of the Department of Energy Chicago

  12. Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408

    Office of Environmental Management (EM)

    Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408 Telephone: (561)691-2790, Fax: (561)691-7577 Page 1 of 19 November 1, 2010 U.S. Department of Energy Office of Electricity Delivery & Energy Reliability 1000 Independence Ave., S.W. Room 8H033 Washington, DC 20585 Via E-mail: smartgridpolicy@hq.doe.gov Re: Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges Florida Power & Light Company ("FPL") appreciates the opportunity

  13. Sampling box

    DOE Patents [OSTI]

    Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

    2000-01-01

    An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

  14. Christopher T. [Fermi National Accelerator Laboratory, P.O. Box...

    Office of Scientific and Technical Information (OSTI)

    IL 60439-4815 (United States), E-mail: zachos@anl.gov 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPACTIFICATION; DUALITY; FERMIONS; GAUGE INVARIANCE; HOLOGRAPHY;...

  15. Optional Form 307

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International, Inc. Oak Ridge Operations Office 20010 Century Blvd., Suite 500 Oak Ridge Financial Services Center Germantown, MD 20874-7114 P.O. Box 4307 Oak Ridge, TN 37831 9A....

  16. Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 550, MSIN A7-75 Richland, WA 99352 (509) 376-5803 Kristen.skopeck@rl.doe.gov Emerald Laija U.S. Environmental Protection Agency Hanford Project Office 309 Bradley Blvd,...

  17. BoxLib

    Energy Science and Technology Software Center (OSTI)

    2000-10-01

    BoxLib is a C++ foundation library used to aid in constructing parallel grid based Partial Differential Equation (PDE) solvers, particularly for Adaptive Mesh Refinement (AMR) applications.

  18. Glove box shield

    DOE Patents [OSTI]

    Brackenbush, Larry W. (Richland, WA); Hoenes, Glenn R. (Richland, WA)

    1981-01-01

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  19. "Sue Martindale","Meeting Coordinator","20201 Century Blvd","Germantown","MD","20874","NTP Albuquerque","301 353-8319","301 42

    Office of Environmental Management (EM)

    1 TEC Attendees.doc 1 ATTENDEES TEC WINTER 2001 MEETING HILTON PORTLAND HOTEL, PORTLAND, OREGON FEBRUARY 6-7, 2001 John C. Allen, Chairman Transportation Research Board Hazmat Transportation Committee c/o Battelle 901 D Street, S.W. Washington, DC 20024 202-646-5225 Fax: 202-646-5271 allenj@battelle.org Mona Aragon Transportation Programs Sandia National Laboratories P.O. Box 5800-0718 Albuquerque, NM 87185-0718 505-844-2541 Fax: 505-844-0244 mlrage@sandia.gov Patricia M. Armijo, Program Analyst

  20. Profiles in garbage: Corrugated boxes

    SciTech Connect (OSTI)

    Miller, C.

    1997-12-01

    Corrugated boxes (also known as old corrugated containers, or OCC) are used to ship products to factories, warehouses, retail stores, offices, and homes. The primary market for OCC is the paperboard industry, which uses OCC for corrugated medium, linerboard, recycled paperboard, and other paper products. In addition, 2.6 million tons of OCC were exported in 1996. OCC provided 37% of the scrap paper that was exported in 1996. Some corrugated boxes can be reused before recycling. Corrugated boxes are easily and highly recyclable. Large producers such as grocery store warehouses and factories have recycled their corrugated boxes for some time. If shredded properly, uncoated corrugated boxes are easily compostable.

  1. Projection optics box

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA); Malsbury, Terry (Tracy, CA); Hudyma, Russell M. (San Ramon, CA); Parker, John M. (Tracy, CA)

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  2. BoxLib Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BoxLib Case Study BoxLib Case Study Background BoxLib is a publicly available software framework for building massively parallel block-structured AMR applications. Key features of BoxLib include Support for block-structured AMR with optional subcycling in time Support for cell-centered, face-centered and node-centered data Support for hyperbolic, parabolic, and elliptic solves on hierarchical grid structure C++ and Fortran90 versions Support for hybrid parallelism model with MPI and OpenMP Basis

  3. Impedance Measurement Box

    ScienceCinema (OSTI)

    Christophersen, Jon

    2013-05-28

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  4. PMT BOX TUFTS - Sheet1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REV 1 2 3 4 A B B A 4 3 2 1 APPRV DATE REV DESCRIPTION REVISIONS ZONE FILE: PMT BOX TUFTS PMT BOX ASS'Y 2:1 11 13 RSF RSF RSF - - - - - - - INITIAL ISSUE - - WEIGHT: 0.077...

  5. PMT BOX TUFTS - Sheet1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REV 1 2 3 4 A B B A 4 3 2 1 APPRV DATE REV DESCRIPTION REVISIONS ZONE FILE: PMT BOX TUFTS PMT BOX ASS'Y 2:1 10 13 RSF RSF RSF - - - - - - - INITIAL ISSUE - - WEIGHT: 0.254...

  6. SUBCONTRACTING REPORT FOR INDIVIDUAL CONTRACTS DUNS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SUBCONTRACTING REPORT FOR INDIVIDUAL CONTRACTS DUNS #: 167280762 Verify Data: Yes Corporation, Company or Subdivision Covered: Vendor Mailing Address: WASHINGTON CLOSURE LIMITED LIABILITY COMPANY 720 PARK BLVD BOISE, Idaho 837127758 720 PARK BLVD P.O. BOX 73 BOISE, Idaho 837290001 Vendor Name: Vendor Physical Address: Date Signed: October 21,2008 Agency Awarding Contract: ENERGY, DEPARTMENT OF (8900) Contracting Office Agency 10: 8900 Contracting Office Agency Name: ENERGY, DEPARTMENT OF ~~_F'

  7. Microsoft Word - DOE-CBFO-01-1006-NDA Box PDP Plan-Revision 5-Final 2-5-2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program Revision 5 February 2015 This document supersedes Revision 4 of DOE/CBFO-01-1006 U.S. Department of Energy Carlsbad Field Office TRU Sites and Transportation Division DOE/CBFO-01-1006 Revision 5 NDA Box PDP Plan February 2015 2 This document has been submitted as required to: U.S. Department of Energy Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN

  8. Plate forming and break down pizza box

    DOE Patents [OSTI]

    Pantisano, Frank (411 Linda Ave., Blackwood, NJ 08012); Devine, Scott M. (B7 Fairways Apartments, Blackwood, NJ 08012)

    1992-01-01

    A standard corrugated paper pizza box is provided with slit cuts cut through the top panel of the pizza box in a shape to form four circular serving plates with a beveled raised edge and cross slit cuts through the bottom panel of the pizza box separating the box into four essentially equal portions for easy disposal.

  9. NETL's JIC in a box

    ScienceCinema (OSTI)

    David Anna

    2010-01-08

    The National Energy Technology Laboratory developed the idea of a portable joint information center AKA JIC in-a-box. This video discribes some of the equipment in the portable JIC as well as some of the methodology that NETL developed as a result of this portable JIC concept.

  10. Savannah River Operations Office P.O. Box A Aiken. South Carolina...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fee. As a result of careful and considerate evaluation of the performance-based incenti ves, I have determined that SRNS has earned 44,329,841. Additional guidance will be...

  11. 3200 East Ave. S. * PO Box 817 * La Crosse, WI 54602-0817 ...

    Energy Savers [EERE]

    and employ about 540. Electricity in the Dairyland system ... is delivered reliably and at the lowest reasonable cost. ... the ICC Termination Act of 1995, is the law of the land ...

  12. 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEMORANDUM FOR NEPA FILE FROM: MARK LUSK NEPA DOCUMENT MANAGER SUBJECT: Supplement Analysis for the Exide Technologies' Proposed Project under the Electric Drive Vehicle Battery and Component Manufacturing Initiative (DOE/EA-1712) New Information: Proposed Minor Change to Exide Technologies' Proposed Project Location: Exide Technologies' Plant in Bristol, Tennessee Proposed by: Exide Technologies 1. Introduction This proposed project was one of 30 projects DOE selected for financial assistance

  13. OFFICE OF RIVER PROTECTION P.O. Box 450, MSIN H6-60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAR 05 2013 1 3-CPM-0037 Mr. Charles A. Simpson, Contracts Manager Washington River Protection Solutions LLC 2440 Stevens Center Place Richland, WA 99354 Mr. Simpson: CONTRACT NO. DE-AC27-08RV 14800 - TRANSMITTAL OF CONTRACT MODIFICATION 200 The purpose of this letter is to transmit the fully executed Contract Modification 200. This Change Order modification is to direct Washington River Protection Solutions LLC (WRPS) to begin field testing of an alternative dome cutting technology and

  14. OFFICE OF RIVER PROTECTION P.O. Box 450, MSIN H6-60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... C. ORGANIZATIONAL STRUCTURE FOR PERFORMANCE FEE ... 60 5. INTERIM RATING CHART - OBJECTIVE AND SUBJECTIVE ... FY fiscal year HFFACO Hanford Federal Facility Agreement ...

  15. Oak Ridge Site Specific Advisory Board * P.O. Box 2001, EM-91...

    Office of Environmental Management (EM)

    DOE-HQ Melyssa Noe, DOE-ORO John Owsley, TDEC Mark Watson, Oak Ridge City Manager Ron Woody, Roane County Executive File Code 140 1 Oak Ridge Site Specific Advisory Board...

  16. Westinghouse P.O. Box 1970 Hanford COlTlpany Richland, Washington...

    Office of Scientific and Technical Information (OSTI)

    ... ex-lD..n;nrt kn, . & e a Engineer Any Changes Will ... The changes which are made will hr in the upper management ... North Atlantic Treaty Organization in the case of the U.S. ...

  17. Savannah River Operations Office P.O. Box A Aiken, South Carolina...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aiken, South Carolina 29802 BUSINESS SENSITIVE OEC 1 0 tuu9 Mr. Garry Flowen, President &. CEO Savannah River Nuclear Solutions, LLC Building 730- I a, Room 333 Aiken. SC 29808...

  18. Department of Energy Idaho - Press Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Box Press Box DOE Pulse DOE-EM Related Newsletters on the American Recovery and Reinvestment Act of 2009 DOE-Idaho Operations Summary DOE-ID Press Releases and Video Clips...

  19. YuPo Lin | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yupo Lin YuPo Lin ElectroChemical and Bioprocessing Engineer E-mail yplin@anl.gov Projects Innovative Separations Resin Wafer Electrodeionization

  20. Illumination box and camera system

    DOE Patents [OSTI]

    Haas, Jeffrey S. (San Ramon, CA); Kelly, Fredrick R. (Modesto, CA); Bushman, John F. (Oakley, CA); Wiefel, Michael H. (La Honda, CA); Jensen, Wayne A. (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  1. Glove box for water pit applications

    DOE Patents [OSTI]

    Mills, William C. (Richland, WA); Rabe, Richard A. (North Fork, ID)

    2005-01-18

    A glove box assembly that includes a glove box enclosure attached to a longitudinally extending hollow tube having an entranceway, wherein the portion of the tube is in a liquid environment. An elevator member is provided for raising an object that is introduced into the hollow tube from the liquid environment to a gas environment inside the glove box enclosure while maintaining total containment.

  2. Associated Post Office Box 117

    Office of Legacy Management (LM)

    Associated Post Office Box 117 Oak Ridge Tennessee 37831 -01 17 Energy Enuronmerl! Systems DIWSIO~I September 7, 1990 ? -iAsWP / Fll ,- ,) 3 Mr. Alexander Williams Office of Environmental Restoration and Waste Management U.S. Department of Energy Washington, DC 20545 Subject: PRELIMINARY SITE VISIT - REVERE COPPER AND BRASS CORP. Dear Mr. Williams: This letter is in response to your request concerning the results of the preliminary site visit to the former Revere Copper and Brass Corporation

  3. TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC. HEADQUARTERS: P.O

    Energy Savers [EERE]

    TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC. HEADQUARTERS: P.O . BOX 33695 DENVER, COLORADO 80233-0695 October 31, 2013 Ms. Julie A. Smith and Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to : juliea.smith@hq.doe.gov and christopher.lawrence@hq.doe.gov 303-452-6111 Re: Department of Energy-Improving Performance of Federal Permitting

  4. Interchangeable breech lock for glove boxes

    DOE Patents [OSTI]

    Lemonds, David Preston

    2015-11-24

    A breech lock for a glove box is provided that may be used to transfer one or more items into the glove box. The breech lock can be interchangeably installed in place of a plug, glove, or other device in a port or opening of a glove box. Features are provided to aid the removal of items from the breech lock by a gloved operator. The breech lock can be reused or, if needed, can be replaced with a plug, glove, or other device at the port or opening of the glove box.

  5. Lawrence Livermore National Laboratory, P. O. Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 Case Case Study DDCMP: Beyond Homogeneous Decomposition with ddcMD Scaling Long-Range Forces on...

  6. RS-PO-0001-001.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RS-PO-0001-001.doc Radiation Badge Date: 20000509 1. Introduction: CAMD is a radiation producing facility. Therefore, there is a need to monitor the radiation exposure of all...

  7. Widget:ExpandableBoxStart | Open Energy Information

    Open Energy Info (EERE)

    will be collapsed upon page load and can be expanded by clicking anywhere on the box. Once expanded, the box can be collapsed by clicking anywhere on the box header (the original...

  8. Widget:ExpandableBoxEnd | Open Energy Information

    Open Energy Info (EERE)

    will be collapsed upon page load and can be expanded by clicking anywhere on the box. Once expanded, the box can be collapsed by clicking anywhere on the box header (the original...

  9. PIA - DOE OCIO, Open Government Plan Comment Box | Department...

    Office of Environmental Management (EM)

    DOE OCIO, Open Government Plan Comment Box PIA - DOE OCIO, Open Government Plan Comment Box PIA - DOE OCIO, Open Government Plan Comment Box PDF icon PIA - DOE OCIO, Open...

  10. Box Canyon Motel Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Canyon Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box...

  11. 70004 PMT BOX TUFTS - Sheet1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    06810220 MSC - 8 PMT BOX, TUFTS UNIVERSITY 1 1 - 4 26 0.193 93496A415 MCMASTER CARR 10 NOM LOCKWASHER- BRASS A Parts List ITEM NO. QTY DETSHT ASSYSHT DESCRIPTION MATERIAL SIZE...

  12. Solar Pizza Oven Box k - 6

    Office of Environmental Management (EM)

    Ready to Build? BUILD A PIZZA BOX SOLAR OVEN Background The sun is hot enough to bake food. Here's how to make a simple solar oven that gets hot enough to warm up cookies and other...

  13. Glove box on vehicular instrument panel

    DOE Patents [OSTI]

    Atarashi, Kazuya (Saitama, JP)

    1985-01-01

    A glove box for the upper surface of an automobile dashboard whereby it may be positioned close to the driver. The glove box lid is pivotally supported by arms extending down either side to swing forwardly for opening. A hook is pivotally support adjacent an arm and weighted to swing into engagement with the arm to prevent opening of the lid during abrupt deceleration. A toggle spring assists in maintaining the lid in either the open or closed position.

  14. HYDROGEN AND VOC RETENTION IN WASTE BOXES

    SciTech Connect (OSTI)

    PACE ME; MARUSICH RM

    2008-11-21

    The Hanford Waste Management Project Master Documented Safety Analysis (MDSA) (HNF-14741, 2003) identifies derived safety controls to prevent or mitigate the risks of a single-container deflagration during operations requiring moving, venting or opening transuranic (TRU)-waste containers. The issue is whether these safety controls are necessary for operations involving TRU-waste boxes that are being retrieved from burial at the Hanford Site. This paper investigates the potential for a deflagration hazard within these boxes and whether safety controls identified for drum deflagration hazards should be applied to operations involving these boxes. The study evaluates the accumulation of hydrogen and VOCs within the waste box and the transport of these gases and vapors out of the waste box. To perform the analysis, there were numerous and major assumptions made regarding the generation rate and the transport pathway dimensions and their number. Since there is little actual data with regards to these assumptions, analyses of three potential configurations were performed to obtain some indication of the bounds of the issue (the concentration of hydrogen or flammable VOCs within a waste box). A brief description of each of the three cases along with the results of the analysis is summarized.

  15. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Subject: 100 D/H RI/FS, Draft A Adopted: June 5, 2014 Page 1 June 5, 2014 Doug Shoop, Acting Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-75) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd., Suite 115 Richland, WA 99352 Jane Hedges, Manager Washington State Department of Ecology 3100 Port of Benton Blvd. Richland, WA 99354 Re: 100 D/H RI/FS, Draft A Dear Messrs. Shoop, Faulk and Ms. Hedges, Background A

  16. Microsoft Word - 2012O-01.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Subject: PW 1,3,6 and CW-5 February 10, 2012 Page 1 February 10, 2012 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd,, Suite 115 Richland WA 99352 Jane Hedges, Program Manager Washington State Department of Ecology 3100 Port of Benton Blvd. Richland, WA 99354 Re: PW 1,3,6 and CW-5 Record of Decision Dear Messrs. McCormick, Faulk and Ms. Hedges,

  17. EM-PO-0001-001.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Doc. ID: EM-PO-0001-001.doc Emergency Date: 2000/08/17 1. Introduction: The workplace environment is vulnerable to emergency situations. In an effort to prevent emergencies and to ensure proper response in case of an emergency, this policy and its parallel procedures document were developed. These documents are predicated on the assumption that knowledge and training reduces risk. 2. Purpose: The purpose of the emergency policy is to ensure that all individuals working at CAMD have read

  18. Florida Power & Light Company, 700 Universe Blvd. Juno Beach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In the latter case, technological advances in the world of digital "bits" have enabled not ... of specific pricing programs and marketing tactics; (iv) the impact of social norms ...

  19. Microsoft Word - MHI Letterhead - 2111 Wilson Blvd, Suite 100.doc

    Office of Environmental Management (EM)

    August 17, 2010 Office of the General Counsel Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585-0121 Memorandum for the Record Ex Parte Communication Department of Energy Meeting- Wednesday, July 14, 20103:00 - 4:00 p.m. The purpose of the meeting was to provide information to DOE staff on the Advanced Notice of Proposed Rulemaking on Section 414 of the Energy Independence and Security Act (EISA) of 2007 to establish energy standards for manufactured housing. In attendance

  20. 2010sr31_box-remediation.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, November 18, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 292-2484 paivi.nettamo@srs.gov SRS Recovery Act TRU Waste Project Ahead of Schedule with Box Remediation Program Aiken, SC - The U.S. Department of Energy's Savannah River Site (SRS) started off the last 12 months of the American Recovery and Reinvestment Act with an enormous success in its legacy transuranic (TRU) waste program. The H-Canyon box remediation program has not only met, but beat, its deadline for

  1. Solar Pizza Oven Box k - 6

    Energy Savers [EERE]

    Ready to Build? BUILD A PIZZA BOX SOLAR OVEN Background The sun is hot enough to bake food. Here's how to make a simple solar oven that gets hot enough to warm up cookies and other treats, like s'mores. It won't get really hot, though, so you can't bake things in it and you won't burn yourself when playing with it. Be sure to have an adult help you with this! Materials - One pizza box from a local pizza delivery store. Here's a good excuse to ask your parents to order pizza tonight! - Newspapers

  2. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTR.l\CT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTR.l\CT 2. AMENDMENT/MODIFICATION NO. j3. EFFECTIVE DATE 179 I see Block l6C 6.1SSUEDBY CODE 100603 Office of River Protection U~S .. Department of Energy Office of River Protection P.O. Box 450 Richland WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street county, State and ZiP Code) WASHINGTON RIVER PROTECTION SOLUTIONS LLC Attn: KAREN VACCA C/0 URS ENERGY & CONSTRUCTION, INC. PO BOX 73 I 720 PARK BLVD BOISE ID 837290073 CODE 806500521 I FACILITY CODE 11. THIS ITEM ONLY APPLIE ,. The

  3. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    152 6.1SSUED BY CODE Office of River Protection U.S. Department of Energy Office of River Protection P.O. Box 450 Richland WA 99352 3. EFFECTIVE DATE 01/30/2012 00603 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP Code) WASHINGTON RIVER PROTECTION SOLUTIONS LLC Attn: DUANE SCHMOKER PO BOX 73 720 PARK BLVD BOISE ID 837290001 CODE 806500521 FACILITY CODE 1. CONTRACT ID CODE 4. REQUISITION/PURCHASE REQ. NO. 7. ADMINISTERED BY (If other than Item 6) Office of River Protection

  4. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    61 Subject: 2013 State of the Site Meetings Adopted: September 7, 2012 Page 1 September 7, 2012 Scott Samuelson, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd,, Suite 115 Richland WA 99352 Jane Hedges, Program Manager Washington State Department

  5. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Subject: TPA Change Package Adopted: February 8, 2013 Page 1 February 8, 2013 Kevin Smith, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd,, Suite 115 Richland WA 99352 Jane Hedges, Program Manager Washington State Department of Ecology 3100 Port

  6. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Subject: 2014 Lifecycle Scope, Schedule & Cost Report Adopted: June 5, 2014 Page 1 June 5, 2014 Doug Shoop, Acting Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-75) Richland, WA 99352 Kevin Smith, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd., Suite 115 Richland, WA 99352 Jane Hedges, Manager Washington State Department of

  7. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fax: (509) 942-1926 Hanford Advisory Board Subject: TPA Milestones & Program/Budget Restraints February 20, 2014 2014O-02 Page 1 February 19, 2014 Kevin Smith, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Matt McCormick, Manager U.S. Department Of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd. Suite 115 Richland, WA 99352 Jane

  8. Microsoft Word - HABAdv #231_TPA_Change_Package.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Subject: TPA Change Package Adopted: June 4, 2010 Page 1 June 4, 2010 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 David Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-75) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd., Suite 115 Richland, WA 99352 Jane Hedges, Program Manager Washington State Department of Ecology 3100 Port of

  9. Microsoft Word - HABAdv #232_ARRA_Funding.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Subject: Selecting Projects for Additional ARRA Funding Adopted: June 4, 2010 Page 1 June 4, 2010 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 David Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-75) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd., Suite 115 Richland, WA 99352 Jane Hedges, Program Manager Washington State

  10. Microsoft Word - HABAdv #234_FY2012_Budget_Requests.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Subject: FY 2012 Budget Requests Adopted: June 4, 2010 Page 1 June 4, 2010 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 David Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-75) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd., Suite 115 Richland, WA 99352 Jane Hedges, Program Manager Washington State Department of Ecology 3100

  11. Microsoft Word - HABAdv #236_100-N_RIFS.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Subject: 100-N RIFS Adopted: Sept. 10, 2010 Page 1 September 10, 2010 Dave Brockman, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd., Suite 115 Richland, WA 99352 Jane Hedges, Program Manager Washington State Department of Ecology 3100 Port of

  12. Microsoft Word - HABAdv#220 FY2010 Budget.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Subject: FY 2010 Budget Request & Stimulus Funding Adopted: June 5, 2009 Page 1 June 5, 2009 Dave Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Dennis Faulk, Program Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd., Suite 115 (B1-46) Richland, WA 99352 Jane Hedges, Program Manager

  13. Microsoft Word - HABAdv#227_ModelingvsCharacterization.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAB Consensus Advice # 227 Subject: DOE's Use of Modeling versus More Characterization Adopted: February 5, 2010 Page 1 February 5, 2010 David Brockman, Manager U.S. Department of Energy, Richland Operations Office P.O. Box 550 (A7-75) Richland, WA 99352 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd., Suite 115 Richland, WA 99352 Jane

  14. Microsoft Word - HABAdv#237EECA.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Subject: EE/CA for 105-KE Reactor Decommissioning Adopted: Nov. 5, 2010 Page 1 November 5, 2010 Dave Brockman, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd,, Suite 115 Richland WA 99352 Jane Hedges, Program Manager Washington State Department

  15. Microsoft Word - HABAdv#251PIP.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Subject: Hanford Public Involvement Plan Adopted: November 4, 2011 Page 1 November 4, 2011 Scott Samuelson, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd,, Suite 115 Richland WA 99352 Jane Hedges, Program Manager Washington State Department of

  16. Microsoft Word - HABAdv#252LSSC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Subject: Hanford's 2011 Lifecycle Scope, Schedule, and Cost Report Adopted: November 4, 2011 Page 1 November 4, 2011 Scott Samuelson, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd,, Suite 115 Richland WA 99352 Jane Hedges, Program Manager

  17. Nondestructive assay of boxed radioactive waste

    SciTech Connect (OSTI)

    Gilles, W.P.; Roberts, R.J.; Jasen, W.G.

    1992-12-01

    This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

  18. Safety evaluation for packaging CPC metal boxes

    SciTech Connect (OSTI)

    Romano, T.

    1995-05-15

    This Safety Evaluation for Packaging (SEP) provides authorization for the use of Container Products Corporation (CPC) metal boxes, as described in this document, for the interarea shipment of radioactive contaminated equipment and debris for storage in the Central Waste Complex (CWC) or T Plant located in the 200 West Area. Authorization is granted until November 30, 1995. The CPC boxes included in this SEP were originally procured as US Department of Transportation (DOT) Specification 7A Type A boxes. A review of the documentation provided by the manufacturer revealed the documentation did not adequately demonstrate compliance to the 4 ft drop test requirement of 49 CFR 173.465(c). Preparation of a SEP is necessary to document the equivalent safety of the onsite shipment in lieu of meeting DOT packaging requirements until adequate documentation is received. The equivalent safety of the shipment is based on the fact that the radioactive contents consist of contaminated equipment and debris which are not dispersible. Each piece is wrapped in two layers of no less than 4 mil plastic prior to being placed in the box which has an additional 10 mil liner. Pointed objects and sharp edges are padded to prevent puncture of the plastic liner and wrapping.

  19. GS-PO-0001-001.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSU/CAMD Policy Doc. ID: GS-PO-0001-001.doc Two-Person Rule Date: 2000/04/06 1. Introduction: Working at LSU/CAMD involves potential hazards including, but not limited to, electrical, radiation, chemical, occupational and industrial risks. 2. Purpose: The purpose of the two-person policy is to ensure that there is always another person available to take the appropriate action(s) in case of an emergency. 3. Definitions : Second Person: the second person is defined as one who is both competent and

  20. GS-PO-0009-001.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSU/CAMD Policy Doc. ID: GS-PO-0009-001.doc Crane Use Date: 2001/01/17 1. Introduction: In an effort to protect personnel and equipment, all crane use at the CAMD facility should only be carried out by duly trained individuals. Persons wishing to utilize the crane must be authorized by CAMD safety. 2. Purpose: The purpose of the crane policy is to ensure that all crane operators at CAMD have been properly and adequately trained. 3. Definitions: a. crane: specifically refers to the 360 0 crane of

  1. GS-PO-0010-001.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSU/CAMD Policy Doc. ID: GS-PO-0010-001.doc Forklift Use Date: 2001/01/30 1. Introduction: OHSA regulations state that all forklift operators must be trained. This training should consist of both classroom and hands-on training and should include a test before an individual should be permitted to operate a powered industrial truck. Although Louisiana State University does not fall under the jurisdiction of the Occupational Health and Safety Administration (OSHA), it is the policy of LSU and the

  2. AP-PO-0002-001.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AP-PO-0002-001.doc Experimental Hall Date: 2001/01/09 Experimental Hall Policy: The following policies are to be followed for access to the Experimental Hall: 1. Smoking is not permitted in the Experimental Hall. 2. Cardboard and wood are not permitted in the Experimental Hall. 3. The outside doors to the Experimental Hall will be kept closed. These doors are for emergency use only. 4. The roll-up door to the Experimental Hall may be opened only if the outside roll-up door is closed. Both

  3. NNSA DP does it again! Collects boxes and boxes of toys | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration DP does it again! Collects boxes and boxes of toys | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  4. Satellite Television Industry Meeting Regarding DOE Set-Top Box...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking On April 3, 2012 at 11:00 AM,...

  5. Michigan Saves' New Marketing PSAs Use Boxing to Solve "Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michigan Saves' New Marketing PSAs Use Boxing to Solve "Energy Drama" Michigan Saves' New Marketing PSAs Use Boxing to Solve "Energy Drama" An image from the video with a woman and ...

  6. "Little Box Challenge" Inverters Arrive at NREL - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Little Box Challenge" Inverters Arrive at NREL Testing begins for the finalists October 21, 2015 Today, 18 finalist teams for the Little Box Challenge, presented by Google and the...

  7. Final Report Appendices: Preliminary Process and Market Evaluation: Better Buildings Neighborhood Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices Preliminary Process and Market Evaluation: Better Buildings Neighborhood Program Funded By: Prepared By: December 28, 2012 PRELIMINARY PROCESS AND MARKET EVALUATION: BETTER BUILDINGS NEIGHBORHOOD PROGRAM RESEARCH INTO ACTION, INC. PO BOX 12312 PORTLAND OR, 97212 WWW.RESEARCHINTOACTION.COM DELIVERY: 3934 NE MARTIN LUTHER KING JR. BLVD., SUITE 300 PORTLAND, OR 97212 (DELIVERY) TELEPHONE: 503.287.9136 FAX: 503.281.7375 CONTACT: JANE S. PETERS, PRESIDENT JANEP@RESEARCHINTOACTION.COM

  8. Final Report: Preliminary Process and Market Evaluation: Better Buildings Neighborhood Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Process and Market Evaluation: Better Buildings Neighborhood Program Funded By: Prepared By: December 28, 2012 PRELIMINARY PROCESS AND MARKET EVALUATION: BETTER BUILDINGS NEIGHBORHOOD PROGRAM RESEARCH INTO ACTION, INC. PO BOX 12312 PORTLAND OR, 97212 WWW.RESEARCHINTOACTION.COM DELIVERY: 3934 NE MARTIN LUTHER KING JR. BLVD., SUITE 300 PORTLAND, OR 97212 (DELIVERY) TELEPHONE: 503.287.9136 FAX: 503.281.7375 CONTACT: JANE S. PETERS, PRESIDENT JANEP@RESEARCHINTOACTION.COM PRELIMINARY

  9. Field Facilities Contacts for Printing and Mail

    Energy Savers [EERE]

    Field Facilities Contacts for Printing and Mail Print and Mail Contacts Site Printing Contact Mail Contact NNSA, Albuquerque Deborah Miller (505) 845-6049 Thomas H. Clinkenbeard NNSA Service Center PO Box 5400 Albuquerque, NM 87185-5400 (505) 845-4602 tclinkenbeard@doeal.gov (mailto:tclinkenbeard@doeal.gov) Argonne National Laboratory Doreen Schoening Argonne National Laboratory U.S. Department of Energy 9700 South Cass Avenue Blvd 340 Lemonmt, IL 60439 (630) 840-6399 dschoening@anl.gov

  10. Picture of the Week: Glove boxing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Glove boxing In 2000, the U.S. and Russia committed to each "permanently dispose" of "no less than or at least" 34 metric tons of weapons-grade plutonium. The Department of Energy (DOE) announced a strategy for the permanent disposition of U.S. surplus weapons-grade plutonium: convert the energy stored in the nation's stockpile of surplus plutonium pits into electrical power for homes and businesses by burning it as fuel in domestic commercial nuclear reactors. August 7,

  11. Design of Flexible-Duct Junction Boxes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design of Flexible-Duct Junction Boxes Design of Flexible-Duct Junction Boxes This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq5_duct_splitter_box_beach.pdf More Documents & Publications Critical Question #5: What are Recent Innovations in Air Distribution Systems? Building America Technology Solutions for New and Existing Homes: New Insights for Improving the Designs of Flexible

  12. BioFuelBox Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Name: BioFuelBox Corporation Address: 50 Las Colinas Lane Place: San Jose, California Zip: 95119 Region: Bay Area Sector: Biofuels Product: Makes a modular...

  13. Savings Project: Attic Stairs Cover Box | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attic Stairs Cover Box Savings Project: Attic Stairs Cover Box Addthis Project Level EASY (KIT OR PRE-BUILT) TO MODERATE (DO-IT-YOURSELF) Energy Savings Savings depend on energy cost and airtightness of new cover box. Can be significant if there are open gaps in existing stair hatch. Time to Complete 1-4 HOURS Overall Cost $50-$150 Sealing gaps in the opening and installing an insulating cover box on your attic stairs access can improve comfort and save energy and money. | Photo courtesy of U.S.

  14. Box Butte County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Box Butte County, Nebraska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1911471, -103.0817903 Show Map Loading map......

  15. A solar box cooker for mass production in East Africa

    SciTech Connect (OSTI)

    Funk, P.A.; Wilcke, W.F.

    1992-12-31

    A solar box cooker produced in Tanzania, East Africa with indigenous materials is described. When compared to a commercially produced glass and cardboard one, it was found to perform as well. Heat transfer through each major component of the cooker is presented. The smallest losses were through the walls of the box. The greatest losses were observed in the cover system.

  16. RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-05-22

    A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin? (N,N,N?,N? tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of {sup 210}Po.

  17. 2D MODIFICATION OF A CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 3. EFFECTIVE DATE (M/D/Y) See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy Office of River Protection P. O. Box 450, MS H6-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Washington River Protection Solutions LLC P.O. Box 73 9B. DATED (SEE ITEM 11) 720 Park Blvd Boise, ID. 83729-0001 10A.

  18. 2D MODIFICATION OF A CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 3. EFFECTIVE DATE (M/D/Y) See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy Office of River Protection P. O. Box 450, MS H6-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Washington River Protection Solutions LLC P.O. Box 73 9B. DATED (SEE ITEM 11) 720 Park Blvd Boise, ID. 83729-0001 10A.

  19. Microsoft Word - SF30 A001 Notice to Proceed.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 3. EFFECTIVE DATE (M/D/Y) See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 27-08RV14800.000 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy Office of River Protection P. O. Box 450, MS H6-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Washington River Protection Solutions LLC P.O. Box 73 9B. DATED (SEE ITEM 11) 720 Park Blvd Boise, ID.

  20. Microsoft Word - SF30_A004_Funding_Mod _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 3. EFFECTIVE DATE (M/D/Y) See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 27-09RV14800.001 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy Office of River Protection P. O. Box 450, MS H6-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Washington River Protection Solutions LLC P.O. Box 73 9B. DATED (SEE ITEM 11) 720 Park Blvd Boise, ID.

  1. Microsoft Word - SF30_A005_Funding_Mod.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 3. EFFECTIVE DATE (M/D/Y) See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 27-09RV14800.002 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy Office of River Protection P. O. Box 450, MS H6-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Washington River Protection Solutions LLC P.O. Box 73 9B. DATED (SEE ITEM 11) 720 Park Blvd Boise, ID.

  2. Microsoft Word - SF30_M006.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 3. EFFECTIVE DATE (M/D/Y) See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy Office of River Protection P. O. Box 450, MS H6-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Washington River Protection Solutions LLC P.O. Box 73 9B. DATED (SEE ITEM 11) 720 Park Blvd Boise, ID. 83729-0001 10A.

  3. Microsoft Word - SF30_M008.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 3. EFFECTIVE DATE (M/D/Y) See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy Office of River Protection P. O. Box 450, MS H6-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Washington River Protection Solutions LLC P.O. Box 73 9B. DATED (SEE ITEM 11) 720 Park Blvd Boise, ID. 83729-0001 10A.

  4. Microsoft Word - SF30_M010.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 3. EFFECTIVE DATE (M/D/Y) See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy Office of River Protection P. O. Box 450, MS H6-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Washington River Protection Solutions LLC P.O. Box 73 9B. DATED (SEE ITEM 11) 720 Park Blvd Boise, ID. 83729-0001 10A.

  5. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    SciTech Connect (OSTI)

    Beach, R.; Burdick, A.

    2014-03-01

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

  6. Safeguards Approaches for Black Box Processes or Facilities

    SciTech Connect (OSTI)

    Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

    2013-09-25

    The objective of this study is to determine whether a safeguards approach can be developed for black box processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

  7. Build a Pizza Box Solar Oven | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Build a Pizza Box Solar Oven Build a Pizza Box Solar Oven Below is information about the student activity/lesson plan from your search. Grades K-4, 5-8, 9-12 Subject Solar Summary Check out this staightforward lesson, that can be adapted for all grade levels, on how to build a solar oven. Curriculum Science, Visual Arts, Language Arts Plan Time One class period Materials One pizza box from a local pizza delivery store, tape, scissors, black construction paper, clear plastic wrap, aluminum foil,

  8. GREEN SUPERCOMPUTING IN A DESKTOP BOX

    SciTech Connect (OSTI)

    HSU, CHUNG-HSING; FENG, WU-CHUN; CHING, AVERY

    2007-01-17

    The computer workstation, introduced by Sun Microsystems in 1982, was the tool of choice for scientists and engineers as an interactive computing environment for the development of scientific codes. However, by the mid-1990s, the performance of workstations began to lag behind high-end commodity PCs. This, coupled with the disappearance of BSD-based operating systems in workstations and the emergence of Linux as an open-source operating system for PCs, arguably led to the demise of the workstation as we knew it. Around the same time, computational scientists started to leverage PCs running Linux to create a commodity-based (Beowulf) cluster that provided dedicated computer cycles, i.e., supercomputing for the rest of us, as a cost-effective alternative to large supercomputers, i.e., supercomputing for the few. However, as the cluster movement has matured, with respect to cluster hardware and open-source software, these clusters have become much more like their large-scale supercomputing brethren - a shared (and power-hungry) datacenter resource that must reside in a machine-cooled room in order to operate properly. Consequently, the above observations, when coupled with the ever-increasing performance gap between the PC and cluster supercomputer, provide the motivation for a 'green' desktop supercomputer - a turnkey solution that provides an interactive and parallel computing environment with the approximate form factor of a Sun SPARCstation 1 'pizza box' workstation. In this paper, they present the hardware and software architecture of such a solution as well as its prowess as a developmental platform for parallel codes. In short, imagine a 12-node personal desktop supercomputer that achieves 14 Gflops on Linpack but sips only 185 watts of power at load, resulting in a performance-power ratio that is over 300% better than their reference SMP platform.

  9. Microsoft Word - CCP-PO-001-Revision 21

    Office of Environmental Management (EM)

    Effective Date: Nuclear Waste Partnership Carlsbad, NM CCP-PO-001 Revision 21 CCP Transuranic Waste Characterization Quality Assurance Project Plan INFORMATION ONLY CCP-PO-001, Rev. 21 Effective Date: 05/31/2013 CCP TRU Waste Characterization Quality Assurance Project Plan Page 2 of 99 Nuclear Waste Partnership Carlsbad, NM RECORD OF REVISION Revision Number Date Approved Description of Revision 3 01/14/2002 Added Tables B-9, B-10, and B-11; Revised the CCP Organization Chart, Figure A-1; and

  10. Microsoft Word - CCP-PO-002-Revision 27

    Office of Environmental Management (EM)

    Effective Date: CCP-PO-002 Revision 27 CCP Transuranic Waste Certification Plan INFORMATION ONLY CCP-PO-002, Rev. 27 Effective Date: 05/31/2013 CCP Transuranic Waste Certification Plan Page 2 of 168 RECORD OF REVISION Revision Number Date Approved Description of Revision 4 05/17/2002 Revised to reflect requirements of new Department of Energy (DOE)/WIPP 02-3122, Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (CH-WAC) (WIPP). 5 02/12/2003 Added

  11. Microsoft Word - CCP-PO-003-Revision 13

    Office of Environmental Management (EM)

    Effective Date: CCP-PO-003 REVISION 13 CCP TRANSURANIC AUTHORIZED METHODS FOR PAYLOAD CONTROL (CCP CH-TRAMPAC) INFORMATION ONLY CCP-PO-003, Rev. 13 Effective Date: 07/31/2013 CCP Transuranic Authorized Methods for Payload Control (CCP CH-TRAMPAC) Page 2 of 284 RECORD OF REVISION Revision Number Date Approved Description of Revision 3 05/31/2002 Revised to reflect Rev 19 to the TRAMPAC and the new CH-WAC. 4 02/11/2003 Revised steps 2.4.1, 6.2.1, 6.2.2 and 7.0 and added CCP-TP-046, CCP-TP-047 and

  12. Microsoft Word - CCP-PO-012-Revision 15

    Office of Environmental Management (EM)

    PO-012 Revision 15 CCP/Los Alamos National Laboratory (LANL) Interface Document EFFECTIVE DATE: 01/23/2014 Mike Ramirez PRINTED NAME APPROVED FOR USE INFORMATION ONLY CCP-PO-012, Rev. 15 Effective Date: 01/23/2014 CCP/Los Alamos National Laboratory (LANL) Interface Document Page 2 of 54 RECORD OF REVISION Revision Number Date Approved Description of Revision 0 10/21/2003 Initial Issue. 1 12/16/2003 Revised the Scope of the document. Updated Section 2.1 References. Updated Section 3.0, steps 3.7

  13. Structural and Electrochemical Characterization of Pure LiFePO 4 and Nanocomposite C- LiFePO 4 Cathodes for Lithium Ion Rechargeable Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Arun; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J.; Singh, M. K.; Majumder, S. B.; Tomar, M. S.; Katiyar, R. S.

    2009-01-01

    Pure limore » thium iron phosphate ( LiFePO 4 ) and carbon-coated LiFePO 4 (C- LiFePO 4 ) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on LiFePO 4 particles. Ex situ Raman spectrum of C- LiFePO 4 at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of LiFePO 4 and C- LiFePO 4 showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for LiFePO 4 where as in case of C- LiFePO 4 that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure LiFePO 4 was 69% after 25 cycles where as that of C- LiFePO 4 was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.« less

  14. Structural and Electrochemical Characterization of PureLiFePO4and Nanocomposite C-LiFePO4Cathodes for Lithium Ion Rechargeable Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Arun; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J.; Singh, M. K.; Majumder, S. B.; Tomar, M. S.; Katiyar, R. S.

    2009-01-01

    Pure lithium iron phosphate (LiFePO4) and carbon-coatedLiFePO4(C-LiFePO4) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating onLiFePO4particles. Ex situ Raman spectrum of C-LiFePO4at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms ofLiFePO4and C-LiFePO4showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13?mAh/g for C/5, C/3, and C/2, respectively forLiFePO4where as in case of C-LiFePO4that were 163, 144,more118, and 70?mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pureLiFePO4was 69% after 25 cycles where as that of C-LiFePO4was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.less

  15. Y-12s Moon Box ? a big hit in Texas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    not rub against anything that would mar its shiny finish. Then off it went to Texas. In planning this trip, I first considered shipping the Moon Box, but I did not want to let it...

  16. Ex Parte Memorandum on Set Top Boxes and Network Equipment

    Broader source: Energy.gov [DOE]

    This Memorandum for the Record provides a summary of a May 1, 2012, meeting with DOE officials concerning potential test procedures and energy conservation standards for set-top boxes and network...

  17. Box Elder County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Box Elder County is a county in Utah. Its FIPS County Code is 003. It is classified as...

  18. Box Elder, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Box Elder is a census-designated place in Chouteau County and Hill County, Montana. It...

  19. Size-dependent magnetic ordering and spin-dynamics in DyPO4 and GdPO4 nanoparticles

    SciTech Connect (OSTI)

    Evangelisti, Marco; Sorop, Tibi G; Bakharev, Oleg N; Visser, Dirk; Hillier, Adrian D.; Alonso, Juan; Haase, Markus; Boatner, Lynn A; De Jongh, L. Jos

    2011-01-01

    Low-temperature magnetic susceptibility and heat capacity measurements on nanoparticles (d 2.6 nm) of the antiferromagnetic compounds DyPO4 (TN = 3:4 K) and GdPO4 (TN = 0:77 K) provide clear demonstrations of finite-size effects, which limit the divergence of the magnetic correlation lengths, thereby suppressing the bulk long-range magnetic ordering transitions. Instead, the incomplete antiferromagnetic order inside the particles leads to the formation of net magnetic moments on the particles. For the nanoparticles of Ising-type DyPO4 superparamagnetic blocking is found in the ac-susceptibility at 1 K, those of the XY-type GdPO4 analogue show a dipolar spin-glass transition at 0:2 K. Monte Carlo simulations for the magnetic heat capacities of both bulk and nanoparticle samples are in agreement with the experimental data. Strong size effects are also apparent in the Dy3+ and Gd3+ spin-dynamics, which were studied by zero-field SR relaxation and high-field 31P-NMR nuclear relaxation measurements. The freezing transitions observed in the ac-susceptibility of the nanoparticles also appear as peaks in the temperature dependence of the zero-field SR rates, but at slightly higher temperatures - as to be expected from the higher frequency of the muon probe. For both bulk and nanoparticles of GdPO4, the muon and 31P-NMR rates are for T 5 K dominated by exchange-narrowed hyperfine broadening arising from the electron spin-spin interactions inside the particles. The dipolar hyperfine interactions acting on the muons and the 31P are, however, much reduced in the nanoparticles. For the DyPO4 analogues the high-temperature rates appear to be fully determined by electron spin-lattice relaxation processes.

  20. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    SciTech Connect (OSTI)

    Beach, R.; Burdick, A.

    2014-03-01

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance. IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations. These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

  1. Electrochemical Performances of LiMnPO4 Synthesized from Non...

    Office of Scientific and Technical Information (OSTI)

    Li1.1MnPO4 exhibits the most stable cycling ability probably because of the existence of a trace amount of Li3PO4 impurity that functions as a solid-state electrolyte on...

  2. Structure and Electrochemistry of Vanadium-Modified LiFePO4 ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Structure and Electrochemistry of Vanadium-Modified LiFePO4 Citation Details In-Document Search Title: Structure and Electrochemistry of Vanadium-Modified LiFePO4...

  3. A synthesis of LiFePO{sub 4} starting from FePO{sub 4} under reducing atmosphere

    SciTech Connect (OSTI)

    Prosini, Pier Paolo; Cento, Cinzia; Masci, Amedeo; Carewska, Maria; Gislon, Paola

    2014-06-19

    A fast and easy way to produce LiFePO{sub 4} starting from FePO{sub 4}, used as iron and phosphorus source, is proposed. 5% hydrogen is employed as a reducing agent and various compounds containing lithium as lithiation agents. The selected lithiation agents included: LiCl, CH{sub 3}COOLi, LiOH, Li{sub 2}S, LiH, and Li{sub 2}CO{sub 3}. Solid state synthesis is used for the LiFePO{sub 4} preparation and the so obtained materials are structurally characterized by XRD. The materials are used to fabricate composite electrode and their specific capacity is evaluated by low rate galvanostatic charge/discharge cycles (C/10 rate). Among the various lithium salts, the acetate give rise to the LiFePO{sub 4} with the best electrochemical performance. The morphology of this material is further investigated by SEM microscopy and the specific capacity is evaluated as a function of the discharge rate and the cycle number.

  4. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    SciTech Connect (OSTI)

    Beach, Robert; Prahl, Duncan; Lange, Rich

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  5. Italy to open exclusive Po basin area in 1992

    SciTech Connect (OSTI)

    Rigo, F.

    1991-05-27

    Under new regulations of the European Community, no oil and gas state monopoly is allowed in the member countries. As a consequence, by 1992 Italy will open for application by international oil companies all lands not covered by exploitation concessions in the ENI exclusive area. This monopoly area covers the prolific Po basin, the cradle of the Italian state oil company AGIP SpA, Milan. Due to profits derived from numerous gas discoveries of the 1950s in this basin, AGIP, a relatively small enterprise at that time, could eventually afford to expand in Italy and abroad and through successful exploration achieve status of a major international oil company. The ENI exclusive area covers the Po and Veneto plains and adjacent 15 km of territorial waters, for a total surface of more than 23,000 sq miles. The area to become available for exploration will be regulated by the Italian petroleum law, for one of the most favorable in the world.

  6. First NESAP Post-doc Takes on BoxLib

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First NESAP Post-doc Takes on BoxLib First NESAP Post-doc Takes on BoxLib Brian Friesen to Work with Ann Almgren's Group in CCSE June 22, 2015 brianfriesenphoto Brian Friesen, PhD The first of eight post-doctoral researchers participating in the NERSC Exascale Science Applications Program (NESAP) is now working full time at NERSC. Brian Friesen, a graduate student in computational astrophysics at the University of Oklahoma, joined the NESAP team May 18. He's been assigned to Ann Almgren's group

  7. Flexible Work Arrangements Go Outside the Box | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible Work Arrangements Go Outside the Box Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Flexible Work Arrangements Go Outside the Box GE Global Research 2013.02.27 Hi, I am Rebecca Boll, Operations Manager for External Affairs and Technology at GE Global Research. The most important thing about me is that I have 3

  8. Modeling of RTF Glove-Box and Stripper System

    SciTech Connect (OSTI)

    Hsu, R.H.

    2001-03-28

    The glove box-stripper system for the Replacement Tritium Facility (RTF) has been modeled to determine its steady-state performance. To permit comparison, simulations of modified cases were compared with a standard or base case. This paper discusses tests conducted, results obtained and makes recommendations.

  9. Recovery Act Begins Box Remediation Operations at F Canyon

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico.

  10. Energy Savings Assessment for Digital-to-Analog Converter Boxes

    SciTech Connect (OSTI)

    Cheung, Hoi Ying Iris; Meier, Alan; Brown, Richard

    2011-01-18

    The Digital Television (DTV) Converter Box Coupon Program was administered by the U.S. government to subsidize purchases of digital-to-analog converter boxes, with up to two $40 coupons for each eligible household. In order to qualify as Coupon Eligible Converter Boxes (CECBs), these devices had to meet a number of minimum performance specifications, including energy efficiency standards. The Energy Star Program also established voluntary energy efficiency specifications that are more stringent than the CECB requirements. In this study, we measured the power and energy consumptions for a sample of 12 CECBs (including 6 Energy Star labeled models) in-use in homes and estimated aggregate energy savings produced by the energy efficiency policies. Based on the 35 million coupons redeemed through the end of the program, our analysis indicates that between 2500 and 3700 GWh per year are saved as a result of the energy efficiency policies implemented on digital-to-analog converter boxes. The energy savings generated are equivalent to the annual electricity use of 280,000 average US homes.

  11. V-189: Oracle VirtualBox 'tracepath' Bug Lets Local Guest Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oracle VirtualBox 'tracepath' Bug Lets Local Guest Users Deny Service on the Target Host V-189: Oracle VirtualBox 'tracepath' Bug Lets Local Guest Users Deny Service on the Target...

  12. LM Environmental Policy (PO 436.1a) | Department of Energy

    Office of Environmental Management (EM)

    Environmental Policy (PO 436.1a) LM Environmental Policy (PO 436.1a) This policy reaffirms the Department of Energy (DOE), Office of Legacy Management's (LM) commitment to protect and respect the environment through our environment, safety, health and quality (ESH&Q) programs. PDF icon LM Environmental Policy (PO 436.1a) More Documents & Publications EMS Description LM Records and Information Management Transition Guidance (January 2015) CX-012667: Categorical Exclusion Determinatio

  13. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Subject: 300 Area RI/FS & Proposed Plan Adopted: June 8, 2012 Page 1 June 8, 2012 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd, Suite 115 Richland WA 99352 Re: 300 Area RI/FS and Proposed Plan Dear Messrs. McCormick and Faulk, Background Final decisions about cleanup at Hanford's 300 Area are important because of their potential impacts to

  14. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 200 UP1 Proposed Plan Rev 0 Page 1 September 7, 2012 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd,, Suite 115 Richland WA 99352 Re: 200-UP1 Proposed Plan Rev 0 Dear Messrs. McCormick and Faulk, The Hanford Advisory Board (Board) would like to thank the Tri-Party Agreement (TPA) agencies for the 200-UP-1 Remedial Investigation/Feasibility Study

  15. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Subject: 200 West Groundwater Treatment Facility Page 1 September 7, 2012 Matt McCormick, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd,, Suite 115 Richland WA 99352 Re: 200 West Groundwater Treatment Facility Dear Messrs. McCormick and Faulk, The Hanford Advisory Board expresses appreciation for the work you and your staff have done to build and begin

  16. S A N D I A N A T I O N A L L A B O R A T O R I E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R & D 1 0 0 2 0 1 1 * E N T R Y S U B M I S S I O N Submitting organization Sandia National Laboratories Susan B. Rempe, Ph.D. PO Box 5800, MS 0895 Albuquerque, NM 87185-0895 USA Phone: 505-845-0253 Fax: 505-284-3775 Email: slrempe@sandia.gov Web URL: www.sandia.gov Joint Submitter University of New Mexico Role: Nanoporous Membrane Self-Assembly (Brinker) and Atomic Layer Deposition (Jiang) 1001 University Blvd. SE, Suite 100 Albuquerque, NM 87106 USA www.unm.edu C. Jeff Brinker, Ph.D. and

  17. DRAFT HAB Advice: Remedial Investigation/Feasibility Study and Proposed Plan for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAB Advice: Remedial Investigation/Feasibility Study and Proposed Plan for the 100-FR-1, 100-FR-2, 100-FR-3, 100-IU-2 and 100-IU-6 Operable Units; DOE/RL Authors; Shelley Cimon, Dale Engstrom, Dan Serres, Jean Vanni, Gerry Pollet - July 29, 2014 August 7th, 2014 Douglas Shoop, Deputy Manager U.S. Department of Energy, Richland, Operations P.O. Box 550 (A7-50) Richland, Wa 99352 Dennis Faulk, Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd, Suite 115 Richland, Wa 99352

  18. MODELING RESONANCE INTERFERENCE BY 0-D SLOWING-DOWN SOLUTION WITH EMBEDDED SELF-SHIELDING METHOD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MODELING RESONANCE INTERFERENCE BY 0-D SLOWING-DOWN SOLUTION WITH EMBEDDED SELF-SHIELDING METHOD Yuxuan Liu and William Martin Department of Nuclear Engineering and Radiological Sciences University of Michigan 2355 Bonisteel Blvd., Ann Arbor, MI, 48109 yuxuanl@umich.edu; wrm@umich.edu Kang-Seog Kim and Mark Williams Oak Ridge National Laboratory One Bethel Valley Road, P.O. Box 2008, Oak Ridge, TN 37831-6172, USA kimk1@ornl.gov; williamsml@ornl.gov ABSTRACT The resonance integral table based

  19. Microsoft Word - HABAdv #233_System Plan Rev4_Planning Rev5.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Subject: Tank Waste System Plan Rev 4 & Planning for Rev 5 Adopted: June 4, 2010 Page 1 June 4, 2010 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Jane Hedges, Program Manager Washington State Department of Ecology 3100 Port of Benton Blvd. Richland, WA 99354 Re: Tank Waste System Plan Revision 4 and Planning Assumptions for Revision 5 Dear Ms. Olinger and Ms. Hedges, Background Safe tank waste retrieval, treatment

  20. Microsoft Word - HABAdv#219 ERDF.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 Subject: ERDF Expansion - Record of Decision Amendment Adopted: June 5, 2009 Page 1 June 5, 2009 Dave Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Dennis Faulk, Program Manager U.S. Environmental Protection Agency, Region 10 309 Bradley Blvd, Suite 115 (B1-46) Richland, WA 99352 Re: Environmental Restoration Disposal Facility (ERDF) Expansion - Record of Decision (ROD) Dear Messrs. Brockman and Faulk, Background ERDF plays a key role

  1. Microsoft Word - HABAdv#238SystemPlanning.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Subject: System Planning Process Adopted: Nov. 5, 2010 Page 1 November 5, 2010 Dave Brockman, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Jane Hedges, Program Manager Washington State Department of Ecology 3100 Port of Benton Blvd. Richland, WA 99354 Re: System Planning Process Dear Mr. Brockman and Ms. Hedges, Background The System Plan integrates various Single-Shell Tank (SST) retrieval scenarios with potential treatment options for

  2. Box Canyon Model Watershed Project : Annual Report 1997/1998.

    SciTech Connect (OSTI)

    Kalispel Natural Resource Department

    1998-01-01

    In 1997, the Kalispel Natural Resource Department (KNRD) initiated the Box Canyon Watershed Project. This project will concentrate on watershed protection and enhancement from an upland perspective and will complement current instream restoration efforts implemented through the Kalispel Resident Fish Project. Primary focus of this project is the Cee Cee Ah Creek watershed due to its proximity to the Reservation, importance as a traditional fishery, and potential for bull trout and west-slope cutthroat trout recovery.

  3. Carlsbad Field Office P. O. Box 3090 Carlsbad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ergy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 APR 0 8 2013 Mr. John E. Kieling, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Class 2 Permit Modification Request to th e Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890 139088-TS DF Dear Mr. Kieling : Enclosed is the following Class 2 Permit Modification Request: * Modify Excluded Waste

  4. Energy' TEfl9 Associated Post Office Box 117

    Office of Legacy Management (LM)

    yoD Oak Ridge Energy' TEfl9 Associated Post Office Box 117 environment (S\_J Universities Oak Ridge. Tennessee 37831-011 Systems Division July 26, 1991 Mr. James Wagoner, II FUSRAP Program Manager Decontamination and Decommissioning Division Office of Environmental Restoration and Waste Management U.S. Department of Energy Washington, DC 20545 Subject: DRAFT VERIFICATION SURVEY OF PARCEL 1A ELZA GATE SITE, OAK RIDGE, TENNESSEE Dear Mr. Wagoner: l Enclosed are five copies of the draft report for

  5. National Nuclear Security Administration P. O. Box 5400

    National Nuclear Security Administration (NNSA)

    Department of Energy National Nuclear Security Administration P. O. Box 5400 Albuquerque, NM 87185 September 22, 2015 Prospective Offerors: The Department of Energy, National Nuclear Security Administration (DOE/NNSA) is providing the draft Request for Proposal (RFP) entitled. "Design, Integration, Construction, Communication and Engineering 2" (DICCE2), Solicitation Number DE-SOL-0008449, for the purpose of obtaining information, through communications with industry, to assist the

  6. System and method for changing a glove attached to a glove box

    DOE Patents [OSTI]

    Aluisi, Alan (Aruada, CO)

    2001-01-01

    A system for changing the gloves of a glove box. The system requires the use of a new glove and a glove change ring to form a temporary secondary barrier to the exchange of atmospheres between the inner glove box and the room in which the glove box is operated. The system describes specific means for disengaging a used glove from the glove box port. The means for disengaging the used glove include use of a glove change hook and use of a glove with an attached tab for use in removal. A method for changing the gloves of a glove box is also described.

  7. Italy to open Po Valley to competitive exploration

    SciTech Connect (OSTI)

    Pieri, M.; Flores, G.

    1996-03-11

    The broad Po-Veneto plain and the Northern Adriatic include Italy`s most important gas province and the country`s largest oil field discovered so far, Villa Fortuna-Trecaste (1984). This area covers approximately 72,500 sq km, the size of Virginia or Kentucky. No less than 55,000 sq km of that since 1953 has been under exclusive concession to ENI, the Italian state petroleum authority. It was therefore explored and exploited solely by AGIP, the ENI Group operating company. this virtual monopoly is now in the process of being abolished, possibly by year-end 1996, opening the area to free enterprise and competitors. This paper reviews the geology of the area and its history. It identifies source rocks and trapping mechanisms which have been identified. It also identifies the types of exploration data needed to expand the success of the area.

  8. Novel visible-light AgBr/Ag?PO? hybrids photocatalysts with surface plasma resonance effects

    SciTech Connect (OSTI)

    Wang, Yunfang Li, Xiuli; Wang, Yawen; Fan, Caimei

    2013-06-01

    Three kinds of AgBr/Ag?PO? hybrids were synthesised via an anion-exchange precipitation method and characterised by XRD, XPS, SEM, EDS, and UVvis. The results showed that AgBr/Ag?PO? hybrids displayed much higher photocatalytic activities than single Ag?PO? or AgBr under visible light (?>420 nm), and OH and h? were the major active species during the degradation process. Considering interstitial ions Ag?? on lattice gap of AgBr are easy to become sliver particle, we deduced the possible photocatalytic mechanism could be ascribed to the synergistic effects of the appropriate valence band position of Ag?PO? and AgBr, surface plasmon resonance effect of Ag?, reactive radical species Br?, and the Ag vacancy on the surface of catalysts. - Graphical abstract: The optical absorption and structural morphology of the as-prepared AgBr@Ag?PO? photocatalyst using an anion-exchange precipitation method are conductive to the photocatalytic degradation of organics in water. Highlights: Novel AgBr/Ag?PO? hybrids are synthesised by a facile method. AgBr/Ag?PO? hybrids show excellent photocatalytic activities under visible light. Interstitial ions are in favour of the formation of Ag particle. Surface plasmon resonance effect plays a key factor for light absorption. The photocatalytic mechanism for AgBr/Ag?PO? hybrids is studied.

  9. Tritium stripping in a nitrogen glove box using palladium/zeolite and SAES St 198{trademark}

    SciTech Connect (OSTI)

    Klien, J.E.; Wermer, J.R.

    1995-01-01

    Glove box clean-up experiments were conducted in a nitrogen glove box using palladium deposited on zeolite (Pd/z) and a SAES St 198{trademark} getter as tritium stripping materials. Protium/deuterium samples spiked with tritium were released into a 620 liter glove box to simulate tritium releases in a 10,500 liter glove box. The Pd/z and the SAES St 198{trademark} stripper beds produced a reduction in tritium activity of approximately two to three orders of magnitude and glove box clean-up was limited by a persistent background tritium activity level. Attempts to significantly reduce the glove box activity to lower levels without purging were unsuccessful.

  10. Tritium stripping in a nitrogen glove box using palladium/zeolite and SAES St 198

    SciTech Connect (OSTI)

    Klein, J.E.; Wermer, J.R.

    1995-10-01

    Glove box clean-up experiments were conducted in a nitrogen glove box using palladium deposited on zeolite (Pd/z) and a SAES St 198 getter as tritium stripping materials. Protium/deuterium samples spiked with tritium were released into a 620 liter glove box to simulate tritium releases in a 10,500 liter glove box. The Pd/z and the SAES St 198 stripper beds produced a reduction in tritium activity of approximately two to three orders of magnitude and glove box clean-up was limited by a persistent background tritium activity level. Attempts to significantly reduce the glove box activity to lower levels without purging were unsuccessful. 3 refs., 6 figs., 1 tab.

  11. Demonstration Assessment of LED Roadway Lighting: NE Cully Blvd., Portland, OR

    SciTech Connect (OSTI)

    Royer, M. P.; Poplawski, M. E.; Tuenge, J. R.

    2012-08-01

    GATEWAY program report on a demonstration of LED roadway lighting on NE Cully Boulevard in Portland, OR, a residential collector road.

  12. On a framework for generating PoD curves assisted by numerical simulations

    SciTech Connect (OSTI)

    Subair, S. Mohamed Agrawal, Shweta Balasubramaniam, Krishnan Rajagopal, Prabhu; Kumar, Anish; Rao, Purnachandra B.; Tamanna, Jayakumar

    2015-03-31

    The Probability of Detection (PoD) curve method has emerged as an important tool for the assessment of the performance of NDE techniques, a topic of particular interest to the nuclear industry where inspection qualification is very important. The conventional experimental means of generating PoD curves though, can be expensive, requiring large data sets (covering defects and test conditions), and equipment and operator time. Several methods of achieving faster estimates for PoD curves using physics-based modelling have been developed to address this problem. Numerical modelling techniques are also attractive, especially given the ever-increasing computational power available to scientists today. Here we develop procedures for obtaining PoD curves, assisted by numerical simulation and based on Bayesian statistics. Numerical simulations are performed using Finite Element analysis for factors that are assumed to be independent, random and normally distributed. PoD curves so generated are compared with experiments on austenitic stainless steel (SS) plates with artificially created notches. We examine issues affecting the PoD curve generation process including codes, standards, distribution of defect parameters and the choice of the noise threshold. We also study the assumption of normal distribution for signal response parameters and consider strategies for dealing with data that may be more complex or sparse to justify this. These topics are addressed and illustrated through the example case of generation of PoD curves for pulse-echo ultrasonic inspection of vertical surface-breaking cracks in SS plates.

  13. Monumental effort: How a dedicated team completed a massive beam-box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relocation for the NSTX upgrade | Princeton Plasma Physics Lab Monumental effort: How a dedicated team completed a massive beam-box relocation for the NSTX upgrade By John Greenwald December 8, 2014 Tweet Widget Google Plus One Share on Facebook An overhead crane lifts the massive box into the NSTX-U test cell (Photo by Mike Viola) An overhead crane lifts the massive box into the NSTX-U test cell Gallery: Overview of the NSTX-U test cell with the second neutral beam box installed at upper

  14. Comparison of LiMnPO4 made by Combustion and Hydrothermal Syntheses

    SciTech Connect (OSTI)

    Chen, Jiajun; Doeff, Marca M.; Wang, Ruigang

    2008-05-15

    Among the olivine-structured metal phosphate family, LiMnPO{sub 4} exhibits a high discharge potential (4V), which is still compatible with common electrolytes, making it interesting for use in the next generation of Li ion batteries. The extremely low electronic conductivity of this material severely limits its electrochemical performance, however. One strategy to overcome this limitation is to make LiMnPO{sub 4} nanoparticulate to decrease the diffusion distance. Another is to add a carbon or other conductive coating in intimate contact with the nanoparticles of the main phase, as is commonly done with LiFePO{sub 4}. The electrochemical performance of LiFePO{sub 4} is highly dependent on the quality of the carbon coatings on the particles [1-2], among other variables. Combustion synthesis allows the co-synthesis of nanoparticles coated with carbon in one step. Hydrothermal synthesis is used industrially to make LiFePO{sub 4} cathode materials [3] and affords a good deal of control over purity, crystallinity, and particle size. A wide range of olivine-structured materials has been successfully prepared by this technique [4], including LiMnPO{sub 4} in this study. In this paper, we report on the new synthesis of nano-LiMnPO{sub 4} by a combustion method. The purity is dependent upon the conditions used for synthesis, including the type of fuel and precursors that are chosen. The fuel to nitrate ratio influences the combustion temperature, which determines the type and amount of carbon found in the LiMnPO{sub 4} composites. This can further be modified by use of carbon structural modifiers added during a subsequent (optional) calcination step. Figure 1 shows a transmission electron microscopy (TEM) image of the spherical nano-sized LiMnPO{sub 4} particles typically formed by combustion synthesis. The average particle size is around 30 nm, in agreement with values obtained by the Rietveld refinement of XRD patterns. The small size of the particles cause the peak broadening evident in the pattern of combustion formed LiMnPO{sub 4}, shown in Figure 2. Figure 2 also shows a pattern of hydrothermally prepared LiMnPO{sub 4}, which is sub-micron in size. In this presentation, we will show how the crystallographic parameters, particle size, particle morphology, and carbon content and structure impact the electrochemical properties of the LiMnPO{sub 4}/C composites produced by these methods.

  15. Comparison of LiMnPO4 made by Combustion and Hydrothermal Syntheses

    SciTech Connect (OSTI)

    Chen, Jiajun; Doeff, Marca M.; Wang, Ruigang

    2008-10-12

    Among the olivine-structured metal phosphate family, LiMnPO{sub 4} exhibits a high discharge potential (4V), which is still compatible with common electrolytes, making it interesting for use in the next generation of Li ion batteries. The extremely low electronic conductivity of this material severely limits its electrochemical performance, however. One strategy to overcome this limitation is to make LiMnPO{sub 4} nanoparticulate to decrease the diffusion distance. Another is to add a carbon or other conductive coating in intimate contact with the nanoparticles of the main phase, as is commonly done with LiFePO{sub 4}. The electrochemical performance of LiFePO{sub 4} is highly dependent on the quality of the carbon coatings on the particles, among other variables. Combustion synthesis allows the co-synthesis of nanoparticles coated with carbon in one step. Hydrothermal synthesis is used industrially to make LiFePO{sub 4} cathode materials and affords a good deal of control over purity, crystallinity, and particle size. A wide range of olivine-structured materials has been successfully prepared by this technique, including LiMnPO{sub 4} in this study. In this paper, we report on the new synthesis of nano-LiMnPO{sub 4} by a combustion method. The purity is dependent upon the conditions used for synthesis, including the type of fuel and precursors that are chosen. The fuel to nitrate ratio influences the combustion temperature, which determines the type and amount of carbon found in the LiMnPO{sub 4} composites. This can further be modified by use of carbon structural modifiers added during a subsequent (optional) calcination step. Figure 1 shows a transmission electron microscopy (TEM) image of the spherical nano-sized LiMnPO{sub 4} particles typically formed by combustion synthesis. The average particle size is around 30 nm, in agreement with values obtained by the Rietveld refinement of XRD patterns. The small size of the particles cause the peak broadening evident in the pattern of combustion formed LiMnPO{sub 4}, shown in Figure 2. Figure 2 also shows a pattern of hydrothermally prepared LiMnPO{sub 4}, which is sub-micron in size. In this presentation, we will show how the crystallographic parameters, particle size, particle morphology, and carbon content and structure impact the electrochemical properties of the LiMnPO{sub 4}/C composites produced by these methods.

  16. FULLY CONVECTIVE MAGNETOROTATIONAL TURBULENCE IN STRATIFIED SHEARING BOXES

    SciTech Connect (OSTI)

    Bodo, G.; Rossi, P.; Cattaneo, F.; Mignone, A.

    2013-07-10

    We present a numerical study of turbulence and dynamo action in stratified shearing boxes with zero magnetic flux. We assume that the fluid obeys the perfect gas law and has finite (constant) thermal diffusivity. We choose radiative boundary conditions at the vertical boundaries in which the heat flux is proportional to the fourth power of the temperature. We compare the results with the corresponding cases in which fixed temperature boundary conditions are applied. The most notable result is that the formation of a fully convective state in which the density is nearly constant as a function of height and the heat is transported to the upper and lower boundaries by overturning motions is robust and persists even in cases with radiative boundary conditions. Interestingly, in the convective regime, although the diffusive transport is negligible, the mean stratification does not relax to an adiabatic state.

  17. Graphene Modified LiFePO4 Cathode Materials for High Power Lithium ion Batteries

    SciTech Connect (OSTI)

    Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z.

    2011-01-24

    Graphene-modified LiFePO{sub 4} composite has been developed as a Li-ion battery cathode material with excellent high-rate capability and cycling stability. The composite was prepared with LiFePO{sub 4} nanoparticles and graphene oxide nanosheets by spray-drying and annealing processes. The LiFePO{sub 4} primary nanoparticles embedded in micro-sized spherical secondary particles were wrapped homogeneously and loosely with a graphene 3D network. Such a special nanostructure facilitated electron migration throughout the secondary particles, while the presence of abundant voids between the LiFePO{sub 4} nanoparticles and graphene sheets was beneficial for Li{sup +} diffusion. The composite cathode material could deliver a capacity of 70 mAh g{sup -1} at 60C discharge rate and showed a capacity decay rate of <15% when cycled under 10C charging and 20C discharging for 1000 times.

  18. Optimization of LiFePO4 Nanoparticle Suspensions with Polyethyleneimine for Aqueous Processing

    SciTech Connect (OSTI)

    Li, Jianlin; Armstrong, Beth L; Kiggans, Jim; Daniel, Claus; Wood III, David L

    2012-01-01

    Addition of dispersants to aqueous based lithium-ion battery electrode formulations containing LiFePO{sub 4} is critical to obtaining a stable suspension. The resulting colloidal suspensions enable dramatically improved coating deposition when processing electrodes. This research examines the colloidal chemistry modifications based on polyethyleneimine (PEI) addition and dispersion characterization required to produce high quality electrode formulations and coatings for LiFePO{sub 4} active cathode material. The isoelectric point, a key parameter in characterizing colloidal dispersion stability, of LiFePO{sub 4} and super P C45 were determined to be pH = 4.3 and 3.4, respectively. PEI, a cationic surfactant, was found to be an effective dispersant. It is demonstrated that 1.0 wt % and 0.5 wt % PEI were required to stabilize the LiFePO{sub 4} and super P C45 suspension, respectively. LiFePO{sub 4} cathode suspensions with 1.5 wt % PEI demonstrated the best dispersibility of all components, as evidenced by viscosity and agglomerate size of the suspensions and elemental distribution within dry cathodes. The addition of PEI significantly improved the LiFePO{sub 4} performance.

  19. U.S. DOE Set-Top Box Proceeding | Department of Energy

    Energy Savers [EERE]

    U.S. DOE Set-Top Box Proceeding U.S. DOE Set-Top Box Proceeding AT&T's U-verse receivers should not be regulated under EPCA. U-verse receivers are already among the most energy...

  20. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOE Patents [OSTI]

    Guo, Hongwei; Ecker, Joseph R.

    2010-02-02

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding a F-box protein, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding a F-box protein.

  1. ChemLabBox for SnifferStars

    Energy Science and Technology Software Center (OSTI)

    2002-01-24

    The software entitled "ChemLabBox for SnifferStars" is used to collect, display, and save data from the Sandia National Laboratories chemical analysis system dubbed SnifferStar. Sensor data is streamed from a SnifferStar unit into a computer thru RS-232 in a manner that is not amendable to plotting. Also, there is no direct way to start and stop the unit as is. This software rearranges the data into something that can be easily plotted in real-time thenmore »saves the data into a text fild. In addition, this software provides the users a means to start and stop the hardware. This software was written specifically for SnifferStar. SnifferStar data is delivered at a very fast rate but for a short period of time. This software is written around that premise. It is written for Pentium or higher machines running Windows 95/98/ME/NT/2000/XP. Lockheed Martin is interested in using it for testing SnifferStar units before deployment. To date they have not indicated their intent to deliver the code either in part or whole as part of their product.« less

  2. Electrical wiring box with structure for fast device mounting

    DOE Patents [OSTI]

    Johnston, Earl S. (Mineral Wells, WV)

    1991-01-08

    An electrical wiring box of molded insulating material is provided with bosses having screw holes for receiving a mounting screw that include two colinear portions of which a first portion proximate the front surface has an internal configuration, such as molded threads, that engage the mounting screw while permitting the mounting screw to be manually inserted therethrough without turning because of flexibility built into the boss structure. A second portion of the screw hole is of greater restriction for securely engaging the screw such as by self tapping. The flexibility of the boss is provided by a first center slot that extends from the screw hole to the boss exterior over a length substantially equal to the first portion of the screw hole. Second and third slots are located respectively on each side of the screw hole and provide projections respectively between the first and second slots and the first and third slots that flex to allow easy screw insertion through the first portion of the screw hole.

  3. WHAT'S INSIDE THE BLACK BOX - EXPLAINING PERFORMANCE ASSESSMENT TO STAKEHOLDERS

    SciTech Connect (OSTI)

    Seitz, R; Elmer Wilhite, E

    2009-01-06

    The performance assessment (PA) process is being applied to support an increasing variety of waste management decisions that involve the whole spectrum of stakeholders. As with many technical tools, the PA process can be seen as a black box, which can be difficult to understand when implemented. Recognizing the increasing use of PA and the concerns about difficulties with understanding, the Savannah River Site Citizens Advisory Board (CAB) made a recommendation that the U.S. Department of Energy (DOE) provide a Public Educational Forum on PAs. The DOE-Headquarters Environmental Management (DOE-EM) Office of Compliance and the DOE-Savannah River (DOE-SR) responded to this recommendation by supporting the Savannah River National Laboratory (SRNL) in developing several presentation modules that can be used to describe different aspects of the PA process. For the Public Educational Forum, the PA modules were combined with presentations on DOE perspectives, historical modeling efforts at the Savannah River Site, and review perspectives from the U.S. Nuclear Regulatory Commission (NRC). The overall goals are to help the public understand how PAs are implemented and the rigor that is applied, and to provide insight into the use of PAs for waste management decision-making.

  4. Synthesis of spherical LiMnPO{sub 4}/C composite microparticles

    SciTech Connect (OSTI)

    Bakenov, Zhumabay; Taniguchi, Izumi

    2011-08-15

    Highlights: {yields} We could prepare LiMnPO{sub 4}/C composites by a novel preparation method. {yields} The LiMnPO{sub 4}/C composites were spherical particles with a mean diameter of 3.65 {mu}m. {yields} The LiMnPO{sub 4}/C composite cathode exhibited 112 mAh g{sup -1} at 0.05 C. {yields} It also showed a good rate capability up to 5 C at room temperature and 55 {sup o}C. -- Abstract: Spherical LiMnPO{sub 4}/C composite microparticles were prepared by a combination of spray pyrolysis and spray drying followed by heat treatment and examined as a cathode material for lithium batteries. The structure, morphology and electrochemical performance of the resulting spherical LiMnPO{sub 4}/C microparticles were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electronic microscopy and standard electrochemical techniques. The final sample was identified as a single phase orthorhombic structure of LiMnPO{sub 4} and spherical powders with a geometric mean diameter of 3.65 {mu}m and a geometric standard deviation of 1.34. The electrochemical cells contained the spherical LiMnPO{sub 4}/C microparticles exhibited first discharge capacities of 112 and 130 mAh g{sup -1} at 0.05 C at room temperature and 55 {sup o}C, respectively. These also showed a good rate capability up to 5 C at room temperature and 55 {sup o}C.

  5. METHODOLOGY FOR THE NUMBER OF FILTERS NEEDED IN A WASTE BOX

    SciTech Connect (OSTI)

    MARUSICH, R.M.

    2007-05-17

    Waste in large waste boxes can generate volatile organic compounds (VOCs) and hydrogen. These waste boxes may or may not have flow paths out of them (although it is believed that most do). These boxes will be retrieved, sampled, and then coated with polyurea. After coating, filters will be installed in the box to keep the concentration of VOCs and hydrogen acceptably low. The MDSA requires that a vent path must be protected during application of the polyurea coating. If the box has been sampled then it is vented and the vent path must be protected. This report provides a model in which the user inputs the free volume of the waste box, sample concentration (ppm of total VOC or volume fraction hydrogen) along with the number of filters to be placed into the waste box lid. Using this information, the model provides an estimate of concentration vs. time or the number of filters needed to reduce the concentration by a specified fraction. If the equations from this report are placed into spreadsheets which are then used to demonstrate TSR compliance, the spreadsheets must come under the Software QA Plan for such documents. Chapters 2 and 3 present the theory. Chapter 4 presents the method with examples of its use found in Chapter 5. Chapter 6 provides the basis far the use of 1,000 ppm as the concentration below which the method is valid under any condition.

  6. Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment

    SciTech Connect (OSTI)

    G. Becker; M. Connolly; M. McIlwain

    1999-02-01

    The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types.

  7. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOE Patents [OSTI]

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  8. On the Occurrence of Thermal Runaway in Diode in the J-Box | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy On the Occurrence of Thermal Runaway in Diode in the J-Box On the Occurrence of Thermal Runaway in Diode in the J-Box This PowerPoint presentation, focused on the environmental testing of diodes, was originally presented at the International PV Module Quality Assurance Forum on Feb. 26-27, 2013 in Denver, CO. It details the thermal runaway tests of J-boxes and discusses the Tj measurement method for bypass diodes. The presentation wraps up with a discussion of the team's anticipated

  9. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOE Patents [OSTI]

    Guo, Hongwei; Ecker, Joseph R.

    2011-03-08

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding an F-box protein that interacts with a EIN3 involved in an ethylene response of plants, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding an F-box protein. The inventions also relates to methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein.

  10. Proposed Junction-Box Stress Test (Using an Added Weight) for Use During the Module Qualification (Presentation)

    SciTech Connect (OSTI)

    Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-02-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. Furthermore, there are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of the j-box adhesion system. The details of the proposed test are described, in addition to the preliminary results conducted using representative materials and components.

  11. Workers Remove Glove Boxes from Ventilation at Hanford’s Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    An employee at Hanford’s Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facility’s former processing area.

  12. EERE Success Story-NREL Partners with Google in Little Box Challenge

    Broader source: Energy.gov [DOE]

    Last month, Google and the Institute of Electrical and Electronics Engineers (IEEE) announced Belgium’s Red Electrical Devils (a team from CE+T Power) as the winner of the Little Box Challenge, a...

  13. Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box 550 Richland, WA 99352 Re: FOIA Request Dear Ms. Riehle: Pursuant to the Freedom of Information Act (5...

  14. Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2013 Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box 550 Richland, WA 99352 Re: FOIA RequestTWINS database Dear Ms. Riehle: Pursuant to the Freedom of...

  15. Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 1, 2014 Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box 550 Richland, WA 99352 Re: FOIA Request Dear Ms. Riehle: Pursuant to the Freedom of Information Act...

  16. Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box 550 Richland, WA 99352 Re: FOIA RequestWaste Treatment Plant Dear Ms. Riehle: Pursuant to the Freedom of...

  17. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TR:GS:14-0086:UFC 1200.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 November 4, 2014 Eddy and Lea County Residents: We continue to make...

  18. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 8822

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e rgy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 8822 1 OCT 1 8 2012 Mr. John E. Kieling. Chief Hazardous Waste Bureau New Mexico Envi ronment Department 2905 Rodeo...

  19. Carlsbad Field Orfice P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orfice P. O. Box 3090 Carlsbad, New Mexico 88221 APR 2 4 2 012 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive...

  20. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BW:GS:14-0032:UFC 1200.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 May 2, 2014 Eddy and Lea County Residents: We continue to make...

  1. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GS:14-0014:UFC 5486 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 March 12, 2014 To Eddy and Lea County Residents: As the Department of...

  2. Letter box line blackener for the HDTV/conventional-analog hybrid system

    DOE Patents [OSTI]

    Wysocki, Frederick J.; Nickel, George H.

    2006-07-18

    A blackener for letter box lines associated with a HDTV/conventional-analog hybrid television transmission where the blackener counts horizontal sync pulses contained in the HDTV/conventional-analog hybrid television transmission and determines when the HDTV/conventional-analog hybrid television transmission is in letter-box lines: if it is, then the blackener sends substitute black signal to an output; and if it is not, then the blackener sends the HDTV/conventional-analog hybrid television transmission to the output.

  3. Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking On April 3, 2012 at 11:00 AM, representatives of the U.S. satellite television industry, listed below, met with the DOE officials, listed below, at the Forestall Building to discuss matters of concern to the U.S. satellite television industry regarding the pending DOE rulemaking to establish energy conservation standards

  4. Hanford Site Assessment & Characterization/Verification of Structures & Conex Boxes Procedure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Revision 1 Hanford Site Assessment & Characterization/Verification of Structures & Conex Boxes Procedure Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Approved for Public Release; Further Dissemination Unlimited DOE-0342-004, Rev. 1 Hanford Site Wide Assessment & Characterization/Verification of Structures & Conex Boxes Procedure Published Date: 09/08/15 Effective Date: 09/25/15 ii CHANGE SUMMARY Rev # Date - Section Changed Change

  5. From Oak Ridge to the Moon (Y-12 Moon Box) | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Oak Ridge to the Moon ... From Oak Ridge to the Moon (Y-12 Moon Box) The mp4 video format is not supported by this browser. Download video Captions: On Time: 5:26 min. Y-12 had a role in man's first landing on the moon. We fabricated the "moon boxes" - lunar sample return containers - for the Apollo Program

  6. NREL to Test Inverters for the "Little Box Challenge" Presented by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google and IEEE - News Releases | NREL to Test Inverters for the "Little Box Challenge" Presented by Google and IEEE September 22, 2014 The Energy Department's National Renewable Energy Laboratory (NREL) will test power inverters submitted to the Little Box Challenge presented by Google and the IEEE Power Electronics Society. The Challenge is an open competition to build smaller power inverters for use in solar power systems. The winner of the $1 million prize will have designed

  7. Thinking Outside the (Tool) Box with the Building America Solution Center |

    Energy Savers [EERE]

    Department of Energy Thinking Outside the (Tool) Box with the Building America Solution Center Thinking Outside the (Tool) Box with the Building America Solution Center January 17, 2013 - 5:05pm Addthis The Energy Department's new Building America Solution Center provides building professionals with fast, free and reliable building science and efficiency knowledge. | Photo courtesy of the Energy Department. The Energy Department's new Building America Solution Center provides building

  8. Michigan Saves' New Marketing PSAs Use Boxing to Solve "Energy Drama"

    Energy Savers [EERE]

    | Department of Energy Michigan Saves' New Marketing PSAs Use Boxing to Solve "Energy Drama" Michigan Saves' New Marketing PSAs Use Boxing to Solve "Energy Drama" An image from the video with a woman and the words Energy Saver superimposed on the screen. Better Buildings Neighborhood Program partner Michigan Saves is using humor to help residents in the Great Lakes State become more energy efficient. The program's Avoid Energy Drama public service announcement (PSA)

  9. Think Outside the Box During Our Open Data by Design Contest | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Think Outside the Box During Our Open Data by Design Contest Think Outside the Box During Our Open Data by Design Contest June 9, 2014 - 9:38am Addthis Researchers at the National Renewables Energy Laboratory get creative with data with a virtual wind tunnel. | Photo courtesy of the Energy Department. Researchers at the National Renewables Energy Laboratory get creative with data with a virtual wind tunnel. | Photo courtesy of the Energy Department. Patricia A. Hoffman Patricia A.

  10. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification (Presentation)

    SciTech Connect (OSTI)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  11. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  12. Temperature Dependence of Aliovalent-vanadium Doping in LiFePO4 Cathodes

    SciTech Connect (OSTI)

    Harrison, Katharine L; Bridges, Craig A; Paranthaman, Mariappan Parans; Idrobo Tapia, Juan C; Manthiram, Arumugam; Goodenough, J. B.; Segre, C; Katsoudas, John; Maroni, V. A.

    2013-01-01

    Vanadium-doped olivine LiFePO4 cathode materials have been synthesized by a novel low-temperature microwave-assisted solvothermal (MW-ST) method at 300 oC. Based on chemical and powder neutron/X-ray diffraction analysis, the compositions of the synthesized materials were found to be LiFe1-3x/2Vx x/2PO4 (0 x 0.2) with the presence of a small number of lithium vacancies charge-compensated by V4+, not Fe3+, leading to an average oxidation state of ~ 3.2+ for vanadium. Heating the pristine 15 % V-doped sample in inert or reducing atmospheres led to a loss of vanadium from the olivine lattice with the concomitant formation of a Li3V2(PO4)3 impurity phase; after phase segregation, a partially V-doped olivine phase remained. For comparison, V-doped samples were also synthesized by conventional ball milling and heating, but only ~ 10 % V could be accommodated in the olivine lattice in agreement with previous studies. The higher degree of doping realized with the MW-ST samples demonstrates the temperature dependence of the aliovalent-vanadium doping in LiFePO4.

  13. Mechanical Analysis of the Fuel Assembly Box of a HPLWR Fuel Assembly

    SciTech Connect (OSTI)

    Himmel, Steffen; Starflinger, Joerg; Schulenberg, Thomas; Hofmeister, Jan

    2006-07-01

    The aim of the work presented in this paper is to demonstrate that the assembly box of the fuel assembly for a HPLWR proposed by Hofmeister et al. will remain mechanically within the design limits. The commercial finite element code ANSYS has been used to investigate the deformation behaviour caused by thermal convective and pressure boundary conditions provided by the results from Waata et al. for the fuel assembly. The results of these ANSYS analyses show a bending of the assembly box caused by the applied temperature and pressure distribution which, however, is still within the geometrical allowances. The maximum bending of the 4.35 m long assembly box appears close to the mid section, i.e. at 2.45 m axial height, and amounts to about 2 mm, only. The maximum indentation is mainly caused by the pressure difference across the box wall and occurs near the top of the assembly. The indentation at this point can be evaluated to be around 0.2 mm. Both bending and indentation will influence the coolant mass flux and the moderator distribution, and thus needs to be considered for predictions of the power profile and of the coolant heat-up. They are not considered to be critical as long as these deformations are small compared with the nominal gap width of 1 mm between box wall and claddings and 10 mm between adjacent assembly boxes. A second analysis has been performed to study the effect on non-symmetric coolant temperature profiles. A coolant temperature increase by 30 deg. C on one side of the box increased the thermal bending to 4 mm, indicating the sensitivity of this design with respect to temperature non-uniformities. (authors)

  14. Magnetic Transitions in the Spin-5/2 Frustrated Magnet BiMn2PO6 and Strong Lattice Softening in BiMn2PO6 and BiZn2PO6 Below 200 K

    SciTech Connect (OSTI)

    Nath, R; Ranjith, K M; Roy, B; Johnston, D C; Furukawa, Y; Tsirlin, A A

    2014-07-01

    The crystallographic, magnetic, and thermal properties of polycrystalline BiMn2PO6 and its nonmagnetic analog BiZn2PO6 are investigated by x-ray diffraction, magnetization M, magnetic susceptibility ?, heat capacity Cp, and P31 nuclear magnetic resonance (NMR) measurements versus applied magnetic field H and temperature T as well as by density-functional band theory and molecular-field calculations. Both compounds show a strong monotonic lattice softening on cooling, where the Debye temperature decreases by a factor of two from ?D?650 K at T=300 K to ?D?300 K at T=2 K. The ?(T) data for BiMn2PO6 above 150 K follow a Curie-Weiss law with a Curie constant consistent with a Mn+2 spin S=5/2 with g factor g=2 and an antiferromagnetic (AFM) Weiss temperature ?CW??78 K. The ? data indicate long-range AFM ordering below TN?30 K, confirmed by a sharp ?-shaped peak in Cp(T) at 28.8 K. The magnetic entropy at 100 K extracted from the Cp(T) data is consistent with spin S=5/2 for the Mn+2 cations. The band-theory calculations indicate that BiMn2PO6 is an AFM compound with dominant interactions J1/kB?6.7 K and J3/kB?5.6 K along the legs and rungs of a Mn two-leg spin-ladder, respectively. However, sizable and partially frustrating interladder couplings lead to an anisotropic three-dimensional magnetic behavior with long-range AFM ordering at TN?30 K observed in the ?, Cp, and NMR measurements. A second magnetic transition at ?10 K is observed from the ? and NMR measurements but is not evident in the Cp data. The Cp data at low T suggest a significant contribution from AFM spin waves moving in three dimensions and the absence of a spin-wave gap. A detailed analysis of the NMR spectra indicates commensurate magnetic order between 10 and 30 K, while below 10 K additional features appear that may arise from an incommensurate modulation and/or spin canting. The commensurate order is consistent with microscopic density functional calculations that yield a collinear Nel-type AFM spin arrangement both within and between the ladders, despite the presence of multiple weak interactions frustrating this magnetic structure of the Mn spins. Frustration for AFM ordering and the one-dimensional spatial anisotropy of the three-dimensional spin interactions are manifested in the frustration ratio f=|?CW|/TN?2.6, indicating a suppression of TN from 68 K in the absence of these effects to the observed value of about 30 K in BiMn2PO6.

  15. Trial Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Deibert, S.; Wohlgemuth, J.

    2014-06-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires), caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat', 'thermal-cycle', or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial run of the test procedure. The described experiments examine 4 moisture-cured silicones, 4 foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 deg C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden, Miami, and Phoenix for 1 year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  16. Chromium (III) Hydroxide Solubility in the Aqueous Na?-OH?- H?PO??- HPO??-PO??-H?O System: A Thermodynamic Model

    SciTech Connect (OSTI)

    Rai, Dhanpat; Moore, Dean A; Hess, Nancy J; Rao, Linfeng; Clark, Sue B

    2004-10-30

    Chromium(III)-phosphate reactions are expected to be important in managing high-level radioactive wastes stored in tanks at many DOE sites. Extensive studies on the solubility of amorphous Cr(III) solids in a wide range of pH (2.8 to 14) and phosphate concentrations (10?? to 1.0 m) at room temperature (222)C were carried out to obtain reliable thermodynamic data for important Cr(III)-phosphate reactions. A combination of techniques (XRD, XANES, EXAFS, Raman spectroscopy, total chemical composition, and thermodynamic analyses of solubility data) was used to characterize solid and aqueous species. Contrary to the data recently reported in the literature(1), only a limited number of aqueous species [Cr(OH)?H?PO-?, Cr(OH)? (H?PO?)??), and Cr(OH)?HPO??] with up to about four orders of magnitude lower values for the formation constants of these species are required to explain Cr(III)-phosphate reactions in a wide range of pH and phosphate concentrations.

  17. Synthesis, characterization and optical properties of NH{sub 4}Dy(PO{sub 3}){sub 4}

    SciTech Connect (OSTI)

    Chemingui, S.; Ferhi, M. Horchani-Naifer, K.; Férid, M.

    2014-09-15

    Polycrystalline powders of NH{sub 4}Dy(PO{sub 3}){sub 4} polyphosphate have been grown by the flux method. This compound was found to be isotopic with NH{sub 4}Ce(PO{sub 3}){sub 4} and RbHo(PO{sub 3}){sub 4}. It crystallizes in the monoclinic space group P2{sub 1/n} with unit cell parameters a=10.474(6) Å, b=9.011(4) Å, c=10.947(7) Å and β=106.64(3)°. The title compound has been transformed to triphosphate Dy(PO{sub 3}){sub 3} after calcination at 800 °C. Powder X-ray diffraction, infrared and Raman spectroscopies and the differential thermal analysis have been used to identify these materials. The spectroscopic properties have been investigated through absorption, excitation, emission spectra and decay curves of Dy{sup 3+} ion in both compounds at room temperature. The emission spectra show the characteristic emission bands of Dy{sup 3+} in the two compounds, before and after calcination. The integrated emission intensity ratios of the yellow to blue (I{sub Y}/I{sub B}) transitions and the chromaticity properties have been determined from emission spectra. The decay curves are found to be double-exponential. The non-exponential behavior of the decay rates was related to the resonant energy transfer as well as cross-relaxation between the donor and acceptor Dy{sup 3+} ions. The determined properties have been discussed as function of crystal structure of both compounds. They reveal that NH{sub 4}Dy(PO{sub 3}){sub 4} is promising for white light generation but Dy(PO{sub 3}){sub 3} is potential candidates in field emission display (FED) and plasma display panel (PDP) devices. - Graphical abstract: The CIE color coordinate diagrams showing the chromatic coordinates of Dy{sup 3+} luminescence in NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3}. - Highlights: • The polycrystalline powders of NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3} are synthesized. • The obtained powders are characterized. • The spectroscopic properties of Dy{sup 3+} ion are investigated. • Results are discussed as function of crystal structure and chemical composition. • The usefulness of NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3} in optical devices is revealed.

  18. Lab Ahead of Schedule Processing Waste in Large Boxes | Department of

    Office of Environmental Management (EM)

    Energy Lab Ahead of Schedule Processing Waste in Large Boxes Lab Ahead of Schedule Processing Waste in Large Boxes March 30, 2012 - 12:00pm Addthis A framework agreement between DOE and the State of New Mexico calls for the Lab’s TRU Waste Program to ship 3,706 cubic meters of combustible or dispersible transuranic waste to WIPP for permanent disposal by June 30, 2014. A framework agreement between DOE and the State of New Mexico calls for the Lab's TRU Waste Program to ship 3,706 cubic

  19. Evidence for Nodal Superconductivity in LaFePO from Scanning SQUID Susceptometry

    SciTech Connect (OSTI)

    Hicks, Clifford W.; Lippman, Thomas M.; Huber, Martin E.; Analytis, James G.; Chu, Jiun-Haw; Erickson, Ann S.; Fisher, Ian R.; Moler, Kathryn A.; /Stanford U., Geballe Lab. /SLAC

    2009-04-13

    We measure changes in the penetration depth {lambda} of the T{sub c} {approx} 6 K superconductor LaFePO. In the process scanning SQUID susceptometry is demonstrated as a technique for accurately measuring local temperature-dependent changes in {lambda}, making it ideal for studying early or difficult-to-grow materials. {lambda} of LaFePO is found to vary linearly with temperature from 0.36 to {approx} 2 K, with a slope of 143 {+-} 15 {angstrom}/K, suggesting line nodes in the superconducting order parameter. The linear dependence up to {approx} T{sub c}/3 is similar to the cuprate superconductors, indicating well-developed nodes.

  20. Can Vanadium Be Substituted into LiFePO[subscript 4]?

    SciTech Connect (OSTI)

    Omenya, Fredrick; Chernova, Natasha A.; Upreti, Shailesh; Zavalij, Peter Y.; Nam, Kyung-Wan; Yang, Xiao-Qing; Whittingham, M. Stanley

    2015-10-15

    Vanadium is shown to substitute for iron in the olivine LiFePO{sub 4} up to at least 10 mol %, when the synthesis is carried out at 550 C. In the solid solution LiFe{sub 1-3y/2}V{sub y}PO{sub 4}, the a and b lattice parameters and cell volume decrease with increasing vanadium content, while the c lattice parameter increases slightly. However, when the synthesis is performed at 650 C, a NASICON phase, Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}, is also formed, showing that solid solution is a function of the synthesis temperature. X-ray absorption near-edge structure indicates vanadium is in the 3+ oxidation state and in an octahedral environment. Magnetic studies reveal a shift of the antiferromagnetic ordering transition toward lower temperatures with increasing vanadium substitution, confirming solid solution formation. The addition of vanadium enhances the electrochemical performance of the materials especially at high current densities.

  1. Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries

    SciTech Connect (OSTI)

    Jiang, Jiuchun; Shi, Wei; Zheng, Jianming; Zuo, Pengjian; Xiao, Jie; Chen, Xilin; Xu, Wu; Zhang, Jiguang

    2014-06-01

    e investigated the long-term cycling performance of large format 20Ah LiFePO4/graphite batteries when they are cycled in various state-of-charge (SOC) ranges. It is found that batteries cycled in the medium SOC range (ca. 20~80% SOC) exhibit superior cycling stability than batteries cycled at both ends (0-20% or 80-100%) of the SOC even though the capcity utilized in the medium SOC range is three times as large as those cycled at both ends of the SOC. Several non-destructive techniques, including a voltage interruption approach, model-based parameter identification, electrode impedance spectra analysis, ?Q/?V analysis, and entropy change test, were used to investigate the performance of LiFePO4/graphite batteries within different SOC ranges. The results reveal that batteries at the ends of SOC exhibit much higher polarization impedance than those at the medium SOC range. These results can be attributed to the significant structural change of cathode and anode materials as revealed by the large entropy change within these ranges. The direct correlation between the polarization impedance and the cycle life of the batteries provides an effective methodology for battery management systems to control and prolong the cycle life of LiFePO4/graphite and other batteries.

  2. Hanford Workers Achieve Success in Difficult Glove Box Project at Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. EMs Richland Operations Office and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) recently finished safely separating three glove boxes for removal from Hanfords Plutonium Finishing Plant (PFP) after months of planning and preparation.

  3. DEVELOPMENT OF A NEW GLOVE FOR GLOVE BOXES WITH HIGH-LEVEL PERFORMANCES

    SciTech Connect (OSTI)

    Blancher, J.; Poirier, J.M.

    2003-02-27

    This paper describes the results of a joint technological program of COGEMA and MAPA to develop a new generation of glove for glove boxes. The mechanical strength of this glove is twice as high as the best characteristics of gloves available on the market. This new generation of product has both a higher level of performance and better ergonomics.

  4. Technical task plan for testing filter box sorbent-paint filter test

    SciTech Connect (OSTI)

    Kilpatrick, L.L.

    1993-09-01

    At the Savannah River Plant, High Level Waste Engineering (HLWE) asked Interim Waste Technology (IWT) to choose and test a sorbent to add to the ITP filter box that meets the EPA requirement for land disposal of containerized liquid hazardous wastes per Paint Filter Liquids (PFL) test method 9095. This report outlines the process to be used in accomplishing this task.

  5. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. The flexible electrode exhibited a high discharge capacity without conductive additives. Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  6. Building America Technology Solutions for New and Existing Homes: New Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet)

    Broader source: Energy.gov [DOE]

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance.

  7. Biomarker responses in cyprinids of the middle stretch of the River Po, Italy

    SciTech Connect (OSTI)

    Vigano, L.; Arillo, A.; Melodia, F.; Arlati, P.; Monti, C.

    1998-03-01

    Fish belonging to three species of cyprinids, that is, barbel (Barbus plebejus), chub (Leuciscus cephalus), and Italian nase (Chondrostoma soeetta), were collected from two sites of the River Po, located upstream and downstream from the confluence of one of its middle-reach polluted tributaries, the River Lambro. The two groups of individuals caught for each species were analyzed and compared for several microsomal and cytosolic biochemical markers. The enzymatic activities assayed in fish liver included ethoxyresorufin O-deethylase (EROD), aminopyrine-N-demethylase (APDM), uridine diphosphate glucuronyltransferase (UDPGT), glutathione S-transferase (GST), glutathione reductase, and glutathione peroxidase. In addition, the contents of reduced glutathione and nonprotein thiols were measured. Despite some differences among species, all microsomal activities (EROD, APDM, UDPGT) were found to be significantly induced in fish living downstream the River Lambro. With the exception of a higher GST enzyme activity of barbel from the downstream reach, no significant modification was evident in any of the tested cytosolic biomarkers. Results showed that barbel and nase better discriminated the two reaches of the River Po. In general, the alterations observed in feral fish are consistent with the results found in previous studies conducted with rainbow trout (Oncorhynchus mykiss) under both laboratory and field conditions in the same middle reach of the River Po. All of the data indicate that the downstream tract of the main river is exposed to the load of pollutants transported by the River Lambro, including known inducers such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs). The latter were analyzed in sediments sampled at the two sites of fish collection, and the downstream sediment showed the highest concentrations of PAHs, although their levels are comparable to those present in moderately polluted locations. Regardless of the site of exposure, barbel seem to be characterized by more efficient antioxidant defenses.

  8. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Bridges, Craig A.; Paranthaman, Mariappan Parans; Dai, Sheng; Brown, Gilbert M.

    2015-10-07

    A unique battery hybrid utilizes an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g-1 at a current rate of C/5. It also shows good rate capability and cycling performance.

  9. Astronomie, écologie et poésie par Hubert Reeves

    ScienceCinema (OSTI)

    None

    2011-10-06

    Hubert ReevesL'astrophysicien donne une conférence puis s'entretient avec l'écrivain François Bon autour de :"Astronomie, écologie et poésie"Pour plus d'informations : http://outreach.web.cern.ch/outreach/FR/evenements/conferences.htmlNombre de places limité. Réservation obligatoire à la Réception du CERN : +41 22 767 76 76  Soirée diffusée en direct sur le Web : http://webcast.cern.ch/      

  10. NICXEL PLATIl'iG GF UFUNNN CYLINDEIiS I SYMBOLI Po$Fcsroj

    Office of Legacy Management (LM)

    NICXEL PLATIl'iG GF UFUNNN CYLINDEIiS I SYMBOLI Po$Fcsroj --- It-- ___.. A._.. ..,. - ., -.- ,,,.. _,,,...._ .' . -. a....... "!' 7 !c:H.) 4) At a reoemt visit to the kfonne Iaboratoriea of International Nlkkel, aranllzl 4 l%eumnlnm~llndar,3/b'l)x8"longwas sandblasted, degreasd in triohl~nth$'e~an~ snd immersed for 15 eeooPd# in 181 ooncentration of HCl et room temrperature. Following th.b,the sample was givema anthodic treatmentueinga plAt1niumanode at 25 smperds per square foot.

  11. The purification of inert glove box atmospheres using hot reactive metals

    SciTech Connect (OSTI)

    Johnson, R.E.; Gravelle, F.B.; Shultz, C.M.

    1988-09-01

    Current practice for the handling of pure tritium gas involves the use of inert atmosphere glove boxes. The purity of the inert gas is maintained by recirculation through a purification system. Due to the high toxicity of tritium in the form of water it is desirable to avoid oxidation of the elemental tritium and to remove tritium by forming stable metal tritides. This paper describes the use of SAES ST707 Alloy for the removal of hydrogen from a glove box atmosphere and briefly relates largely unsuccessful attempts at hydrogen removal using a variety of metals and alloys. The details of a proposed purification system for the control of chronic tritium releases and for the collection and recovery of a large tritium release are presented.

  12. Dismantling of the PETRA glove box: tritium contamination and inventory assessment

    SciTech Connect (OSTI)

    Wagner, R.

    2015-03-15

    The PETRA facility is the first installation in which experiments with tritium were carried out at the Tritium Laboratory Karlsruhe. After completion of two main experimental programs, the decommissioning of PETRA was initiated with the aim to reuse the glove box and its main still valuable components. A decommissioning plan was engaged to: -) identify the source of tritium release in the glove box, -) clarify the status of the main components, -) assess residual tritium inventories, and -) de-tritiate the components to be disposed of as waste. Several analytical techniques - calorimetry on small solid samples, wipe test followed by liquid scintillation counting for surface contamination assessment, gas chromatography on gaseous samples - were deployed and cross-checked to assess the remaining tritium inventories and initiate the decommissioning process. The methodology and the main outcomes of the numerous different tritium measurements are presented and discussed. (authors)

  13. ON THE CONVERGENCE OF MAGNETOROTATIONAL TURBULENCE IN STRATIFIED ISOTHERMAL SHEARING BOXES

    SciTech Connect (OSTI)

    Bodo, G.; Rossi, P.; Cattaneo, F.; Mignone, A.

    2014-05-20

    We consider the problem of convergence in stratified isothermal shearing boxes with zero net magnetic flux. We present results with the highest resolution to date—up to 200 grid points per pressure scale height—that show no clear evidence of convergence. Rather, the Maxwell stresses continue to decrease with increasing resolution. We propose some possible scenarios to explain the lack of convergence based on multi-layer dynamo systems.

  14. Growing the Tool Box for Medical Imaging: The Selenium-72/Arsenic-72

    Office of Science (SC) Website

    Generator | U.S. DOE Office of Science (SC) Growing the Tool Box for Medical Imaging: The Selenium-72/Arsenic-72 Generator Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information

  15. EFRC Creative Potential: Thinking Out of the Box | Center for Bio-Inspired

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Fuel Production News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery EFRC Creative Potential: Thinking Out of the Box 31 Mar 2014 Professor Petra Fromme is one of the Bisfuel Principal Investigators. "...Real advantage of the Center is that we have so many creative people working on different aspects of the process, on the hydrogen production catalysts, water splitting catalysts, on developing artificial antennas and

  16. Safety evaluation for packaging (onsite) for the Pacific Northwest National Laboratory HEPA filter box

    SciTech Connect (OSTI)

    McCoy, J.C.

    1998-07-15

    This safety evaluation for packaging (SEP) evaluates and documents the safe onsite transport of eight high-efficiency particulate air (HEPA) filters in the Pacific Northwest National Laboratory HEPA Filter Box from the 300 Area of the Hanford Site to the Central Waste Complex and on to burial in the 200 West Area. Use of this SEP is authorized for 1 year from the date of release.

  17. **REPLIES TO THIS EMAIL WILL NOT BE ANSWERED AS IT COMES FROM AN UNATTENDED EMAIL BOX.

    Energy Savers [EERE]

    REPLIES TO THIS EMAIL WILL NOT BE ANSWERED AS IT COMES FROM AN UNATTENDED EMAIL BOX. Please submit replies to the POC identified in the Policy Flash.** This is to inform you that the Department of Energy, Office of Acquisition Management has issued a new Policy Flash. You may access it and previous PFs by clicking here. Acquisition Letters and Financial Assistance Letters issued with Policy Flashes are posted with them. They may be accessed separately by clicking

  18. Oak Ridge Associated Post Office Box 117 Universities Oak Ridge, Tennessee 37831-0117

    Office of Legacy Management (LM)

    Associated Post Office Box 117 Universities Oak Ridge, Tennessee 37831-0117 June 19, 1990 Mr. James Wagoner, II FUSRAP Program Manager Decontamination and Decommissioning Division ' Office of Environmental .Restoration and Waste Management U.S. Department of Energy Washington, DC 20545 Subject: SCOPING VISIT TO FORMER ZUCKERMAN SITE - N. KENM( AVENUE, CHICAGO, ILLINOIS 0 9Yf onment ?ms Division IRE Dear Mr. Wagoner: On June 14, 1990, while in the Chicago area for several other meetings, Ms.

  19. Bechtel Nevada Post Office Box 98521 Las Vegas, NV 89193-8521

    National Nuclear Security Administration (NNSA)

    by: Bechtel Nevada Post Office Box 98521 Las Vegas, NV 89193-8521 June 2004 Prepared for: U.S. Department of Energy Nevada Site Office DOE/NV/11718--930 2003 Nevada Test Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S.

  20. Thermodynamic Model for the Solubility of NdPO4(c) in the Aqueous Na+-H+-H2PO4- -HPO42- -OH- -Cl- -H2O System

    SciTech Connect (OSTI)

    Rai, Dhanpat ); Felmy, Andrew R. ); Yui, Mikazu )

    2003-03-01

    This research publication data was previously reviewed (by you) and cleared under PNNL-13704 as part 1 of a technical report for JNC on 10/26/2001 under the title: Solubility Product of NdPO4(c) and complexation/Ion-Interaction of Nd3+ With H2PO4-, but because it is now being submitted to a journal, it must go through the clearance process (ERICA), again, to obtain a separate IRF number as a journal article vs technical report.

  1. Update on the CeC PoP 704 MHz 5-cell cavity cryomodule design and fabrication

    SciTech Connect (OSTI)

    Brutus, J. C.; Belomestnykh, S.; Ben-Zvi, I.; Grimm, T.; Huang, Y.; Jecks, R.; Kelly, M.; Litvinenko, V.; Pinayev, I.; Reid, T.; Skaritka, J.; Snydstrup, L.; Than, R.; Tuozzolo, J.; Xu, W.; Yancey, J.; Gerbick, S.

    2015-05-03

    A 5-cell SRF cavity operating at 704 MHz will be used for the Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the new technique of cooling proton and ion beams that may increase the beam luminosity in certain cases, by as much as tenfold. The 704 MHz cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up to 22MeV. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cell SRF for CeC PoP experiment.

  2. Synthesis of g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction with enhanced photocatalytic performance

    SciTech Connect (OSTI)

    He, Peizhi; Song, Limin; Zhang, Shujuan; Wu, Xiaoqing; Wei, Qingwu

    2014-03-01

    Graphical abstract: g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction photocatalyst with visible-light response was prepared by a facile coprecipitation method. The results show that g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} possesses a much higher activity for the decomposition of RhB than that of the pure Ag{sub 3}PO{sub 4} particles. The most mechanism is that g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction photocatalyst can efficiently separate the photogenerated electronhole pairs, enhancing the photocatalytic activity of g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} composites. - Highlights: g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction showed much higher activity than that of Ag{sub 3}PO{sub 4}. The high activity could be attributed to g-C{sub 3}N{sub 4} for modifying Ag{sub 3}PO{sub 4}. More OH radicals may be significant reason to improve Ag{sub 3}PO{sub 4} activity. - Abstract: g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction photocatalyst with visible-light response was prepared by a facile coprecipitation method. The photocatalysts were characterized by X-ray powder diffraction, transmission electron microscopy, UVvis absorption spectroscopy and Fourier transform infrared spectroscopy. The photocatalytic activities of the obtained samples were tested by using Rhodamine B (RhB) as the degradation target under visible light irradiation. g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} decomposed RhB more effectively than the pure Ag{sub 3}PO{sub 4} particles did, and 2 wt.% g-C{sub 3}N{sub 4} had the highest activity. Furthermore, 2 wt.% g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} degraded high-concentration RhB more potently than unmodified Ag{sub 3}PO{sub 4} did, probably because g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction photocatalyst enhanced the photocatalytic activity by efficiently separating the photogenerated electronhole pairs.

  3. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    SciTech Connect (OSTI)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.

  4. A new low-voltage plateau of Na3V2(PO4)(3) as an anode for Na-ion batteries

    SciTech Connect (OSTI)

    Jian, ZL; Sun, Y; Ji, XL

    2015-01-01

    A low-voltage plateau at similar to 0.3 V is discovered for the deep sodiation of Na3V2(PO4)(3) by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na3V2(PO4)(3), thus turning it into a promising anode for Na-ion batteries.

  5. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OESH:AS:ANC:12-0768:UFC 5486.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 July 5, 2012 Mr. John Kieling, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Class 2 Permit Modification Request to the Hazardous Waste Facility Permit, Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is the following Class 2 Permit Modification Request: * Addition

  6. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1415:UFC 2300.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 May 20, 2013 Mr. John E. Kieling, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Audit Report for the Oak Ridge National Laboratory/Central Characterization Program Audit A-13-12 Dear Mr. Kieling: In accordance with your letter addressed to me dated March 2, 2012, instructing that the

  7. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26:UFC 2300.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 May 28, 2013 Mr. John E. Kieling, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Interim and Final Audit Report for the Hanford Site/Central Characterization Program, Recertification Audit A-13-15 Dear Mr. Kieling: In accordance with your letter addressed to me dated March 2, 2012,

  8. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    338:UFC: 2300.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 March 16, 2012 Mr. John Kieling, Acting Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Recertification Final Audit Report for the Advanced Mixed Waste Treatment Project, Audit A-12-03 Dear Mr. Kieling: This letter transmits the final audit report for Carlsbad Field Office (CBFO)

  9. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JF:RS:14-0023:UFC 1200.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 April 11, 2013 Eddy and Lea Country Residents: As we approach the end of another week of recovery operations at the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP), our team continues making progress in our efforts to return the site to full disposal operations. We remain focused on sending additional teams into the underground facility to identify the location and source

  10. Carlsbad Field Orfice P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orfice P. O. Box 3090 Carlsbad, New Mexico 88221 APR 2 4 2 012 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg . 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Recertification Audit Report for Audit A-12-02 of the Savannah River Site Central Characterization Project Dear Mr. Kieling : This letter transmits the final audit report for Carlsbad Field Office Audit A-12-02 of the Savannah River Site

  11. Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box 550

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2014 Dorothy Riehle FOIA Office U.S. Department of Energy P. O. Box 550 Richland, WA 99352 Re: FOIA Request/Chemical Vapor FOIA Dear Ms. Riehle: Pursuant to the Freedom of Information Act (5 USC 552) ("FOIA"), Hanford Challenge requests a copy of the following agency records: 1. Any and all records related to or generated in connection with a contract involving Savannah River National Lab and any Hanford contractor, including but not limited to Washington River Protection Solutions,

  12. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAG:13-1804:UFC 1410.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 May 7, 2013 Distribution Subject: Revised WIPP Tour Policy Visits to the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP), which are highly valued by key decision-makers and centers of influence, directly benefit the mission and future of the WIPP project. For two decades, the WIPP tour program has been a vital component of community, state, national, and international

  13. Mr. R. B. Bell, Jr. Combustion Engineering, Inc. Post Office Box 500

    Office of Legacy Management (LM)

    g@ *tq 47 e "Y q$ . -0 t: 2 ~ i' ,; B 0 e %d&$ Department of Energy Washington, DC 20585 Mr. R. B. Bell, Jr. Combustion Engineering, Inc. Post Office Box 500 Windsor, Connecticut 06095-0500 Dear Mr. Bell: I have received two copies of the access agreement for the radiological survey of the Combustion Engineering Property at 1000 Prospect Hill Road in Windsor. I have signed the agreements on behalf of the U.S. Department of Energy, and I am returning one signed original copy to you, By

  14. Facile deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets for highly efficient photocatalysis

    SciTech Connect (OSTI)

    Wang, Peifu; Shi, Penghui; Hong, Yuanchen; Zhou, Xuejun; Yao, Weifeng

    2015-02-15

    Graphical abstract: The photocatalytic performance of Ag{sub 3}PO{sub 4} was highly improved by the in situ deposition of Ag{sub 3}PO{sub 4} particles on graphene-like MoS{sub 2} nanosheets. - Highlights: A novel composite photocatalyst was synthesized by depositing Ag{sub 3}PO{sub 4} on the graphene-like MoS{sub 2} nanosheets. Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a high photocatalytic activity for RhB degradation. Graphene-like MoS{sub 2} nanosheets. MoS{sub 2} nanosheets play an important role in photocatalytic activity by serving as an effective acceptor of the photogenerated carriers. - Abstract: A facile method for the in situ deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets was developed to improve the photocatalytic performance of Ag{sub 3}PO{sub 4} catalysts. The heterostructure of Ag{sub 3}PO{sub 4}/MoS{sub 2} composites was characterized by using X-ray diffraction spectra (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The prepared Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a much higher photocatalytic activity than that of Ag{sub 3}PO{sub 4} for the degradation of Rhodamine B (RhB) under visible light irradiation (>400 nm). The improved photocatalytic activity of Ag{sub 3}PO{sub 4}/MoS{sub 2} is attributed to the efficient separation of photogenerated electronhole pairs in the composite. This result provides a new perspective on the design of high-performance photocatalysts which is promising for energy applications.

  15. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  16. Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box

    SciTech Connect (OSTI)

    J Squire, A Bhattacharjee

    2014-07-01

    We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff#11;erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely di#11;fferent region of space. These ideas lead for both axisymmetric and non-axisymmetric modes to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff#11;erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).

  17. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2001-01-31

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAOs). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWBs will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

  18. Trial-Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Deibert, S. L.; Wohlgemuth, J. H.

    2014-06-01

    Engineering robust adhesion of the junction box (j-box) is a hurdle typically encountered by photovoltaic module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat,' 'thermal-cycle,' or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial-run of the test procedure. The described experiments examine four moisture-cured silicones, four foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 degrees C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden (CO), Miami (FL), and Phoenix (AZ) for one year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  19. New Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    New Insights for Improving the Designs of Flexible Duct Junction Boxes PROJECT INFORMATION IBACOS www.ibacos.com Construction: Fiberglass duct board or sheet metal junction boxes Type: Flexible duct constant-volume HVAC systems Builders: Those using ACCA Manual D process for sizing duct runs Size: N/A Price Range: N/A Date completed: N/A Climate Zone: All PERFORMANCE DATA Pressure losses are high for flexible duct junction boxes relative to other standard duct fittings; however, contractors

  20. Quaternary structure of the southern Po Plain (Italy): Eustatic and tectonic implications

    SciTech Connect (OSTI)

    Farabegoli E.; Onorevoli, G. )

    1990-05-01

    The Quaternary telescoped growth pattern of the Southern Po Plain developed during the last 250,000 yr through the superimposition of six fining-upward continental sequences, which can be correlated with terraced deposits. The boundary surfaces of every cycle (base and top of gravels and/or sands), the overall thickness, the thickness of basal coarse sediments, and the related trends and deviations have been computer-gridded and contoured. Comparison between the maps of the whole Quaternary sequence and the structural map of Pliocene isobaths suggests that the sequence evolution has been controlled by the combined action of glacio-eustatic fluctuations and strong tectonics. Lowstands controlled the regional pattern of the basal surfaces, and highstands coincide with the time of accretions of the sequences. Tectonics influenced the local subsidence, and consequently, the paleogeographic setting, following a rather regular cyclic trend. Four tectonic events alternated with four pauses; each period was 20,000-50,000 years long. Thrust kinematics proceeded cyclically from the inner to outer thrust faults, giving rise to isolated grouped and joined and grouped but free tectonic elements.

  1. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; et al

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we showmore » that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less

  2. Feasibility of white-rot fungi for biodegradation of PCP-treated ammunition boxes. Final report

    SciTech Connect (OSTI)

    Scholze, R.J.; Lamar, R.T.; Bolduc, J.; Dietrich, D.

    1995-01-01

    Millions of pounds of wood ammunition boxes treated with the wood preservative pentachiorophenol (PCP) are being stockpiled at military installations, primarily depots, because cost-effective disposal is not readily available. The Army needs cost-effective and environmentally benign treatment methods for destruction and disposal of PCP-treated wood products. This research investigated the use of white-rot fungi to biodegrade PCP-treated wood. Results showed that white-rot fungi effectively decreased the PCP concentration in contaminated hardwood and softwood chips. Under ideal laboratory conditions the fungi reduced the PCP concentration by 80 percent; a field study showed only a 30 percent decrease in PCP concentration. Despite this disparity, this study demonstrated the feasibility of using white-rot fungi to reduce PCP in treated wood.

  3. Titanha Alloy Wwfacturbi: L'ivinien Hatioml Lead Camparw Box C, Widgr, Station

    Office of Legacy Management (LM)

    !A r/ 1.$ smcz; XaPERxAL WCMSE Llcm No. c- 3u3 xmAtdr cktebor 24, lp55 Titanha Alloy Wwfacturbi: L'ivinien Hatioml Lead Camparw Box C, Widgr, Station Uagara F&lb, New York Attention; &. steprmn F, Ijrbw ~~~-suont to ti;o Atdc Lzmrgy &t of 1954 mzd heson 40.21 of the Code ai Federal hegulatio.w, Title II) - Atodc burg)r, Crypta' 1, k' t h0 - Contro;l of fource Pleterial, you are bareby liuanrmd to masire pomessioa of Md tit163 to ten (Lo) pound8 of thorfu m%ta.l rcr u80 in

  4. A Single Tower Configuration of the Modular Gamma Box Counter System - 13392

    SciTech Connect (OSTI)

    Morris, K.; Nakazawa, D.; Francalangia, J.; Gonzalez, H.

    2013-07-01

    Canberra's Standard Gamma Box Counter System is designed to perform accurate quantitative assays of gamma emitting nuclides for a wide range of large containers including B-25 crates and ISO shipping containers. Using a modular building-block approach, the system offers tremendous flexibility for a variety of measurement situations with wide ranges of sample activities and throughput requirements, as well as the opportunity to modify the configuration for other applications at a later date. The typical configuration consists of two opposing towers each equipped with two high purity germanium detectors, and an automated container trolley. This paper presents a modified configuration, consisting of a single tower placed inside a measurement trailer with three detector assemblies, allowing for additional vertical segmentation as well as a viewing a container outside the trailer through the trailer wall. An automatic liquid nitrogen fill system is supplied for each of the detectors. The use of a forklift to move the container for horizontal segmentation is accommodated by creating an additional operational and calibration set-up in the NDA 2000 software to allow for the operator to rotate the container and assay the opposite side, achieving the same sensitivity as a comparable two-tower system. This Segmented Gamma Box Counter System retains the core technologies and design features of the standard configuration. The detector assemblies are shielded to minimize interference from environmental and plant background, and are collimated to provide segmentation of the container. The assembly positions can also be modified in height and distance from the container. The ISOCS calibration software provides for a flexible approach to providing the calibrations for a variety of measurement geometries. The NDA 2000 software provides seamless operation with the current configuration, handling the data acquisition and analysis. In this paper, an overview of this system is discussed, along with the measured performance results, calibration methodology and verification, and minimum detectable activity levels. (authors)

  5. REDUCTIONS WITHOUT REGRET: AVOIDING WRONG TURNS, ROACH MOTELS, AND BOX CANYONS

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-11

    This is the third of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. In this paper, we provide one example each of our judgments on what constitutes a box canyon, a roach motel, and a wrong turn: � Wrong Turn: The Reliable Replacement Warhead � Roach Motel: SRAM T vs the B61 � A Possible Box Canyon: A Low-Yield Version of the W76 SLBM Warhead Recognizing that new nuclear missions or weapons are not demanded by current circumstances � a development path that yields future capabilities similar to those of today, which are adequate if not always ideal, and a broader national-security strategy that supports nonproliferation and arms control by reducing the role for, and numbers, of nuclear weapons � we briefly consider alternate, less desirable futures, and their possible effect on the complex problem of regional deterrence. In this regard, we discuss the issues posed by, and possible responses to, three example regional deterrence challenges: in-country defensive use of nuclear weapons by an adversary; reassurance of U.S. allies with limited strategic depth threatened by an emergent nuclear power; and extraterritorial, non-strategic offensive use of nuclear weapons by an adversary in support of limited military objectives against a U.S. ally.

  6. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    SciTech Connect (OSTI)

    Marusich, Robert M.

    2013-08-15

    The purpose of this report is to evaluate hydrogen generation within Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB), to establish plutonium (Pu) limits for PTOs based on hydrogen concentration in the inner-most container and to establish required configurations or validate existing or proposed configurations for PTOs. The methodology and requirements are provided in this report.

  7. Ag{sub 3}PO{sub 4}/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    SciTech Connect (OSTI)

    Liu, Wei; School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000 ; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-15

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag{sub 3}PO{sub 4}/ZnO system. The accumulated electrons in the CB of Ag{sub 3}PO{sub 4} can be transferred to O{sub 2} adsorbed on the surface of the composite semiconductors and H{sub 2}O{sub 2} yields. H{sub 2}O{sub 2} reacts with electrons in succession to produce active OH to some extent. Display Omitted Highlights: ? Efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites were successfully prepared. ? Effect of Ag{sub 3}PO{sub 4} content on the catalytic activity of Ag{sub 3}PO{sub 4}/ZnO is studied in detail. ? Rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of Ag{sub 3}PO{sub 4}. ? The active species in RhB degradation are examined by adding a series of scavengers. ? Visible light degradation mechanism of RhB over Ag{sub 3}PO{sub 4}/ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites with various weight percents of Ag{sub 3}PO{sub 4} were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The OH radicals produced during the photocatalytic reaction was detected by the TAPL technique. The photocatalytic property of Ag{sub 3}PO{sub 4}/ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag{sub 3}PO{sub 4} and ZnO. The rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of single-phase Ag{sub 3}PO{sub 4}. The optimal percentage of Ag{sub 3}PO{sub 4} in the composite is 3.0 wt.%. It is proposed that the OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of Rhodamine B by Ag{sub 3}PO{sub 4}/ZnO systems under visible light irradiation.

  8. Hypoxic Prostate/Muscle PO{sub 2} Ratio Predicts for Outcome in Patients With Localized Prostate Cancer: Long-Term Results

    SciTech Connect (OSTI)

    Turaka, Aruna; Buyyounouski, Mark K.; Hanlon, Alexandra L.; Horwitz, Eric M.; Greenberg, Richard E.; Movsas, Benjamin

    2012-03-01

    Purpose: To correlate tumor oxygenation status with long-term biochemical outcome after prostate brachytherapy. Methods and Materials: Custom-made Eppendorf PO{sub 2} microelectrodes were used to obtain PO{sub 2} measurements from the prostate (P), focused on positive biopsy locations, and normal muscle tissue (M), as a control. A total of 11,516 measurements were obtained in 57 men with localized prostate cancer immediately before prostate brachytherapy was given. The Eppendorf histograms provided the median PO{sub 2}, mean PO{sub 2}, and % <5 mm Hg or <10 mm Hg. Biochemical failure (BF) was defined using both the former American Society of Therapeutic Radiation Oncology (ASTRO) (three consecutive raises) and the current Phoenix (prostate-specific antigen nadir + 2 ng/mL) definitions. A Cox proportional hazards regression model evaluated the influence of hypoxia using the P/M mean PO{sub 2} ratio on BF. Results: With a median follow-up time of 8 years, 12 men had ASTRO BF and 8 had Phoenix BF. On multivariate analysis, P/M PO{sub 2} ratio <0.10 emerged as the only significant predictor of ASTRO BF (p = 0.043). Hormonal therapy (p = 0.015) and P/M PO{sub 2} ratio <0.10 (p = 0.046) emerged as the only independent predictors of the Phoenix BF. Kaplan-Meier freedom from BF for P/M ratio <0.10 vs. {>=}0.10 at 8 years for ASTRO BF was 46% vs. 78% (p = 0.03) and for the Phoenix BF was 66% vs. 83% (p = 0.02). Conclusions: Hypoxia in prostate cancer (low mean P/M PO{sub 2} ratio) significantly predicts for poor long-term biochemical outcome, suggesting that novel hypoxic strategies should be investigated.

  9. Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames

    SciTech Connect (OSTI)

    Keshavarzi, Farhad; Torabian, Shahabeddin; Imanpour, Ali; Mirghaderi, Rasoul

    2008-07-08

    Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column.This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam--strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection.Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment-rotation graphs form sub-assemblage show a desirable seismic performance of this connection.

  10. Gene expression profiling--Opening the black box of plant ecosystem responses to global change

    SciTech Connect (OSTI)

    Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.; Markelz, R.J.C.; Ort, D.R.; Placella, S.A.P.; Rogers, A.; Smith, M.D.; Sudderth, E.A.; Weston, D.J.; Wullschleger, S.D.; Yuan, S.

    2009-11-01

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.

  11. Measurement of earth pressures on concrete box culverts under highway embankments

    SciTech Connect (OSTI)

    Yang, M.Z.; Drumm, E.C.; Bennett, R.M.; Mauldon, M.

    1999-07-01

    To obtain a better understanding of the stresses acting on cast-in-place concrete box culverts, and to investigate the conditions which resulted in a culvert failure under about 12 meters of backfill, two sections of a new culvert were instrumented. The measured earth pressure distribution was found to depend upon the height of the embankment over the culvert. For low embankment heights (less than one-half the culvert width), the average measured vertical earth pressures, weighted by tributary length, were about 30% greater than the recommended AASHTO pressures. The measured lateral pressures were slightly greater than the AASHTO pressures. As the embankment height increased, the measured weighted average vertical stress exceeded the AASHTO pressures by about 20%. Lateral pressures which exceeded the vertical pressures were recorded at the bottom of the culvert walls, and small lateral pressures were recorded on the upper locations of the wall. The high lateral pressures at the base of the wall are consistent with the results from finite element analyses with high density (modulus) backfill material placed around the culvert.

  12. FULLY CONVECTIVE MAGNETO-ROTATIONAL TURBULENCE IN LARGE ASPECT-RATIO SHEARING BOXES

    SciTech Connect (OSTI)

    Bodo, G.; Rossi, P.; Cattaneo, F.; Mignone, A.

    2015-01-20

    We present a numerical study of turbulence and dynamo action in stratified shearing boxes with both finite and zero net magnetic flux. We assume that the fluid obeys the perfect gas law and has finite thermal diffusivity. The latter is chosen to be small enough so that vigorous convective states develop. The properties of these convective solutions are analyzed as the aspect ratio of the computational domain is varied and as the value of the mean field is increased. For the cases with zero net flux, we find that a well-defined converged state is obtained for large enough aspect ratios. In the converged state, the dynamo can be extremely efficient and can generate substantial toroidal flux. We identify solutions in which the toroidal field is mostly symmetric about the mid-plane and solutions in which it is mostly anti-symmetric. The symmetric solutions are found to be more efficient at transporting angular momentum and can give rise to a luminosity that is up to an order of magnitude larger than the corresponding value for the anti-symmetric states. In the cases with a finite net flux, the system appears to spend most of the time in the symmetric states.

  13. MAGNETOROTATIONAL TURBULENCE IN STRATIFIED SHEARING BOXES WITH PERFECT GAS EQUATION OF STATE AND FINITE THERMAL DIFFUSIVITY

    SciTech Connect (OSTI)

    Bodo, G.; Rossi, P.; Cattaneo, F.; Mignone, A.

    2012-12-20

    We present a numerical study of turbulence and dynamo action in stratified shearing boxes with zero mean magnetic flux. We assume that the fluid obeys the perfect gas law and has finite (constant) thermal diffusivity. The calculations begin from an isothermal state spanning three scale heights above and below the mid-plane. After a long transient the layers settle to a stationary state in which thermal losses out of the boundaries are balanced by dissipative heating. We identify two regimes. The first is a conductive regime in which the heat is transported mostly by conduction and the density decreases with height. In the limit of large thermal diffusivity this regime resembles the more familiar isothermal case. The second is the convective regime, observed at smaller values of the thermal diffusivity, in which the layer becomes unstable to overturning motions, the heat is carried mostly by advection, and the density becomes nearly constant throughout the layer. In this latter constant-density regime we observe evidence for large-scale dynamo action leading to a substantial increase in transport efficiency relative to the conductive case.

  14. Ambient synthesis, characterization, and electrochemical activity of LiFePO? nanomaterials derived from iron phosphate intermediates

    SciTech Connect (OSTI)

    Patete, Jonathan M.; Wong, Stanislaus S.; Scofield, Megan E.; Volkov, Vyacheslav; Koenigsmann, Christopher; Zhang, Yiman; Marschilok, Amy C.; Wang, Xiaoya; Bai, Jianming; Han, Jinkyu; Wang, Lei; Wang, Feng; Zhu, Yimei; Graetz, Jason A.

    2015-05-30

    LiFePO? materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO? by incorporating a template-based, ambient, surfactantless, seedless, U-tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematically assessed using transmission electron microscopy TEM, HRTEM, SEM, XRD, SAED, EDAX and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO? nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent first principles calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology.

  15. A novel Bi-based phosphomolybdate photocatalyst K{sub 2}Bi(PO{sub 4})(MoO{sub 4}): Crystal structure, electronic structure and photocatalytic activity

    SciTech Connect (OSTI)

    Huang, Hongwei; Chen, Gong; Wang, Shuobo; Kang, Lei; Lin, Zheshuai; Zhang, Yihe

    2014-03-01

    Graphical abstract: - Highlights: A new type of phosphomolybdate K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) photocatalyst was successfully synthesized. The products synthesized at 600 C were mainly composed of nano-cubes. The indirect band gap of K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) has been determined to be 2.93 eV. K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) synthesized at 600 C exhibits the highest photocatalytic activity. The electronic structure was calculated by density functional calculations. - Abstract: A novel phosphomolybdate photocatalyst K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) has been successfully developed via a solid-state reaction. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activities of the samples prepared at different temperature were determined by the photooxidative decomposition of methylene blue (MB) in aqueous solution. The results revealed that K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) can be used as an effective photocatalyst under UVvis irradiation and the nanocubes obtained at 600 C exhibits the highest photocatalytic activity. The photodegradation of MB by K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) nanocrystals followed the first-order kinetics. Theoretical calculations on electronic structure confirmed the indirect optical transitions property in the absorption edge region of K{sub 2}Bi(PO{sub 4})(MoO{sub 4}), and the orbital constitutions of CB and VB were also analyzed.

  16. Electric dipole moment in KH{sub 2}PO{sub 4} systematically modified by proton irradiation

    SciTech Connect (OSTI)

    Jin Kweon, Jung; Lee, Cheol Eui; Noh, S. J.; Kim, H. S.

    2012-01-01

    We have carried out an impedance spectroscopy study on a series of proton-irradiated KH{sub 2}PO{sub 4} (KDP) systems. A systematic modification was observed in the transverse dipole moment of the proton-irradiated KDP systems, associated with hydrogen-ion displacements, as obtained from dielectric constant measurements by using a mean-field approximation. Besides, intercorrelation of the charge transport with the dielectric properties was revealed, both having closely to do with the hydrogen-bond modification.

  17. NT~pU.S. Deparfmehnt of Energy P.O0 Bok, 450, MSIN H6-60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NT~pU.S. Deparfmehnt of Energy P.O0 Bok, 450, MSIN H6-60 SAT~s ~Richland, Washington 99352 APR 0 12010 1 0-ESQ-093 Mr. Charles G. Spencer, President and Project Manager Washington River Protection Solutions LLC 2440 Stevens Center Place Richland, Washington 99354 Dear Mr. Spencer: CONTRACT NO. DE-AC27-08RVI14800 - DE MINIMIS CHANGES TO THE HANFORD AN ALYTICAL SERVICES QUALITY ASSURANCE REQUIREMENTS DOCUMENT (HASQARD) Compliance with the HASQARD, DOE/RL-96-68, is required by your Contract

  18. SYMMETRIES, SCALING LAWS, AND CONVERGENCE IN SHEARING-BOX SIMULATIONS OF MAGNETO-ROTATIONAL INSTABILITY DRIVEN TURBULENCE

    SciTech Connect (OSTI)

    Bodo, G.; Rossi, P.; Cattaneo, F.; Ferrari, A.; Mignone, A.

    2011-10-01

    We consider the problem of convergence in homogeneous shearing-box simulations of magneto-rotationally driven turbulence. When there is no mean magnetic flux, if the equations are non-dimensionalized with respect to the diffusive scale, the only free parameter in the problem is the size of the computational domain. The problem of convergence then relates to the asymptotic form of the solutions as the computational box size becomes large. By using a numerical code with a high order of accuracy we show that the solutions become asymptotically independent of domain size. We also show that cases with weak magnetic flux join smoothly to the zero-flux cases as the flux vanishes. These results are consistent with the operation of a subcritical small-scale dynamo driving the turbulence. We conclude that for this type of turbulence the angular momentum transport is proportional to the diffusive flux and therefore has limited relevance in astrophysical situations.

  19. Review of Literature on Terminal Box Control, Occupancy Sensing Technology and Multi-zone Demand Control Ventilation (DCV)

    SciTech Connect (OSTI)

    Liu, Guopeng; Dasu, Aravind R.; Zhang, Jian

    2012-03-01

    This report presents an overall review of the standard requirement, the terminal box control, occupancy sensing technology and DCV. There is system-specific guidance for single-zone systems, but DCV application guidance for multi-zone variable air volume (VAV) systems is not available. No real-world implementation case studies have been found using the CO2-based DCV. The review results also show that the constant minimum air flow set point causes excessive fan power consumption and potential simultaneous heating and cooling. Occupancy-based control (OBC) is needed for the terminal box in order to achieve deep energy savings. Key to OBC is a technology for sensing the actual occupancy of the zone served in real time. Several technologies show promise, but none currently fully meets the need with adequate accuracy and sufficiently low cost.

  20. Safety-analysis report for packaging - corrugated steel container (SAND Box) for DOT specification 7A packaging

    SciTech Connect (OSTI)

    Brugger, R.P.

    1983-05-16

    Department of Transportation (DOT) Specification 7A, Type A corrugated steel containers for shipment and storage of Transuranic (TRU) solid waste have been developed. The containers are made entirely of 14 gauge (0.0747-in.) low carbon steel. All seams including the closure are welded to produce a leak-tight container. Four sizes of the SAND Box container have successfully met all Specification 7A, Type A requirements.

  1. Safety analysis report for packaging-corrugated steel container (SAND Box) for DOT Specification 7A packaging

    SciTech Connect (OSTI)

    Brugger, R.P.

    1983-01-24

    Department of Transportation (DOT) Specification 7A, Type A corrugated steel containers for shipment and storage of Transuranic (TRU) solid waste have been developed. The containers are made entirely of 14 gauge (0.0747-in.) low carbon steel. All seams including the closure are welded to produce a leaktight container. Four sizes of the SAND Box container have successfully met all Specification 7A, Type A requirements.

  2. IO6264 OAK RIDGE NATIONAL LABORATORY POST OFFICE BOX 2008 WEMTED Sv MARTIN MARIETTA ENERGY SVPEUS. INC

    Office of Legacy Management (LM)

    IO6264 OAK RIDGE NATIONAL LABORATORY POST OFFICE BOX 2008 - WEMTED Sv MARTIN MARIETTA ENERGY SVPEUS. INC OAK RIDGE. TENNESSEE 37031 July 16, 1993 Dr. W. A Williams Department of Energy Trevion II Building EM-421 Washington, D. C. 205850002 Dear Dr. Williams: IndcperrdentVerihiatianoftbc~ConditioDofthtOId~~B~gOwnedbytht Gmnite city steel c2ltpmatiw, Gr8nite city, Illinois A team from the Measurement Applications and Development (MAD) group, Oak Ridge National Laboratory (ORNL), at the request of

  3. Final evaluation & test report for the standard waste box (docket 01-53-7A) type A packaging

    SciTech Connect (OSTI)

    KELLY, D L

    2001-10-15

    This report documents the U.S. Department of Transportation Specification 7A Type A compliance test and evaluation results of the Standard Waste Box. Testing and evaluation activities documented herein are on behalf of the U.S. Department of Energy-Headquarters, Office of Safety, Health and Security (EM-5), Germantown, Maryland. Duratek Federal Services, Inc., Northwest Operations performed an evaluation of the changes as documented herein under Docket 01-53-7A.

  4. Combustion synthesized nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode for lithium-ion batteries

    SciTech Connect (OSTI)

    Nathiya, K.; Bhuvaneswari, D.; Gangulibabu; Kalaiselvi, N.

    2012-12-15

    Graphical abstract: Nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C compound has been synthesized using a novel corn assisted combustion (CAC) method, wherein the composite prepared at 850 C is found to exhibit superior physical and electrochemical properties than the one synthesized at 800 C (Fig. 1). Despite the charge disproportionation of V{sup 4+} and a possible solid solution behavior of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode upon insertion and de-insertion of Li{sup +} ions, the structural stability of the same is appreciable, even with the extraction of third lithium at 4.6 V (Fig. 2). An appreciable specific capacity of 174 mAh g{sup ?1} with an excellent columbic efficiency (99%) and better capacity retention upon high rate applications have been exhibited by Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode, thus demonstrating the feasibility of CAC method in preparing the title compound to best suit with the needs of lithium battery applications. Display Omitted Highlights: ? Novel corn assisted combustion method has been used to synthesize Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C. ? Corn is a cheap and eco benign combustible fuel to facilitate CAC synthesis. ? Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C exhibits an appreciable specific capacity of 174 mAh g{sup ?1} (C/10 rate). ? Currently observed columbic efficiency of 99% is better than the reported behavior. ? Suitability of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode up to 10C rate is demonstrated. -- Abstract: Nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composite synthesized using a novel corn assisted combustion method at 850 C exhibits superior physical and electrochemical properties than the one synthesized at 800 C. Despite the charge disproportionation of V{sup 4+} and a possible solid solution behavior of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode upon insertion and extraction of Li{sup +} ions, the structural stability of the same is appreciable, even with the extraction of third lithium at 4.6 V. An appreciable specific capacity of 174 mAh g{sup ?1} and better capacity retention upon high rate applications have been exhibited by Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode, thus demonstrating the suitability of the same for lithium-ion battery applications.

  5. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  6. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    SciTech Connect (OSTI)

    Paul Liu

    2012-05-01

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a ??one-box? process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor??s behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered ?90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promi

  7. Effects of laser energy and wavelength on the analysis of LiFePO? using laser assisted atom probe tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Khalifah, Peter; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Meng, Ying Shirley

    2015-01-01

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO? by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ?O?? ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO?. Plotting of multihit events on Saxey plots also revealed a strong neutral O? loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  8. Effects of laser energy and wavelength on the analysis of LiFePO? using laser assisted atom probe tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO? by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ?O?? ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO?. Plotting of multihit events on Saxey plots also revealed a strong neutral O? loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  9. Preparation of LiFePO{sub 4} with inverse opal structure and its satisfactory electrochemical properties

    SciTech Connect (OSTI)

    Lu Junbiao . E-mail: ljb01@mails.tsinghua.edu.cn; Tang Zilong; Zhang Zhongtai; Shen Wanci

    2005-12-08

    Phase pure, well-crystallized and homogeneous LiFePO{sub 4} powder with inverse opal structure was obtained by calcining the precursors of Li{sup +}, Fe{sup 2+} and PO{sub 4} {sup 3-} in the presence of organic template of poly(styrene-methyl methacrylate-acrylic acid) latex micro-spheres under nitrogen atmosphere. The resultant products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), chemical titration, Fourier transform infrared (FTIR) and Land 2001A electrochemical measurement system. Results indicated that after the decomposition of organic template, inverse opal structure and conductive carbon were left in the resultant products. With the large specific surface area resulting from inverse opal structure and with the conductive carbon, the products delivered satisfactory capacity and superior rate capability at room temperature, i.e., over 100 mAh/g at the high current density of 5.9C.

  10. Electronic structure and optical properties of Ag{sub 3}PO{sub 4} photocatalyst calculated by hybrid density functional method

    SciTech Connect (OSTI)

    Liu, J. J.; Fu, X. L.; Chen, S. F.; Zhu, Y. F.

    2011-11-07

    The electronic structure and optical properties of Ag{sub 3}PO{sub 4} were studied by hybrid density functional theory. The results indicated that the band gap is 2.43 eV, which agrees well with the experimental value of 2.45 eV. The conduction bands of Ag{sub 3}PO{sub 4} are mainly attributable to Ag 5s and 5p states, while the valence bands are dominated by O 2p and Ag 4d states. The highest valence band edge potential was 2.67 V (vs. normal hydrogen electrode), which has enough driving force for photocatalytic water oxidation and pollutants degradation. The optical absorption spectrum showed that Ag{sub 3}PO{sub 4} is a visible light response photocatalyst.

  11. Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation

    SciTech Connect (OSTI)

    Lee, Sanghun Park, Sung Soo

    2013-08-15

    Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The coreshell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. The unit-cell parameters from experimental studies are reproduced by the coreshell model. Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

  12. Property:Incentive/ContAddr2 | Open Energy Information

    Open Energy Info (EERE)

    + P.O. Box 30471 + Air Pollution Control Program (South Dakota) + 523 E. Capitol + Air Quality Approvals and Permits (New Brunswick, Canada) + P. O. Box 6000 + Air Quality...

  13. Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide- doped BiPO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena

    2015-07-08

    Ln3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial shows intense luminescencemore » of different colors such as: orange (Sm3+), red (Eu3+), green (Tb3+) or even white (Dy3+).« less

  14. Final evaluation & test report for the standard waste box (docket 01-53-7A) type A packaging

    SciTech Connect (OSTI)

    KELLY, D.L.

    2001-08-15

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test and evaluation results of the Standard Waste Box (SWB). Testing and evaluation activities documented herein are on behalf of the U.S. Department of Energy-Headquarters (DOE-HQ), Office of Safety, Health and Security (EM-5), Germantown, Maryland. Dwatek Federal Services, Inc., Northwest Operations (DFSNW) performed an evaluation of the changes as documented herein under Docket 01-53-7A.

  15. Property:Address | Open Energy Information

    Open Energy Info (EERE)

    Inc + 2130 Van Horn Rd. + AC Solar Inc + P.O. Box 128 + ACME solar works + 20738 Brown Lane + ACORE + PO Box 33518 + ADI Wind, llc. + 4686 French Creek Road + AEE Solar +...

  16. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box...

  17. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Mail and delivery address information: Y-12 National Security Complex P.O. Box 2009 Oak Ridge, TN 37831-8245* Non-mail deliveries: Bear Creek Road P.O. Box...

  18. BPA-2011-00234-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Bradburn TFSD-BELL Bonneville Power Administration PO Box 3621 PortlandOR 97208-3621 John C Thomas TFSD-BELL Bonneville Power Administration PO Box 3621 PortlandOR 97208-3621...

  19. DE-AC05-06OR23100

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UNIVERSITIES INC 00518 OAK RIDGE TN 37831 PO BOX 2001 US DEPARTMENT OF ENERGY OAK RIDGE 00518 OAK RIDGE TN 37831 PO BOX 2001 US DEPARTMENT OF ENERGY OAK RIDGE 10SC004184 Item 1 See...

  20. Heating induced structural and chemical behavior of KD{sub 2}PO{sub 4} in the 25 °C–215 °C temperature range

    SciTech Connect (OSTI)

    Botez, Cristian E. Morris, Joshua L.; Encerrado Manriquez, Andres J.; Anchondo, Adan

    2013-09-15

    We have used powder x-ray diffraction (XRD) to investigate the structural and chemical modifications undergone by KD{sub 2}PO{sub 4} (DKDP) upon heating from room temperature to 215 °C. Full-profile (Le Bail) analysis of our temperature-resolved data shows no evidence of polymorphic structural transitions or deuterium–hydrogen isotope exchange occurring below T{sub s} = 185 °C. The lattice parameters of DKDP vary smoothly upon heating to T{sub s} and are 0.2% to 0.6% greater than those of its isostructural hydrogenated counterpart KH{sub 2}PO{sub 4} (KDP). In addition, XRD isotherms collected at T{sub s} demonstrate the structural and chemical stability of the title compound at this temperature over a 10.5 h time period. Upon further heating, however, the tetragonal DKDP phase becomes unstable, as evidenced by its transition to a monoclinic DKDP modification and eventual chemical decomposition via dehydration. - Highlights: • Structural and chemical behavior of KD{sub 2}PO{sub 4} is investigated upon heating to 215 °C • No polymorphic transitions or deuterium-hydrogen isotope exchange below T{sub s} = 185 °C • KD{sub 2}PO{sub 4} is structurally and chemically stable at T{sub s} over a 10.5 h time period • KD{sub 2}PO{sub 4} chemically decomposes via dehydration upon heating above T{sub d} = 195 °C.

  1. Ion sources with arc-discharge plasma box driven by directly heated LaB{sub 6} electron emitter or cold cathode (invited)

    SciTech Connect (OSTI)

    Ivanov, Alexander A.; Davydenko, Vladimir I.; Deichuli, Petr P.; Shulzhenko, Grigori I.; Stupishin, Nikolay V.

    2008-02-15

    In the Budker Institute, Novosibirsk, an ion source with arc-discharge plasma box has been developed in the recent years for application in thermonuclear devices for plasma diagnostics. Several modifications of the ion source were provided with extracted current ranging from 1 to 7 A and pulse duration of up to 4 s. Initially, the arc-discharge plasma box with cold cathode was used, with which pulse duration is limited to 2 s by the cathode overheating and sputtering in local arc spots. Recently, a directly heated LaB{sub 6} electron emitter was employed instead, which has extended lifetime compared to the cold cathode. In the paper, characteristics of the beam produced with both arrangements of the plasma box are presented.

  2. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    SciTech Connect (OSTI)

    Marusich, Robert M.

    2012-01-25

    A set of steady state diffusion flow equations, for the hydrogen diffusion from one bag to the next bag (or one plastic waste container to another), within a set of nested waste bags (or nested waste containers), are developed and presented. The input data is then presented and justified. Inputting the data for each volume and solving these equations yields the steady state hydrogen concentration in each volume. The input data (permeability of the bag surface and closure, dimensions and hydrogen generation rate) and equations are analyzed to obtain the hydrogen concentrations in the innermost container for a set of containers which are analyzed for the TRUCON code for the general waste containers and the TRUCON code for the Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB).

  3. Technical Support Document: Development of the Advanced Energy Design Guide for Medium Box Retail -- 50% Energy Savings

    SciTech Connect (OSTI)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of medium box retail buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004. The recommendations are given by climate zone and address building envelope, fenestration, lighting systems, HVAC systems, building automation and controls, outside air treatment, service water heating, plug loads, and photovoltaic systems. The report presents several paths to 50% savings, which correspond to different levels of integrated design. These are recommendations only, and are not part of a code or standard. The recommendations are not exhaustive, but we do try to emphasize the benefits of integrated building design, that is, a design approach that analyzes a building as a whole system, rather than as a disconnected collection of individually engineered subsystems.

  4. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  5. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, Eric; Leach, Matt; Pless, Shanti

    2013-06-05

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  6. Degradation of Nylon 6,6 Fire-Suppression Casing from Plutonium Glove Boxes Under Alpha and Neutron Irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Millsap, Donald W.; Cournoyer, Michael E.; Landsberger, Sheldon; Tesmer, Joseph R.; Wang, Matthew Y.

    2015-04-23

    Nylon 6,6 tensile specimens, conforming to the casing for self-contained fire extinguisher systems, have been irradiated using both an accelerator He++ ion beam and a 5-Ci PuBe neutron source to model the radiation damage these systems would likely incur over a lifetime of operation within glove boxes. Following irradiation, these samples were mechanically tested using standard practices as described in ASTM D638. The results of the He++ study indicate that the tensile strength of the nylon specimens undergoes some slight (<10%) degradation while other properties of the samples, such as elongation and tangent modulus, appear to fluctuate with increasing dosemore » levels. The He++-irradiated specimens also have a noticeable level of discoloration corresponding to increasing levels of dose. The neutron-irradiated samples show a higher degree of mechanical degradation than the He++-irradiated samples.« less

  7. Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites

    SciTech Connect (OSTI)

    Doeff, Marca M; Chen, Jiajun; Conry, Thomas E.; Wang, Ruigang; Wilcox, James; Aumentado, Albert

    2009-12-14

    A combustion synthesis technique was used to prepare nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1,0.2)/carbon composites. Powders consisted of carbon-coated particles about 30 nm in diameter, which were partly agglomerated into larger secondary particles. The utilization of the active materials in lithium cells depended most strongly upon the post-treatment and the Mg content, and was not influenced by the amount of carbon. Best results were achieved with a hydrothermally treated LiMg0.2Mn0.8PO4/C composite, which exhibited close to 50percent utilization of the theoretical capacity at a C/2 discharge rate.

  8. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    SciTech Connect (OSTI)

    Belomestnykh, S.; Ben-Zvi, I.; Brutus, J. C.; Litvinenko, V.; McIntosh, P.; Moss, A.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Wheelhouse, A.; Wu, Q.; Xiao, B.; Xin, T.; Xu, W.; Zaltsman, A.

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  9. A ferromagnetic quantum critical point in heavy-fermion iron oxypnictide CeFe{sub 1?x}Cr{sub x}PO

    SciTech Connect (OSTI)

    Okano, T.; Matoba, M.; Kamihara, Y.; Kitao, S.; Seto, M.; Atou, T.; Itoh, M.

    2015-05-07

    We report crystallographic and magnetic properties of layered iron oxypnictide CeFe{sub 1?x}Cr{sub x}PO (x?=?0.0000.692). Interlayer distances between Ce{sub 2}O{sub 2} and (Fe{sub 1?x}Cr{sub x}){sub 2}P{sub 2} layers increase as a function of x, suggesting suppression of Kondo coupling among hybridized conducting orbitals and localized Ce 4f orbitals. CeFe{sub 1?x}Cr{sub x}PO (x?=?0.1000.384) exhibits finite ferromagnetic transition temperatures (T{sub curie}) obtained by Arrott plots, although {sup 57}Fe Mssbauer spectra reveal paramagnetic Fe sublattice at T???4.2?K. These results indicate that the ferromagnetic phase transitions of samples are mainly due to Ce sublattice. For the samples with x???0.500, no ferromagnetic order is observed down to 2?K. These results verify that ferromagnetic quantum critical points of CeFe{sub 1?x}Cr{sub x}PO appear at 0.045???x???0.100 and 0.384???x???0.500.

  10. Effect of fuel rate and annealing process of LiFePO{sub 4} cathode material for Li-ion batteries synthesized by flame spray pyrolysis method

    SciTech Connect (OSTI)

    Halim, Abdul; Setyawan, Heru; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2014-02-24

    In this study the effect of fuel rate and annealing on particle formation of LiFePO{sub 4} as battery cathode using flame spray pyrolysis method was investigated numerically and experimentally. Numerical study was done using ANSYS FLUENT program. In experimentally, LiFePO{sub 4} was synthesized from inorganic aqueous solution followed by annealing. LPG was used as fuel and air was used as oxidizer and carrier gas. Annealing process attempted in inert atmosphere at 700C for 240 min. Numerical result showed that the increase of fuel rate caused the increase of flame temperature. Microscopic observation using Scanning Electron Microscopy (SEM) revealed that all particles have sphere and polydisperse. Increasing fuel rate caused decreasing particle size and increasing particles crystallinity. This phenomenon attributed to the flame temperature. However, all produced particles still have more amorphous phase. Therefore, annealing needed to increase particles crystallinity. Fourier Transform Infrared (FTIR) analysis showed that all particles have PO4 function group. Increasing fuel rate led to the increase of infrared spectrum absorption corresponding to the increase of particles crystallinity. This result indicated that phosphate group vibrated easily in crystalline phase. From Electrochemical Impedance Spectroscopy (EIS) analysis, annealing can cause the increase of Li{sup +} diffusivity. The diffusivity coefficient of without and with annealing particles were 6.8439910{sup ?10} and 8.5988810{sup ?10} cm{sup 2} s{sup ?1}, respectively.

  11. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Hui; Yu, Xiqian; Bai, Ying; Wu, Feng; Wu, Chuan; Liu, Liang-Yu; Yang, Xiao-Qing

    2015-01-01

    Na3V2-xMgx(PO4)3/C composites with different Mg2+ doping contents (x=0, 0.01, 0.03, 0.05, 0.07 and 0.1) were prepared by a facile sol-gel method. The doping effects on the crystal structure were investigated by XRD, XPS and EXAFS. The results show that low dose doping Mg2+ does not alter the structure of the material, and magnesium is successfully substituted for vanadium site. The Mg doped Na3V2-xMgx(PO4)3/C composites exhibit significant improvements on the electrochemistry performances in terms of the rate capability and cycle performance, especially for the Na3V1.95Mg0.05(PO4)3/C. For example, when the current density increased from 1 C to 30 C, the specific capacitymore » only decreased from 112.5 mAh g-1 to 94.2 mAh g-1 showing very good rate capability. Moreover, even cycling at a high rate of 20 C, an excellent capacity retention of 81% is maintained from the initial value of 106.4 mAh g-1 to 86.2 mAh g-1 at the 50th cycle. Enhanced rate capability and cycle performance can be attributed to the optimized particle size, structural stability and enhanced ionic and electronic conductivity induced by Mg doping.« less

  12. Incorporation of {sup 210}Pb and {sup 210}Po to Poultry through the Addition of Dicalcium Phosphate (DCP) to the Diet

    SciTech Connect (OSTI)

    Casacuberta, N.; Masque, P.; Garcia-Orellana, J.; Gasa, J.; Anguita, M.

    2008-08-07

    Due to the replacement of calcium by uranium in the phosphorite, sedimentary phosphate rock contains high concentrations of {sup 238}U (i.e. from 1500 Bq{center_dot}kg{sup -1} in Morocco to 4000 Bq{center_dot}kg{sup -1} in Tanzania ores). Dicalcium Phosphate (DCP) is produced by the wet acid digestion of the phosphorite, and is used as a source of calcium and phosphorus for livestock feed supplement. If the phosphorite acid digestion is made with hydrochloric acid, DCP may present specific activities of about 10{sup 3} Bq{center_dot}kg{sup -1} of {sup 238}U and some of its decay chain daughters. In particular, due to its radiological implications, the presence of {sup 210}Pb and {sup 210}Po in DCP is of special relevance. The aim of this work was to investigate the potential incorporation of these radionuclides to poultry through its diet. Three different diets were therefore prepared with different contents of both DCP and {sup 210}Pb and {sup 210}Po. Diet A was used as a blank, and had a 2.5% in weight of monocalcium phosphate (MCP); diet B, with a 5% in weight of DCP; and diet C, with a 2.5% of DCP. Concentrations of {sup 210}Pb were 0.93, 101.4 and 51.2 Bq{center_dot}kg{sup -1}; whereas concentrations of {sup 210}Po were 0.92, 74 and 36 Bq{center_dot}kg{sup -1} of food for diets A, B and C, respectively. Accumulation of {sup 210}Pb and {sup 210}Po was analysed at several times during poultry growth in samples of bone, liver, kidney, muscle, excrements as well as entire animals, with a total of 30 broilers fed with the 3 different diets. Results showed clear enhancements in the accumulation of both {sup 210}Pb and {sup 210}Po in chicken for diets B and C, and in particular in liver and bone. However, total accumulation of radionuclides in chicken, and especially in edible parts, is low compared to its expulsion through excrements. These results are interpreted in terms of the potential dose through consumption of chicken.

  13. Final Project Report: Self-Correcting Controls for VAV System Faults Filter/Fan/Coil and VAV Box Sections

    SciTech Connect (OSTI)

    Brambley, Michael R.; Fernandez, Nicholas; Wang, Weimin; Cort, Katherine A.; Cho, Heejin; Ngo, Hung; Goddard, James K.

    2011-05-01

    This report addresses original research by the Pacific Northwest National Laboratory for the California Institute for Energy and Environment on self-correcting controls for variable-air-volume (VAV) heating, ventilating and air-conditioning systems and focuses specifically on air handling and VAV box components of the air side of the system. A complete set of faults for these components was compiled and a fault mode analysis performed to understand the detectable symptoms of the faults and the chain of causation. A set of 26 algorithms was developed to facilitate the automatic correction of these faults in typical commercial VAV systems. These algorithms include training tests that are used during commissioning to develop models of normal system operation, passive diagnostics used to detect the symptoms of faults, proactive diagnostics used to diagnose the cause of a fault, and finally fault correction algorithms. Ten of the twenty six algorithms were implemented in a prototype software package that interfaces with a test bed facility at PNNL's Richland, WA, laboratory. Measurement bias faults were instigated in the supply-air temperature sensor and the supply-air flow meter to test the algorithms developed. The algorithms as implemented in the laboratory software correctly detected, diagnosed and corrected these faults. Finally, an economic and impact assessment was performed for the State of California for deployment of self-correcting controls. Assuming 15% HVAC energy savings and a modeled deployment profile, 3.1-5.8 TBu of energy savings are possible by year 15.

  14. The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test

    SciTech Connect (OSTI)

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, Nicole; Zaveri, Rahul A.; Metzger, S.; Aquila, Valentino

    2014-06-17

    We introduce MADE3 (Modal Aerosol Dynamics for Europe, adapted for global applications, version 3), an aerosol dynamics submodel for application in a global chemistry general circulation model, that builds on the predecessor aerosol submodels MADE and MADE-in. The main new features of MADE3 are the explicit representation of coarse particle interactions with fine particles and gases, and the inclusion of the hydrochloric acid (HCl)/chloride (Cl􀀀) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new model as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess MADE3s performance we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model application. MADE3 and MADE results are very similar, except when the aerosol is dominated by sea spray particles. In such cases, Cl􀀀 concentrations are lower in MADE3 than in MADE due to the HCl/Cl􀀀 partitioning. Additionally, the aerosol nitrate concentration is higher in MADE3 due to the uptake on coarse particles. MADE3 and PartMCMOSAIC show substantial differences in the fine particle size distributions (sizes . 2?m) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

  15. Impedance Measurement Box

    SciTech Connect (OSTI)

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  16. Thinking Inside the Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of time and money. A thousand times less expensive than traditional satellites, and much quicker to build, Los Alamos's Prometheus CubeSats have been on orbit for almost two years...

  17. Synthesis and photoluminescence properties of Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} red phosphor for white light emitting diodes

    SciTech Connect (OSTI)

    Zhu, Ge; Ci, Zhipeng; Shi, Yurong; Wang, Yuhua

    2014-07-01

    Highlights: A novel red phosphor Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} was synthesized and investigated firstly. The structure and characteristic luminescence properties are discussed. The excellent thermal stability was found and investigated. It has good color saturation, the CIE is close to that of commercial Y{sub 2}O{sub 3}:Eu{sup 3+}. - Abstract: A series of Sm{sup 3+} doped Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14} red phosphors were successfully synthesized. X-ray diffraction analysis indicates that all the samples are single phased. The luminescence property is investigated in detail by measuring their photoluminescence excitation and emission spectra. Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} phosphors show strong absorption in 400410 nm region, which is suitable for application in LEDs. When excited at 403 nm, Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} phosphor can emit red emission with CIE chromaticity coordinates (0.615, 0.384). The optimal doping concentration of Sm{sup 3+} doped Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14} is measured to be 0.02. The thermal quenching property is also measured and compared with the commercial red phosphor Y{sub 2}O{sub 3}:Eu{sup 3+} (Topstar, TXC-RIA). The results indicate Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} phosphors have potential to serve as a red phosphor for white LEDs.

  18. Neutron powder diffraction study of the layer organic-inorganic hybrid iron(II) methylphosphonate-hydrate, Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)

    SciTech Connect (OSTI)

    Leone, Philippe Bellitto, Carlo; Bauer, Elvira M.; Righini, Guido; Andre, Gilles; Bouree, Francoise

    2008-11-15

    The crystal and magnetic structures of the hybrid organic-inorganic layer compound Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] have been studied by neutron powder diffraction as a function of temperature down to 1.5 K. The neutron diffraction pattern recorded at 200 K shows that the fully deuterated compound crystallizes in one of the two known forms of the undeuterated Fe[(CH{sub 3}PO{sub 3})(H{sub 2}O)]. The crystal structure is orthorhombic, space group Pmn2{sub 1}, with the following unit-cell parameters: a=5.7095(1) A, b=8.8053(3) A and c=4.7987(1) A; Z=2. The crystal structure remains unchanged on cooling from 200 to 1.5 K. Moreover, at low temperature, Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] shows a commensurate magnetic structure (k=(0,0,0)). As revealed by bulk susceptibility measurements on Fe[(CH{sub 3}PO{sub 3})(H{sub 2}O)], the magnetic structure corresponds to a canted antiferromagnet with a critical temperature T{sub N}=25 K. Neutron powder diffraction reveals that below T{sub N}=23.5 K the iron magnetic moments in Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] are antiferromagnetically coupled and oriented along the b-axis, perpendicular to the inorganic layers. No ferromagnetic component is observable in the neutron powder diffraction experiment, due to its too small value (<0.1{mu}{sub B}). - Graphical abstract: Crystal structure and magnetic structure of Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)].

  19. Crystal structure and magnetic properties of NaCu{sup II}[(Cu{sup II}{sub 3}O)(PO{sub 4}){sub 2}Cl

    SciTech Connect (OSTI)

    Jin Tengteng; Liu Wei; Chen Shuang; Prots, Yurii; Schnelle, Walter; Zhao Jingtai; Kniep, Ruediger; Hoffmann, Stefan

    2012-08-15

    A new copper(II) oxide phosphate chloride, NaCu{sup II}[(Cu{sup II}{sub 3}O)(PO{sub 4}){sub 2}Cl], has been synthesized by flux synthesis. Single-crystal X-ray diffraction data show that the title compound crystallizes in the monoclinic system, space group P2{sub 1}/c (No. 14), with lattice parameters a=8.392(2) A, b=6.3960(10) A, c=16.670(2) A, {beta}=109.470(10) Degree-Sign , V=843.6(3) A{sup 3}, Z=4. The crystal structure is characterized by a complex chain of copper-centered polyhedra running along [0 1 0] which are connected by phosphate tetrahedra. The resulting three-dimensional polyhedra framework exhibits channels filled by additional copper and sodium atoms. Field and temperature dependent measurements of the specific heat and the magnetic susceptibility reveal low-dimensional magnetic behavior. The compound starts to decompose at 700 K under release of oxygen and evaporation of Cu{sup I}Cl as shown by simultaneous thermogravimetry and mass spectrometry. - Graphical abstract: The crystal structure of the new copper(II) phosphate chloride, NaCu{sup II}[(Cu{sup II}{sub 3}O)(PO{sub 4}){sub 2}Cl], exhibits linear chains of copper tetrahedra which show low-dimensional magnetic behavior proven by specific heat and magnetic susceptibility measurements. Highlights: Black-Right-Pointing-Pointer A new copper(II) oxide phosphate chloride, NaCu{sup II}[(Cu{sup II}{sub 3}O)(PO{sub 4}){sub 2}Cl], has been synthesized by flux synthesis. Black-Right-Pointing-Pointer The crystal structure comprises chains of Cu{sub 4}O tetrahedra. Black-Right-Pointing-Pointer Low-dimensional behavior has been proven by magnetic and specific heat measurements. Black-Right-Pointing-Pointer On heating, Cu{sup I}Cl and oxygen are released shown by simultaneous thermogravimetry and mass spectrometry.

  20. Synthesis, structure, and magnetic properties of a novel mixed-valence copper(I/II) phosphate, Cu{sub 2}PO{sub 4}

    SciTech Connect (OSTI)

    Etheredge, K.M.S.; Hwu, S.J.

    1995-09-27

    Via phase compatibility studies, a novel mixed-valence copper(I/II) phosphate, Cu{sub 2}PO{sub 4}, has been isolated from a direct reaction of Cu{sub 2}{sup I}O, Cu{sup II}O, and P{sub 2}O{sub 5} in fused silica. The single-crystal X-ray diffraction shows that the title compound crystallizes in a triclinic (P1) unit cell, with lattice dimensions a = 6.145(2) {angstrom}, b = 9.348(2) {angstrom}, c = 6.009(1) {angstrom}, {alpha} = 96.46(2){degrees}, {beta} = 100.16(2){degrees}, {gamma} = 73.97(2){degrees}, V = 325.8(1) {angstrom}{sup 3}; Z =4. The structure has been refined by the least-squares method to R = 0.019, R{sub w} = 0.030, and GOF = 1.43 for 128 variables. The four copper atoms in each asymmetric unit adopt three distorted coordination geometries that are consistent with the corresponding electronic states, e.g., square pyramidal Cu(1){sup II}O{sub 5}, octahedral Cu(2){sup II}O{sub 6}, and linear Cu(3,4){sup I}O{sub 2}. A low-dimensional framework exists consisting of arrays of nearly parallel CuO{sub 2} units which are separated by the nonmagnetic, closed-shell P{sup 5+} cation in PO{sub 4} tetrahedra. Closely spaced CuO{sub 2} chains and a relatively short Cu{sup I}-Cu{sup I} distance, e.g., 2.737 {angstrom} for Cu(3)-Cu(3), are attributed to the bond strength of the cross-linked PO{sub 4} tetrahedra. In the extended Cu(I/II)-O framework, short linkages of Cu{sup I}-O-Cu{sup II}-O-Cu{sup I} and Cu{sup II}-O-Cu{sup II}, composed of regular Cu-O bonds (1.86-1.99 {angstrom}), are interconnected through long Cu{sup II}-O bonds (2.36-2.74 {angstrom}). The magnetic measurements indicate that the Cu-O framework exhibits a spin 1/2 ground state and an antiferromagnetic ordering with a broad susceptibility maximum between 95 and 105 K. The results of stoichiometric synthesis, thermal analysis, and bond valence sum calculations of the title compound are also discussed.

  1. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2015 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO...

  2. Properties measurements of (U{sub 0.7}Pu{sub 0.3})O{sub 2-x} in PO{sub 2}-controlled atmosphere

    SciTech Connect (OSTI)

    Kato, M.; Murakami, T.; Sunaoshi, T.; Nelson, A.T.; McClellan, K.J.

    2013-07-01

    The investigation of physical properties of uranium and plutonium mixed oxide (MOX) fuels is important for the development of fast reactor fuels. It is well known that MOX is a nonstoichiometric oxide, and the physical properties change drastically with the Oxygen-to-Metal (O/M) ratio. A control technique for O/M ratio was established for measurements of high temperature properties of uranium and plutonium mixed oxide fuels. Sintering behavior, thermal expansion and O/M change of (U{sub 0.7}Pu{sub 0.3})O{sub 2.00} and (U{sub 0.7}Pu{sub 0.3})O{sub 1.99} were investigated in PO{sub 2}-controlled atmosphere which was controlled by H{sub 2}/H{sub 2}O gas system. Sintering behavior changed drastically with O/M ratio, and shrinkage of (U{sub 0.7}Pu{sub 0.3})O{sub 2.00} was faster and more advanced at lower temperatures as compared with (U{sub 0.7}Pu{sub 0.3})O{sub 1.99}. Thermal expansion was observed to be slightly increased with decreasing O/M ratio. (authors)

  3. Synthesis of nanostructured LiTi{sub 2}(PO{sub 4}){sub 3} powder by a Pechini-type polymerizable complex method

    SciTech Connect (OSTI)

    Mariappan, C.R.; Galven, C.; Crosnier-Lopez, M.-P.; Le Berre, F.; Bohnke, O. . E-mail: odile.bohnke@univ-lemans.fr

    2006-02-15

    The nanostructured NASICON-type LiTi{sub 2}(PO{sub 4}){sub 3} (LTP) material has been synthesized by Pechini-type polymerizable complex method. The use of water-soluble ammonium citratoperoxotitanate (IV) metal complex instead of alkoxides as precursor allows to prepare monophase material. Thermal analyses have been carried out on the powder precursor to check the weight loss and synthesis temperature. X-ray powder diffraction analysis (XRD) has been performed on the LTP powder obtained after heating the powder precursor over a temperature range from 550 to 1050 deg. C for 2 h. By varying the molar ratio of citric acid to metal ion (CA/Ti) and citric acid to ethylene glycol (CA/EG), the grain size of the LTP powder could be modified. The formation of small and well-crystalline grains, in the order of 50-125 nm in size, has been determined from the XRD patterns and confirmed by transmission electron microscopy.

  4. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Liping; Bai, Jianming; Gao, Peng; Wang, Xiaoya; Looney, J. Patrick; Wang, Feng

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design ofmore » a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability – 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.« less

  5. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  6. Dissolution Kinetics of Synthetic and Natural Meta-Autunite Minerals, X??n????[(UO?)(PO?)]? ? xH?O, Under Acidic Conditions

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Gunderson, Katie M.; Icenhower, Jonathan P.; Forrester, Steven W.

    2007-11-01

    Mass transport within the uranium geochemical cycle is impacted by the availability of phosphorous. In oxidizing environments, in which the uranyl ionic species is typically mobile, formation of sparingly soluble uranyl phosphate minerals exert a strong influence on uranium transport. Autunite group minerals have been identified as the long-term uranium controlling phases in many systems of geochemical interest. Anthropogenic operations related to uranium mining operations have created acidic environments, exposing uranyl phosphate minerals to low pH groundwaters. Investigations regarding the dissolution behavior of autunite group minerals under acidic conditions have not been reported; consequently, knowledge of the longevity of uranium controlling solids is incomplete. The purpose of this investigation was to: 1) quantify the dissolution kinetics of natural calcium and synthetic sodium meta-autunite, under acidic conditions, 2) measure the effect of temperature and pH on meta-autunite mineral dissolution, and 3) investigate the formation of secondary uranyl phosphate phases as long-term controls on uranium migration. Single-pass flow-through (SPFT) dissolution tests were conducted over the pH range of 2 to 5 and from 5 to 70C. Results presented here illustrate meta-autunite dissolution kinetics are strongly dependent on pH, but are relatively insensitive to temperature variations. In addition, the formation of secondary uranyl-phosphate phases such as, uranyl phosphate, (UO2)3(PO4)2 ? 4 H2O, may serve as a secondary phase limiting the migration of uranium in the environment.

  7. The characteristic of carbon-coated LiFePO{sub 4} as cathode material for lithium ion battery synthesized by sol-gel process in one step heating and varied pH

    SciTech Connect (OSTI)

    Triwibowo, J.; Yuniarti, E.; Suharyadi, E.

    2014-09-25

    This research has been done on the synthesis of carbon coated LiFePO{sub 4} through sol-gel process. Carbon layer serves for improving electronic conductivity, while the variation of pH in the sol-gel process is intended to obtain the morphology of the material that may improve battery performance. LiFePO{sub 4}/C precursors are Li{sub 2}CO{sub 3}, NH{sub 4}H{sub 2}PO{sub 4} and FeC{sub 2}O{sub 4}.H{sub 2}O and citric acid. In the synthesis process, consisting of a colloidal suspension FeC{sub 2}O{sub 4}.H{sub 2}O and distilled water mixed with a colloidal suspension consisting of NH{sub 4}H{sub 2}PO{sub 4}, Li{sub 2}CO{sub 3}, and distilled water. Variations addition of citric acid is used to control the pH of the gel formed by mixing two colloidal suspensions. Sol in this study had a pH of 5, 5.4 and 5.8. The obtained wet gel is further dried in the oven and then sintered at a temperature 700C for 10 hours. The resulting material is further characterized by XRD to determine the phases formed. The resulting powder morphology is observed through SEM. Specific surface area of the powder was tested by BET, while the electronic conductivity characterized with EIS.

  8. U Department of Energy Richland Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Richland Operations Office P.O. Box 550 STESo Richland, Washington 99352 April 29, 2010 Certified Mail Mr. Dvija Bertish Director of Environmnental & Conservation Rosemere ...

  9. Environmental Perspective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    left environmental impacts, which we are committed to remedying Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505)...

  10. California Environmental Protection Agency | Open Energy Information

    Open Energy Info (EERE)

    Agency Jump to: navigation, search Logo: California Environmental Protection Agency Name: California Environmental Protection Agency Address: 1001 I Street, PO Box 2815 Place:...

  11. Solar Action Network | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Solar Action Network Address: PO Box 15546 Place: San Luis Obispo, California Zip: 93401 Phone Number: 5058476527 Website:...

  12. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 24, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint...

  13. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27,2012 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Resource Protection Division Harold Runnels Building 1190...

  14. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 10, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint...

  15. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * RETURN RECEIPT REQUESTED RYAN FLYNN Cabinet Secretary BUTCH TONGATE Deputy Secretary Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 Robert L....

  16. Gaia Worldwide | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Gaia Worldwide Name: Gaia Worldwide Address: PO Box 400848 Place: Cambridge, Massachusetts Zip: 02140 Region: Greater Boston Area Number of Employees: 1-10 Year...

  17. Montana Environmental Quality Council | Open Energy Information

    Open Energy Info (EERE)

    Council Jump to: navigation, search Name: Montana Environmental Quality Council Address: Legislative Environmental Policy Office PO Box 201704 Place: Helena, Montana Zip:...

  18. Hawaii Department of Business, Economic Development, and Tourism...

    Open Energy Info (EERE)

    Business, Economic Development, and Tourism Jump to: navigation, search Name: Hawaii Department of Business, Economic Development, and Tourism Address: P.O. Box 2359 Place:...

  19. AHL-TECH | Open Energy Information

    Open Energy Info (EERE)

    PO Box 428638 Place: Cincinnati, Ohio Zip: 45242-8638 Sector: Biofuels Product: Manufacturing; Research and development; Other:Efficient Utilization Phone Number: 513-575-5626...

  20. contact carbon storage team | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon storage contacts Traci Rodosta Carbon Storage Technology Manager U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880...

  1. Property:Incentive/Cont4Addr2 | Open Energy Information

    Open Energy Info (EERE)

    - Commercial and Industrial Energy Efficiency Programs (Arkansas) + Suite 303 + O OTEC - Agricultural Energy Efficiency Rebate Programs (Oregon) + PO Box 790 + OTEC -...

  2. algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and its Use in Coupling Codes for Multiphysics Simulations Rod Schmidt, Noel Belcourt, Russell Hooper, and Roger Pawlowski Sandia National Laboratories P.O. Box 5800...

  3. Microsoft Word - DM_DOCS-#8732-v1-July_15_Comments_on_Regional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest Renewables Utility invites you to be a Conservation Sensation 2320 California Street * Everett, WA * 98201 Mailing Address: P.O. Box 1107 * Everett, WA * 98206-1107...

  4. Reykjavk Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Reykjavk PO Box 8920 128 Reykjavik, Iceland Place: Reykjavik, Iceland Zip: 8920 Sector: Geothermal energy Product: ConsultingProject development Year Founded: 2008 Phone Number:...

  5. Geothermal Resources Council | Open Energy Information

    Open Energy Info (EERE)

    Resources Council Address: P.O. Box 1350 Place: Davis, California Zip: 95617-1350 Sector: Geothermal energy, Renewable Energy, Services Product: Global Geothermal Community...

  6. E. Required Information (MANDATORY) A. Information Category

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Environmental Management P.O. Box 450 Richland, Washington 99352 Copyright License By acceptance of this article, the publisher andor recipient acknowledges the U.S....

  7. Montana Fish, Wildlife & Parks | Open Energy Information

    Open Energy Info (EERE)

    Fish, Wildlife & Parks Jump to: navigation, search Logo: Montana Fish, Wildlife & Parks Name: Montana Fish, Wildlife & Parks Address: 1420 East 6th Ave, PO Box 200701 Place:...

  8. Green Design Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Green Design Systems Address: PO Box 1229 Place: Healdsburg, California Zip: 95448 Region: Bay Area Sector: Buildings Product: Refuse...

  9. Solar Design Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    Associates Inc Jump to: navigation, search Name: Solar Design Associates Inc Address: P.O. Box 242 Place: Harvard, Massachusetts Zip: 01451 Region: Greater Boston Area Sector:...

  10. Distributed Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Energy Association Jump to: navigation, search Name: Distributed Wind Energy Association Address: PO Box 1861 Place: Flagstaff, AZ Zip: 86002 Phone Number: 928-255-0214 Website:...

  11. SAND2009-0686

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 90264 David Laino Windward Engineering 8219 Glen Arbor Dr. ... & M University PO Box 248 Canyon, TX 79016 Cecelia M. ... MA 01944 Case P. van Dam Dept. of Mechanical & ...

  12. Alaska Power Telephone Company | Open Energy Information

    Open Energy Info (EERE)

    search Name: Alaska Power Telephone Company Address: 193 Otto Street PO Box 3222 Place: Port Townsend Zip: 98368 Region: United States Sector: Marine and Hydrokinetic Phone Number:...

  13. Jul

    Office of Scientific and Technical Information (OSTI)

    27, CH-8093 Zurich, Switzerland 21 Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, PO Box 208120, New Haven, CT 06520-8120, USA 22 Kavli...

  14. Belize Electricity Limited | Open Energy Information

    Open Energy Info (EERE)

    Belize Electricity Limited Jump to: navigation, search Logo: Belize Electricity Limited Name: Belize Electricity Limited Abbreviation: BEL Address: PO Box 327 Place: Belize City,...

  15. G Edward Cook | Open Energy Information

    Open Energy Info (EERE)

    Edward Cook Jump to: navigation, search Name: G Edward Cook Address: PO Box 814 Place: Simpson Zip: 18407 Region: United States Sector: Marine and Hydrokinetic Website:...

  16. Grey Island Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Grey Island Energy Inc Jump to: navigation, search Name: Grey Island Energy Inc Address: Suite 3003 Inco Innovation Centre Memorial University of Newfoundland PO Box 4200 Place: St...

  17. Superconducting properties in tantalum decorated three-dimensional...

    Office of Scientific and Technical Information (OSTI)

    Laboratories, P.O. Box 5800, MS 1086, Albuquerque, New Mexico 87185 (United States) (Spain) (United States) Laboratorio de Bajas Temperaturas, Universidad de Salamanca, E-37008...

  18. Chelonia SA | Open Energy Information

    Open Energy Info (EERE)

    - PO BOX 6011 Place: Lugano, Switzerland Zip: 6901 Sector: Renewable Energy Product: Investment & Advisoring Year Founded: 2002 Website: www.cheloniagroup.ch Coordinates:...

  19. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Plant Variability Simulation Methods Matthew Lave Photovoltaic and Distributed Systems Integration Sandia National Laboratories P.O. Box 969, MS-9052 Livermore, CA...

  20. Idaho Department of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Water Resources Jump to: navigation, search Logo: Idaho Department of Water Resources Name: Idaho Department of Water Resources Address: 322 East Front Street, PO Box 83720 Place:...

  1. Coastal Conservation League | Open Energy Information

    Open Energy Info (EERE)

    Conservation League Jump to: navigation, search Logo: Coastal Conservation League Name: Coastal Conservation League Address: 328 East Bay Street PO Box 1765 Place: Charleston,...

  2. Hawaii Department of Land and Natural Resources Office of Conservation...

    Open Energy Info (EERE)

    to: navigation, search Name: Hawaii Department of Land and Natural Resources Office of Conservation and Coastal Lands From Open Energy Information Address: P.O. Box 261 Place:...

  3. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

    Office of Scientific and Technical Information (OSTI)

    Timothy C. Merkel (Primary Contact) RTI P.O. Box 12194 Research Triangle Park, NC 27709 merkel@rti.org Tel (919) 485-2742 Fax (919) 541-8000 Raghubir P. Gupta RTI P.O. Box 12194 Research Triangle Park, NC 27709 gupta@rti.org Tel (919) 541-8023 Fax (919) 541-8000 Suresh C. Jain U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 suresh.jain@netl.doe.gov Tel (304) 285-5431 Fax (304) 285-4403 Brian S. Turk RTI P.O. Box 12194 Research Triangle Park, NC

  4. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505)...

  5. Southern Alliance for Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Logo: Southern Alliance for Clean Energy (SACE) Name: Southern Alliance for Clean Energy (SACE) Address: P.O. Box 1842 Place: Knoxville,...

  6. Northern California Solar Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Association Jump to: navigation, search Name: Northern California Solar Energy Association Address: PO Box 3008 Place: Berkeley, California Zip: 94703 Region: Bay Area Website:...

  7. Mr. Stephen J. Wright Administrator and Chief Executive Officer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08 Mr. Stephen J. Wright Administrator and Chief Executive Officer Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208-3621 Subject: Slice Product Subscription...

  8. Colorado Renewable Energy Society | Open Energy Information

    Open Energy Info (EERE)

    Colorado Renewable Energy Society Name: Colorado Renewable Energy Society Address: PO Box 933 Place: Golden, Colorado Zip: 80402 Region: Rockies Area Website: www.cres-energy.org...

  9. C:\\WINNT\\Profiles\\caseys\\DESKTOP\\L T R C\\PICs Program\\Permanent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Carlsbad, New Mexico August 31, 2000 Prepared for: Westinghouse Government Environmental Services Company Waste Isolation Division P.O. Box 2078 Carlsbad, New Mexico 88221...

  10. file://L:\\DOE-hanford.gov\\public\\boards\\hab\\advice\\advice46.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nulton Director, NEPA Compliance and Outreach Office of Fissile Materials Disposition Department of Energy PO Box 23786 Washington, DC 20026-3786 Sent by Facsimile to...

  11. BPA-2011-01054-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 26, 2011 Ms. Christina J. Brennon Freedom of Information Act Officer Bonneville Power Administration PO Box 3621 Portland, OR 97208-3621 Brian Schweitzer Governor FOIA...

  12. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Address Oak Ridge National Laboratory PO Box 2008, MS6003 Oak Ridge, TN 37831-6003 Email Information Support ORNL Campus

  13. BPA-2011-00369-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following is a New FOIA request: ***s* Name: Richard van Dijk Organization: Another Way BPA Address: P.O. Box 820152 Vancouver, WA 98682 Phone:...

  14. Hydra Tidal Energy Technology AS | Open Energy Information

    Open Energy Info (EERE)

    Tidal Energy Technology AS Jump to: navigation, search Name: Hydra Tidal Energy Technology AS Address: PO Box 399 Place: Harstad Zip: 9484 Region: Norway Sector: Marine and...

  15. Pennamaquan Tidal Power LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Pennamaquan Tidal Power LLC Address: 45 Memorial Circle PO Box 1058 Place: Augusta Zip: 4332 Region: United States Sector: Marine and...

  16. FAQs for Survey Form EIA-14

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - Oil & Gas Survey, U.S. Department of Energy, Ben Franklin Station, PO Box 279, ... If you are interested in receiving this free software, contact the Survey Respondent ...

  17. Whitewater Valley Rural EMC | Open Energy Information

    Open Energy Info (EERE)

    Valley Rural EMC Jump to: navigation, search Name: Whitewater Valley Rural EMC Address: P.O. Box 349 Place: Liberty, Indiana Zip: 47353 Sector: Transmission Phone Number: (765)...

  18. Idaho Public Utilities Commission | Open Energy Information

    Open Energy Info (EERE)

    Commission Jump to: navigation, search Name: Idaho Public Utilities Commission Address: P.O. Box 83720 Place: Boise, ID Zip: 83720 Website: www.puc.idaho.gov Coordinates:...

  19. Bull Moose Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Bull Moose Energy Address: P.O. Box 231501 Place: Encinitas, California Zip: 92023 Region: Southern CA Area Sector: Biomass Product:...

  20. Rivertop Renewables | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Rivertop Renewables Place: Missoula, Montana Zip: P.O. Box 8165 Sector: Renewable Energy Product: Montana based startup focused on creating...

  1. Agenera, LLC | Open Energy Information

    Open Energy Info (EERE)

    Agenera, LLC Jump to: navigation, search Logo: Agenera, LLC Name: Agenera, LLC Address: P.O. Box 15544 Place: Phoenix, Arizona Zip: 85060 Sector: Solar Product: Solar energy...

  2. California Independent System Operator | Open Energy Information

    Open Energy Info (EERE)

    search 200px Name: California Independent System Operator Address: California ISO P.O. Box 639014 Place: Folsom, California Zip: 95763-9014 Sector: Services Phone Number:...

  3. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Wyoming State Geological Survey Abbreviation: WSGS Address: P.O. Box 1347 Place: Laramie, Wyoming Zip: 82073 Year Founded: 1933 Phone Number:...

  4. San Diego Renewable Energy Society | Open Energy Information

    Open Energy Info (EERE)

    Society Jump to: navigation, search Name: San Diego Renewable Energy Society Address: P.O. Box 23490 Place: San Diego, California Zip: 92123 Region: Southern CA Area Website:...

  5. Sandia National Laboratories Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydro | Hydrodynamic Testing Facilities Name Sandia National Laboratories Address P.O. Box 5800 Place Albuquerque, NM Zip 87185 Sector Hydro Website http:www.sandia.gov...

  6. Blue Marble Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Blue Marble Energy Address: P.O. Box 9190 Place: Seattle, Washington Zip: 98109 Region: Pacific Northwest Area Sector: Biomass Product:...

  7. Inventure Chemical Technology | Open Energy Information

    Open Energy Info (EERE)

    Technology Jump to: navigation, search Name: Inventure Chemical Technology Address: P.O. Box 530 Place: Gig Harbor, Washington Zip: 98335 Region: Pacific Northwest Area Sector:...

  8. Arete Corporation | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Logo: Arete Corporation Name: Arete Corporation Address: P.O. Box 1299 Place: Center Harbor, New Hampshire Zip: 03226 Product: Manager of venture...

  9. Battic Door | Open Energy Information

    Open Energy Info (EERE)

    Battic Door Jump to: navigation, search Name: Battic Door Address: P.O. Box 15 Place: Mansfield, Massachusetts Zip: 02048 Region: Greater Boston Area Sector: Buildings Product:...

  10. Montana Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Name: Montana Department of Transportation Address: 2701 Prospect Avenue P.O. Box 201001 Place: Helena, Montana Zip: 59620 Website: www.mdt.mt.gov Coordinates:...

  11. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Electric Util Jump to: navigation, search Name: Tipton Municipal Electric Util Address: P.O. Box 288 Place: Tipton, Indiana Zip: 46072 Service Territory: Indiana Phone Number:...

  12. Connecticut Light and Power | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Light and Power Address: P.O. Box 270 Place: Hartford, Connecticut Zip: 06141 Region: Northeast - NY NJ CT PA Area Sector: Services Product: Green Power Marketer...

  13. Pennsylvania/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Contact Information Kerry Campbell Pennsylvania Department of Environmental Protection Office of Pollution Prevention and Compliance Assistance P.O. Box 8772 Harrisburg, PA 17105...

  14. Chai Energy | Open Energy Information

    Open Energy Info (EERE)

    PO Box 1130 Place: Del Mar, California Zip: 92014 Region: Southern CA Area Sector: Hydrogen Product: Developing alternative energy technologies, including nanoscale fusion...

  15. FuelCellsEtc | Open Energy Information

    Open Energy Info (EERE)

    Address: PO Box 9230 Place: College Station, Texas Zip: 77842 Region: Texas Area Sector: Hydrogen, Renewable Energy, Services Product: Fuel Cell and Electrolysis Components Number...

  16. STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    " "'- STATE OF WASHINGTON DEPARTMENT OF ECOLOGY p.o. Box 47600 .Olympja, Washington 98504-7600 (360) 4076000 .TOD Only (Hearing Impaired) (360) 407-6006 ,'""""" .w.--.- ...

  17. SREL Reprint #3011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1USDA Forest Service, Southern Research Station, P.O. Box 700, New Ellenton, SC 29809, USA 2Arnold School of Public Health, Department of Environmental Health Sciences,...

  18. SREL Reprint #3012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1USDA Forest Service, Southern Research Station, P.O. Box 700, New Ellenton, SC 29809, USA 2Arnold School of Public Health, Department of Environmental Health Sciences,...

  19. Alternative Power Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Power Enterprises Jump to: navigation, search Logo: Alternative Power Enterprises Name: Alternative Power Enterprises Address: P.O. Box 351 Place: Ridgway, Colorado Zip: 81432...

  20. U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... U.S. Department of Health and Human Services 200 ... Native American Times P.O. Box 411 ... Tribal College Journal of American Indian Higher ...

  1. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 1, 2008 Oak Ridge Associated Universities Attn: Mr. Ivan Boatner, General Counsel P.O. Box 117 Oak Ridge, Tennessee 37831 Dear Mr. Boatner: SUBJECT: CONTRACT NO....

  2. Molten Nitrate Salt Development for Thermal Energy Storage in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOLTEN NITRATE SALT DEVELOPMENT FOR THERMAL ENERGY STORAGE IN PARABOLIC TROUGH SOLAR POWER SYSTEMS Robert W. Bradshaw and Nathan P. Siegel Sandia National Laboratories, PO Box 969 ...

  3. NC Sustainable Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: NC Sustainable Energy Association Address: PO Box 6465 Place: Raleigh Zip: 27628 Number of Employees: 1-10 Year Founded: 1978 Phone...

  4. Town of Edgartown | Open Energy Information

    Open Energy Info (EERE)

    Edgartown Jump to: navigation, search Name: Town of Edgartown Address: 70 Main St PO Box 5158 Place: Edgartown Zip: 2539 Region: United States Sector: Marine and Hydrokinetic Phone...

  5. ATS Lighting Inc | Open Energy Information

    Open Energy Info (EERE)

    ATS Lighting Inc Jump to: navigation, search Name: ATS Lighting Inc Address: PO Box 1383 Place: Concord, Massachusetts Zip: 01742 Region: Greater Boston Area Sector: Efficiency...

  6. Power Projects Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: Power Projects Limited Address: PO Box 25456 Panama Street Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and Hydrokinetic...

  7. Utah Office of Energy Development | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Utah Office of Energy Development Address: PO Box 144845 Place: Salt Lake City, Utah Zip: 84114 Phone Number: 801-538-8732 Website:...

  8. Hackney Construction | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Hackney Construction Address: 309 Farrens Creek LanePO Box 13 Place: Grangeville, Idaho Zip: 83530 Region: Rockies Area Sector: Solar Product:...

  9. Ohmsett | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Ohmsett Address PO Box 473 Atlantic Place Highlands, New Jersey Zip 07716 Sector Hydro Phone number (732)...

  10. Neptune Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Neptune Systems Address: PO Box 8719 Place: Breda Zip: 4820 BA Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: +31 (0)...

  11. Mananook Associates | Open Energy Information

    Open Energy Info (EERE)

    Mananook Associates Jump to: navigation, search Name: Mananook Associates Address: PO Box 69 Place: Perry Zip: 4667 Region: United States Sector: Marine and Hydrokinetic Phone...

  12. International Air Transport Association (IATA) | Open Energy...

    Open Energy Info (EERE)

    Name: International Air Transport Association (IATA) Address: 800 Place Victoria PO Box 113 Place: Montreal, Quebec Phone Number: 1 514 874 0202 Website: www.iata.org...

  13. Rhode Island Energy Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: Rhode Island Energy Group LLC Address: PO Box 340 Place: Portsmouth Zip: 2871 Region: United States Sector: Marine and Hydrokinetic...

  14. Pacific Gas and Electric Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Pacific Gas and Electric Company Address: PO Box 770000 Place: San Francisco Zip: 94177 Region: United States Sector: Marine and...

  15. Douglas County | Open Energy Information

    Open Energy Info (EERE)

    County Jump to: navigation, search Name: Douglas County Address: 430 S E Main Street PO Box 2456 Place: Roseburg Zip: 97470 Region: United States Sector: Marine and Hydrokinetic...

  16. Hawaii Department of Health Clean Air Branch | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Hawaii Department of Health Clean Air Branch Address: P.O. Box 3378 Place: Honolulu, Hawaii Zip: 96801 Website: hawaii.govhealthenvironmenta...

  17. Merrill Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Merrill Group LLC Jump to: navigation, search Name: Merrill Group LLC Address: PO Box 202943 Place: Denver Co Country: United States Zip: 80220 Region: Rockies Area Sector:...

  18. Solar Connecticut | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Jump to: navigation, search Name: Solar Connecticut Address: PO Box 515 Place: Higganum, Connecticut Zip: 06441 Region: Northeast - NY NJ CT PA Area Website:...

  19. Indigenous Environmental Network | Open Energy Information

    Open Energy Info (EERE)

    Indigenous Environmental Network Name: Indigenous Environmental Network Address: PO Box 485 Place: Bemidji, MN Year Founded: 1990 Phone Number: (218) 751-4967 Website:...

  20. WASHINGTON. DC.

    Office of Legacy Management (LM)

    . . : ' ; ,.' . . ; . . .."C.. ,:. . . ...;..?n:,.;,, , ," .L,: ' ..: ' I I. P.O. Box 36 ,, ,,,,: ,.,.:... . . Brorarw Btotlrn . St. Louis, 105cnlr1 - %A. WO. LB - FCA...

  1. AEE Solar | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Logo: AEE Solar Name: AEE Solar Address: 1155 Redway Drive PO Box 339 Place: Redway, California Zip: 95560 Region: Bay Area Sector: Solar Year Founded:...

  2. Wave Energy Technology New Zealand | Open Energy Information

    Open Energy Info (EERE)

    Zealand Jump to: navigation, search Name: Wave Energy Technology New Zealand Address: PO Box 25456 Panama St Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and...

  3. Northern Colorado Clean Cities | Open Energy Information

    Open Energy Info (EERE)

    Cities Jump to: navigation, search Name: Northern Colorado Clean Cities Address: PO Box 759 Place: Johnstown, Colorado Zip: 80534 Region: Rockies Area Number of Employees:...

  4. International Center for Environmental, Social, and Policy Studies...

    Open Energy Info (EERE)

    Name: International Center for Environmental, Social, and Policy Studies Address: PO BOX 79246 Place: Nairobi, Kenya Phone Number: +254-02-252969 Website: www.icesps.org...

  5. Also Energy | Open Energy Information

    Open Energy Info (EERE)

    Also Energy Jump to: navigation, search Logo: Also Energy Name: Also Energy Address: PO Box 17877 Place: Boulder, Colorado Zip: 80308 Region: Rockies Area Product: Renewable Energy...

  6. Greenward Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Greenward Technologies Address: PO Box 203814 Place: Austin, Texas Zip: 78720 Region: Texas Area Sector: Wind energy Product:...

  7. Alpine Geothermal Drilling | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Alpine Geothermal Drilling Name: Alpine Geothermal Drilling Address: PO Box 141 Place: Kittredge, Colorado Zip: 80457 Region: Rockies Area Sector: Geothermal...

  8. Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Informatio...

    Open Energy Info (EERE)

    Company (SAMREF) Name: Saudi Aramco Mobile Refinery Company (SAMREF) Address: P.O. Box 30078 Place: Yanbu, Saudi Arabia Sector: Oil and Gas Product: Crude Oil Refining Phone...

  9. Ecofys Subsidiary of Econcern | Open Energy Information

    Open Energy Info (EERE)

    of Econcern Jump to: navigation, search Name: Ecofys Subsidiary of Econcern Address: PO Box 8408 Place: Utrecht Zip: 3503 RK Region: Netherlands Sector: Marine and Hydrokinetic...

  10. Envirepel Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Envirepel Energy Inc Jump to: navigation, search Name: Envirepel Energy Inc Address: PO Box 698 Place: Bonsall, California Zip: 92003 Region: Southern CA Area Sector: Biomass...

  11. Idaho Transportation Department | Open Energy Information

    Open Energy Info (EERE)

    Department Name: Idaho Transportation Department Address: 3311 W. State St. PO Box 7129 Place: Boise, Idaho Zip: 83707-1129 Region: Rockies Area Phone Number:...

  12. BPA-2014-01855-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefit The Benefit Coordinators Coordinators P0 Box 1804 Sand Springs, OK 74063-1804 DEPARTMENT OF ENERGY BONNEVILLE POWER ADMINISTRATION P.O. BOX 3621 PORTLAND, OR 97208-3621...

  13. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secretary Dana C. Bryson, Acting Manager Carlsbad Field Office Department of Energy Philip J. Breidenbach, Project Manager Nuclear Waste Partnership, LLC P .0. Box 2078 P.O. Box...

  14. Oak Ridge Office

    Office of Environmental Management (EM)

    PO. Box 2001 Oak Ridge, Tennessee 37831 July 21, 2010 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 1 Oak Ridge, Tennessee 3783 1 Dear Mr....

  15. Electron-irradiation induced phase transformation in La{sub 1/3}Zr{sub 2}(PO{sub 4}){sub 3}: La{sup 3+} displacement in a preserved NASICON framework

    SciTech Connect (OSTI)

    Crosnier-Lopez, M.P. . E-mail: marie-pierre.crosnier-lopez@univ-lemans.fr; Barre, M.; Le Berre, F.; Fourquet, J.L.

    2006-08-15

    The La{sub 1/3}Zr{sub 2}(PO{sub 4}){sub 3} NASICON-type compound (S.G. P3-bar - neutron and X-ray diffraction experiments) is investigated by transmission electron microscopy (TEM) technique, selected area electron diffraction (SAED) and high-resolution electron microscopy (HREM), in order to study locally the lanthanum distribution. An irreversible structural transformation (P-bar -bar -bar ->P-bar c-bar ->R-bar -bar -bar ) is observed, without modification of the atomic content and cell size, as soon as the phase is illuminated by the electron beam. The progressive disappearance of the spots which do not check the R conditions on the SAED patterns is clearly shown along two zone axis, [001] and [100]. This transformation implies the displacement of the two La{sup 3+} cations in a preserved classical [Zr{sub 2}(PO{sub 4}){sub 3}]{sup -} network. This interesting behavior is in good agreement with the La{sup 3+} ionic conductivity observed in La{sub 1/3}Zr{sub 2}(PO{sub 4}){sub 3} (4.09x10{sup -7}Scm{sup -1} at 700 deg. C). To our knowledge, this is the first time that a complete TEM study is done on a NASICON-type phase.

  16. SREL Reprint #3152

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Prevalence of Antibodies to Selected Disease Agents in an Insular Population of Feral Swine D. Bart Carter1, Kyle K. Henderson2, I. Lehr Brisbin, Jr.3, Clarence Bagshaw4, and Michael Sturek5 1Animal Resource Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas Texas 75390-9037 2Cardiovascular Institute, Loyola University Medical Center, Maywood, IL 60153 3Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 4Edgefield Veterinary Clinic, Edgefield,

  17. Influence of composition modification on Ca{sub 0.5?x}Mg{sub x}Ti{sub 2}(PO{sub 4}){sub 3} (0.0 ? x ? 0.5) nanoparticles as electrodes for lithium batteries

    SciTech Connect (OSTI)

    Vidal-Abarca, C. Aragn, M.J.; Lavela, P.; Tirado, J.L.

    2014-01-01

    Graphical abstract: - Highlights: Cation mixing was determined in the Ca{sub 0.5?x}Mg{sub x}Ti{sub 2}(PO{sub 4}){sub 3} biphasic series. Nanometric Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} delivered 138 mAh/g at C/20 in lithium cells. Low content of Ca{sup 2+} increases cell volume favoring Li{sup +} insertion in R-3c framework. Diminution of R{sub SEI} and R{sub CT} for Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} discharged electrodes. Fast electrode response for x = 0.35. - Abstract: The Ca{sub 0.5?x}Mg{sub x}Ti{sub 2}(PO{sub 4}){sub 3} series (0.0 ? x ? 0.5) was prepared by a solgel method. X-ray diffraction patterns showed two rhombohedral phases which coexist for intermediate compositions. Despite of the absence of a solid solution mechanism for the whole stoichiometry range, an appreciable cation mixing was observed in both phases. {sup 31}P MAS NMR spectroscopy revealed that low magnesium contents are incorporated to the calcium compound inducing changes in the ordering of the alkaline earth cations in M{sub 1} sites. Derivative plots of the voltagecapacity curves revealed two reversible regions ascribed to the reduction of Ti{sup 4+} to Ti{sup 3+}, ascribable to the subsequent insertion of lithium ions into M{sub 1} and M{sub 2} vacant sites. Capacity values as high as 138 mAh/g after the first discharge were monitored for nanometric Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} at C/20. Cell cycling under successive kinetic rates revealed a good capacity retention for samples with x = 0.15 and 0.25. Impedance spectra were recorded in lithium cells discharged after different number of cycles at different C rates. The increase in charge transfer resistance was shown to be an important factor determining the electrode behavior on extended cycling.

  18. Down-regulation of kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xuebin; Liu, Chang -Jun; Gou, Mingyue; Guo, Chunrong; Yang, Huijun

    2014-12-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting thatmore » KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress.« less

  19. Down-regulation of kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation

    SciTech Connect (OSTI)

    Zhang, Xuebin; Liu, Chang -Jun; Gou, Mingyue; Guo, Chunrong; Yang, Huijun

    2014-12-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PALs ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plants tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plants resistance to environmental stress.

  20. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries

    SciTech Connect (OSTI)

    Li, Hui; Yu, Xiqian; Bai, Ying; Wu, Feng; Wu, Chuan; Liu, Liang-Yu; Yang, Xiao-Qing

    2015-01-01

    Na3V2-xMgx(PO4)3/C composites with different Mg2+ doping contents (x=0, 0.01, 0.03, 0.05, 0.07 and 0.1) were prepared by a facile sol-gel method. The doping effects on the crystal structure were investigated by XRD, XPS and EXAFS. The results show that low dose doping Mg2+ does not alter the structure of the material, and magnesium is successfully substituted for vanadium site. The Mg doped Na3V2-xMgx(PO4)3/C composites exhibit significant improvements on the electrochemistry performances in terms of the rate capability and cycle performance, especially for the Na3V1.95Mg0.05(PO4)3/C. For example, when the current density increased from 1 C to 30 C, the specific capacity only decreased from 112.5 mAh g-1 to 94.2 mAh g-1 showing very good rate capability. Moreover, even cycling at a high rate of 20 C, an excellent capacity retention of 81% is maintained from the initial value of 106.4 mAh g-1 to 86.2 mAh g-1 at the 50th cycle. Enhanced rate capability and cycle performance can be attributed to the optimized particle size, structural stability and enhanced ionic and electronic conductivity induced by Mg doping.

  1. Rietveld refinement and ionic conductivity of Ca{sub 8.4}Bi{sub 1.6}(PO{sub 4}){sub 6}O{sub 1.8}

    SciTech Connect (OSTI)

    Tmar Trabelsi, I.; Madani, A.; Mercier, A.M.; Toumi, M.

    2013-01-15

    The structure of Ca{sub 8.4}Bi{sub 1.6}(PO{sub 4}){sub 6}O{sub 1.8}, isostructural with Fluoroapatite, was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed that the formula of this compound is [Ca{sub 4}]{sup 4f}[Ca{sub 4.4}Bi{sub 1.6}]{sup 6h}(PO{sub 4}){sub 6}[O{sub 1.8}]{sup 2a}, space group P63/m (a=9.468 (3) A, c=6.957 (3) A). A total substitution of Bi{sup 3+} ions in the (6h) sites was related particularly to the high polarizability of the Bi{sup 3+} ion compared to Ca{sup 2+}. The observed frequencies in the Raman and infrared spectra were explained and discussed on the basis of unit-cell group analyses and in comparison with Fluoroapatite and other oxyapatites. The ionic conductivity over a wide range of temperature was investigated according to the complex impedance method. The highest overall conductivity values were found at {sigma}{sub 700 Degree-Sign C} =5.03 Multiplication-Sign 10{sup -7} S cm{sup -1} and E{sub a}=0.50 eV. - Graphical abstract: The final Rietveld refinement plot of the Ca{sub 8.4}Bi{sub 1.6} (PO{sub 4}){sub 6}O{sub 1.8}. Highlights: Black-Right-Pointing-Pointer The Rietveld refinement revealed that the formula of this compound is Ca{sub 8.4}Bi{sub 1.6}(PO{sub 4}){sub 6}O{sub 1.8}. Black-Right-Pointing-Pointer Vibrational spectroscopy supports the high symmetry P63/m space group for this apatite. Black-Right-Pointing-Pointer This apatite contained channels where oxygen ions were located in 2a sites. Black-Right-Pointing-Pointer The possibility of anionic conduction along these channels was considered.

  2. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; Shuman, Stewart

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to themore » adenine nucleobase. The triphosphate moiety of AMPPNP•Mg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.« less

  3. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    SciTech Connect (OSTI)

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; Shuman, Stewart

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 189 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127588) comprises two RecA-like domains splayed widely apart. AMPPNPMg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to the adenine nucleobase. The triphosphate moiety of AMPPNPMg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28AMPPNP structure, and that of the Drosophila VasaAMPPNPMg2+RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.

  4. PMT BOX TUFTS - Sheet1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTHORIZATION BY THIS UNIVERSITY IS PROHIBITED. .0005 .013 1 xxxx x 132 x.xxxx x.xxx SHEET DRAWN APPROVED CHECKED SCALE THIRD ANGLE PROJECTION D SIZE DWG NO OF...

  5. Not Your Normal Power Box

    SciTech Connect (OSTI)

    Okman, Oya; Baginska, Marta; Jones, Elizabeth MC; Pety, Stephen J; Lim, Tae Wook; Kaitz, Joshua A; Dong, Hefei; Vissers, Daniel R; Sottos, Nancy R; White, Scott R; Moore, Jeffrey S; Thackery, Michael M; Fenter, Paul A; Trahey, Lynn; Sandler, Sana; Hersam, Mark C; Kapper, Aaron J

    2013-07-18

    Representing the Center for Electrical Energy Storage (CEES), this document is one of the entries in the Ten Hundred and One Word Challenge and was awarded "Best Science Lesson." As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CEES is to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notably Li ion batteries.

  6. First-Principles Calculations, Electrochemical and X-ray Absorption Studies of Li-Ni-PO4 Surface-Treated xLi2MnO3 (1 x)LiMO2 (M = Mn, Ni, Co) Electrodes for Li-Ion Batteries

    SciTech Connect (OSTI)

    Wolverton, Christopher; Croy, J R; Balasubramanian, M; Kang, Sun-Ho; Lopez-Rivera, C. M.; Thackeray, Michael M.

    2012-01-01

    It has been previously hypothesized that the enhanced rate capability of Li-Ni-PO{sub 4}-treated xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} positive electrodes (M = Mn, Ni, Co) in Li-ion batteries might be associated with a defect Ni-doped Li{sub 3}PO{sub 4} surface structure [i.e., Li{sub 3-2y}Ni{sub y}PO{sub 4} (0 < y < 1)], thereby promoting fast Li{sup +}-ion conduction at the xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} particle surface. In this paper, the solubility of divalent metals (Fe, Mn, Ni, Mg) in {gamma}-Li{sub 3}PO{sub 4} is predicted with the first-principles GGA+U method in an effort to understand the enhanced rate capability. The predicted solubility (x) is extremely small; this finding is consistent with experimental evidence: 1) X-ray diffraction data obtained from Li-Ni-PO{sub 4}-treated xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} electrodes that show that, after annealing at 550 C, a Li{sub 3}PO{sub 4}-like structure forms as a second phase at the electrode particle surface, and 2) X-ray absorption spectroscopy, which indicate that the nickel ions are accommodated in the transition metal layers of the Li{sub 2}MnO{sub 3} component during the annealing process. However, electrochemical studies of Li{sub 3-2y}Ni{sub y}PO{sub 4}-treated xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} electrodes indicate that their rate capability increases as a function of y over the range y = 0 (Li{sub 3}PO{sub 4}) to y = 1 (LiNiPO{sub 4}), strongly suggesting that, at some level, the nickel ions play a role in reducing electrochemical impedance and increasing electrode stability at the electrode particle surface.

  7. DE-AC05-06OR23100

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Oak Ridge TN 37831 P.O. Box 2001 U.S. Department of Energy Oak Ridge 00518 Oak Ridge TN 37831 P.O. Box 2001 U.S. Department of Energy Oak Ridge 10SC007879 Items 1and 2 See Block...

  8. DE-AC05-06OR23100

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Oak Ridge TN 37831 P.O. Box 2001 U.S. Department of Energy Oak Ridge 00518 Oak Ridge TN 37831 P.O. Box 2001 U.S. Department of Energy Oak Ridge 13SC004931 See Block 16C 0457 2 1...

  9. HYDROGEN GENERATION FROM SLUDGE SAMPLE BOTTLES CAUSED BY RADIOLYSIS AND CHEMISTRY WITH CONCETNRATION DETERMINATION IN A STANDARD WASTE BOX (SWB) OR DRUM FOR TRANSPORT

    SciTech Connect (OSTI)

    RILEY DL; BRIDGES AE; EDWARDS WS

    2010-03-30

    A volume of 600 mL of sludge, in 4.1 L sample bottles (Appendix 7.6), will be placed in either a Super Pig (Ref. 1) or Piglet (Ref. 2, 3) based on shielding requirements (Ref. 4). Two Super Pigs will be placed in a Standard Waste Box (SWB, Ref. 5), as their weight exceeds the capacity of a drum; two Piglets will be placed in a 55-gallon drum (shown in Appendix 7.2). The generation of hydrogen gas through oxidation/corrosion of uranium metal by its reaction with water will be determined and combined with the hydrogen produced by radiolysis. The hydrogen concentration in the 55-gallon drum and SWB will be calculated to show that the lower flammability limit of 5% hydrogen is not reached. The inner layers (i.e., sample bottle, bag and shielded pig) in the SWB and drum will be evaluated to assure no pressurization occurs as the hydrogen vents from the inner containers (e.g., shielded pigs, etc.). The reaction of uranium metal with anoxic liquid water is highly exothermic; the heat of reaction will be combined with the source term decay heat, calculated from Radcalc, to show that the drum and SWB package heat load limits are satisfied. This analysis does five things: (1) Estimates the H{sub 2} generation from the reaction of uranium metal with water; (2) Estimates the H{sub 2} generation from radiolysis (using Radcalc 4.1); (3) Combines both H{sub 2} generation amounts, from Items 1 and 2, and determines the percent concentration of H{sub 2} in the interior of an SWB with two Super Pigs, and the interior of a 55-gallon drum with two Piglets; (4) From the combined gas generation rate, shows that the pressure at internal layers is minimal; and (5) Calculates the maximum thermal load of the package, both from radioactive decay of the source and daughter products as calculated/reported by Radcalc 4.1, and from the exothermic reaction of uranium metal with water.

  10. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region

    SciTech Connect (OSTI)

    Zhang, Zhi-Jun; Lin, Xiao; Graduate School of Chinese Academy of Science, Beijing, 100039 ; Zhao, Jing-Tai; Zhang, Guo-Bin

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? We report the VUV spectroscopic properties of rare-earth ions in K{sub 2}LnZr(PO{sub 4}){sub 3}. ? The O{sup 2?}-Eu{sup 3+} charge transfer bands at about 220 nm have been observed. ? The 4f5d spin-allowed and spin-forbidden transitions of Tb{sup 3+} have been observed. ? There is energy transfer between the host and rare-earth activators. -- Abstract: Rare earth (RE = Sm, Eu, Tb, Dy and Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) have been synthesized by solid-state reaction method, and their vacuum ultraviolet (VUV) excitation luminescent characteristics have been investigated. The band in the wavelength range of 130157 nm and the other one range from 155 to 216 nm with the maximum at about 187 nm in the VUV excitation spectra of these compounds are attributed to the host lattice absorption and OZr charge transfer transition, respectively. The charge transfer bands (CTB) of O{sup 2?}-Sm{sup 3+}, O{sup 2?}-Dy{sup 3+} and O{sup 2?}-Tm{sup 3+}, in Sm{sup 3+}, Dy{sup 3+} and Tm{sup 3+}-activated samples, have not been obviously observed probably because the 2p electrons of oxygen are tightly bound to the zirconium ion in the host lattice. For Eu{sup 3+}-activated samples, the relatively weak O{sup 2?}-Eu{sup 3+} CTB at about 220 nm is observed. And for Tb{sup 3+}-activated samples, the bands at 223 and 258 nm are related to the 4f-5d spin-allowed and spin-forbidden transitions of Tb{sup 3+}, respectively. It is observed that there is energy transfer between the host lattice and the luminescent activators (e.g. Eu{sup 3+}, Tb{sup 3+}). From the standpoint of luminescent efficiency, color purity and chemical stability, K{sub 2}GdZr(PO{sub 4}){sub 3}:Sm{sup 3+}, Eu{sup 3+}, Tb{sup 3+} are attractive candidates for novel yellow, red, green-emitting PDP phosphors.

  11. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California. Predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    SciTech Connect (OSTI)

    Apte, Michael G.; Mendell, Mark J.; Sohn, Michael D.; Dutton, Spencer M.; Berkeley, Pam M.; Spears, Michael

    2011-02-01

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California big box stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrations with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in Californias big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.

  12. Morphology control of open-framework zinc phosphate Zn{sub 4}(H{sub 3}O)(NH{sub 4}){sub 3}(PO{sub 4}){sub 4} via microwave-assisted technique

    SciTech Connect (OSTI)

    Ding, Ling; Song, Yu; Yang, Wei; Xue, Run-Miao; Zhai, Shang-Ru; An, Qing-Da

    2013-08-15

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 C to 220 C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}H{sub 2}O at 130 C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. Dependence of morphology on the reaction conditions. Morphology transformation from hexagonal prisms to polyhedron was observed.

  13. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries

    SciTech Connect (OSTI)

    Wang, Liping; Bai, Jianming; Gao, Peng; Wang, Xiaoya; Looney, J. Patrick; Wang, Feng

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design of a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.

  14. Dimorphism in iron(II) methylphosphonate: Low-temperature crystal structure and temperature-dependent Mossbauer studies of a new form of the layered weak ferromagnet Fe[(CH{sub 3}PO{sub 3})(H{sub 2}O)

    SciTech Connect (OSTI)

    Leone, Philippe . E-mail: philippe.leone@cnrs-imn.fr; Palvadeau, Pierre; Boubekeur, Kamal; Meerschaut, Alain; Bellitto, Carlo; Bauer, Elvira M.; Righini, Guido; Fabritchnyi, Pavel

    2005-04-15

    A second form of the literature-known layered weak ferromagnet Fe[(CH{sub 3}PO{sub 3})(H{sub 2}O)] has been isolated. The crystal structure determination of this new form (2) has been carried out at T=300, 200 and 130K. It crystallizes in the orthorhombic space group Pmn2{sub 1}: a=5.7177(11), b=8.8093(18), c=4.8154(10)A, while form (1) crystallizes in the space group Pna2{sub 1}: a=17.58(2), b=4.814(1), c=5.719(1)A. Moessbauer spectroscopy on form (2) has been performed in the temperature range 4-300K; and, at T{approx}160K, a drastic change in the quadrupole splitting ({delta}E) and a broadening of the doublet components is noticed. But surprisingly, on cooling the crystal, no structural change is observed, which could account for the increase in {delta}E. Below T=25K, {sup 57}Fe spectra transform into hyperfine splitting patterns which reveal a magnetically ordered state in agreement with the results of earlier magnetic susceptibility studies.

  15. SOLAR 97 CONFERENCE: MANUSCRIPT PREPARATION INSTRUCTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SIMULATION OF 1-MINUTE POWER OUTPUT FROM UTILITY-SCALE PHOTOVOLTAIC GENERATION SYSTEMS Joshua S. Stein Sandia National Laboratories P.O. Box 5800 MS 1033 Albuquerque, NM 87185 e-mail: jsstein@sandia.gov Clifford W. Hansen Sandia National Laboratories P.O. Box 5800 MS 1033 Albuquerque, NM 87185 e-mail: cwhanse@sandia.gov Abraham Ellis Sandia National Laboratories P.O. Box 5800 MS 1033 Albuquerque, NM 87185 e-mail: aellis@sandia.gov Vladimir Chadliev NV Energy 6226 W. Sahara Ave. Las Vegas, NV

  16. SREL Reprint #3342

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Wintering Golden Eagles on the coastal plain of South Carolina Mark Vukovich1, Kelsey L. Turner2, Tracy E. Grazia3, Thomas Mims3, James C. Beasley2, and John C. Kilgo1 1USDA Forest Service, Southern Research Station, P.O. Box 700, New Ellenton, South Carolina 29809, USA 2Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, P.O. Box Drawer E, Aiken, South Carolina 29802, USA 3USDA Forest Service, Savannah River, P.O. Box 700, New Ellenton,

  17. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 5, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL- RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RE: WIPP NITRATE SALT

  18. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 24, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL - RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RE: DRAFT UNDERGROUND

  19. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2015 Jose R. Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, New Mexico 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL- RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RYAN FLYNN Cabinet

  20. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27,2012 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Resource Protection Division Harold Runnels Building 1190 Saint Francis Drive (87505) P.O. Box 5469, Santa Fe, NM 87502-5469 Phone (505) 827-0419 Fax (505) 827-0310 \vww.nmenv.state.nm.us CERTIFIED MAIL - RETURl'll RECEIPT REQUESTED Farok Sharif, Project Manager Nuclear Waste Partnership LLC P.O. Box 2078 Carlsbad, New Mexico 88221-5608 Carlsbad, New Mexico 88221-3090 RE:

  1. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2014 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL * RETURN RECEIPT REQUESTED RYAN FLYNN Cabinet Secretary BUTCH TONGATE Deputy Secretary Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078

  2. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv .state.nm. us CERTIFIED MAIL- RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RE: AMENDMENT TO REPORTING

  3. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 7, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Office of the Secretary Harold Runnels Building 1190 Saint Francis Drive (87505) P.O. Box 5469, Santa Fe, NM 87502 Phone: (505) 827-2855 Fax: (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL- RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RE: WIPP

  4. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 7, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL- RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RE: MODIFICATION TO MAY

  5. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL *RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RE: UNDERGROUND DERIVED

  6. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 7, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL - RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RYAN FLYNN Cabinet

  7. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6,2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Office of the Secretary Harold Runnels Building 1190 Saint Francis Drive (87505) P.O. Box 5469, Santa Fe, NM 87502 Phone: (505) 827-2855 Fax: (505) 827-2836 www.nmenv.state.nm. us CERTIFIED MAIL- RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RE: REQUEST FOR

  8. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL - RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RYAN FLYNN Cabinet Secretary BUTCH

  9. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 10, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL - RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RYAN FLYNN Cabinet

  10. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2015 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www .nmenv.state.nm.us CERTIFIED MAIL - RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico 88221-3090 RYAN FLYNN Cabinet Secretary

  11. SUSANA MARTINEZ Governor JOfiN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JOfiN A. SANCHEZ Lieutenant Governor May 20,2015 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building I 190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL- RETURN RECEIPT REQUESTED RYAN FLYNN Cabinet Secretary BUTCII TONGA TE Deputy Secretary Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box

  12. SUSANA MARTfNEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. SANCHEZ Lieutenant Governor December 6, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Telephone (505) 827-2855 Fax (505) 827-2836 www.nmenv.state.nm.us CERTIFIED MAIL- RETURN RECEIPT REQUESTED Robert L. McQuinn, Project Manager Nuclear Waste Partnership, LLC P.O. Box 2078 Carlsbad, New Mexico 88221-2078 Carlsbad, New Mexico

  13. SlISANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SlISANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor March 13, 2013 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Resource Protection Division Harold Runnels Building 1190 Saint Francis Drive (87505) P.O. Box 5469, Santa Fe, NM 87502-5469 Phone (505) 827-0419 Fax (505) 827-0310 www.nrnenv.state.l1m.us CERTIFIED MAIL - RETURN RECEIPT REQUESTED M. Farok Sharif, Project Manager Nuclear Waste Partnership LLC P.O. Box 2078

  14. Governor JOH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lI Si\N" MARTINEZ. Governor JOH r-I A. SANCHEZ. Lieutenant Governor November 1,2012 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Harold Runnels BI,ilding 11 90 Saint Francis Drive (87505) P.O. Box 5469, Santa Fe. NM 87502-5469 Phone (505) 827-0419 Fax (505) 827-03 10 www.nmenv.sto!e.!lIn.lIs CERTIFIED MAIl. - RETURN RECEIPT REQUESTED Farok Sharif, Project Manager Nuclear Waste Partnership LLC P.O. Box 2078 Carlsbad, New

  15. DRAFT ADVICE - UNACCEPTABLE PROGRAM IMPACTS UNDER FY 97 BUDGET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keith Klein, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Roy Schepens, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 Richland, WA 99352 Tom Fitzsimmons, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 John Iani, Regional Administrator U.S. Environmental Protection Agency, Region 10 1200 Sixth Avenue Seattle, WA 98101 Subject: Exposure Scenarios Task Force on the River Corridor

  16. DRAFT ADVICE - UNACCEPTABLE PROGRAM IMPACTS UNDER FY 97 BUDGET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2002 Keith Klein, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Roy Schepens, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 Richland, WA 99352 Tom Fitzsimmons, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 John Iani, Regional Administrator U.S. Environmental Protection Agency, Region 10 1200 Sixth Avenue Seattle, WA 98101 Subject: Public Notice Dear Mssrs Klein, Schepens,

  17. DRAFT ADVICE … UNACCEPTABLE PROGRAM IMPACTS UNDER FY 97 BUDGET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Subject: Diversity Outreach Adopted: June 4, 2004 Page 1 June 4, 2004 Keith Klein, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Roy Schepens, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 Richland, WA 99352 Linda Hoffman, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 John Iani, Regional Administrator U.S. Environmental Protection Agency, Region 10 1200 Sixth Avenue Seattle, WA

  18. DRAFT ADVICE … UNACCEPTABLE PROGRAM IMPACTS UNDER FY 97 BUDGET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Subject: K Basins Change Package Adopted: June 4, 2004 Page 1 June 4, 2004 Keith Klein, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Roy Schepens, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 Richland, WA 99352 Linda Hoffman, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 John Iani, Regional Administrator U.S. Environmental Protection Agency, Region 10 1200 Sixth Avenue

  19. Microsoft Word - HAB adv #147.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Subject: Hanford Budget Process Adopted: April 4, 2003 Page 1 April 4, 2003 Keith Klein, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Roy Schepens, Manager U. S Department of Energy, Office of River Protection P.O. Box 450 Richland, WA 99352 John Iani, Regional Administrator U. S. Environmental Protection Agency, Region 10 1200 Sixth Avenue Seattle, WA 98101 Tom Fitzsimmons, Director Washington State Department of Ecology P.O. Box 47600

  20. Microsoft Word - HABAdv #170 Hanford Buried Waste.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 Subject: Hanford Buried Waste Adopted: March 4, 2005 Page 1 March 4, 2005 Keith Klein, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Roy Schepens, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Ron Kreizenbeck, Regional Administrator U.S. Environmental Protection Agency, Region 10 1200 Sixth Avenue Seattle, WA 98101 Jay Manning, Director Washington State Department of Ecology P.O. Box 47600

  1. Microsoft Word - HABAdv#223_Life Cycle&TPA Modifications.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Subject: Life Cycle Cost & Schedule Report of the Proposed Consent Decree & TPA Modifications Adopted: November 6, 2009 Page 1 November 6, 2009 Dave Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Polly Zehm, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 Michelle Pirzadeh,

  2. Microsoft Word - HABAdv#225_CommunityRelationsplan.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Subject: Updating the TPA Community Relations Plan Adopted: November 6, 2009 Page 1 November 6, 2009 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Dave Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Polly Zehm, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 Michelle Pirzadeh, Acting Regional Administrator U.S. Environmental

  3. Oak Ridge Site Specific Advisory Board Contacts | Department of Energy

    Energy Savers [EERE]

    Contacts Oak Ridge Site Specific Advisory Board Contacts Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-91 Oak Ridge, TN 37831 Phone Numbers (865) 241-4583, (865) 241-4584 (800) 382-6938, option 4 Melyssa Noe, DOE Federal Coordinator U.S. DOE-OREM, P.O. Box 2001, EM-92, Oak Ridge, TN 37831 Phone: (865) 241-3315 Fax: (865) 241-6932 Email: noemp@emor.doe.gov Pete Osborne, ORSSAB Support Office Oak Ridge SSAB, P.O. Box 2001, EM-90, Oak Ridge, TN 37831 Phone: (865) 241-4583

  4. OP-PO-0010-001.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    duty are susceptible to a penalty. Penalties are assessed at the discretion of the CAMD Director 8 Exemptions to the Rule : Student Caretakers may hand-off the Student Caretaker...

  5. Microsoft Word - Transmittal of Final Audit Report A-13-02, SRS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DSM:MAG:13-1490:UFC 2300.00 Department of Energy Carlsbad Field Office P.O. Box 3090 Carlsbad, New Mexico 88221 August 6, 2013 Mr. John E. Kieling, Chief Hazardous Waste Bureau New...

  6. BPA-2015-01323-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ave., N.W., Suite 720 Washington, DC 20006 Main: 202.787.1900 Shelly DaMore Jordan Ramis PC P.O. Box 230669 Portland, OR 97281 E-mail: shelly.damore@jordanramis.com...

  7. BPA-2013-00197-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 14, 2012 f04 OFFICE Tns TE: i, Ms. Christina Munro t)L DATE: FOJA Office Bonneville Power Administration Routing: DK-7 foc 0 P.O. Box 3621 Portland, Oregon 97208...

  8. BPA-2011-00611-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2011 . C1IVEas tip' BPA OIA OFI "E THIS %TE:: 'f 1 Ms. Christina Munro :;L;E D."l s- FOIA Office Bonneville Power Administration ' Routing: DK-7 ,x ; P.O. Box 3621 f,4 ,...

  9. BPA-2012-01616-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ECE1VED IOTA OFFICE TWS June 29, 2012 TE: F DATE: Bonneville Power Administration Christina J. Munro, FOIA Officer Mail Stop DK-7 r - P.O. Box 3621 Portland, OR 97208 RE: FOIA...

  10. Microsoft Word - Argonne Release Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Recovery Act for early U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico Media Contact: Deb Gill U.S. DOE...

  11. BPA-2012-01885-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OUT DATE: L()G c 9 COLUMBIA RESEARCH CORPORATION P.O. Box 99249 * Seattle, Washington 98139 * Phone (206) 285-1185 * email: seligman48@seanet.com September 10, 2012 RECEIVED BY...

  12. BPA-2011-00676-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 In reply refer to: DK-7 Dan Seligman, Attorney at Law Columbia Research Corporation P.O. Box 99249 Seattle, WA 98139 RE: BPA-2011-00676-F Dear Mr. Seligman: Thank you for your...

  13. DOE NEPA Compliance Officers

    Broader source: Energy.gov (indexed) [DOE]

    DOESavannah River Operations Office EQMD P.O. Box A Aiken, SC 29802 SR Steve Danker stephen.danker@srs.gov West Valley Demonstration Project 716-942-4007 716-942-4703 DOE...

  14. BPA-2014-00382-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bon neville Power Admin istration P.O. Box 362 1 Portla nd, Oregon 97208-3621 August 13, 2014 In reply refer to: FOIA BPA-2014-00382-F Jerry Healy Columbia Basin Electric...

  15. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    llmellv.state.llm.us CERl;,IFIED MAIL - RETURN RECEIPT REQUESTED March 4, 2015 Jose R. Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 Carlsbad, New Mexico...

  16. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis...

  17. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 7, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis...

  18. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RYAN FLYNN Cabinet Secretary BUTCHTONGATE Deputy Secretary TOM BLAINE, P.E. Director Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 Robert L....

  19. SUSANA MARTINEZ Governor JOfiN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JOfiN A. SANCHEZ Lieutenant Governor May 20,2015 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building I 190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469...

  20. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2015 Jose R. Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis...

  1. SUSANA MARTINEZ Governor JOHN A SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 5, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis...

  2. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAnNEZ Governor JOHN A, SANCHEZ Lieutenant Governor July 29, 2013 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT...

  3. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 7, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis...

  4. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 Saint Francis Drive,...

  5. SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 7, 2014 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Office of the Secretary Harold Runnels Building 1190...

  6. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SliSANA MARTINEZ Governol' JOHN A. SANCHEZ Lieutenant Governor September 28, 2012 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO...

  7. SlISANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SlISANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor March 13, 2013 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT...

  8. BPA-2010-01912-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    o Depa rtment of Energy , Bonneville Power Administration * P.O. Box 3621 S g 1ES O P Portland, Oregon 97208-3621 PUBLIC AFFAIRS February 2, 2011 In reply refer to:...

  9. BPA-2011-01595-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENl oFF,l g 1ES OF P Department of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208-3621 PUBLIC AFFAIRS August 2, 20 In reply refer to: DK-7 David...

  10. BPA-2011-01631-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration P.O. Box 3621 g 1ES O F P Portland, Oregon 97208-3621 PUBLIC AFFAIRS August 8, 2011 In reply refer to: DK-7 Richard van Dijk Another Way BPA...

  11. BPA-2010-02068-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 3621 G 1 Portland, Oregon 97208-362 4TE5 Of PUBLIC AFFAIRS September 14, 2010 In reply refer to: DK-7 Richard Vill Conservation Legal Advocate Friends of f the Columbia...

  12. BPA-2011-01633-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SENT O,cF,y a l 1 I 1 G Depa rtment of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208-3621 PUBLIC AFFAIRS August 8, 2011 In reply refer to:...

  13. BPA-2011-01635-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gENT OFc'Y g 1ES O f P Depa rtment of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208-3621 PUBLIC AFFAIRS August 8, 2011 In reply refer to: DK-7...

  14. Evergreen Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Evergreen Renewables LLC Place: Indiana Zip: P.O. Box 565 Product: Biodiesel producer which runs a 19m liter plant in Hammond, Indiana. References: Evergreen Renewables LLC1 This...

  15. BPA-2013-00494-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 8, 2013 In reply refer to: DK-7 Kory Hofland Montana Department of Revenue PO Box 7149 Helena, MT 59604 FOIA BPA-2013-00494-F Dear Mr. Hofland: Thank you for your request...

  16. BPA-2011-00937-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    g7F50F PUBLIC AFFAIRS April 11, 2011 In reply refer to: DK Kory Hofland, Unit Manager Montana Department of Revenue PO Box 7149 Helena, MT 59604 RE: FOIA BPA-2011-00937-F Dear...

  17. BPA-2012-00507-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2012 In reply refer to: DK - 7 Montana Department of Revenue Attn: Kory Hofland PO Box 7149 Helena, MT 59604 FOIA BPA-2012-00507-F Dear Ms. Hofland: Thank you for your request...

  18. EIS-0457: EPA Notice of Availability of a Draft Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comment Period Ends: 030512 Submit Comments to: Douglas Corkran Environmental Specialist Bonneville Power Administration - KEC-4 P.O. Box 3621 Portland, OR 97208-3621 Toll-free ...

  19. BPA-2012-00243-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Munro Christina J. Munro Freedom of Information ActPrivacy Act Officer cc: Janet Fishman, DOE OHA Department of Energy Bonneville Power Administration P.O. Box 3621 Portland,...

  20. BPA-2012-01658-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 17, 2012 Ms. Kim Winn FOIA Specialist Bonneville Power Administration Routing: DK-7 P.O. Box 3621 Portland, Oregon 97208 KFxE1VED BY BPA FOIA OFFICE TillS DATE: *7 i DUE...