National Library of Energy BETA

Sample records for blue water system

  1. Green Lands Blue Water 2014 Fall Conference

    Broader source: Energy.gov [DOE]

    The Green Lands Blue Water 2014 Fall Conference will be held from November 19–20, 2014, at the Richland Community College in Decatur, Illinois. The event will focus on bioenergy and sustainable agriculture and explore topics ranging from logistics, energy conversion technologies, and markets for grass biomass. BETO Sustainability Program Technology Manager Kristen Johnson will be speaking about the Energy Department’s perspective on sustainable bioenergy landscapes and will focus on BETO’s recent work with landscape design. The conference will be November 19–20 only. On November 18, participants may choose to participate in a pre-conference field tour.

  2. Blue Lake Rancheria Kicks Off Solar System Construction | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blue Lake Rancheria Kicks Off Solar System Construction Blue Lake Rancheria Kicks Off Solar System Construction May 9, 2016 - 5:54pm Addthis Blue Lake Rancheria Energy Director Jana Ganion flanked by Kernen Construction Site Supervisor Gavin Johnson (left) and Blue Lake Rancheria Facilities Director Neil Harris (right). Photo from Blue Lake Rancheria Blue Lake Rancheria Energy Director Jana Ganion flanked by Kernen Construction Site Supervisor Gavin Johnson (left) and Blue Lake

  3. Blue Ridge Electric Cooperative- Residential Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Blue Ridge Electric Cooperative offers up to $300 for the purchase of an electric water heater. The rebate amount varies based on the size of the water heater purchased.

  4. Dynamics of water in prussian blue analogues: Neutron scattering study

    SciTech Connect (OSTI)

    Sharma, V. K.; Mitra, S.; Thakur, N.; Yusuf, S. M.; Mukhopadhyay, R.; Juranyi, Fanni

    2014-07-21

    Dynamics of crystal water in Prussian blue (PB), Fe(III){sub 4}[Fe(II)(CN){sub 6}]{sub 3}.14H{sub 2}O and its analogue Prussian green (PG), ferriferricynaide, Fe(III){sub 4}[Fe(III)(CN){sub 6}]{sub 4}.16H{sub 2}O have been investigated using Quasielastic Neutron Scattering (QENS) technique. PB and its analogue compounds are important materials for their various interesting multifunctional properties. It is known that crystal water plays a crucial role towards the multifunctional properties of Prussian blue analogue compounds. Three structurally distinguishable water molecules: (i) coordinated water molecules at empty nitrogen sites, (ii) non-coordinated water molecules in the spherical cavities, and (iii) at interstitial sites exist in PB. Here spherical cavities are created due to the vacant sites of Fe(CN){sub 6} units. However, PG does not have any such vacant N or Fe(CN){sub 6} units, and only one kind of water molecules, exists only at interstitial sites. QENS experiments have been carried out on both the compounds in the temperature range of 260360?K to elucidate the dynamical behavior of different kinds of water molecules. Dynamics is found to be much more pronounced in case of PB, compared to PG. A detailed data analysis showed that localized translational diffusion model could describe the observed data for both PB and PG systems. The average diffusion coefficient is found to be much larger in the PB than PG. The obtained domain of dynamics is found to be consistent with the geometry of the structure of the two systems. Combining the data of the two systems, a quantitative estimate of the dynamics, corresponding to the water molecules at different locations is made.

  5. Surface Catalysis of Water Oxidation by the Blue Ruthenium Dimer

    SciTech Connect (OSTI)

    Jurss, Jonah W.; Concepcion, Javier C.; Norris, Michael R.; Templeton, Joseph L.; Meyer, Thomas J.

    2010-04-08

    Single-electron activation of multielectron catalysis has been shown to be viable in catalytic water oxidation with stepwise proton-coupled electron transfer, leading to high-energy catalytic precursors. For the blue dimer, cis,cis-[(bpy)2(H2O)RuIIIORuIII(H2O)(bpy)2]4+, the first well-defined molecular catalyst for water oxidation, stepwise 4e-/4H+ oxidation occurs to give the reactive precursor [(O)RuVORuV(O)]4+. This key intermediate is kinetically inaccessible at an unmodified metal oxide surface, where the only available redox pathway is electron transfer. We report here a remarkable surface activation of indium-tin oxide (In2O3:Sn) electrodes toward catalytic water oxidation by the blue dimer at electrodes derivatized by surface phosphonate binding of [Ru(4,4'-((HO)2P(O)CH2)2bpy)2(bpy)]2+. Surface binding dramatically improves the rate of surface oxidation of the blue dimer and induces water oxidation catalysis.

  6. Tracking the Performance Evolution of Blue Gene Systems

    SciTech Connect (OSTI)

    Kerbyson, Darren J.; Barker, Kevin J.; Gallo, Diego S.; Chen, Dong; Brunheroto, Jose R.; Ryu, Kyung D.; Chiu, George L.; Hoisie, Adolfy

    2013-06-17

    IBMs Blue Gene supercomputer has evolved through three generations from the original Blue Gene/L to P to Q. A higher level of integration has enabled greater single-core performance, and a larger concurrency per compute node. Although these changes have brought with them a higher overall system peak-performance, no study has examined in detail the evolution of perfor-mance across system generations. In this work we make two significant contri-butions that of providing a comparative performance analysis across Blue Gene generations using a consistent set of tests, and also in providing a validat-ed performance model of the NEK-Bone proxy application. The combination of empirical analysis and the predictive performance model enable us to not only directly compare measured performance but also allow for a comparison of sys-tem configurations that cannot currently be measured. We provide insights into how the changing characteristics of Blue Gene have impacted on the application performance, as well as what future systems may be able to achieve.

  7. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol, Inc. | Department of Energy Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. PDF icon Award No. DE-FC36-07GO17025 More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty,

  8. Supercomputing Community Dr. William Kramer Blue Waters Director...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems UTK NCARCISL XSEDE (TG) NERSC's Greatest Legacies NERSC is the First Multi-discipline Nationally based HPC resource for Diverse, Open Science * Only localcenter...

  9. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect (OSTI)

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  10. Structure and Electronic Configurations of the Intermediates of Water Oxidation in Blue Ruthenium Dimer Catalysis

    SciTech Connect (OSTI)

    Moonshiram, Dooshaye; Jurss, Jonah W.; Concepcion, Javier J.; Zakharova, Taisiya; Alperovich, Igor; Meyer, Thomas J.; Pushkar, Yulia

    2013-04-08

    Catalytic O{sub 2} evolution with cis,cis-[(bpy){sub 2}(H{sub 2}O)Ru{sup III}ORu{sup III}(OH{sub 2})(bpy){sub 2}]{sup 4+} (bpy is 2,2-bipyridine), the so-called blue dimer, the first designed water oxidation catalyst, was monitored by UV-vis, EPR, and X-ray absorption spectroscopy (XAS) with ms time resolution. Two processes were identified, one of which occurs on a time scale of 100 ms to a few seconds and results in oxidation of the catalyst with the formation of an intermediate, here termed [3,4]'. A slower process occurring on the time scale of minutes results in the decay of this intermediate and O{sub 2} evolution. Spectroscopic data suggest that within the fast process there is a short-lived transient intermediate, which is a precursor of [3,4]'. When excess oxidant was used, a highly oxidized form of the blue dimer [4,5] was spectroscopically resolved within the time frame of the fast process. Its structure and electronic state were confirmed by EPR and XAS. As reported earlier, the [3,4]' intermediate likely results from reaction of [4,5] with water. While it is generated under strongly oxidizing conditions, it does not display oxidation of the Ru centers past [3,4] according to EPR and XAS. EXAFS analysis demonstrates a considerably modified ligand environment in [3,4]'. Raman measurements confirmed the presence of the O-O fragment by detecting a new vibration band in [3,4]' that undergoes a 46 cm{sup -1} shift to lower energy upon {sup 16}O/{sup 18}O exchange. Under the conditions of the experiment at pH 1, the [3,4]' intermediate is the catalytic steady state form of the blue dimer catalyst, suggesting that its oxidation is the rate-limiting step.

  11. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  12. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  13. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  14. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  15. Uptake and Retention of Cs137 by a Blue-Green Alga in Continuous Flow and Batch Culture Systems

    SciTech Connect (OSTI)

    Watts, J.R.

    2003-02-18

    Since routine monitoring data show that blue-green algae concentrate radioactivity from water by factors as great as 10,000, this study was initiated to investigate the uptake and retention patterns of specific radionuclides by the dominant genera of blue-green algae in the reactor effluents. Plectonema purpureum was selected for this study.

  16. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  17. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J.; Katz, Lynn; Kinney, Kerry; Bowman, Robert S.; Kwon, Soondong

    2010-08-03

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  18. DEEP MULTI-TELESCOPE PHOTOMETRY OF NGC 5466. I. BLUE STRAGGLERS AND BINARY SYSTEMS

    SciTech Connect (OSTI)

    Beccari, G.; Dalessandro, E.; Lanzoni, B.; Ferraro, F. R.; Miocchi, P.; Sollima, A.; Bellazzini, M.

    2013-10-10

    We present a detailed investigation of the radial distribution of blue straggler star (BSS) and binary populations in the Galactic globular cluster NGC 5466, over the entire extension of the system. We used a combination of data acquired with the Advanced Camera for Survey on board the Hubble Space Telescope, the LBC-blue mounted on the Large Binocular Telescope, and MEGACAM on the Canada-France-Hawaii Telescope. BSSs show a bimodal distribution with a mild central peak and a quite internal minimum. This feature is interpreted in terms of a relatively young dynamical age in the framework of the 'dynamical clock' concept proposed by Ferraro et al. The estimated fraction of binaries is ?6%-7% in the central region (r < 90'') and slightly lower (?5.5%) in the outskirts, at r > 200''. Quite interestingly, the comparison with the results of Milone et al. suggests that binary systems may also display a bimodal radial distribution, with the position of the minimum consistent with that of BSSs. If confirmed, this feature would give additional support to the scenario where the radial distribution of objects more massive than the average cluster stars is primarily shaped by the effect of dynamical friction. Moreover, this would also be consistent with the idea that the unperturbed evolution of primordial binaries could be the dominant BSS formation process in low-density environments.

  19. Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  20. A performance comparison of current HPC systems: Blue Gene/Q, Cray XE6 and InfiniBand systems

    SciTech Connect (OSTI)

    Kerbyson, Darren J.; Barker, Kevin J.; Vishnu, Abhinav; Hoisie, Adolfy

    2014-01-01

    We present here a performance analysis of three of current architectures that have become commonplace in the High Performance Computing world. Blue Gene/Q is the third generation of systems from IBM that use modestly performing cores but at large-scale in order to achieve high performance. The XE6 is the latest in a long line of Cray systems that use a 3-D topology but the first to use its Gemini interconnection network. InfiniBand provides the flexibility of using compute nodes from many vendors that can be connected in many possible topologies. The performance characteristics of each vary vastly, and the way in which nodes are allocated in each type of system can significantly impact on achieved performance. In this work we compare these three systems using a combination of micro-benchmarks and a set of production applications. In addition we also examine the differences in performance variability observed on each system and quantify the lost performance using a combination of both empirical measurements and performance models. Our results show that significant performance can be lost in normal production operation of the Cray XE6 and InfiniBand Clusters in comparison to Blue Gene/Q.

  1. Tahoe Water Systems | Open Energy Information

    Open Energy Info (EERE)

    Tahoe Water Systems Jump to: navigation, search Name: Tahoe Water Systems Sector: Solar, Wind energy Product: Develops a self-contained solarwind based water pumping technology....

  2. Blue Oak Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Blue Oak Energy Inc Jump to: navigation, search Name: Blue Oak Energy Inc Place: Davis,, California Zip: 95618 Sector: Services Product: Focused on PV system design, planning,...

  3. Blue Sky Optimum Energy | Open Energy Information

    Open Energy Info (EERE)

    Optimum Energy Jump to: navigation, search Name: Blue Sky Optimum Energy Place: Buffalo, New York Product: Blue Sky offers a processing system to produce biodiesel at a cheaper...

  4. Blue Gene/Q Versus Blue Gene/P | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Overview Blue GeneQ Versus Blue GeneP BGQ Drivers Status Machine Overview Machine Partitions Torus Network Data Storage & File Systems Compiling & Linking Queueing &...

  5. Blue Note

    SciTech Connect (OSTI)

    Murray Gibson

    2007-04-27

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  6. Blue Note

    ScienceCinema (OSTI)

    Murray Gibson

    2010-01-08

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  7. Mechanism of water oxidation by [Ru(bda)(L)₂]: The return of the "blue dimer"

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Concepcion, Javier J.; Zhong, Diane K.; Szalda, David J.; Muckerman, James T.; Fujita, Etsuko

    2015-02-05

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)₂] including X-ray structure of intermediates, their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)₂], revealing key features unavailable from solution studies with sacrificial oxidants.

  8. Comparing the Performance of Blue Gene/Q with Leading Cray XE6 and InfiniBand Systems

    SciTech Connect (OSTI)

    Kerbyson, Darren J.; Barker, Kevin J.; Vishnu, Abhinav; Hoisie, Adolfy

    2013-01-21

    AbstractThree types of systems dominate the current High Performance Computing landscape: the Cray XE6, the IBM Blue Gene, and commodity clusters using InfiniBand. These systems have quite different characteristics making the choice for a particular deployment difficult. The XE6 uses Crays proprietary Gemini 3-D torus interconnect with two nodes at each network endpoint. The latest IBM Blue Gene/Q uses a single socket integrating processor and communication in a 5-D torus network. InfiniBand provides the flexibility of using nodes from many vendors connected in many possible topologies. The performance characteristics of each vary vastly along with their utilization model. In this work we compare the performance of these three systems using a combination of micro-benchmarks and a set of production applications. In particular we discuss the causes of variability in performance across the systems and also quantify where performance is lost using a combination of measurements and models. Our results show that significant performance can be lost in normal production operation of the Cray XT6 and InfiniBand Clusters in comparison to Blue Gene/Q.

  9. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN PROJECT SUMMARY In September 2010, the Department of Energy issued a $98.5 million partial loan guarantee under the Financial Institution Partnership Program (FIPP) to finance Blue Mountain, a geothermal power plant. The plant is currently harnessing renewable energy by tapping into an

  10. Improve Chilled Water System Peformance: Chilled Water System Analysis Tool (CWSAT) Improves Efficiency

    SciTech Connect (OSTI)

    2010-06-25

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  11. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  12. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    the Blue Mountain geothermal system integrating data from previous studies. References James E. Faulds, Glenn Melosh (2008) A Preliminary Structural Model for the Blue Mountain...

  14. The PUREM SCR System with AdBlue | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006deerwilhelm.pdf More Documents & Publications SCR Systems for Heavy Duty ...

  15. System for removal of arsenic from water

    DOE Patents [OSTI]

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  16. Submersible purification system for radioactive water

    DOE Patents [OSTI]

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  17. Solar Water Heating System Maintenance and Repair | Department...

    Energy Savers [EERE]

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | ...

  18. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

  19. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2011-05-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  20. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2009-02-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  1. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  2. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  3. Screening reactor steam/water piping systems for water hammer

    SciTech Connect (OSTI)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

  4. Service water system failures and degradations

    SciTech Connect (OSTI)

    Lam, P.; Leeds, E.

    1989-01-01

    The Office for Analysis and Evaluation of Operational Data (AEOD) of the U.S. Nuclear Regulatory Commission (NRC) has completed a comprehensive review and evaluation of service water system failures and degradations observed in operating events in light water reactors from 1980 to 1987. The review and evaluation focused on the identification of causes of system failures and degradations, the adequacy of corrective actions implemented and planned, and the safety significance of the operating events. The results of this review and evaluation indicate that service water system failures and degradations have significant safety implications. These system failures and degradations are attributable to a great variety of causes and have adverse impact on a large number of safety-related systems and components that are required to mitigate reactor accidents. Specifically, the causes of failures and degradations include various fouling mechanisms (sediment deposition, biofouling, corrosion and erosion, pipe coating failure, calcium carbonate, foreign material and debris intrusion); single failures and other design deficiencies; flooding; multiple equipment failures; personnel and procedural errors; and seismic deficiencies. Systems and components adversely impacted by a service water system failure or degradation include the component cooling water system, emergency diesel generators, emergency core-cooling system pumps and heat exchangers, the residual heat removal system, containment spray and fan coolers, control room chillers, and reactor building cooling units.

  5. Residential hot water distribution systems: Roundtablesession

    SciTech Connect (OSTI)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  6. Passive safety injection system using borated water

    DOE Patents [OSTI]

    Conway, Lawrence E.; Schulz, Terry L.

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  7. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will ...

  8. Bright Blue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Super Heavy Nuclei, International Symposium Texas A&M University, College Station TX, USA March 31 - April 02, 2015 Andrzej Wieloch, Institute of Physics (SIP), Jagiellonian University, Kraków New experimental approach to the super and hyper nuclei search Outline  Motivation  Three generations of experiments  Experimental setup - detection system and electronics  Preliminary results  Conclusions Where is the limit of SHE? Theory 1957: G. Scharff-Goldhaber - suggested

  9. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BLUE MOUNTAIN BLUE MOUNTAIN PDF icon DOE-LPO_Project-Posters_GEO_Blue-Mountain.pdf More Documents & Publications ORMAT NEVADA GRANITE RELIABLE USG OREGON

  10. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1998-03-31

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  11. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  12. Energy optimization of water distribution system

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  13. Siting Your Solar Water Heating System | Department of Energy

    Energy Savers [EERE]

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar ...

  14. Siting Your Solar Water Heating System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar...

  15. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  16. System for disposing of radioactive water

    DOE Patents [OSTI]

    Gotchy, Reginald L.

    1976-01-13

    A system for reducing radioactivity released to the biosphere in the course of producing natural gas from a reservoir stimulated by the detonation of nuclear explosives therein. Tritiated water produced with the gas is separated out and returned to a nuclear chimney through a string of tubing positioned within the well casing. The tubing string is positioned within the well casing in a manner which enhances separation of the water out of the gas and minimizes entrainment of water into the gas flowing out of the chimney.

  17. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases ...

  18. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the ...

  19. Building Codes and Regulations for Solar Water Heating Systems...

    Office of Environmental Management (EM)

    Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit:...

  20. Physical Modeling of Scaled Water Distribution System Networks...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Physical Modeling of Scaled Water Distribution System Networks. Citation Details In-Document Search Title: Physical Modeling of Scaled Water Distribution System ...

  1. Montana Ground Water Pollution Control System Information Webpage...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  2. Enhanced Geothermal Systems (EGS) comparing water with CO2 as...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) comparing water with CO2 as heattransmission fluids Citation Details In-Document Search Title: Enhanced Geothermal Systems (EGS) comparing water ...

  3. Geothermometry At Blue Mountain Geothermal Area (Casteel, Et...

    Open Energy Info (EERE)

    Details Location Blue Mountain Geothermal Area Exploration Technique Geothermometry Activity Date 2010 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis A water...

  4. Title: Ames Blue Alert- Wood Cabinet Falls Apart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Blue Alert- Wood Cabinet Falls Apart Lessons Learned Statement- Cumulative damage can cause a loss of structural integrity. When furnishings are repeatedly exposed to water,...

  5. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to...

  6. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, Philippe (3134 Natalie Cir., Augusta, GA 30909-2748)

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  7. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  8. Fire water systems in composite materials

    SciTech Connect (OSTI)

    Sundt, J.L.

    1993-12-31

    Due to corrosion problems in fire water systems offshore there is a need for a corrosion resistant material to improve the reliability of onboard fire fighting systems. Glass Reinforced Epoxy (GRE) pipe is seen as a cost effective and light weight alternative to metals. Through a test program run by AMAT, Advanced Materials a/s in collaboration with the Norwegian Fire and Research Laboratory (NBL, SINTEF), GRE pipes have proved to be viable materials for offshore fire water systems. The test program included furnace testing, jetfire testing and simulated explosion testing. GRE pipes (2--12 inches) from two suppliers were fire tested and evaluated. Both adhesively bonded joints and flange connections were tested. During the course of the project, application methods of passive fire protection and nozzle attachments were improved.

  9. Alternate Water Supply System, Riverton, WY, Site

    Office of Legacy Management (LM)

    Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Office of Legacy Management DOE M/1570 2008 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1570-2008 Alternate Water

  10. Acid mine water aeration and treatment system

    DOE Patents [OSTI]

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  11. Army Energy and Water Reporting System Assessment

    SciTech Connect (OSTI)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

  12. Process and system for treating waste water

    DOE Patents [OSTI]

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  13. BlueChoice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Ambulance: Nonemergency Air Transfer (between facilities) 10% after deductible 4 CancerCongenital Heart Disease Care (Blue distinction programs only include a lodging per...

  14. BlueChoice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Lodging: Benefits are available when these services are related to case-managed Cancer Services or Congenital Heart Disease if patient is receiving treatment from a Blue...

  15. BlueChoice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physician and Other Professional Provider Charges ) 10% after In-Network deductible 3 CancerCongenital Heart Disease Care (Blue distinction programs only include a lodging per...

  16. Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain...

    Open Energy Info (EERE)

    drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in...

  17. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily ...

  18. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems. ...

  19. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  20. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  1. Enhanced Geothermal Systems (EGS) comparing water with CO2 as...

    Office of Scientific and Technical Information (OSTI)

    (EGS) comparing water with CO2 as heattransmission fluids Citation Details In-Document Search Title: Enhanced Geothermal Systems (EGS) comparing water with CO2 as ...

  2. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems. PDF icon es_hot_water_systems.pdf More Documents & Publications

  3. Prussian Blue Nanoparticles for the Enrichment of Radioactive Cesium in Solutions - 13275

    SciTech Connect (OSTI)

    Parajuli, Durga; Kitajima, Akiko; Tanaka, Hisashi; Kawamoto, Tohru

    2013-07-01

    Prussian blue (PB) nanoparticles in different form were studied for the adsorptive enrichment of Cs in solutions. Water dispersible nano-PB was found to be highly effective on removing trace level Cs in stagnant waters. The nano-PB loaded filters were effective on collecting Cs in flow systems like river water, thus provides a big relief on controlling the environmental mobility of Cs and its entry to the productive lands via water. Water insoluble nano-PB adsorbent possesses high Cs loading capacity and selectivity and it is found to be the ultimate option for the systems containing high concentration Cs. (authors)

  4. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  5. Cost reduction in deep water production systems

    SciTech Connect (OSTI)

    Beltrao, R.L.C.

    1995-12-31

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project.

  6. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper,

  7. Blue Summit | Open Energy Information

    Open Energy Info (EERE)

    Summit Jump to: navigation, search Name Blue Summit Facility Blue Summit Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy...

  8. Blue | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy | Department of Energy Blue Ribbon Commission on America's Nuclear Future Report to the Secretary of Energy Blue Ribbon Commission on America's Nuclear Future Report to the Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new strategy. It was cochaired by Rep. Lee H.

  9. K West integrated water treatment system subproject safety analysis document

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  10. Building America Webinar: Central Multifamily Water Heating Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Controls for Multifamily Domestic Hot Water | Department of Energy Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily Domestic Hot Water This presentation will be delivered at the U.S. Department of Energy Building America webinar on January 21, 2015, by Jordan Dentz and Eric Ansanelli of the Levy Partnership. Central domestic hot water (CDHW) systems are

  11. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  12. Enhanced monitor system for water protection

    DOE Patents [OSTI]

    Hill, David E. [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias [Knoxville, TN

    2009-09-22

    An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.

  13. Building America Webinar: Central Multifamily Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution. Presenters and specific topics for this webinar included: Elizabeth Weitzel from the Building America team, Alliance for Residential Building Innovation, presenting

  14. Building Codes and Regulations for Solar Water Heating Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every

  15. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  16. Slip stream apparatus and method for treating water in a circulating water system

    DOE Patents [OSTI]

    Cleveland, Joe R.

    1997-01-01

    An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).

  17. Slip stream apparatus and method for treating water in a circulating water system

    DOE Patents [OSTI]

    Cleveland, J.R.

    1997-03-18

    An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

  18. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision...

  19. Photoelectrochemical Water Systems for H2 Production (Presentation)

    SciTech Connect (OSTI)

    Turner, J. A.; Deutsch, T.; Head, J.; Vallett, P.

    2007-05-17

    This Photoelectrochemical Water Systems for Hydrogen Production presentation by the National Renewable Energy Laboratory's John Turner was given at the DOE Hydrogen Program's 2007 Annual Merit Review.

  20. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  1. Using naturally occurring radionuclides to determine drinking water age in a community water system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n =more » 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.« less

  2. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  3. Blue Star Energy Services | Open Energy Information

    Open Energy Info (EERE)

    Blue Star Energy Services (Redirected from BlueStar) Jump to: navigation, search Name: Blue Star Energy Services Place: Illinois Phone Number: 866-258-3782 Website:...

  4. Building America Webinar: Central Multifamily Water Heating Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Central Heat Pump Water Heating | Department of Energy Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will be delivered by Elizabeth Weitzel, Davis Energy Group, at the U.S. Department of Energy Building America webinar on January 21, 2015.The presentation will focus on the findings of an evaluation effort of a nominal 10.5 ton central HPWH installed at

  5. Add Blue | Open Energy Information

    Open Energy Info (EERE)

    Add Blue Jump to: navigation, search Name: Add Blue Place: Sao Paulo, Sao Paulo, Brazil Zip: 04621-000 Product: Company is tailoring US company KL Energy's enzymatic process...

  6. Blue Ridge Mountain Electric Membership Corporation- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Blue Ridge Mountain EMC and TVA, its power supplier, offer the Energy Right and TVA E-Score rebates to qualified members. To qualify for water heater rebates provided by the Energy Right program, a...

  7. NOVEL MEMBRANES AND SYSTEMS FOR INDUSTRIAL AND MUNICIPAL WATER PURIFICATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AND REUSE | Department of Energy NOVEL MEMBRANES AND SYSTEMS FOR INDUSTRIAL AND MUNICIPAL WATER PURIFICATION AND REUSE NOVEL MEMBRANES AND SYSTEMS FOR INDUSTRIAL AND MUNICIPAL WATER PURIFICATION AND REUSE GE Global Research - Niskayuna, NY A smooth resin deposition technology will be developed for reverse osmosis membranes used in water treatment and industrial and municipal wastewater reuse. Thin films of the resin will be deposited on standard support membranes to improve performance and

  8. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  9. BlueCross BlueShield International Claim Form | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BlueCross BlueShield International Claim Form PDF icon BCBSIL International Claim Form 2015

  10. Ceramic coating system or water oxidation environments

    DOE Patents [OSTI]

    Hong, Glenn T.

    1996-01-01

    A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

  11. Estimating Energy and Water Losses in Residential Hot WaterDistribution Systems

    SciTech Connect (OSTI)

    Lutz, James

    2005-02-26

    Residential single family building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include; the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy needed to reheat water that was already heated once before. Average losses of water are estimated to be 6.35 gallons (24.0 L) per day. (This is water that is rundown the drain without being used while waiting for hot water.) The amount of wasted hot water has been calculated to be 10.9 gallons (41.3L) per day. (This is water that was heated, but either is not used or issued after it has cooled off.) A check on the reasonableness of this estimate is made by showing that total residential hot water use averages about 52.6 gallons (199 L) per day. This indicates about 20 percent of average daily hot water is wasted.

  12. Small Water System Management Program: 100 K Area

    SciTech Connect (OSTI)

    Hunacek, G.S. Jr.

    1995-06-29

    Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site`s 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410.

  13. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  14. Operating experience review of service water system problems

    SciTech Connect (OSTI)

    Lam, P.

    1989-01-01

    In a recent paper, selected results of a comprehensive review and evaluation of service water system problems conducted by the Office for Analysis and Evaluation of Operational Data (AEOD) of the US Nuclear Regulatory Commission (NRC) were presented. The results of this review and evaluation indicated that service water system problems have significant safety implications. These system problems are attributable to a great variety of causes and have adverse impacts on a large number of safety-related systems and components. To provide additional feedback of operating experience, this paper presents an overview of the dominant mechanisms leading to service water system degradations and failures. The failures and degradations of service water systems observed in the 276 operating events are grouped into six general categories. The six general categories are (1) fouling due to various mechanisms, (2) single-failure and other design deficiencies, (3) flooding, (4) equipment failures, (5) personnel and procedural errors, and (6) seismic deficiencies.

  15. Everything You Wanted to Know About Solar Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Everything You Wanted to Know About Solar Water Heating Systems Everything You Wanted to Know About Solar Water Heating Systems October 7, 2014 - 2:39pm Q&A What do you want to know about solar at home? Tell Us Addthis Solar panels heat water that is delivered to a storage tank. | Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank. | Photo courtesy of David Springer, National Renewable

  16. Fukushima Light Water Detritiation System Presentation

    Office of Environmental Management (EM)

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  17. Using naturally occurring radionuclides to determine drinking water age in a community water system

    SciTech Connect (OSTI)

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n = 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.

  18. EA-1093: Surface Water Drainage System, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to correct deficiencies in, and then to maintain, the surface water drainage system serving the U.S. Department of Energy's Rocky Flats...

  19. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BENEFITS A Motor Challeng NEW WATER BOOSTER PUMP SYSTEM REDUCES ENERGY CONSUMPTION BY 80 ... * * * APPLICATIONS The use of a single pump with a recirculation line to serve a wide ...

  20. Heat Exchangers for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar...

  1. NRC Notice: Antifreeze Agents in Fire Water Sprinkler Systems

    Energy Savers [EERE]

    were identified in NRC Information Notice (IN) 2015-02, Antifreeze Agents in Fire Water Sprinkler Systems, (http:pbadupws.nrc.govdocsML1432ML14323A 176.pdf). This IN was...

  2. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    SciTech Connect (OSTI)

    Sarmiento, Jorge L.; Dufour, Carolina; Rodgers, Keith B.

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  3. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  4. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  5. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  6. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  7. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  8. Drought management and its impact on public water systems

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This volume represents the report on a colloquium sponsored by the National Research Council's Water Science and Technology Board, 5 September 1985. It includes five background papers on drought, drought management, risks for public systems, and legal and institutional aspects, plus appendices on conservation and rationing plans for Los Angeles and Salt Lake County. The conclusions of the volume include: (1) there is substantial need for continued research on drought and its impact on the management of public water systems; (2) sizing of the physical facilities of a system should not be based solely on full-service requirements during the drought of record, nor should such facilities be sized by the arbitrary specification of hydrologic risk; and (3) the key to adequate drought management of public water systems lies in predrought preparation.

  9. Solubility effects in waste-glass/demineralized-water systems

    SciTech Connect (OSTI)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

  10. Mode and Intermediate Waters in Earth System Models

    SciTech Connect (OSTI)

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  11. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Energy Savers [EERE]

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express

  12. Blue Cross Blue Shield of Illinois PPO Claim Form | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Blue Cross Blue Shield of Illinois PPO Claim Form PDF icon BCBSIL PPO Claim Form

  13. Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  14. Blue Valley Energy | Open Energy Information

    Open Energy Info (EERE)

    References: Blue Valley Energy Web Site1 On Jan 1st 2008, Valley Geothermal and Blue Sky Energy Solutions merged to form Blue Valley Energy LLC. Valley Geothermal, led by Monte...

  15. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect (OSTI)

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  16. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect (OSTI)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don; Hanson, Jason; Grimsrud, Kristine; Thacher, Jennifer; Broadbent, Craig; Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather , Socorro, NM); Vivoni, Enrique , Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

  17. BlueFire Ethanol | Open Energy Information

    Open Energy Info (EERE)

    BlueFire Ethanol Jump to: navigation, search Name: BlueFire Ethanol Place: Irvine, California Zip: 92618 Sector: Hydro Product: US biofuel producer that utilises a patented...

  18. Blue Sun Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Logo: Blue Sun Energy, Inc. Name: Blue Sun Energy, Inc. Address: 14143 Denver West Parkway Place: Golden, Colorado Zip: 80401 Region:...

  19. Blue Sun Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Sun Biodiesel Jump to: navigation, search Name: Blue Sun Biodiesel Place: Fort Collins, Colorado Zip: 80525 Product: Privately held Blue Sun Biodiesel is a breakthrough agriculture...

  20. Blue Lake Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Blue Lake Power Place: Redding, California Zip: 96001 Sector: Renewable Energy Product: Blue Lake Power is a wholey owned subsidiary of...

  1. Pacific Blue Energy | Open Energy Information

    Open Energy Info (EERE)

    Blue Energy Jump to: navigation, search Name: Pacific Blue Energy Place: Flagstaff, Arizona Zip: 86001 Sector: Solar Product: Arizona-based solar project developer. Coordinates:...

  2. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Blue Sphere Corp | Open Energy Information

    Open Energy Info (EERE)

    Sphere Corp Jump to: navigation, search Name: Blue Sphere Corp Place: London, United Kingdom Product: London-based emission reduction project integrator. References: Blue Sphere...

  4. Summit Blue Consulting | Open Energy Information

    Open Energy Info (EERE)

    Summit Blue Consulting Jump to: navigation, search Name: Summit Blue Consulting Place: Boulder, Colorado Zip: 80302 Sector: Efficiency, Renewable Energy Product: String...

  5. Blue Hill Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Logo: Blue Hill Partners LLC Name: Blue Hill Partners LLC Address: 40 W. Evergreen Ave. Place: Philadelphia, Pennsylvania Zip: 19118...

  6. Blue Diamond Ventures Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: Blue Diamond Ventures Inc Place: Houston,, Texas Zip: 77071 Product: Agriculture, bio fuels and commercial development company. References: Blue Diamond Ventures Inc1 This...

  7. Blue Ridge Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  8. Systems Dynamic ToolBox for Water Resource Planning

    Energy Science and Technology Software Center (OSTI)

    2006-08-01

    The Fully Integrated System Dynamics Tookbox for Water Resources Planning (Toolbox) is a library of generic modules intended to assist in water management planning and decision making in watersheds around the world. The modules - built in a commercially available modeling environment called Powersim Studio Expert, represent the different sub-systems ina watershed, including population, agriculture, economics, climate, reservoirs, stream flows, and fish populations, and provides generic building blocks with which complex models of complex modelsmore » of complex watersheds can be assembled. The resulting models provide a tool for observing how research management decision made in one sector of a basin can affect other sectors. Improved water resource management contributes to improved public health, economic development, ecological sustainability, and overall security and stability.« less

  9. EA-1905: Double Eagle Water System, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This EA, prepared by the U.S. Department of the Interior’s Bureau of Land Management Carlsbad Field Office and adopted by DOE, evaluates the expansion and upgrade of the City of Carlsbad’s Double Eagle Water System.

  10. Water spray ejector system for steam injected engine

    SciTech Connect (OSTI)

    Hines, W.R.

    1991-10-08

    This paper describes a method of increasing the power output of a steam injected gas turbine engine. It comprises: a compressor, a combustor having a dome which receives fuel and steam from a dual flow nozzle, and a turbine in series combination with a gas flow path passing therethrough, and a system for injection of superheated steam into the gas flow path, the method comprising spraying water into the steam injection system where the water is evaporated by the superheated steam, mixing the evaporated water with the existing steam in the steam injection system so that the resultant steam is at a temperature of at least 28 degrees celsius (50 degrees fahrenheit) superheat and additional steam is added to the dome from the fuel nozzle to obtain a resultant increased mass flow of superheated steam mixture for injection into the gas flow path, and controlling the amount of water sprayed into the steam injection system to maximize the mass flow of superheated steam without quenching the flame.

  11. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  12. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Earl D. Mattson; Larry Hull; Kara Cafferty 02 PETROLEUM Water Water A system dynamic model was construction...

  13. OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water ...

  14. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  15. Blue Ng | Open Energy Information

    Open Energy Info (EERE)

    Ng Jump to: navigation, search Name: Blue-Ng Place: Bath, United Kingdom Zip: BA1 1SR Sector: Biomass Product: UK-based company that constructs and operates combined heat and...

  16. Blue Energy | Open Energy Information

    Open Energy Info (EERE)

    Blue Energy Address: Box 29068 1950 West Broadway Place: Vancouver Zip: V6J 1Z0 Region: Canada Sector: Marine and Hydrokinetic Phone Number: 604-682-2583 Website: www.bluenergy.com...

  17. Blue Ribbon Panel Recommendations Report

    Broader source: Energy.gov [DOE]

    The Department of Energy's Geothermal Technologies Office (formerly Geothermal Technologies Program) assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a...

  18. Solar Water Heating with Low-Cost Plastic Systems

    SciTech Connect (OSTI)

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  19. 2015 Blue Advantage HMO Summary | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Blue Advantage HMO Summary PDF icon 2015 BlueAdvantage HMO Summary

  20. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect (OSTI)

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  1. Portable water filtration system for oil well fractionation

    SciTech Connect (OSTI)

    Seibert, D. L.

    1985-08-13

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which is obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.

  2. Posters Toward an Operational Water Vapor Remote Sensing System Using the Global Positioning System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Toward an Operational Water Vapor Remote Sensing System Using the Global Positioning System S. I. Gutman, (a) R. B. Chadwick, (b) and D. W. Wolf (c) National Oceanic and Atmospheric Administration Boulder, Colorado A. Simon Cooperative Institute for Research in Environmental Science Boulder, Colorado T. Van Hove and C. Rocken University Navstar Consortium Boulder, Colorado Background Water vapor is one of the most important constituents of the free atmosphere since it is the principal

  3. Chapeau Inc dba BluePoint Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 89706 Product: Chapeau Inc. develops, assembles, and sells packaged Combined Heat and Power generation systems. References: Chapeau Inc (dba BluePoint Energy Inc)1...

  4. Water: Challenges at the Intersection of Human and Natural Systems

    SciTech Connect (OSTI)

    Futrell, J.H.; Gephart, R. E.; Kabat-Lensch, E.; McKnight, D. M.; Pyrtle, A.; Schimel, J. P.; Smyth, R. L.; Skole, D. L. Wilson, J. L.; Gephart, J. M.

    2005-09-01

    There is a growing recognition about the critical role water plays in sustaining people and society. This workshop established dialog between disciplinary scientists and program managers from diverse backgrounds in order to share perspectives and broaden community understanding of ongoing fundamental and applied research on water as a complex environmental problem. Three major scientific themes emerged: (1) coupling of cycles and process, with emphasis on the role of interfaces; (2) coupling of human and natural systems across spatial and temporal scales; and (3) prediction in the face of uncertainty. In addition, the need for observation systems, sensors, and infrastructure; and the need for data management and synthesis were addressed. Current barriers to progress were noted as educational and institutional barriers and the integration of science and policy.

  5. Towards a Design of a Complete Solar Water Splitting System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards a Design of a Complete Solar Water Splitting System 1 Feb 2013 BISfuel© : A team of Bisfuel researchers led by Devens Gust, Ana Moore and Tom Moore has designed and characterized an artificial photosynthetic reaction center inspired by natural Photosystem II and comprising a highly oxidizing porphyrin linked to a biomimetic electron transfer relay and a porphyrin electron acceptor. Two articles with the results of the study have appeared in September special issue of PNAS "Chemical

  6. Florida small water systems compliance project. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The object of the project was to demonstrate the effectiveness of a coordinated effort of enforcement, training, technical assistance and outreach to improve compliance of small water systems. The project was conducted in Hillsborough County and Polk County in Florida. The effectiveness of the coordinated effort was measured by the number of violations resolved over a one year period, October 1989 to September 1990, and the costs of achieving those results were tracked by each organization participating in the project.

  7. The Black Mesa coal/water slurry pipeline system

    SciTech Connect (OSTI)

    Brolick, H.J.

    1994-12-31

    The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 mw steam powered electric generating plant located in Laughlin, Nevada.

  8. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heaters » Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional

  9. Water spray ventilator system for continuous mining machines

    DOE Patents [OSTI]

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  10. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect (OSTI)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of growth of each system. Sediment samples after the first and third years of operation indicated that copper was being bound in the sediments very rapidly after entering the treatment system. The design of the system encourages low redox and sulfide production in the sediments. The objective is to stabilize metals, including mercury, as sulfide compounds in the sediments. Costs for maintenance and operation of the systems are minimal, consisting primarily of ensuring that the pipes are not clogged and that water is flowing through the system. The treatment cost per thousand gallons is many times less than conventional wastewater treatment facilities. Life expectancy and function of the biological system is based on the life of the engineering aspects and not the wetland ecology.

  11. ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE

    Broader source: Energy.gov [DOE]

    Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

  12. Microsoft Word - Blue Cover

    Office of Environmental Management (EM)

    New lighting technologies and advanced lighting systems offer the Department the opportunity to significantly reduce energy consumption; decrease operating costs at its sites ...

  13. Blue-Dam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irrigation Systems Upgrades Specifications and Requirements section added clarifying language, "Brass impact sprinklers shall be rebuilt by an established repair shop and shall...

  14. Blue-green upconversion laser

    DOE Patents [OSTI]

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  15. Blue-green upconversion laser

    DOE Patents [OSTI]

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  16. Blue light emitting thiogallate phosphor

    DOE Patents [OSTI]

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  17. Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...

    Open Energy Info (EERE)

    Area (Fairbank & Niggemann, 2004) Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &...

  18. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    SciTech Connect (OSTI)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  19. Biphasic catalysis in water/carbon dioxide micellar systems

    DOE Patents [OSTI]

    Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.

    2002-01-01

    A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.

  20. Preparation of blue-emitting CaMgSi{sub 2}O{sub 6}:Eu{sup 2+} phosphors in reverse micellar system and their application to transparent emissive display devices

    SciTech Connect (OSTI)

    Choi, Sungho; Tae, Se-Won; Seo, Jung-Hyun; Jung, Ha-Kyun

    2011-06-15

    Blue-emitting Eu{sup 2+}-doped CaMgSi{sub 2}O{sub 6} phosphors were prepared by the reverse micelle method. The resultant particles were nanocrystalline with a grain size of about <300 nm and exhibited a characteristic blue emission spectrum centered at 445 nm induced by the oxygen coordinated Eu{sup 2+} ions. By using the corresponding nanophosphors followed by the formation of a uniform phosphor layer, we have demonstrated the mini-sized transparent plasma-discharge panels and investigated their luminance characteristics. Phosphor coated panel is properly transparent, {>=}65%, at the visible wavelength region and illuminates a characteristic blue emission under Ne/Xe plasma discharge conditions. Thus, we can obtain a fast decaying, robust blue-emitting silicate phosphor layer under excited plasma radiation for upcoming emissive display devices like as transparent and three-dimensional plasma display panels. - Graphical abstract: Blue-emitting CaMgSi{sub 2}O{sub 6}:Eu{sup 2+} nanophosphors coated transparent luminescent layers can be obtained. It illuminates the characteristic blue emission, spectrum centered at 425 nm wavelength, under the Ne-Xe mixed gas plasma discharge condition. Highlights: > Blue-emitting CaMgSi{sub 2}O{sub 6}:Eu{sup 2+} nanophosphors via reverse micelle method. > Transparent blue-emitting layer was prepared by using corresponding phosphors. > Fast decaying with degradation-free luminescent layer under plasma radiation. > Promising luminescent layer for the upcoming plasma discharged transparent displays.

  1. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics ...

  2. Advanced alkaline water electrolysis. Task 2 summary report. Model for alkaline water electrolysis systems

    SciTech Connect (OSTI)

    Yaffe, M.R.; Murray, J.N.

    1980-04-01

    Task 2 involved the establishment of an engineering and economic model for the evaluation of various options in water electrolysis. The mode, verification of the specific coding and four case studies are described. The model was tested by evaluation of a nearly commercial technology, i.e., an 80-kW alkaline electrolyte system, operating at 60/sup 0/C, which delivers approximately 255 SLM, hydrogen for applications such as electrical generation cooling or semiconductor manufacturing. The calculated cost of hydrogen from this installed non-optimized case system with an initial cost to the customer of $87,000 was $6.99/Kg H/sub 2/ ($1.67/100 SCF) on a 20-yr levelized basis using 2.5 cents/kWh power costs. This compares favorably to a levelized average merchant hydrogen cost value of $9.11/Kg H/sub 2/ ($2.17/100 SCF) calculated using the same program.

  3. Blue Sky Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Group Inc Jump to: navigation, search Name: Blue Sky Group Inc Place: Laramie, Wyoming Zip: WY 82072-3 Product: Blue Sky is an incubator that builds high quality, high tech...

  4. Blue Sky Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    Bio Fuels Jump to: navigation, search Name: Blue Sky Bio-Fuels Place: Oakland, California Zip: 94602 Product: Blue Sky owns and operates a biodiesel plant in Idaho with a capacity...

  5. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  6. Austin Using Green Innovation to Beat the Utility Blues | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using Green Innovation to Beat the Utility Blues Austin Using Green Innovation to Beat the Utility Blues January 17, 2012 - 1:03pm Addthis An aerial view of the Hornsby Bend Biosolids Management Plant in Austin, Texas. | Photo courtesy of Austin Water. An aerial view of the Hornsby Bend Biosolids Management Plant in Austin, Texas. | Photo courtesy of Austin Water. Todd G. Allen Project Officer, Golden Field Office What does this project do? New biogas generators harness the methane

  7. BlueFire Ethanol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol BlueFire Ethanol Construct and operate a facility that converts green waste and lignocellulosic fractions diverted from landfills or Southern California Materials Recovery Facilities to ethanol and other products. PDF icon bluefire_fact_sheet_12_9_08.pdf More Documents & Publications BlueFire Ethanol, Inc. Applicant Organization: EA-1704: Mitigation Action Plan

  8. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  9. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    SciTech Connect (OSTI)

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  10. Inflation and alternatives with blue tensor spectra

    SciTech Connect (OSTI)

    Wang, Yi; Xue, Wei E-mail: wei.xue@sissa.it

    2014-10-01

    We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experiments do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.

  11. Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates V. Mattioli and P. Basili Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction In recent years the Global

  12. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  13. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  14. Water Treatment System Cleans Marcellus Shale Wastewater | Department of

    Energy Savers [EERE]

    Energy Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing Technical Committee, as presented at the Building America Spring 2012 Stakeholder meeting on February 29, 2012, in Austin, Texas. PDF icon hot_water_stc.pdf More Documents & Publications Standing Technical Committee Working Sessions Building America Expert Meeting: Exploring the Disconnect Between Rated

  15. Hydrogen from Water in a Novel Recombinant Cyanobacterial System

    SciTech Connect (OSTI)

    Weyman, Philip D; Smith, Hamillton O.

    2014-12-03

    Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not established. In the course of this work, we identified a new hydrogenase from environmental DNA sequence and successfully expressed it in a variety of hosts including cyanobacteria. This was one of the first examples of these complicated enzymes being moved across vastly different bacterial species and is the first example of a hydrogenase being brought to life from no other information than a DNA sequence from metagenomic data. The hydrogenase we identified had the molecular signature of other O2-tolerant hydrogenases, and we discovered that the resulting enzyme had exceptionally high oxygen- and thermo-tolerance. The new enzyme retained 80% of its activity after incubation at 80 C for 2 hours and retained 20% activity in 1% O2. We performed detailed analysis on the maturation genes required for construction of a functional enzyme of this class of hydrogenase, and found that seven additional maturation genes were required for minimal activity and a total of nine genes besides the hydrogenase were required for optimal maturation efficiency. Furthermore, we demonstrated that the maturation genes are functional on closely-related hydrogenase enzymes such as those from Alteromonas macleodii and Thiocapsa roseopersicina. Finally, we have extensively modified the hydrogenase to engineer new traits including higher H2 production and better interaction with electron donors. For example, combining two strategies increased hydrogenase activity in cyanobacteria by at least 20-fold over our initial expression level. The activity of this combined strain is almost twice that of the native hydrogenase activity in S. elongatus. This work validates the idea that these enzymes are broadly tolerant to modifications that may help integrate them into a successful photobiological H2 production system. While we did not achieve our ultimate goal of integrating the functional hydrogenase with the cyanobacterial photosynthetic apparatus, the work on this project has led to significant advances in the understanding of these complicated enzymes. This work will greatly benefit future

  16. Blue-green and green phosphors for lighting applications

    DOE Patents [OSTI]

    Setlur, Anant Achyut; Chandran, Ramachandran Gopi; Henderson, Claire Susan; Nammalwar, Pransanth Kumar; Radkov, Emil

    2012-12-11

    Embodiments of the present techniques provide a related family of phosphors that may be used in lighting systems to generate blue or blue-green light. The phosphors include systems having a general formula of: ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.s- ub.y)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) (I), wherein 0systems, such as LEDs and fluorescent tubes, among others, to produce blue and blue/green light. Further, the phosphors may be used in blends with other phosphors, or in combined lighting systems, to produce white light suitable for illumination.

  17. ARM 17-30-10 - Ground Water Pollution Control System | Open Energy...

    Open Energy Info (EERE)

    - Ground Water Pollution Control System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-30-10 - Ground Water...

  18. Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: Are High Efficiency Hot Water Heating Systems Worth the Cost? Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective? PDF icon issue4_gasfired_waterheater.pdf PDF icon issue4_tankless_wh.pdf PDF icon issue4_waterhtg_solutions.pdf More Documents & Publications Cost Effective Water Heating Solutions Tankless

  19. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect (OSTI)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.

  20. A practical application for the chemical treatment of Southern California`s reclaimed, Title 22 water for use as makeup water for recirculating cooling water systems

    SciTech Connect (OSTI)

    Zakrzewski, J.; Cosulich, J.; Bartling, E.

    1998-12-31

    Pilot cooling water studies conducted at a Southern California landfill/cogeneration station demonstrated a successful chemical treatment program for recirculating cooling water that used unnitrified, reclaimed, Title 22 water as the primary makeup water source. The constituents in the reclaimed water are supplied by variety of residential and waste water sources resulting in a water quality that may vary to a greater degree than domestic water supplies. This water contains high concentrations of orthophosphate, ammonia, chlorides and suspended solids. The impact of which, under cycled conditions is calcium orthophosphate scaling, high corrosion of yellow metal and mild steel, stress cracking of copper alloys and stainless steel and rapidly growing biological activity. A mobile cooling water testing laboratory with two pilot recirculating water systems modeled the cogeneration station`s cooling tower operating conditions and parameters. The tube and shell, tube side cooling heat exchangers were fitted with 443 admiralty, 90/10 copper nickel, 316 stainless steel and 1202 mild steel heat exchanger tubes. Coupons and Corrater electrodes were also installed. A chemical treatment program consisting of 60/40 AA/AMPS copolymer for scale, deposits and dispersion, sodium tolyltriazole for yellow metal corrosion, and a bromination program to control the biological activity was utilized in the pilot systems. Recirculating water orthophosphate concentrations reached levels of 70 mg/L as PO, and ammonia concentrations reached levels of 35 mg/L, as total NH3. The study successfully demonstrated a chemical treatment program to control scale and deposition, minimize admiralty, 90/10 copper nickel and carbon steel corrosion rates, prevent non-heat transfer yellow metal and stainless steel stress cracking, and control the biological activity in this high nutrient water.

  1. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect (OSTI)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The membranes generally exhibited reasonable stable rejection rates over time for chloride for a range of concentrations between 0.01 and 2.5 M. One membrane ran in excess of three months with no apparent loss of usability. This suggests that clay membranes may have a long useable life. Twenty different hyperfiltration-induced solute precipitation experiments were either attempted or completed and are reported here. The results of these experiments suggest that hyperfiltration-induced solute precipitation is possible, even for very soluble substances such as NaCl. However, the precipitation rates obtained in the laboratory do not appear to be adequate for commercial application at this time. Future experiments will focus on making the clay membranes more compact and thinner in order to obtain higher flux rates. Two alternative methods of removing solutes from solution, for which the New Mexico Tech Research Foundation is preparing patent applications, are also being investigated. These methods will be described in the next annual report after the patent applications are filed. Technology transfer efforts included two meetings (one in Farmington NM, and one in Hobbs, NM) where the results of this research were presented to independent oil producers and other interested parties. In addition, members of the research team gave seven presentations concerning this research and because of this research project T. M. (Mike) Whitworth was asked to sit on the advisory board for development of a new water treatment facility for the City of El Paso, Texas. Several papers are in preparation for submission to peer-reviewed journals based on the data presented in this report.

  2. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect (OSTI)

    Field, S. M.

    2007-04-01

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  3. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  4. NOVEL MEMBRANES AND SYSTEMS FOR INDUSTRIAL AND MUNICIPAL WATER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A smooth resin deposition technology will be developed for reverse osmosis membranes used in water treatment and industrial and municipal wastewater reuse. Thin films of the resin ...

  5. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    SciTech Connect (OSTI)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  6. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Air Station Oceana | Department of Energy Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana January 7, 2015 - 4:52pm Addthis Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Addthis Related Articles Building Science Corporation worked with Transformations, Inc., on a subdivision of

  7. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Air Station Oceana | Department of Energy Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Case study details Naval Air Station Oceana findings that its heating needs could be met more efficiently by replacing its central plant with a

  8. Blue Marble Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Blue Marble Energy Address: P.O. Box 9190 Place: Seattle, Washington Zip: 98109 Region: Pacific Northwest Area Sector: Biomass Product:...

  9. Blue Flint Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Flint Ethanol Jump to: navigation, search Name: Blue Flint Ethanol Place: Underwood, North Dakota Zip: ND 58576 Product: Joint Venture bentween Great River Energy and Headwaters...

  10. Blue Marble Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Name: Blue Marble Energy Corporation Place: Seattle, Washington Zip: 98108 Sector: Bioenergy Product: Washington State-based firm developing technology to convert biowaste into...

  11. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (DB2) was drilled and completed in 2004.9 Information from these two wells showed that geothermal energy could be commercially produced at Blue Mountain. Geothermal production...

  12. Blue Source LLC | Open Energy Information

    Open Energy Info (EERE)

    Source LLC Jump to: navigation, search Name: Blue Source LLC Place: Salt Lake City, Utah Zip: 84121 Product: Salt Lake City-based emission offset aggregation company. References:...

  13. Blue Square Energy BSE | Open Energy Information

    Open Energy Info (EERE)

    Energy BSE Jump to: navigation, search Name: Blue Square Energy (BSE) Place: Maryland Zip: 21901 Product: US manufacturer of low-purity crystalline silicon cells and modules...

  14. Blue Motion Energy | Open Energy Information

    Open Energy Info (EERE)

    Motion Energy Jump to: navigation, search Name: Blue Motion Energy Region: Netherlands Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and...

  15. Blue Planet Solar | Open Energy Information

    Open Energy Info (EERE)

    Planet Solar Jump to: navigation, search Name: Blue Planet Solar Place: Antwerp, Belgium Zip: B-2060 Sector: Services, Solar Product: Belgium-based firm that offers installation,...

  16. Blue Cove Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Name: Blue Cove Ventures Place: Australia Sector: Services Product: General Financial & Legal Services ( Private family-controlled )...

  17. Blue Star Energy Services | Open Energy Information

    Open Energy Info (EERE)

    Services Jump to: navigation, search Name: Blue Star Energy Services Place: Illinois Phone Number: 866-258-3782 Website: www.aepenergy.com Twitter: @aepenergy Facebook: https:...

  18. Blue Green Capital | Open Energy Information

    Open Energy Info (EERE)

    Green Capital Jump to: navigation, search Name: Blue Green Capital Place: Spain Zip: 8860 Sector: Renewable Energy, Solar Product: String representation "Spanish develop ... their...

  19. Blue C Ltd | Open Energy Information

    Open Energy Info (EERE)

    C Ltd Jump to: navigation, search Name: Blue C, Ltd. Place: Seattle, Washington Zip: 98104 Sector: Renewable Energy Product: An advisory firm providing project and investment...

  20. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems

    Broader source: Energy.gov [DOE]

    This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

  1. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  2. Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency.

  3. ?-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    SciTech Connect (OSTI)

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh

    2014-01-01

    Graphical abstract: - Highlights: ?-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UVvis spectra. The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. The possible pathway of the photocatalytic decomposition process has been discussed. The active species, OH, was detected by TA photoluminescence probing techniques. - Abstract: ?-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UVvis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared ?-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH) by terephthalic acid photo-luminescence probing technique.

  4. Ensuring the Resiliency of Our Future Water and Energy Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy the Resiliency of Our Future Water and Energy Systems Ensuring the Resiliency of Our Future Water and Energy Systems June 18, 2014 - 12:00pm Addthis Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Infographic by Sarah Gerrity, Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Learn More Read the full Water-Energy Nexus report. Visit the Water-Energy Tech Team website to learn more about the water-energy nexus.

  5. Siting Your Solar Water Heating System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Photovoltaic Modules. North Carolina Solar Center Heat Your Water with the Sun (PDF). U.S. Department of Energy Addthis Related Articles An example of a solar pool...

  6. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  7. BlueFire Ethanol, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol, Inc. BlueFire Ethanol, Inc. A proposal issued by BlueFire Ethanol Inc,describing a project that will give DOE understanding of a new biological fermentation process not using enzymes. PDF icon BlueFire Ethanol, Inc. More Documents & Publications Applicant Organization: BlueFire Ethanol Pacific Ethanol, Inc

  8. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  9. Side-by-Side Testing of Water Heating Systems: Results from the 2009-2010 Evaluation

    Broader source: Energy.gov [DOE]

    The performance of seven differing types of residential water heating systems was compared in a side-by-side test configuration over a full year period. The Hot Water System Laboratory (HWS Lab) test facility at the Florida Solar Energy Center (FSEC) in Cocoa, FL was used for the tests.

  10. Detection of contamination of municipal water distribution systems

    DOE Patents [OSTI]

    Cooper, John F.

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  11. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  12. LtBlue-LessInk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mean Levelized Cost IRRIGATION HARDWARE IRRIGATION WATER MGMT LIGHTING IRRIGATION MOTOR IRRIGATION PRESSURE IRRIGATION EFFICIENCY DAIRY 36 Economic Potential 0.2 0.7 0.7...

  13. FERN Blue Ribbon Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    FERN Blue Ribbon Wind Farm I Jump to: navigation, search Name FERN Blue Ribbon Wind Farm I Facility FERN Blue Ribbon Wind Farm I Sector Wind energy Facility Type Offshore Wind...

  14. BluePlanet Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    BluePlanet Capital LLC Jump to: navigation, search Name: BluePlanet Capital LLC Place: Washington, Connecticut Zip: 6793 Sector: Services Product: BluePlanet Capital is an...

  15. Combined heat recovery and make-up water heating system

    SciTech Connect (OSTI)

    Kim, S.Y.

    1988-05-24

    A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

  16. Documentation of INL's In Situ Oil Shale Retorting Water Usage System

    Office of Scientific and Technical Information (OSTI)

    Dynamics Model (Technical Report) | SciTech Connect Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an in

  17. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an insitu retort were consider; a construction

  18. [Waste water heat recovery system]. Final report, September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  19. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, E.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  20. CECIC Blue Sky Investment Consulting Management Co Ltd | Open...

    Open Energy Info (EERE)

    CECIC Blue Sky Investment Consulting Management Co Ltd Jump to: navigation, search Name: CECIC Blue-Sky Investment Consulting & Management Co. Ltd Place: Beijing, Beijing...

  1. Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Blue Mountain Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski,...

  2. MHK Technologies/Blue Motion Energy marine turbine | Open Energy...

    Open Energy Info (EERE)

    Blue Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile...

  3. China National BlueStar Group Corporation | Open Energy Information

    Open Energy Info (EERE)

    BlueStar Group Corporation Jump to: navigation, search Name: China National BlueStar Group Corporation Place: Beijing, Beijing Municipality, China Zip: 100029 Product: State-owned...

  4. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Blue...

  5. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue...

  6. City of Blue Hill, Nebraska (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Blue Hill, Nebraska (Utility Company) Jump to: navigation, search Name: Blue Hill Municipal Power Place: Nebraska Phone Number: 402.756.3771 Website: bluehillne.comcommunity.php...

  7. Blue Spruce Farm Ana Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Spruce Farm Ana Biomass Facility Jump to: navigation, search Name Blue Spruce Farm Ana Biomass Facility Facility Blue Spruce Farm Ana Sector Biomass Location Vermont Coordinates...

  8. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain...

  9. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  10. Blue Ridge Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy LLC Jump to: navigation, search Name: Blue Ridge Renewable Energy LLC Place: Arlington, Virginia Zip: 22209 Product: Developer and operator of the Blue Ridge...

  11. Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) |...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Blue...

  12. BlueWave Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    BlueWave Capital LLC Jump to: navigation, search Name: BlueWave Capital LLC Place: Boston, Massachusetts Sector: Renewable Energy Product: Knowledge-based investment firm focused...

  13. Blue Aquarius Fish Farms Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Blue Aquarius Fish Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Aquarius Fish Farms Aquaculture Low Temperature Geothermal Facility...

  14. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increases Reliability | Department of Energy Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could

  15. Blue Ribbon Commission on America's Nuclear Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blue Ribbon Commission on America's Nuclear Future Draft Report to the Secretary of Energy July 29, 2011 Draft Report of the Blue Ribbon Commission ii July 2011 PREAMBLE The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. It is co-chaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other

  16. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  17. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  18. NREL: Water Power Research - Economic and Power System Modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Economic and Power System Modeling and Analysis NREL's Economic Analysis and power system modeling integrates data from device deployment and programmatic research into deployment and scenario models to quantify the economic and societal benefits of developing cost-competitive marine and hydrokinetic systems. It also identifies policy mechanisms, market designs, and supply chain needs to support various deployment scenarios, provide information and training to potential members of

  19. Novel Membranes and Systems for Industrial and Municipal Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance membranes are key to reduce energy consumption Project Objective Achieve 50% energy reduction in membrane processes through Novel membranes & systems ...

  20. Reducing the High Energy Costs of Alaska's Rural Water Systems

    Energy Savers [EERE]

    Renewable Energy Systems Monitor Energy Usage Evaluate Retrofit Effectiveness Energy ... and 33% drop in electricity * Combined annual savings of 11,090 ANTHC Rural Energy ...

  1. Analysis and Simulation of a Blue Energy Cycle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, Ms. Ketki; Kim, Yong-Ha; Yiacoumi, Sotira; Gabitto, Jorge; Bilheux, Hassina Z.; Santodonato, Louis J.; Mayes, Richard T.; Dai, Sheng; Tsouris, Costas

    2016-01-30

    The mixing process of fresh water and seawater releases a significant amount of energy and is a potential source of renewable energy. The so called ‘blue energy’ or salinity-gradient energy can be harvested by a device consisting of carbon electrodes immersed in an electrolyte solution, based on the principle of capacitive double layer expansion (CDLE). In this study, we have investigated the feasibility of energy production based on the CDLE principle. Experiments and computer simulations were used to study the process. Mesoporous carbon materials, synthesized at the Oak Ridge National Laboratory, were used as electrode materials in the experiments. Neutronmore » imaging of the blue energy cycle was conducted with cylindrical mesoporous carbon electrodes and 0.5 M lithium chloride as the electrolyte solution. For experiments conducted at 0.6 V and 0.9 V applied potential, a voltage increase of 0.061 V and 0.054 V was observed, respectively. From sequences of neutron images obtained for each step of the blue energy cycle, information on the direction and magnitude of lithium ion transport was obtained. A computer code was developed to simulate the process. Experimental data and computer simulations allowed us to predict energy production.« less

  2. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  3. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  4. Blue Ribbon Commission Tour of Hanford Site

    SciTech Connect (OSTI)

    Paul Saueressig

    2010-07-14

    The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

  5. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Broader source: Energy.gov [DOE]

    This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

  6. Blue Ribbon Commission Tour of Hanford Site

    ScienceCinema (OSTI)

    Paul Saueressig

    2010-09-01

    The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

  7. Operating experience feedback report: Service water system failures and degradations: Volume 3

    SciTech Connect (OSTI)

    Lam, P.; Leeds, E.

    1988-11-01

    A comprehensive review and evaluation of service water system failures and degradations observed in operating events in light water reactors from 1980 to 1987 has been conducted. The review and evaluation focused on the identification of causes of system failures and degradations, the adequacy of corrective actions implemented and planned, and the safety significance of the operating events. The results of this review and evaluation indicate that the service water system failures and degradations have significant safety implications. These system failures and degradations are attributable to a great variety of causes, and have adverse impact on a large number of safety-related systems and components which are required to mitigate reactor accidents. Specifically, the causes of failures and degradations include various fouling mechanisms (sediment deposition, biofouling, corrosion and erosion, pipe coating failure, calcium carbonate, foreign material and debris intrusion); single failures and other design deficiencies; flooding; multiple equipment failures; personnel and procedural errors; and seismic deficiencies. Systems and components adversely impacted by a service water system failure or degradation include the component cooling water system, emergency diesel generators, emergency core cooling system pumps and heat exchangers, the residual heat removal system, containment spray and fan coolers, control room chillers, and reactor building cooling units. 44 refs., 10 figs., 5 tabs.

  8. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This case study outlines how General Motors (GM) developed a highly efficient pumping ... As a result, the company reduced pumping system energy consumption by 80 percent (225,100 ...

  9. Water Usage for In-Situ Oil Shale Retorting – A Systems Dynamics Model

    SciTech Connect (OSTI)

    Earl D. Mattson; Larry Hull; Kara Cafferty

    2012-12-01

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an insitu retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The major water consumption was during the remediation of the insitu retorting zone.

  10. Subject: Ames Blue Alert - X-ray Shutter Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Blue Alert - X-ray Shutter Maintenance Statement: This lesson learned involves an Ames Laboratory x-ray system. Prior to starting x- ray experiments checking the operability of safety interlocks and x-ray shutter systems will decrease the likelihood of an unplanned exposure incident. Discussion: At the end of a sample run the shutter for an x-ray system at the Ames Laboratory did not close automatically as expected. The researcher followed the approved safety procedures and did not access

  11. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  12. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  13. EIS-0268: Shutdown of River Water System at the Savannah River Site

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to shut down the Savannah R]ver Site River Water System in order to save money; that is, to prevent further expenditure of the...

  14. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. DETECTION OF WHITE DWARF COMPANIONS TO BLUE STRAGGLERS IN THE OPEN CLUSTER NGC188: DIRECT EVIDENCE FOR RECENT MASS TRANSFER

    SciTech Connect (OSTI)

    Gosnell, Natalie M.; Mathieu, Robert D.; Geller, Aaron M.; Sills, Alison; Leigh, Nathan; Knigge, Christian

    2014-03-01

    Several possible formation pathways for blue straggler stars have been developed recently, but no one pathway has yet been observationally confirmed for a specific blue straggler. Here we report the first findings from a Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel far-UV photometric program to search for white dwarf companions to blue straggler stars. We find three hot and young white dwarf companions to blue straggler stars in the 7Gyr open cluster NGC188, indicating that mass transfer in these systems ended less than 300Myr ago. These companions are direct and secure observational evidence that these blue straggler stars were formed through mass transfer in binary stars. Their existence in a well-studied cluster environment allows for observational constraints of both the current binary system and the progenitor binary system, mapping the entire mass transfer history.

  16. Water Outlet Control Mechanism for Fuel Cell System Operation in Variable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravity Environments - Energy Innovation Portal Industrial Technologies Industrial Technologies Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Water Outlet Control Mechanism for Fuel Cell System Operation in Variable Gravity Environments Self-Regulating Water Separation System for Fuel Cells National Aeronautics and Space Administration Contact NASA About This Technology Technology Marketing SummaryInnovators at NASA's Johnson Space Center (JSC) have

  17. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  18. Calming the Waters: The Impact of Turbulence on Tidal Energy Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Calming the Waters: The Impact of Turbulence on Tidal Energy Systems Calming the Waters: The Impact of Turbulence on Tidal Energy Systems March 29, 2016 - 8:50am Addthis Acoustic Doppler velocimeter, deployed in Puget Sound, Washington State. Image courtesy Jim Thomson, University of Washington. Acoustic Doppler velocimeter, deployed in Puget Sound, Washington State. Image courtesy Jim Thomson, University of Washington. Gregory Wagner Gregory Wagner COMMUNICATIONS

  19. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOE Patents [OSTI]

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  20. Blue Gene/Q | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blue Gene/Q Download original image « Back to galleryItem 4

  1. EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing

    Energy Savers [EERE]

    County, NV | Department of Energy 46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain Geothermal Development Project, Humboldt and Pershing Counties, Nevada

  2. Neutron economic reactivity control system for light water reactors

    DOE Patents [OSTI]

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  3. Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site

    Broader source: Energy.gov [DOE]

    Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site 

  4. Expert Meeting Report. Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-06-01

    This Building America expert meeting was held on 7/31/2011, in Westford, Massachusetts. Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic.

  5. Documentation of INL’s In Situ Oil Shale Retorting Water Usage System Dynamics Model

    SciTech Connect (OSTI)

    Earl D Mattson; Larry Hull

    2012-12-01

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an in situ retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The document discusses each of the three phases used in the model.

  6. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOE Patents [OSTI]

    Gorlov, Alexander M.

    1991-01-01

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  7. Hydraulic model analysis of water distribution system, Rockwell International, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Perstein, J.; Castellano, J.A.

    1989-01-20

    Rockwell International requested an analysis of the existing plant site water supply distribution system at Rocky Flats, Colorado, to determine its adequacy. On September 26--29, 1988, Hughes Associates, Inc., Fire Protection Engineers, accompanied by Rocky Flats Fire Department engineers and suppression personnel, conducted water flow tests at the Rocky Flats plant site. Thirty-seven flows from various points throughout the plant site were taken on the existing domestic supply/fire main installation to assure comprehensive and thorough representation of the Rocky Flats water distribution system capability. The analysis was completed in four phases which are described, together with a summary of general conclusions and recommendations.

  8. Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)

    DOE Patents [OSTI]

    Zapata, Luis E.; Hackel, Lloyd

    1999-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  9. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  10. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  11. Pressure suppression containment system for boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  12. Pressure suppression containment system for boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.; Nesbitt, L.B.

    1997-01-21

    A system is disclosed for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs. 3 figs.

  13. NREL: Water Power Research - Economic and Power System Modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Economic and Power System Modeling and Analysis NREL has a long history of successful research to understand and improve the cost of renewable energy technologies, their possible deployment scenarios, and the economic impacts of this deployment. As a research laboratory, NREL is a neutral third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore renewable energy projects. Deployment and

  14. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung

    2002-07-15

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

  15. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  16. Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels in Its Fleet Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Google Bookmark Alternative Fuels Data Center: Blue Ridge

  17. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  18. Water-saving liquid-gas conditioning system

    DOE Patents [OSTI]

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  19. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  20. A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS

    SciTech Connect (OSTI)

    Trujillo, Chadwick A.; Sheppard, Scott S.; Schaller, Emily L. E-mail: sheppard@dtm.ciw.edu

    2011-04-01

    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of {approx}3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE{sub 7} to the Haumea collisional family based on our water ice band observations (J - H{sub 2}O = -1.03 {+-} 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 {+-} 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.

  1. A Coupled Modeling System to Simulate Water Resources in the Rio Grande Basin

    SciTech Connect (OSTI)

    Bossert, J.E.; Breshears, D.D.; Campbell, K.; Costigan, K.R.; Greene, R.K.; Keating, E.H.; Kleifgen, L.M.; Langley, D.L.; Martens, S.N.; Sanderson, J.G.; Springer, E.P.; Stalker, J.R.; Tartakovsky, D.M.; Winter, C.L.; Zyvoloski, G.A.

    1999-01-11

    Limited availability of fresh water in arid and semi-arid regions of the world requires prudent management strategies from accurate, science-based assessments. These assessments demand a thorough understanding of the hydrologic cycle over long time periods within the individual water-sheds that comprise large river basins. Measurement and simulation of the hydrologic cycle is a tremendous challenge, involving a coupling between global to regional-scale atmospheric precipitation processes with regional to local-scale land surface and subsurface water transport. Los Alamos National Laboratory is developing a detailed modeling system of the hydrologic cycle and applying this tool at high resolution to assess the water balance within the upper Rio Grande river basin. The Rio Grande is a prime example of a river system in a semiarid environment, with a high demand from agricultural, industrial, recreational, and municipal interests for its water supply. Within this river basin, groundwater supplies often augment surface water. With increasing growth projected throughout the river basin, however, these multiple water users have the potential to significantly deplete groundwater resources, thereby increasing the dependence on surface water resources.

  2. Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) Desalination System: Preprint

    SciTech Connect (OSTI)

    Al-Karaghouli, A.; Kazmerski, L. L.

    2010-10-01

    The photovoltaic (PV)-powered reverse-osmosis (RO) desalination system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to desalinate brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized desalination plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.

  3. 2013 Federal Energy and Water Management Award Winner Naval Sea Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Command | Department of Energy Naval Sea Systems Command 2013 Federal Energy and Water Management Award Winner Naval Sea Systems Command PDF icon fewm13_nswcphiladelphia_highres.pdf PDF icon fewm13_nswcphiladelphia.pdf More Documents & Publications CX-005670: Categorical Exclusion Determination U.S. Navy Marine Diesel Engines and the Environment - Part 1 EIS-0259: Record of Decision

  4. Water-saving liquid-gas conditioning system (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Water-saving liquid-gas conditioning system Citation Details In-Document Search Title: Water-saving liquid-gas conditioning system A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a

  5. Modeling threat assessments of water supply systems using markov latent effects methodology.

    SciTech Connect (OSTI)

    Silva, Consuelo Juanita

    2006-12-01

    Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or data to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.

  6. Microsoft Word - Blue Report Cover

    Energy Savers [EERE]

    Environment and Worker Safety Control Systems at the National Nuclear Security Administration's Kansas City Plant DOE/IG-0839 September 2010 Department of Energy Washington, DC 20585 September 20, 2010 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Environment and Worker Safety Control Systems at the National Nuclear Security Administration's Kansas City Plant" SUMMARY The Department of Energy's National Nuclear Security

  7. A Systems Framework for Assessing Plumbing Products-Related Water Conservation

    SciTech Connect (OSTI)

    Williams, Alison; Dunham Whitehead, Camilla; Lutz, James

    2011-12-02

    Reducing the water use of plumbing productstoilets, urinals, faucets, and showerheads has been a popular conservation measure. Improved technologies have created opportunities for additional conservation in this area. However, plumbing products do not operate in a vacuum. This paper reviews the literature related to plumbing products to determine a systems framework for evaluating future conservation measures using these products. The main framework comprises the following categories: water use efficiency, product components, product performance, source water, energy, and plumbing/sewer infrastructure. This framework for analysis provides a starting point for professionals considering future water conservation measures to evaluate the need for additional research, collaboration with other standards or codes committees, and attachment of additional metrics to water use efficiency (such as performance).

  8. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ? Centauri

    SciTech Connect (OSTI)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ? Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ?40 km s{sup 1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ?200 km s{sup 1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup 1} and about 20% has v{sub e} sin i > 70 km s{sup 1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ? Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ? Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  9. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  10. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  11. Optical and structural stability of blue SrO:Eu{sup 2+} phosphor

    SciTech Connect (OSTI)

    Komatsu, Keiji; Nakamura, Atsushi; Ohshio, Shigeo; Toda, Ikumi; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2013-08-15

    Chemical stability of 6-coodinated SrO is a fundamental problem when this is used for various applications. In this study, optical and chemical stabilities of 8-coordinated SrO:Eu{sup 2+} phosphor were investigated. SrO:Eu{sup 2+} phosphor was synthesized from thermal treatment of SrO:Eu powder located on a single crystalline MgO at 1500 C under reduction atmosphere. Obtained 8-coordinated SrO:Eu{sup 2+} phosphor exhibit strong blue luminescence and chemical stability in distilled water for 3 days. Our findings prove that obtained 8-coordinated SrO:Eu{sup 2+} possesses relative optical and chemical stabilities in water. - Graphical abstract: Obtained 8-coordinated SrO:Eu{sup 2+} phosphor exhibit strong blue luminescence in distilled water. Highlights: We investigated optical and chemical stabilities of 8-coordinated SrO:Eu{sup 2+} phosphor in water. Obtained 8-coordinated SrO:Eu{sup 2+} phosphor exhibit strong blue luminescence and chemical stability in distilled water for 3 days. We found that the 8-coodrodinated SrO crystal structure changed to SrCO{sub 3} crystal structure after the 5 days immersion. The obtained SrO:Eu{sup 2+} phosphor possesses high chemical stability under water, compared with commercial (6-coordinated) SrO.

  12. Potential for Hepa filter damage from water spray systems in filter plenums

    SciTech Connect (OSTI)

    Bergman, W.; Fretthold, J.K.; Slawsld, J.W.

    1997-01-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for HEPA filter damage during fires has also occurred in the field. Afire in a four-stage, HEPA filter plenum at Rocky Flats in 1980 caused the first three stages of HEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenum , additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk.

  13. Reliability study: raw and make-up water system, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Peterman, S.M.; Wiehle, W.E.; Walder, A.; Houk, T.C.; West, R.M.

    1981-09-01

    A reliability study for determining the ability of the raw and make-up water system to provide reliable and adequate service through the year 2000 has been completed. This study includes an evaluation of the well fields, X-608 Raw Water Pump House, X-605 Booster Station Complex, X-611 Water Treatment Complex, and the associated piping. The raw and make-up water system is in good overall condition, but to maintain this condition, the reliability study team made the following recommendations: (1) increase well field capacity; (2) replace certain speed reducers at X-611; (3) repair deteriorated poles, crossarms, and accessories on F-2 and W-1 feeders; (4) stabilize the landslide in vicinity of the 48 in. raw water main; and (5) initiate further investigation, testing, or engineering studies to correct deficiencies in the supervisory control system between well fields, pump house, and X-611, determine if the 2400 volt underground cables to X-608A wells should be replaced.

  14. Interested Parties - BlueGreen Alliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueGreen Alliance Interested Parties - BlueGreen Alliance PDF icon 09-25-10_Section_136_ATVM.pdf More Documents & Publications Interested Parties - MEMA Interested Parties - United Auto Workers Interested Parties - Chrystler

  15. Blue Breezes I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Community Wind Facility Status In Service Owner John Deere Wind Energy Developer Dan MooreJohn Deere Wind Energy Energy Purchaser City of Blue Earth Location City of Blue Earth...

  16. BlueSol Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    BlueSol Solar Energy Jump to: navigation, search Name: BlueSol - Solar Energy Place: Sao Paulo, Sao Paulo, Brazil Zip: 04551-060 Sector: Solar Product: Sao Paulo-based sole...

  17. Blue Sky Green Field Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Green Field Wind Farm Jump to: navigation, search Name Blue Sky Green Field Wind Farm Facility Blue Sky Green Field Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  18. Blue Ridge Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Blue Ridge Elec Member Corp Place: North Carolina Phone Number: 1-800-448-2383 Website: www.blueridgeemc.com Twitter: @blueridgeemc Facebook: https:www.facebook.comBlueRidgeEMC...

  19. Blue Grass Energy Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    Grass Energy Coop Corp Jump to: navigation, search Name: Blue Grass Energy Coop Corp Place: Kentucky Phone Number: 888-546-4243 Website: www.bgenergy.com Twitter: @BlueGrassEnergy...

  20. FERN Blue Ribbon Wind Farm II* | Open Energy Information

    Open Energy Info (EERE)

    II* Jump to: navigation, search Name FERN Blue Ribbon Wind Farm II* Facility FERN Blue Ribbon Wind Farm II* Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  1. BlueEarth Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BlueEarth Biofuels LLC Jump to: navigation, search Name: BlueEarth Biofuels LLC Place: Hawaii Zip: 96813 Sector: Renewable Energy Product: Developer of power and renewable-energy...

  2. Blue Bell, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Blue Bell is a census-designated place in Montgomery County, Pennsylvania.1 Registered Energy Companies in Blue Bell, Pennsylvania C D...

  3. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    of at least 150C for the inferred geothermal reservoir. References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain,...

  4. Effects of Water in Synthetic Lubricant Systems and Clathrate Formation: A Literature Search and Review

    SciTech Connect (OSTI)

    Rohatgi, Ngoc Dung T.

    2001-08-08

    An extensive literature search and a confidential survey were critically analyzed to determine the effects of water on the stability of hydrofluorocarbon/synthetic lubricant systems and to identify key areas requiring further investigation. Following are highlights from the analysis: Clathrate hydrates are solid solutions formed when water molecules are linked through hydrogen bonding creating cavities that can enclose various guest molecules from hydrate formers, such as hydrofluorocarbons R-32, R-125, R-134a, R-407C and R-410A. The four methods for preventing clathrate formation were drying the gas, heating it, reducing its pressure, or using inhibitors. The hydrolysis of polyolester lubricants was mostly acid-catalyzed and its reaction rate constant typically followed the Arrhenius equation of an activated process. Hydrolytic stability improved with hindered molecular structures, and with the presence of acid catcher additives and desiccants. Water vapor can effect the adsorption of long-chain fatty acids and the chemistry of formation of protective oxide film. However, these effects on lubrication can be either positive or negative. Fifty to sixty percent of the moisture injected into an air-conditioning system remained in the refrigerant and the rest mixed with the compressor oil. In an automotive air-conditioning system using R-134a, ice would form at 0 C evaporating temperature when the water content in the vapor refrigerant on the low-pressure side was more than 350 ppm. Moisture would cause the embrittlement of polyethylene terephthalate and the hydrolysis of polyesters, but would reduce the effect of amine additives on fluoroelastomer rubbers. The reactions of water with refrigerants and lubricants would cause formicary and large-pit corrosion in copper tubes, as well as copper plating and sludge formation. Moreover, blockage of capillary tubes increased rapidly in the presence of water. Twenty-four companies responded to the survey. From the responses, the water concentrations specified and expected for different refrigerant/lubricant systems varied depending on the products, their capacities and applications, and also on the companies. Among the problems associated with high moisture level, lubricant breakdown was of greatest concern, followed by acid formation, compressor failure and expansion valve sticking. The following research topics are suggested: 1. The air-conditioning and refrigeration industry needs to measure and record the water content and total acid number of the lubricant of newly installed systems as well as operating systems that are shutdown for service or repair. The reason for the shutdown needs to be documented. A database can then be established to correlate water content with type and cause of breakdown. 2. Detailed studies on the distribution of water in refrigeration and air-conditioning systems should be conducted to pinpoint problem areas associated with free water. 3. Research is needed to validate the current theories and mechanisms of formicary corrosion. Corrosion inhibitors need to be developed. 4. The conditions for clathrate formation and decomposition of other alternative refrigerants, such as R-23, R-41, R-116, R-125, R-143a, R-404A and R-507C, and water should be determined to avoid possible problems associated with tube plugging. The mechanism by which water facilitates or hinders lubrication needs to be studied.

  5. DOE - Office of Legacy Management -- Blue Water AEC Ore Buying...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) ... The ideal scenario was to accumulate a sufficient stockpile of ore and construct a mill on ...

  6. Leading the Charge: Jana Ganion Advances Blue Lake Rancheria's Climate

    Energy Savers [EERE]

    Action Agenda | Department of Energy Jana Ganion Advances Blue Lake Rancheria's Climate Action Agenda Leading the Charge: Jana Ganion Advances Blue Lake Rancheria's Climate Action Agenda February 27, 2015 - 10:38am Addthis Jana Ganion is the Energy Director for the Blue Lake Rancheria. Jana Ganion is the Energy Director for the Blue Lake Rancheria. Change doesn't happen on its own. It's led by dedicated and passionate people who are committed to empowering Indian Country to energize future

  7. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Aeromagnetic Survey Activity...

  8. Design of a rural water provision system to decrease arsenic exposure in Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna

    2009-01-07

    Researchers at the Lawrence Berkeley National Laboratory have invented ARUBA (Arsenic Removal Using Bottom Ash) a material that effectively and affordably removes high concentrations of arsenic from contaminated groundwater. The technology is cost-effective because the substrate?bottom ash from coal fired power plants?is a waste material readily available in South Asia. During fieldwork in four sub-districts ofBangladesh, ARUBA reduced groundwater arsenic concentrations as high as 680 ppb to below the Bangladesh standard of 50 ppb. Key results from three trips in Bangladesh and one trip to Cambodia include (1) ARUBA removes more than half of the arsenic from contaminated water within the first five minutes of contact, andcontinues removing arsenic for 2-3 days; (2) ARUBA?s arsenic removal efficiency can be improved through fractionated dosing (adding a given amount of ARUBA in fractions versus all at once); (3) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic concentrations ten times lower than treating water directly out of the well; and (4) the amount of arsenic removed per gram of ARUBA is linearly related to the initial arsenic concentrationof the water. Through analysis of existing studies, observations, and informal interviews in Bangladesh, eight design strategies have been developed and used in the design of a low-cost, community-scale water treatment system that uses ARUBA to remove arsenic from drinking water. We have constructed, tested, and analyzed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below 50 ppb, while remaining affordable to people living on less than $2 per day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  9. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    SciTech Connect (OSTI)

    RITTMANN, P.D.

    1999-10-07

    Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  10. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect (OSTI)

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  11. Operating Experience Level 3, NRC Notice: Antifreeze Agents in Fire Water Sprinkler Systems

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information about safety concerns identified by the Nuclear Regulatory Commission (NRC) that could potentially apply to work performed at Department of Energy (DOE) facilities. These concerns were identified in NRC Information Notice (IN) 2015-02, Antifreeze Agents in Fire Water Sprinkler Systems.

  12. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  13. EIS-0121: Alternative Cooling Water Systems, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of cooling water systems for thermal discharges from K– and C-Reactors and from a coal-fired powerhouse in the D-Area at the Savannah River Plant (SRP)

  14. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect (OSTI)

    Zia Mirza, Program Manager

    2011-12-06

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  15. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.

  16. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshcyhn, Danylo [U.S. DOE Ochs, Thomas [U.S. DOE Gerdemann, Stephen; Clark, John

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a processIntegrated Pollutant Removal (IPR)that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatmentfor in-process reuse and for releasehas been outlined. A computer simulation model in ASPEN Plus has been developed to simulate water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.

  17. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    SciTech Connect (OSTI)

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.; Dalgliesh, P.; Butler, B.; Smith, R.

    2015-03-15

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q{sub 2}, Q-hydrocarbons) into Q{sub 2}O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CD system will separate a Q{sub 2} mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)

  18. Comparison of natural convection heat exchangers for solar water heating systems

    SciTech Connect (OSTI)

    Davidson, J.; Liu, W.

    1998-09-15

    Thermosyphon heat exchangers are used in indirect solar water heating systems to avoid using a pump to circulate water from the storage tank to the heat exchanger. In this study, the authors consider the effect of heat exchanger design on system performance. They also compare performance of a system with thermosyphon flow to the same system with a 40W pump in the water loop. In the first part of the study, the authors consider the impact of heat exchanger design on the thermal performance of both one- and two-collector solar water heaters. The comparison is based on Solar Rating and Certification Corporation (SRCC) OG300 simulations. The thermosyphon heat exchangers considered are (1) a one-pass, double wall, 0.22 m{sup 2}, four tube-in-shell heat exchanger manufactured by AAA Service and Supply, Inc., (the Quad-Rod); (2) a two-pass, double wall, 0.2 m{sup 2}, tube-in-shell made by Heliodyne, Inc., but not intended for commercial development; (3) a one-pass, single wall, 0.28 m{sup 2}, 31 tube-in-shell heat exchanger from Young Radiator Company, and (4) a one-pass single-wall, 0.61 m{sup 2}, four coil-in-shell heat exchanger made by ThermoDynamics Ltd. The authors compare performance of the systems with thermosyphon heat exchangers to a system with a 40 W pump used with the Quad-Rod heat exchanger. In the second part of the study, the effects of reducing frictional losses through the heat exchanger and/or the pipes connecting the heat exchanger to the storage tank, and increasing heat transfer area are evaluated in terms of OG300 ratings.

  19. Regulatory analysis for the resolution of Generic Issue 143: Availability of chilled water system and room cooling

    SciTech Connect (OSTI)

    Leung, V.T.

    1993-12-01

    This report presents the regulatory analysis for Generic Issue (GI-143), {open_quotes}Availability of Chilled Water System and Room Cooling.{close_quotes} The heating, ventilating, and air conditioning (HVAC) systems and related auxiliaries are required to provide control of environmental conditions in areas in light water reactor (LWR) plants that contain safety-related equipment. In some plants, the HVAC and chilled water systems serve to maintain a suitable environment for both safety and non-safety-related areas. Although some plants have an independent chilled water system for the safety-related areas, the heat removal capability often depends on the operability of other supporting systems such as the service water system or the component cooling water system. The operability of safety-related components depends upon operation of the HVAC and chilled water systems to remove heat from areas containing the equipment. If cooling to dissipate the heat generated is unavailable, the ability of the safety-related equipment to operate as intended cannot be assured. Typical components or areas in the nuclear power plant that could be affected by the failure of cooling from HVAC or chilled water systems include the (1) emergency switchgear and battery rooms, (2) emergency diesel generator room, (3) pump rooms for residual heat removal, reactor core isolation cooling, high-pressure core spray, and low-pressure core spray, and (4) control room. The unavailability of such safety-related equipment or areas could cause the core damage frequency (CDF) to increase significantly.

  20. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    SciTech Connect (OSTI)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O.

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  1. Solar space- and water-heating system at Stanford University. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

  2. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect (OSTI)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  3. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  4. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  5. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect (OSTI)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during air sparging. To this end, we conducted batch and column laboratory SMZ and VPB experiments with synthetic and actual produced waters. Based on the results of the laboratory testing, a pilot scale study was designed and conducted to evaluate the combined SMZ/VPB process. An economic and regulatory feasibility analysis was also completed as part of the current study to assess the viability of the process for various water re-use options.

  6. Integration of remote sensing and geographic information systems for Great Lakes water quality monitoring

    SciTech Connect (OSTI)

    Lathrop, R.G. Jr.

    1988-01-01

    The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TM and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.

  7. Assembly and comparison of available solar hot water system reliability databases and information.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2009-05-01

    Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

  8. Water vapor and ozone profiles with a CO{sub 2} DIAL system in south Italy

    SciTech Connect (OSTI)

    Bellecci, C.; Caputi, G.; De Donato, F.; Gaudio, P.; Valentini, M.

    1996-12-31

    In this paper the authors present the work carried out at the University of Calabria regarding a prototype of a DIAL system. This has been realized for remote pollution monitoring. Most of the efforts have been done to perform several measurements on an horizontal path in order to scan the wide surrounding area. The concentrations of ozone and water vapor have been carried out using two different methods both related with the DIAL technique. With the integrated technique, average concentrations have been evaluated up to 5 km using topographical targets. In the range resolution technique, profiles of ozone and water vapor have been performed up to 700 m with a spatial resolution of about 30 m. Although the system needs a revision in several subsystems of its set-up, the experimentation has pointed out the performance available and the necessary improvements.

  9. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  10. D0 Silicon Upgrade: Redesign of the Low Conductivity Water (LCW) System at D-Zero

    SciTech Connect (OSTI)

    Zaczek, Mariusz; /Fermilab

    1996-10-15

    Due to the relocation of a magnet power supply, the installation of a buss, and an installation of chokes. and their need for cooling water a redesign of the Low Conductivity Water (LCW) system has been undertaken. This new system required the determination of an optimal pipe diameter for the High Bay pipe as well as the determination of the pressure drop and temperature rise in the buss. Based on numerous calculations it has been determined that the High Bay pipe should be 1 1/2 inch (1.90 O.D. x 1.610 I.D-40S steel). While the pressure drop in the buss was calculated to be 7.699 psi. Based on such a low pressure drop, no need for any additional pumps has presented itself. Finally, the temperature rise in the buss has been determined to be about 29.39 F for the Assembly Hall (route No.1). and 13.93 F for the Collision Hall (route No.2). The purpose of this engineering note is to explain the redesign of the low conductivity water system (LCW) at D-Zero. The areas to be covered include the sizing of the High Bay, the pressure drop and temperature rise in the buss. In addition, I will try to determine if any more pumps are needed to support this new system. Originally, the purpose of the LCW was to provide cooling for the EF, CF, SAMUS magnets and the magnet power supply. The water source is composed of two 1 1/2 BC, 20 hp, centrifugal pumps (see Table No.2) which are located in room 604 of the D-Zero Assembly building.

  11. Expert Meeting Report: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems

    Energy Savers [EERE]

    Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems M. Hoeschele and E. Weitzel Alliance for Residential Building Innovation (ARBI) May 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or

  12. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

  13. The development of a subsea power transmission system for deep water boosting applications

    SciTech Connect (OSTI)

    Godinho, C.A.; Campagnac, L.A.; Nicholson, A.; Magalhaes, W.M.

    1996-12-31

    This paper presents the development of a subsea power transmission in medium voltage and variable frequency, as a key system for application of Boosting Technology and, more particularly, for Electrical Submersible Pumping in deep water wells. The focuses of this paper are mainly on the design and manufacture of subsea power cables and transformers for 1,000 m water depth. The production from a subsea well equipped with ESP`s is a fact since October/94, with the first installation in the Campos Basin, Brazil. The development of the subsea power transmission in medium voltage and variable frequency will allow the installation of a Boosting System in deep water at long distance (25 km or more) from the production platform. The design and manufacture of subsea power cables and subsea power transformers, as well as the integration of the complete power system is a result of a Technological Cooperation Agreement with Tronic, Pirelli, Siemens A.G. and Siemens Brazil. As a result from this agreement subsea power cables up to 12/20 kV voltage level, conductor sizes from 35 to 150 mm{sup 2}, oil filled subsea power transformer rated at 750 kVA, nominal voltage ratio 10,000/3,000 V and the electrical connectors to X-tree will be developed and manufactured.

  14. The concerns and benefits of standardization on the Heidrun subsea water injection system

    SciTech Connect (OSTI)

    Pugh, R.R.; Turner, R.D.

    1996-12-31

    This paper describes the process of standardizing the Heidrun subsea water injection system. The layout, basis of design and equipment utilized are presented, along with exploring the benefits and concerns of adopting a standard subsea system. Realized by this approach were: the interchangeability of equipment between Heidrun and other licenses, the lowering of development costs, the capturing of key-learnings and the sharing of resources. By identifying and weighing the benefits versus the concerns, standardization can be successfully utilized between petroleum companies with different project parameters, thus saving significant costs for all parties.

  15. MOCK OBSERVATIONS OF BLUE STRAGGLERS IN GLOBULAR CLUSTER MODELS

    SciTech Connect (OSTI)

    Sills, Alison; Glebbeek, Evert; Chatterjee, Sourav; Rasio, Frederic A. E-mail: e.glebbeek@astro.ru.nl E-mail: rasio@northwestern.edu

    2013-11-10

    We created artificial color-magnitude diagrams of Monte Carlo dynamical models of globular clusters and then used observational methods to determine the number of blue stragglers in those clusters. We compared these blue stragglers to various cluster properties, mimicking work that has been done for blue stragglers in Milky Way globular clusters to determine the dominant formation mechanism(s) of this unusual stellar population. We find that a mass-based prescription for selecting blue stragglers will select approximately twice as many blue stragglers than a selection criterion that was developed for observations of real clusters. However, the two numbers of blue stragglers are well-correlated, so either selection criterion can be used to characterize the blue straggler population of a cluster. We confirm previous results that the simplified prescription for the evolution of a collision or merger product in the BSE code overestimates their lifetimes. We show that our model blue stragglers follow similar trends with cluster properties (core mass, binary fraction, total mass, collision rate) as the true Milky Way blue stragglers as long as we restrict ourselves to model clusters with an initial binary fraction higher than 5%. We also show that, in contrast to earlier work, the number of blue stragglers in the cluster core does have a weak dependence on the collisional parameter ? in both our models and in Milky Way globular clusters.

  16. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    SciTech Connect (OSTI)

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01

    Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

  17. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine

    SciTech Connect (OSTI)

    Khan, Faaizah; Pickup, John C.

    2013-08-30

    Highlights: We showed that the NIR fluorophore, 651-Blue Oxazine, is solvatochromic (polarity sensitive). Blue Oxazine was covalently attached to mutants of glucose/galactose-binding protein (GBP). Fluorescence intensity of GBP-Blue Oxazine increased with addition of glucose. Fluorescence from bead-immobilised GBP-Blue Oxazine was detectable through skin in vitro. This shows proof-of-concept for non-invasive glucose sensing using GBP-Blue Oxazine. -- Abstract: Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25 mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  18. Blue, green, orange, and red upconversion laser

    DOE Patents [OSTI]

    Xie, P.; Gosnell, T.R.

    1998-09-08

    A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

  19. Blue, green, orange, and red upconversion laser

    DOE Patents [OSTI]

    Xie, Ping; Gosnell, Timothy R.

    1998-01-01

    A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

  20. Blue running of the primordial tensor spectrum

    SciTech Connect (OSTI)

    Gong, Jinn-Ouk

    2014-07-01

    We examine the possibility of positive spectral index of the power spectrum of the primordial tensor perturbation produced during inflation in the light of the detection of the B-mode polarization by the BICEP2 collaboration. We find a blue tilt is in general possible when the slow-roll parameter decays rapidly. We present two known examples in which a positive spectral index for the tensor power spectrum can be obtained. We also briefly discuss other consistency tests for further studies on inflationary dynamics.

  1. Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System

    SciTech Connect (OSTI)

    Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

    2013-06-30

    Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude of river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996) methodology to assess the shifting and alteration of the flow regime within the river and streams of the study area. 2) Evaluate the effect of measurable land use changes related to gas development (well-pad placement, access road completion, etc.) on surface water flow in the region (Task/Section 3.7). Results showed that since the upsurge in shale-gas related activities in the Fayetteville Shale Play (between 2006 and 2010), shale-gas related infrastructure in the region have increase by 78%. This change in land-cover in comparison with other land-cover classes such as forest, urban, pasture, agricultural and water indicates the highest rate of change in any land-cover category for the study period. A Soil and Water Assessment Tool (SWAT) flow model of the Little Red River watershed simulated from 2000 to 2009 showed a 10% increase in storm water runoff. A forecast scenario based on the assumption that 2010 land-cover does not see any significant change over the forecast period (2010 to 2020) also showed a 10% increase in storm water runoff. Further analyses showed that this change in the stream-flow regime for the forecast period is attributable to the increase in land-cover as introduced by the shale-gas infrastructure. 3) Upgrade the Fayetteville Shale Information System to include information on watershed status. (Tasks/Sections 2.1 and 2.2). This development occurred early in the project period, and technological improvements in web-map API’s have made it possible to further improve the map. The current sites (http://lingo.cast.uark.edu) is available but is currently being upgraded to a more modern interface and robust mapping engine using funds outside this project. 4) Incorporate the methodologies developed in Tasks/Sections 3.5 and 3.7 into a Spatial Decision Support System for use by regulatory agencies and producers in the play. The resulting system is available at http://fayshale.cast.uark.edu and is under review the Arkansas Natural Resources Commission.

  2. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  3. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect (OSTI)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 19131998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  4. Surface water drainage system. Environmental assessment and finding of no significant impact

    SciTech Connect (OSTI)

    1996-05-01

    This Environmental Assessment (EA) is written pursuant to the National Environmental Policy Act (NEPA). The document identifies and evaluates the action proposed to correct deficiencies in, and then to maintain, the surface water drainage system serving the Department of Energy`s Rocky Flats Environmental Technology Site (Site), located north of Golden, Colorado. Many of the activities proposed would not normally be subject to this level of NEPA documentation. However, in many cases, maintenance of the system has been deferred to the point that wetlands vegetation has become established in some ditches and culverts, creating wetlands. The proposed activities would damage or remove some of these wetlands in order to return the drainage system to the point that it would be able to fully serve its intended function - stormwater control. The Department of Energy (DOE) regulations require that activities affecting environmentally sensitive areas like wetlands be the subject of an EA. Most portions of the surface water drainage system are presently inadequate to convey the runoff from a 100-year storm event. As a result, such an event would cause flooding across much of the Site and possibly threaten the integrity of the dams at the terminal ponds. Severe flooding would not only cause damage to facilities and equipment, but could also facilitate the transport of contaminants from individual hazardous substance sites (IHSSs). Uncontrolled flow through the A- and B-series ponds could cause contaminated sediments to become suspended and carried downstream. Additionally, high velocity flood flows significantly increase erosion losses.

  5. Climate Action Champions: Blue Lake Rancheria Tribe, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blue Lake Rancheria Tribe, CA Climate Action Champions: Blue Lake Rancheria Tribe, CA The Blue Lake Rancheria, California, a federally recognized Native American tribal Government and community, is located on over 100 acres of land spanning the scenic Mad River in northwestern California. In its operational strategy, the Tribe has implemented the ‘seven generations’ philosophy, where actions taken today will have a positive impact for seven generations to come. This results

  6. Secretary Chu Announces Blue Ribbon Commission on America's Nuclear

    Energy Savers [EERE]

    Future | Department of Energy Blue Ribbon Commission on America's Nuclear Future Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future January 29, 2010 - 12:57pm Addthis As part of the Obama Administration's commitment to restarting America's nuclear industry, U.S. Secretary of Energy Steven Chu today announced the formation of a Blue Ribbon Commission on America's Nuclear Future to provide recommendations for developing a safe, long-term solution to managing the

  7. Bradbury Science Museum partnering in national Blue Star Museums program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blue Star Museums program Bradbury Science Museum partnering in national Blue Star Museums program Blue Star Museums program to host active duty military personnel and their families from Memorial Day, May 27, through Labor Day, Sept. 2. May 22, 2013 The museum is open daily except Thanksgiving, Christmas and New Year's Day. The museum is open daily except Thanksgiving, Christmas and New Year's Day. Contact Steve Sandoval Communications Office (505) 665-9206 Email The museum already has a

  8. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  9. Simulation of High-Resolution Magnetic Resonance Images on the IBM Blue Gene/L Supercomputer Using SIMRI

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baum, K. G.; Menezes, G.; Helguera, M.

    2011-01-01

    Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256 3 voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.

  10. LAMMPS strong scaling performance optimization on Blue Gene/Q

    SciTech Connect (OSTI)

    Coffman, Paul; Jiang, Wei; Romero, Nichols A.

    2014-11-12

    LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using an 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.

  11. IDENTIFYING BLUE HORIZONTAL BRANCH STARS USING THE z FILTER

    SciTech Connect (OSTI)

    Vickers, John J.; Grebel, Eva K.; Huxor, Avon P.

    2012-04-15

    In this paper we present a new method for selecting blue horizontal branch (BHB) candidates based on color-color photometry. We make use of the Sloan Digital Sky Survey z band as a surface gravity indicator and show its value for selecting BHB stars from quasars, white dwarfs, and main-sequence A-type stars. Using the g, r, i, and z bands, we demonstrate that extraction accuracies on a par with more traditional u, g, and r photometric selection methods may be achieved. We also show that the completeness necessary to probe major Galactic structure may be maintained. Our new method allows us to efficiently select BHB stars from photometric sky surveys that do not include a u-band filter such as the Panoramic Survey Telescope and Rapid Response System.

  12. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  13. Blue Hill Investment Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Hill Investment Partners LLC Jump to: navigation, search Name: Blue Hill Investment Partners LLC Place: Philadelphia, Pennsylvania Zip: PA 19118 Sector: Renewable Energy Product: A...

  14. Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration Basis Cores...

  15. Blue Crane Holdings Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Crane Holdings Pvt Ltd Jump to: navigation, search Name: Blue Crane Holdings Pvt. Ltd. Place: Mumbai, Maharashtra, India Zip: 400023 Sector: Efficiency, Solar, Wind energy Product:...

  16. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IPelectrical resistivity traversing. These...

  17. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    R. Langton, Brian D. Fairbank, Claron E. Mackelprang (1999) Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Additional References...

  18. Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect...

  19. Blue Sky Energy Inc BSE | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc BSE Jump to: navigation, search Name: Blue Sky Energy Inc (BSE) Place: Vista, California Zip: 92081 Product: MPPT (Maximum Power Point Tracking) technology. Own a...

  20. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  1. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details...

  2. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  3. Blue Gene/Q Network Performance Counters Monitoring Library

    Energy Science and Technology Software Center (OSTI)

    2015-03-12

    BGQNCL is a library to monitor and record network performance counters on the 5D torus interconnection network of IBM's Blue Gene/Q platform.

  4. Blue Lake Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    National Map Retrieved from "http:en.openei.orgwindex.php?titleBlueLakePlantBiomassFacility&oldid397215" Feedback Contact needs updating Image needs updating...

  5. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity...

  6. Blue Star Energy Services (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    Star Energy Services (Pennsylvania) Jump to: navigation, search Name: Blue Star Energy Services Place: Pennsylvania Website: www.bluestarenergy.com Twitter: @keealliance Facebook:...

  7. Blue Star Energy Services (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: Blue Star Energy Services Place: Maryland References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data...

  8. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    Open Energy Info (EERE)

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  9. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

  10. Geophysical Setting of the Blue Mountain Geothermal Area, North...

    Open Energy Info (EERE)

    the location of the geothermal prospect and the spatially associated epithermal gold depositon the western flank of Blue Mountain. Other epithermal gold deposits in...

  11. Reflection Survey At Blue Mountain Geothermal Area (Melosh, Et...

    Open Energy Info (EERE)

    model of blue mountain. References Glenn Melosh, William Cumming, John Casteel, Kim Niggemann, Brian Fairbank (2010) Seismic Reflection Data and Conceptual Models for...

  12. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect (OSTI)

    Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2005-03-11

    This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one second residence time, the GAC bed reduced peak contaminant concentrations by 97%. After the initial peak, the inlet VOC concentration in the SMZ regeneration gas stream drops exponentially with time. During this period, the contaminants on the GAC subsequently desorbed at a nearly steady rate over the next 45 hours resulting in a relatively steady effluent concentration of approximately 25 ppm{sub v}. This lower concentration is readily degradable by a downstream vapor phase biofilter (VPB) and the steady nature of the feed stream will prevent the biomass in the VPB from enduring starvation conditions between SMZ regeneration cycles. Repetitive sorption and desorption cycles that would be expected in the field were also investigated. It was determined that although the GAC initially lost some VOC sorption capacity, the adsorption and desorption profiles stabilized after approximately 6 cycles indicating that a GAC bed should be suitable for continuous operation. In preparation for the pilot field testing of the SMZ/VPB system, design, ''in-house'' construction and testing of the field system were completed during this project period. The design of the SMZ system for the pilot test was based on previous investigations by the PI's in Wyoming, 2002 and on analyses of the produced water at the field site in New Mexico. The field tests are scheduled for summer, 2005. A cost survey, feasibility of application and cost analyses were completed to investigate the long term effectiveness of the SMZ/VPB system as a method of treating produced water for re-use. Several factors were investigated, including: current costs to treat and dispose of produced water, end-use water quality requirements, and state and federal permitting requirements.

  13. Strategic planning for and implementation of reclaimed municipal waste water as make-up to a refinery cooling system

    SciTech Connect (OSTI)

    Francis, W.R.; Mazur, J.J.; Rao, N.M.

    1996-08-01

    This paper discusses the successful use of treated municipal plant waste water effluent (Title 22) in a refinery cooling water system. Conversion from well water to this make-up water source was preceded by developing a carefully crafted transition plan. Steps were taken to identify key system performance indicators, establish desired performance goals, and implement stringent monitoring and control protocols. In addition, all possible contingencies were considered and solutions developed. Treating Title 22 waters is very challenging and entails risks not associated with normal makeup waters. Several novel on-line monitoring and control tools are available which help minimize these risks while enhancing tower operation. Performance monitoring of critical system parameters is essential in order to provide early warning of problems so that corrective measures can be implemented. In addition, a high level of system automation enhances reliable operation. Corrosion, scaling and microbiological performance of the system with Title 22 water is discussed in comparison to previous well water make-up.

  14. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  15. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  16. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

  17. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect (OSTI)

    Spitler, J.D.; Culling, J.R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  18. Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489

    SciTech Connect (OSTI)

    Denton, Mark S.; Mertz, Joshua L.; Bostick, William D.

    2012-07-01

    On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience by PNNL - Commercial Nuclear Power Plant Media Experience (including long term Cs removal) - DOE Low Active Waste (LAW) and High Level Waste (HLW) in High Salt and pH Conditions Media and Vitrification Experience - National Laboratory (e.g. Oak Ridge National Laboratory, ORNL) Ground Water Media Experience - Gulf Oil Spill Media Experience in Seawater - All Media Had to be Fully Tested at High Rad Levels in Seawater and Oil Before Arriving in Japan - Final Waste Form and Disposal Experience (e.g., vitrification) - 100 Metric Tons (6000 cubic feet or 220,400 pounds) of Media had to be Immediately Available with the same amount in production as replacement media. [To date, for 2011, 400 MT of media have been prepared for Japan alone.] - Remote Operation, Modular Water Treatment Equipment Design and Fabrication in both Commercial NPP and DOE Canyon Operations. (authors)

  19. Lessons Learned from the MagLab Cell 14 Magnet Cooling Water System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incident | Argonne National Laboratory Lessons Learned from the MagLab Cell 14 Magnet Cooling Water System Incident May 16, 2016 10:00AM to 11:00AM Presenter Betsy Dunn (ESQ) Location Building 402 Type Meeting Series All Hands Meeting Betsy Dunn will discuss an incident that occurred at the Florida State University National High Magnetic Field Laboratory (MagLab) on October 21, 2015, that resulted in the death of a mechanical technician. Argonne led the incident investigation

  20. Report on the analysis of field data relating to the reliability of solar hot water systems.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2011-07-01

    Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

  1. System and method for monitoring water content or other dielectric influences in a medium

    DOE Patents [OSTI]

    Cherry, Robert S.; Anderson, Allen A.

    2001-01-01

    A sensor system is provided that measures water content or other detectable properties in a medium along the entire length of the sensor at any point in time. The sensor system includes an electromagnetic signal generator and a transmission line disposed in a medium to be monitored. Alternatively, the transmission line can be configured for movement across a medium to be monitored, or the transmission line can be fixed relative to a moving medium being monitored. A signal is transmitted along the transmission line at predetermined frequencies, and the signal is returned back along the transmission line and/or into an optional receive line in proximity to the transmission line. The returned signal is processed to generate a one-dimensional data output profile that is a function of a detectable property of the medium. The data output profile can be mapped onto a physical system to generate a two-dimensional or three-dimensional profile if desired. The sensor system is useful in a variety of different applications such as agriculture, horticulture, biofiltration systems for industrial offgases, leak detection in landfills or drum storage facilities at buried waste sites, and in many other applications.

  2. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect (OSTI)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  3. Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems

    SciTech Connect (OSTI)

    Hooks, Ronald; Montoya, Valerie

    2008-03-26

    Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPIs student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

  4. Carolina Blue Skies & Green Jobs Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt064_ti_boyer_2011_p.pdf More Documents & Publications Carolinas Blue Skies & Green Jobs Initiative Carolina Blue Skies & Green Jobs Initiative Puget Sound Clean Cities Petroleum Reduction Project

  5. Transition pathways in a many-body system: Application to hydrogen-bond breaking in water

    SciTech Connect (OSTI)

    Csajka, F.S.; Chandler, D.

    1998-07-01

    We apply a stochastic method introduced by Dellago {ital et al.} [J. Chem. Phys. {bold 108}, 1964 (1998)] to sample transition paths in high-dimensional systems. The method connects two endpoint regions (for example a reactant and a product region) by a set of space-time paths. This approach is an importance sampling for rare events that does not require prior knowledge of the location of dynamical bottlenecks. Transition paths are generated with a weight corresponding to a chain of Metropolis Monte Carlo steps. We derive Monte Carlo algorithms and apply the technique to the dynamics of hydrogen-bond breaking in liquid water. We obtain averages in a transition path ensemble for the structure and energy along the trajectory. While characterized by a rate constant, hydrogen-bond breaking in water occurs frequently enough to be studied by standard methods. The process therefore provides a useful test of path sampling methods. The comparison between path sampling and standard Monte Carlo demonstrate the feasibility of transition path sampling for a many-body system with a rough potential energy surface. {copyright} {ital 1998 American Institute of Physics.}

  6. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  7. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. , Carlson; Bryan J. , Wingo; Robert M. , Robison; Thomas W.

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  8. Application of Hotelling’s T{sup 2} charts in monitoring quality parameters in a drinking water supply system

    SciTech Connect (OSTI)

    Costa, Mafalda T.; Carolino, Elisabete; Oliveira, Teresa A.

    2015-03-10

    In water supply systems with distribution networkthe most critical aspects of control and Monitoring of water quality, which generates crises system, are the effects of cross-contamination originated by the network typology. The classics of control of quality systems through the application of Shewhart charts are generally difficult to manage in real time due to the high number of charts that must be completed and evaluated. As an alternative to the traditional control systems with Shewhart charts, this study aimed to apply a simplified methodology of a monitoring plan quality parameters in a drinking water distribution, by applying Hotelling’s T{sup 2} charts and supplemented with Shewhart charts with Bonferroni limits system, whenever instabilities with processes were detected.

  9. DOE - Office of Legacy Management -- Blue

    Office of Legacy Management (LM)

    All documents are Adobe Acrobat files. pdficon Key Documents Fact Sheet May and June 2015 Groundwater and Surface Water Sampling at the Bluewater, New Mexico, Disposal Site 2015 ...

  10. Blue Ridge Mountain Electric Membership Corporation - Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Insulation: 200 Air Sealing: 200 Windows: 500 (25window) Duct Repair: 200 Heat Pump Water Heater: 200unit Storm Window Additions: 250 (12.50window) Exterior Door...

  11. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    SciTech Connect (OSTI)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted in sandpacks to determine the effect of polymer and chromium concentrations on DPR. All gels studied reduced the permeability to water by a greater factor than the factor by which the oil permeability was reduced. Greater DPR was observed as the concentrations of polymer and chromium were increased. A conceptual model of the mechanisms responsible for DPR is presented. Primary features of the model are (1) the development of flow channels through the gel by dehydration and displacement of the gel and by re-connection of pre-treatment, residual oil volume and (2) high flow resistance in the channels during water flow is caused by significant saturations of oil remaining in the channels. A similar study of DPR was conducted in Berea sandstone cores. Both oil and water permeabilities were reduced by much smaller factors in Berea sandstone cores than in similar treatments in sandpacks. Poor maturation of the gelant in the Berea rock was thought to be caused by fluid-rock interactions that interfered with the gelation process.

  12. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect (OSTI)

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  13. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  14. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  15. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  16. Use of global navigation satellite systems for monitoring deformations of water-development works

    SciTech Connect (OSTI)

    Kaftan, V. I.; Ustinov, A. V.

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  17. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  18. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    WILLIAMS, J.C.

    2003-11-15

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  19. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    SciTech Connect (OSTI)

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  20. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    DOE Patents [OSTI]

    Snyder, Seth W.; Lin, Yupo J.; Hestekin' Jamie A.; Henry, Michael P.; Pujado, Peter; Oroskar, Anil; Kulprathipanja, Santi; Randhava, Sarabjit

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  1. NREL: Energy Analysis: Energy-Water Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy-Water Nexus A cartoon showing the nexus of water and energy using red and blue arrows to indicate the flow water and energy through generation, fuel production, and consumption. Source: U.S. Department of Energy, 2006 Enlarge image Water is required to produce energy. Energy is required to pump, treat, and transport water. The energy-water nexus examines the interactions between these two inextricably linked sectors. NREL helps policymakers, researchers, and investors understand and

  2. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Blue Mountain...

  3. The Blue Ribbon Commission Offers Strong Step Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blue Ribbon Commission Offers Strong Step Forward The Blue Ribbon Commission Offers Strong Step Forward July 29, 2011 - 12:27pm Addthis Damien LaVera Damien LaVera Deputy Director, Office of Public Affairs Today, the Blue Ribbon Commission on America's Nuclear Future issued a draft of its recommendations. The Obama Administration continues to believe that nuclear energy has an important role to play as America moves to a clean energy future. As part of our commitment to restarting the

  4. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.; Klise, Geoffrey Taylor

    2012-04-01

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between water resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.

  5. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  6. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics & Thermal-Hydraulics

    SciTech Connect (OSTI)

    Mark Anderson; M.L. Corradini; K. Sridharan; P. WIlson; D. Cho; T.K. Kim; S. Lomperski

    2004-09-02

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers.

  7. Sensitivity of the Properties of Ruthenium Blue Dimer to Method, Basis Set, and Continuum Model

    SciTech Connect (OSTI)

    Ozkanlar, Abdullah; Clark, Aurora E.

    2012-05-23

    The ruthenium blue dimer [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structure of blue dimer using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.

  8. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    SciTech Connect (OSTI)

    A. G. Ware; C. Hsu; C. L. Atwood; M. B. Sattison; R. S. Hartley; V. N. Shah

    1999-02-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number and rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  9. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    SciTech Connect (OSTI)

    Shah, Vikram Naginbhai; Ware, Arthur Gates; Atwood, Corwin Lee; Sattison, Martin Blaine; Hartley, Robert Scott; Hsu, C.

    1999-08-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number of rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  10. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the ...

  11. Remarks by Federal Blue Ribbon Commission J. David Jameson ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Blue Ribbon Commission J. David Jameson Atlanta, GA October 18, 2011 Good Morning. I am David Jameson. I am President and CEO of the Greater Aiken, South Carolina, Chamber ...

  12. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    1 was completed in 2002 and it reached a depth of 672.1 m and a temperature of 144.7C. Deep Blue No. 2, was drilled and completed in 2004. It reached 1128 m depth and a...

  13. Blue Ridge Electric Cooperative- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Blue Ridge Electric Cooperative (BREC) offers low interest loans to help members finance the purchase of energy efficient heat pumps. Loans under $1,500 can be financed for up to 42 months, and...

  14. Optimizing for Blue Gene/Q Hal Finkel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Blue Gene/Q Hal Finkel hfinkel@anl.gov 2015-05-19 Optimizing for Blue Gene/Q ✔ Relevant information on the BG/Q ✔ How you can optimize your code for the BG/Q ✔ Q&A You want to know how to make me compute quickly... Optimizing for Blue Gene/Q This is a BG/Q node This is not Optimizing for Blue Gene/Q This is a BG/Q node Mira has 49152 of these functioning as compute nodes! What programs do... ✔ Read data from memory ✔ Compute using that data ✔ Write results back to memory ✔

  15. Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel...

    Open Energy Info (EERE)

    Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  16. Blue Ridge, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Ridge is a city in Collin County, Texas. It falls under Texas's 4th congressional...

  17. Blue Earth County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Earth County is a county in Minnesota. Its FIPS County Code is 013. It is classified as...

  18. Blue Point, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Point is a census-designated place in Suffolk County, New York.1 References US...

  19. Blue Ash, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Ash is a city in Hamilton County, Ohio. It falls under Ohio's 2nd congressional...

  20. Blue Lake, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Lake is a city in Humboldt County, California. It falls under California's 1st...

  1. Blue Chip Energy GmbH | Open Energy Information

    Open Energy Info (EERE)

    Chip Energy GmbH Jump to: navigation, search Name: Blue Chip Energy GmbH Place: Guessing, Austria Zip: A-7540 Product: Monocrystalline silicon PV cell manufacturer. References:...

  2. Blue Ridge Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Blue Ridge Electric Coop Inc Place: South Carolina Phone Number: 864-878-6326; 864-647-2005; 1-800-240-3400 Website: www.blueridge.coop Twitter: @blueridgecoop Facebook: https:...

  3. Blue Hills, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Hills is a census-designated place in Hartford County, Connecticut.1 References ...

  4. Blue Diamond, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Diamond is a census-designated place in Clark County, Nevada.1 References US...

  5. Blue Island, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Island is a city in Cook County, Illinois. It falls under Illinois' 1st congressional...

  6. Blue Earth-Nicollet-Faribault | Open Energy Information

    Open Energy Info (EERE)

    Earth-Nicollet-Faribault Jump to: navigation, search Name: Blue Earth-Nicollet-Faribault Place: Minnesota Phone Number: 507-387-7963 Website: www.benco.org Facebook: https:...

  7. City of Blue Mound, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Mound, Kansas (Utility Company) Jump to: navigation, search Name: City of Blue Mound Place: Kansas Phone Number: (913) 756-2447 Outage Hotline: (913) 756-2447 References: EIA Form...

  8. City of Blue Earth, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Earth, Minnesota (Utility Company) Jump to: navigation, search Name: City of Blue Earth Place: Minnesota Phone Number: (507) 526-2191 or (507) 526-5382 or (507) 526-2402 Website:...

  9. Blue Mounds, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Mounds is a village in Dane County, Wisconsin. It falls under Wisconsin's 2nd...

  10. Picture of the Week: Modeling a small, blue planet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling a small, blue planet This visualization, courtesy of the Lab's MPAS-Ocean Model, shows ocean currents and eddies in a high-resolution global ocean simulation with the ...

  11. Blue Ridge Mountain E M C | Open Energy Information

    Open Energy Info (EERE)

    C Jump to: navigation, search Name: Blue Ridge Mountain E M C Abbreviation: brmemc Place: Georgia Phone Number: 706.379.3121; 828.837.1017 Website: www.brmemc.com Outage Hotline:...

  12. Blue Peter Project Group Inc | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Blue Peter Project Group Inc Place: Oakville, Ontario, Canada Zip: L6M 2B8 Sector: Solar Product: Alternative energy project developer in Canada,...

  13. Blue Ribbon Commission on America's Nuclear Future Charter |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blue Ribbon Commission on America's Nuclear Future Charter March 2, 2010 - 12:00am Addthis The Secretary of Energy, acting at the direction of the President, is establishing the ...

  14. Development test report for the high pressure water jet system nozzles

    SciTech Connect (OSTI)

    Takasumi, D.S.

    1995-09-28

    The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

  15. LPO5-002-Proj-Poster-GEO-BlueMtn

    Energy Savers [EERE]

    BLUE MOUNTAIN The state-of-the-art Blue Mountain plant is helping Nevada use its geothermal resources to meet its clean energy goals. INVESTING in AMERICAN ENERGY OWNER AltaRock Energy, Inc. LOCATION Humbolt County, Nevada LOAN AMOUNT $98.5 Million ISSUANCE DATE November 2010 GENERATION CAPACITY 39 MW PROJECTED ANNUAL GENERATION 240,000 MWh CLIMATE BENEFIT 130,000 Metric Tons of C0 2 Prevented Annually

  16. Bradbury Science Museum participates in Blue Star Museums program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Museum participates in Blue Star Museums program Bradbury Science Museum participates in Blue Star Museums program Museum to host active duty military personnel and their families from Memorial Day, May 25, through Labor Day, Sept. 7. May 21, 2015 Bradbury Science Museum, los Alamos, New Mexico Bradbury Science Museum, Los Alamos, New Mexico Contact Los Alamos National Laboratory Steve Sandoval Communications Office (505) 665 9206 Email "The museum already has a free-admission policy, but

  17. Record External Quantum Efficiency in Blue OLED Device

    Broader source: Energy.gov [DOE]

    Scientists at Pacific Northwest National Laboratory (PNNL) have created a blue organic light emitting diode (OLED) with an external quantum efficiency (EQE) of 11% at 800 cd/m2, exceeding their previous record EQE of 8%. The EQE of blue OLEDs is a major challenge in OLED technology development. This achievement is particularly notable since it was accomplished at a much lower operating voltage (6.2V) than previous demonstrations using similar structures, revealing the potential for much higher power efficiencies.

  18. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect (OSTI)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral system scaling analysis, design parameters were obtained and designs of the compact modular 200 MWe SBWR and the full size 1200 MWe SBWR were developed. These reactors are provided with passive safety systems. A new passive vacuum breaker check valve was designed to replace the mechanical vacuum beaker check valve. The new vacuum breaker check valve was based on a hydrostatic head, and was fail safe. The performance of this new valve was evaluated both by the thermal-hydraulic code RELAP5 and by the experiments in a scaled SBWR facility, PUMA. In the core neutronic design a core depletion model was implemented to PARCS code. A lattice design for the SBWR fuel assemblies was performed. Design improvements were made to the neutronics/thermal-hydraulics models of SBWR-200 and SBWR-1200, and design analyses of these reactors were performed. The design base accident analysis and evaluation of all the passive safety systems were completed as scheduled in tasks 4 and 5. Initial conditions for the small break loss of coolant accidents (LOCA) and large break LOCA using REALP5 code were obtained. Small and large break LOCA tests were performed and the data was analyzed. An anticipated transient with scram was simulated using the RELAP5 code for SBWR-200. The transient considered was an accidental closure of the main steam isolation valve (MSIV), which was considered to be the most significant transient. The evaluation of the RELAP5 code against experimental data for SBWR-1200 was completed. In task 6, the instability analysis for the three SBWR designs (SBWR-1200, SBWR-600 and SBWR-200) were simulated for start-up transients and the results were similar. Neither the geysering instability, nor the loop type instability was predicted by RAMONA-4B in the startup simulation following the recommended procedure by GE. The density wave oscillation was not observed at all because the power level used in the simulation was not high enough. A study was made of the potential instabilities by imposing an unrealistically high power ramp in a short time period, as suggested by GE. RAMON

  19. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

  20. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  1. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  2. Cost reduction performance enhancements of multiple site cooling water systems, enabled by remote system monitoring/control and multifaceted data management

    SciTech Connect (OSTI)

    Cook, B.; Young, D.; Tari, K.

    1998-12-31

    An outsourced cooling water treatment automated control and data acquisition package, has been designed, installed, and commissioned in over 70 sites in North America and offshore. The standard package consists of a controller, sensors, human-machine interface software, data acquisition and management software, communications, and reporting. Significant challenges to applying this standard package in multiple sites arose from variations in cooling system design and makeup water quality as well as operations, environmental considerations, metrics, and language. A standard approach has met these challenges and overcome effects of downsizing through significant reduction in non-value-added, manual activities. Overall system reliability has been improved by migration to best practice throughout the organizations involved and immediate proactive response to out-of-specification conditions. This paper documents the evolution of a standard cooling water automation and data management package from its inception to current practice.

  3. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  4. Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on passive PEM water management, was given by Susie Stenkamp of PNNL at a February 2007 meeting on new fuel cell projects.

  5. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  6. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  7. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  8. Advanced light water reactor plants System 80+{trademark} design certification program. Annual progress report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of this report is to provide the status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1995 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2, and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

  9. Advanced light water reactor plants System 80+{trademark} design certification program. Annual progress report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1996 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2 and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

  10. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  11. CENSUS OF BLUE STARS IN SDSS DR8

    SciTech Connect (OSTI)

    Scibelli, Samantha; Newberg, Heidi Jo; Carlin, Jeffrey L.; Yanny, Brian

    2015-01-01

    We present a census of the 12,060 spectra of blue objects ((g r){sub 0} < 0.25) in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). As part of the data release, all of the spectra were cross-correlated with 48 template spectra of stars, galaxies, and QSOs to determine the best match. We compared the blue spectra by eye to the templates assigned in SDSS DR8. 10,856 of the objects matched their assigned template, 170 could not be classified due to low signal-to-noise ratio, and 1034 were given new classifications. We identify 7458 DA white dwarfs, 1145 DB white dwarfs, 273 rarer white dwarfs (including carbon, DZ, DQ, and magnetic), 294 subdwarf O stars, 648 subdwarf B stars, 679 blue horizontal branch stars, 1026 blue stragglers, 13 cataclysmic variables, 129 white dwarf-M dwarf binaries, 36 objects with spectra similar to DO white dwarfs, 179, quasi-stellar objects (QSOs), and 10 galaxies. We provide two tables of these objects, sample spectra that match the templates, figures showing all of the spectra that were grouped by eye, and diagnostic plots that show the positions, colors, apparent magnitudes, proper motions, etc., for each classification. Future surveys will be able to use templates similar to stars in each of the classes we identify to automatically classify blue stars, including rare types.

  12. Blue Oak Energy | Open Energy Information

    Open Energy Info (EERE)

    design and engineering, feasibility studies, turn-key installation, system maintenance, PV products Number of Employees: 11-50 Year Founded: 2003 Phone Number: (530)...

  13. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    SciTech Connect (OSTI)

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D.

    1993-12-31

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% (by man) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  14. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect (OSTI)

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  15. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.

  16. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  17. High-nitrogen-metal complexes as burning-rate modifiers for the aluminum-water propellant system

    SciTech Connect (OSTI)

    Tappan, Bryce C; Mason, Benjamin A

    2009-01-01

    The reactions of electropositive metals, such as aluminum, with water have long been utilized in explosive and propellant formulations, but until recently this has mostly been limited to the water formed as a product gas from the decomposition of another energetic system . Recently, however, with the increased availability of nano-particulate materials, the direct reaction of nano-aluminum (nAl) with water as an oxidizer has been investigated as a propellant system due to high reaction temperatures and the production of hydrogen as the primary gaseous species. This system could be useful for intra-planetary travel where non-terrestrial water is harvested for the oxidizer. Here we present the study of nAl, mixed at a stoichiometric ratio with water ({Phi} = 1) with the highly water soluble metal complexes of bis(tetrazolato)amine (BTA) added at 5, 15,30 and 50 wt% in the case of FeBTA and 5 and 15 wt% in the case of NiBTA and CoBTA. The basic structure of the BTA complexes is shown below where M = Fe, Ni or Co, and x = 3 for Fe and Co and x = 2 for Ni. The particle size of nAl studied was primarily 38 nm with various studies with the particle size of 80 nm. The FeBT A at a loading of 15 wt% gave the highest burning rate enhancement (4.6x at {approx}6.8 MPa), while retaining a low pressure exponent (0.21 compared to 0.24 for nA/H{sub 2}O). At 15 wt% the Ni and Co increased the burning rate, but also increased the pressure exponents. The burning rate of the FeBTA modified material with 80 nm Al decreased as the weight percent of FeBTA was increased, which also tracked decrease in the calculated specific impulse of the mixtures.

  18. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOE Patents [OSTI]

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  19. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    SciTech Connect (OSTI)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  20. Physics of the Blues: Music, Fourier and Wave - Particle Duality

    SciTech Connect (OSTI)

    Gibson, J. Murray

    2003-10-15

    Art and science are intimately connected. There is probably no art that reveals this more than music. Music can be used as a tool to teach physics and engineering to non-scientists, illustrating such diverse concepts as Fourier analysis and quantum mechanics. This colloquium is aimed in reverse, to explain some interesting aspects of music to physicists. Topics include: What determines the frequency of notes on a musical scale? What is harmony and why would Fourier care? Where did the blues come from? (We' re talking the 'physics of the blues', and not 'the blues of physics' - that's another colloquium). Is there a musical particle? The presentation will be accompanied by live keyboard demonstrations. The presenter will attempt to draw tenuous connections between the subject of his talk and his day job as Director of the Advanced Photon Source at Argonne National Laboratory.

  1. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially MWW_NF) better treatment alternatives from the environmental sustainability perspective since they exhibited minimal contribution to environmental damage from emissions.

  2. Blue emission of Eu2+-doped translucent alumina

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Yan; Zhang, Lihua; Kisslinger, Kim; Wei, Hua; Melcher, Charles L.; Wu, Yiquan

    2015-08-21

    Inorganic scintillators are very important in medical and industrial measuring systems in the detection and measurement of ionizing radiation. In addition to Ce3+, a widely used dopant ion in oxide scintillators, divalent Europium (Eu2+) has shown promise as a high-luminescence, fast-response luminescence center useful in the detection of ionizing radiation. In this research, aluminum oxide (Al2O3) was studied as a host material for the divalent europium ion. Polycrystalline samples of Eu2+-doped translucent Al2O3 were fabricated, and room temperature luminescence behavior was observed. Al2O3 ceramics doped with 0.1 at% Eu2+ were fabricated with a relative density of 99.75% theoretical density andmore » in-line transmittance of 22% at a wavelength of 800 nm. The ceramics were processed by a gel-casting method, followed by sintering under high vacuum. The gelling agent, a copolymer of isobutylene and maleic anhydride, is marketed under the commercial name ISOBAM, and has the advantage of simultaneously acting as both a gelling agent and as a dispersant. The microstructure and composition of the vacuum-sintered Eu2+:Al2O3 were characterized by Scanning Electric Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy-dispersive X-ray spectroscopy (EDS). The phase composition was determined by X-ray diffraction measurements (XRD) combined with Rietveld analysis. The photoluminescence behavior of the Eu2+:Al2O3 was characterized using UV light as the excitation source, which emitted blue emission at 440 nm. The radio-luminescence of Eu2+:Al2O3 was investigated by illumination with X-ray radiation, showing three emission bands at 376 nm, 575 nm and 698 nm. Furthermore, multiple level traps at different depths were detected in the Eu2+:Al2O3 by employing thermoluminescence measurements.« less

  3. Development of a System for Rapid Detection of Contaminants in Water Supplies Using Magnetic Resonance and Nanoparticles

    SciTech Connect (OSTI)

    Lowery, Thomas J; Neely, Lori; Chepin, James; Wellman, Parris; Toso, Ken; Murray, Paul; Audeh, Mark; Demas, Vasiliki; Palazzolo, Robert; Min, Michael; Phung, Nu; Blanco, Matt; Raphel, Jordan; O'Neil, Troy

    2010-09-14

    To keep the water supply safe and to ensure a swift and accurate response to a water supply contamination event, rapid and robust methods for microbial testing are necessary. Current technologies are complex, lengthy and costly and there is a need for rapid, reliable, and precise approaches that can readily address this fundamental security and safety issue. T2 Biosystems is focused on providing solutions to this problem by making breakthroughs in nanotechnology and biosensor techniques that address the current technical restrictions facing rapid, molecular analysis in complex samples. In order to apply the T2 Biosystems nucleic acid detection procedure to the analysis of nucleic acid targets in unprocessed water samples, Bacillus thuringeinsis was selected as a model organism and local river water was selected as the sample matrix. The initial assay reagent formulation was conceived with a manual magnetic resonance reader, was optimized using a high throughput system, and transferred back to the MR reader for potential field use. The final assay employing the designed and manufactured instruments was capable of detecting 10 CFU/mL of B. thuringiensis directly within the environmental water sample within 90 minutes. Further, discrimination of two closely related species of Bacilli was accomplished using the methods of this project; greater than 3-fold discrimination between B. cereus and B. thuringiensis at a concentrations spanning 10 CFU/mL to 10{sup 5} CFU/mL was observed.

  4. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database

  5. A new approach to water desalination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new approach to water desalination A new approach to water desalination Graphene sheets with precisely controlled pores have potential to purify water more efficiently than existing methods. July 12, 2012 This story was written by David L. Chandler and originally published by the MIT News Office. When water molecules (red and white) and sodium and chlorine ions (green and purple) in saltwater, on the right, encounter a sheet of graphene (pale blue, center) perforated by holes of the right size,

  6. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  7. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuummore » of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.« less

  8. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    SciTech Connect (OSTI)

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpets stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpets translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.

  9. NREL: Water Power Research - Computer-Aided Engineering Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Tools Computer simulation of a floating point absorber in water. The water is represented by blue and red stripes. The absorber is represented by a red disk above water connected to a blue disk below water. NREL develops advanced computer-aided engineering (CAE) tools to support the wind and water power industries with state-of-the-art design and analysis capabilities. NREL is developing a suite of integrated CAE tools for wave and tidal energy converters that will provide a full

  10. Analysis of long-term flows resulting from large-scale sodium-water reactions in an LMFBR secondary system

    SciTech Connect (OSTI)

    Shin, Y.W.; Chung, H.; Choi, U.S.; Wiedermann, A.H.; Ockert, C.E.

    1984-07-01

    Leaks in LMFBR steam generators cannot entirely be prevented; thus the steam generators and the intermediate heat transport system (IHTS) of an LMFBR must be designed to withstand the effects of the leaks. A large-scale leak which might result from a sudden break of a steam generator tube, and the resulting sodium-water reaction (SWR) can generate large pressure pulses that propagate through the IHTS and exert large forces on the piping supports. This paper discusses computer programs for analyzing long-term flow and thermal effects in an LMFBR secondary system resulting from large-scale steam generator leaks, and the status of the development of the codes.

  11. Microsoft Word - Blue Cover Report - DOE FISMA

    Energy Savers [EERE]

    Evaluation Report The Department's Unclassified Cyber Security Program - 2010 DOE/IG-0843 October 2010 Department of Energy Washington, DC 20585 October 22, 2010 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Evaluation Report on "The Department's Unclassified Cyber Security Program - 2010" BACKGROUND Federal information systems are routinely confronted with increasingly sustained cyber attacks - many of which involve targeted and serious

  12. Mira Performance Boot Camp HPC Systems Overview 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALCF Systems: An Overview of the Blue Gene/Q and DA Systems, Storage, Software, and Other Notes William Scullin ALCF Catalyst Group Mira P erformance B oot C amp - 1 9 M ay 2 015 Building Blocks of the Universe 2 Mira P erformance B oot C amp - 1 9 M ay 2 015 Anatomy of a Blue Gene/Q (Not Ours) 3 cument for Review March 30, 2012 9:45 am 7948ch01.fm Blue Gene/Q hardware overview Figure 1-2 shows the primary hardware components of the Blue Gene/Q system. Figure 1-2 Blue Gene/Q hardware overview

  13. Mira: Installation of our Blue Gene/Q | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Installation of our Blue Gene/Q The Argonne Leadership Computing Facility (ALCF) started deployment of Mira in January 2012 with the delivery of two single-rack systems. By early March, all of the Early Science Program (ESP) project application teams got their codes built and running on these racks. When completed this fall, Mira will have 48 racks and 786,432 processors, and weigh 104 tons. It will be 20 times faster and five times more energy-efficient than Argonne's current

  14. GreenPower Trap Water-Muffler System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This hydrated EGR system reduces NOx and enhances fuel efficiency, and the DPF is catalyzed by the fuel-borne catalyst generated by the oil-borne catalyst system PDF icon deer09_rim.pdf More Documents & Publications DPF -"Hydrated EGR" Fuel Saver System GreenPowerTM Trap-Muffler

  15. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire ...

  16. Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires

    SciTech Connect (OSTI)

    Brahiti, N.; Hadjersi, T.; Menari, H.; Amirouche, S.; El Kechai, O.

    2015-02-15

    Highlights: SiNWs modified with Pd, Au and Pt were used as photocatalysts to degrade MB. Yield of photodegardation increases with UV irradiation time. SiNWs modified with Pd nanoparticles show the best photocatalytic activity. A degradation of 97% was obtained after 200 min of UV irradiation. - Abstract: Silicon nanowires (SiNWs) modified with Au, Pt and Pd nanoparticles were used as heterogeneous photocatalysts for the photodegradation of methylene blue in water under UV light irradiation. The modification of SiNWs was carried out by deposition of metal nanoparticles using the electroless metal deposition (EMD) technique. The effect of metal nanoparticles deposition time on the photocatalytic activity was studied. It was found that the photocatalytic activity of modified SiNWs was enhanced when the deposition time of metal nanoparticles was increased. In addition of modified SiNWs with Pt, Au and Pd nanoparticles, oxidized silicon substrate (Ox-Si), oxidized silicon nanowires (Ox-SiNWs) and hydrogen-terminated silicon nanowires (H-SiNWs) were also evaluated for the photodegradation of methylene blue.

  17. Stepout-Deepening Wells At Blue Mountain Area (Niggemann Et Al...

    Open Energy Info (EERE)

    No. 2 while drilling was 167.5oC at References Kim Niggemann, Brian Fairbank, Susan Petty (2005) Deep Blue No 2- A Resource In The Making At Blue Mountain Additional References...

  18. GenSys Blue: Fuel Cell Heating Appliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GenSys Blue: Fuel Cell Heating Appliance GenSys Blue: Fuel Cell Heating Appliance Presented at the High Temperature Membrane Working Group Meetng, Nov. 16, 2009. PDF icon ...

  19. I Have Seen the Light and It's Green...or Pink, or Blue, or Purple...

    Energy Savers [EERE]

    Have Seen the Light and It's Green...or Pink, or Blue, or Purple. Shucks, it's LED Solid-State Lighting. I Have Seen the Light and It's Green...or Pink, or Blue, or Purple. Shucks, ...

  20. Step-Out Drilling Results at Blue Mountain, Nevada | Open Energy...

    Open Energy Info (EERE)

    targets based on a detailed structural model at Blue Mt. Nevada have led to high permeability entries in a well offset 1.2 km west of the developing field at Blue...