National Library of Energy BETA

Sample records for bloomfield breda brooklyn

  1. Bloomfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bloomfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.826488, -72.7300945 Show Map Loading map... "minzoom":false,"mappin...

  2. DOE - Office of Legacy Management -- Bloomfield Tool Co - NJ 21

    Office of Legacy Management (LM)

    Bloomfield Tool Co - NJ 21 FUSRAP Considered Sites Site: Bloomfield Tool Co. (NJ.21 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bloomfield , New Jersey NJ.21-1 Evaluation Year: 1987 NJ.21-2 Site Operations: During a small-scale experiment, uranium slugs were machined. NJ.21-3 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope and duration of the operations NJ.21-4 Radioactive Materials

  3. West Bloomfield Township, Michigan: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Bloomfield Township is a census-designated place in Oakland County, Michigan.1...

  4. Brooklyn, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brooklyn, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7881541, -71.9497957 Show Map Loading map... "minzoom":false,"mapping...

  5. City of Brooklyn, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Brooklyn, Iowa (Utility Company) Jump to: navigation, search Name: Brooklyn Municipal Utilities Place: Iowa Phone Number: 641-522-9292 or 641-522-7711 Website: brooklyniowa.com...

  6. East Brooklyn, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    East Brooklyn, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7967652, -71.8972946 Show Map Loading map......

  7. Brooklyn Park, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brooklyn Park is a city in Hennepin County, Minnesota. It falls under Minnesota's 3rd congressional...

  8. Brooklyn Park, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brooklyn Park is a census-designated place in Anne Arundel County, Maryland.1 References US...

  9. West Brooklyn, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. West Brooklyn is a village in Lee County, Illinois. It falls under Illinois' 14th congressional district.12...

  10. DOE - Office of Legacy Management -- Polytechnic Institute of Brooklyn - NY

    Office of Legacy Management (LM)

    0-19 Polytechnic Institute of Brooklyn - NY 0-19 FUSRAP Considered Sites Site: NY.0-19 (POLYTECHNIC INSTITUTE OF BROOKLYN) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.0-19-1 Evaluation Year: 1987 NY.0-19-1 Site Operations: Research and development involving only small quantities of radiological material in a controlled environment. NY.0-19-1 Site Disposition: Eliminated - Potential for contamination remote

  11. Health Hazard Evaluation Report No. HHA-80-238-931, new York Port Authority, Brooklyn, New York

    SciTech Connect (OSTI)

    Baker, D.; Fannick, N.

    1981-08-01

    In August 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request for a Health Hazard Evaluation from the Carpenters Union, Local 1456, AFL-CIO, to evaluate coal tar creosote exposure among dock builders. Specifically, the request concerned six employees engaged in pile-driving creosote-preserved wood logs for a dock underpinning in Brooklyn, New York. NIOSH concluded that coal tar products, including creosote, are carcinogenic (have the potential to cause cancer). Inhalation of CTPVs may increase the risk of developing lung cancer. Direct skin contact with creosote causes acute irritation and can lead to the development of skin tumors, including skin cancer. Recommendations on personal protection and hygiene, respirator usage, and medical monitoring are presented.

  12. Bloomfield Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  13. CX-002341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Connecticut Clean Cities Future Fuels Project - BloomfieldCX(s) Applied: B5.1Date: 05/11/2010Location(s): Bloomfield, ConnecticutOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  14. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Optical Processes in Organic Solar Cells: Theoretical Description of Organic-Organic Interfaces Jean-Luc Bredas School of Chemistry and Biochemistry and Center for...

  15. Neptune Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Neptune Systems Address: PO Box 8719 Place: Breda Zip: 4820 BA Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: +31 (0)...

  16. Pickaway County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ohio Circleville, Ohio Commercial Point, Ohio Darbyville, Ohio Harrisburg, Ohio Logan Elm Village, Ohio New Holland, Ohio Orient, Ohio South Bloomfield, Ohio Tarlton, Ohio...

  17. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    that happened to fall on January 1. Some smaller plants including the Flying J (Big West) refinery in Bakersfield, California, and the Western, Bloomfield, New Mexico...

  18. Untitled Page -- Considered Sites Summary

    Office of Legacy Management (LM)

    CORP. (Watervliet , New York) ALLIED CHEMICAL AND DYE CORP. (North Claymore, Delaware) ... CO. (Birdsboro, Pennsylvania) BLOCKSON CHEMICAL CO. (Joliet, Illinois) BLOOMFIELD TOOL ...

  19. CX-006336: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Michigan-City-West Bloomfield, Charter Township ofCX(s) Applied: A9, B2.5, B5.1Date: 03/09/2010Location(s): West Bloomfield, MichiganOffice(s): Energy Efficiency and Renewable Energy

  20. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  1. E+Co | Open Energy Information

    Open Energy Info (EERE)

    E+Co Jump to: navigation, search Logo: E+Co Name: E+Co Address: 383 Franklin Street Place: Bloomfield, New Jersey Zip: 07003 Website: www.eandco.net Coordinates: 40.792377,...

  2. E CO LAC | Open Energy Information

    Open Energy Info (EERE)

    LAC Jump to: navigation, search Name: E&CO LAC Place: Bloomfield, New York Zip: NJ 07003 Sector: Services Product: E&Co is an independent non-profit organization which provids...

  3. Property:WFSPTurbineID | Open Energy Information

    Open Energy Info (EERE)

    + Auburn-Washburn Wind Project + 120,012 + Avery County High School Wind Project + 110,607 + B Bancroft-Rosalie Public Schools Wind Project + 108,812 + Bloomfield Public Schools...

  4. Workplace Charging Challenge Partner: Cigna | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cigna Workplace Charging Challenge Partner: Cigna Workplace Charging Challenge Partner: Cigna Joined the Challenge: June 2015 Headquarters: Bloomfield, CT Charging Locations: Bloomfield, CT; Windsor, CT; Phoenix, AZ Domestic Employees: 34,000 As a global health service leader, Cigna is dedicated to improving the wellbeing and health of people while remaining committed to sustainability. Because environmental health is directly connected to personal health, Cigna strives to engage its employees

  5. SunOne Solutions | Open Energy Information

    Open Energy Info (EERE)

    Sector: Carbon Product: Brooklyn-based firm that focuses on developing agricultural, environmental, and land management projects that are eligible for carbon "offset" credits....

  6. Solar Energy Systems Inc SES | Open Energy Information

    Open Energy Info (EERE)

    Systems Inc SES Jump to: navigation, search Name: Solar Energy Systems, Inc (SES) Place: Brooklyn, New York Zip: 11222 Sector: Solar Product: Private company designing, building,...

  7. Energy Spectrum | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Brooklyn-based energy management conslutants with services including demand response, load control, cogeneration and rate analysis. Coordinates: 42.852755,...

  8. Jasper County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Jasper County, Missouri Airport Drive, Missouri Alba, Missouri Asbury, Missouri Avilla, Missouri Brooklyn Heights,...

  9. Microsoft Word - EDUconnectPolyNYU5-11 _2_

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more info Martin Lewis Perl 1995 Physics Polytechnic Institute of Brooklyn: B.S. Chemical Engineering 1948; Polytechnic University: Honorary Dr.Sc. 1996 Professor, SLAC...

  10. CX-006339: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota-City-Brooklyn ParkCX(s) Applied: A9, B1.32, B2.5, B5.1Date: 06/21/2011Location(s): Brooklyn Park, MinnesotaOffice(s): Energy Efficiency and Renewable Energy

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2016 Time: 11:00 am Speaker: Jean-Luc Bredas, KAUST Title: On the Nature of Polymer/Fullerene Intermolecular Interactions and their Impact on the Performance of Organic Solar Cells Location: 67-3111 Chemla Room Abstract: In this presentation, we seek to provide a rationalization of the impact that inter-molecular arrangements and interactions at the polymer/fullerene interfaces have on the performance of bulk-heterojunction solar cells. We discuss the results of combined electronic-structure

  12. STGWG Meeting Attendees for May 3, 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brooklyn Baptiste, Gabe Bohnee, Rico Cruz, Greg Kaufman, Governor Joshua Madalena, ... at the STGWG Tribal and State Issues with U.S. DOE session from 2:00pm-5:00pm) Vice ...

  13. factsheet.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This 100-kW Northern Power Systems wind turbine is installed at a recycling facility in Brooklyn, New York. Photo credit: Aegis Renewable Energy Wind and Water PoWer technologies ...

  14. 2016 Bioenergizeme Infographic Challenge: From Feedstock to Fuel Pump: Careers in the Biofuel Industry

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Williamsburg High School for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The...

  15. National Grid (Gas)- Residential Energy Efficiency Rebate Programs (Metro New York)

    Broader source: Energy.gov [DOE]

    National Grid’s High Efficiency Heating Rebates are offered to residential gas heating customers in the New York City metro area including Brooklyn, Queens, and Staten Island.  Rebates vary...

  16. DOE - Office of Legacy Management -- Floyd Bennett Field - NY...

    Office of Legacy Management (LM)

    Name: Naval Air Station NY.0-11-1 Location: Buildings 67 and 69 , Brooklyn , New York NY.0-11-1 Evaluation Year: 1987 NY.0-11-1 Site Operations: The Air station was ...

  17. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. for their Winning Bioenergy Infographic A team of five freshmen from Williamsburg High School for Architecture and Design in Brooklyn, New York-designed an infographic on the...

  18. Workplace Charging Challenge Partner: DTE Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DTE Energy Workplace Charging Challenge Partner: DTE Energy Workplace Charging Challenge Partner: DTE Energy Joined the Challenge: March 2013 Headquarters: Detroit, MI Charging Locations: Ann Arbor, MI; Belleville, MI; Bloomfield Township, MI; Clinton Township, MI; Clinton Township, MI; Detroit, MI; Detroit, MI; Detroit, MI; Detroit, MI Domestic Employees: 10,000 DTE Energy seeks to be a premier, full-service, energy and energy-technology company providing solutions to meet the needs of 21st

  19. Workplace Charging Challenge Partner: MetLife, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MetLife, Inc. Workplace Charging Challenge Partner: MetLife, Inc. Workplace Charging Challenge Partner: MetLife, Inc. Joined the Challenge: May 2013 Headquarters: New York, NY Charging Locations: Aurora, IL; Bloomfield, CT; Bridgewater, NJ; Dayton, OH; Freeport, IL; Johnstown, PA; Morristown, NJ; Oriskany, NY; Scranton, PA; St. Louis, MO; Tampa, FL; Troy, NY; Tulsa, OK; Warwick, RI Domestic Employees: 30,887 MetLife embraces its role as a responsible corporate citizen through implementing energy

  20. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    THE FORMER WESTINGHOUSE ELECTRIC CORPORATION _ BUILDING 7 BLOOMFIELD, NEW JERSEY SW 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ---- - - _-. CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page . 1 2 2 2 3 4 4 iii _ -... __. --. ..-__ 1. . -1 ELIMINATION REPORT THE FORMER WESTINGHOUSE ELECTRIC CORPORATION

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Constantin Cranganu Principal Investigator Brooklyn College 2900 Bedford Avenue 4415 Ingersoll Hall Brooklyn, NY 11210 718-951-5000

  2. New York one-ups the Valdez

    SciTech Connect (OSTI)

    Starr, R.

    1990-07-30

    Mobil Oil has agreed to spend what is expected to be tens of millions of dollars to clean up a vast and hazardous pool of oil that has been seeping under the streets of Brooklyn for more than 40 years. The persistent leak has put more oil under the streets of the area than was spilled by the Exxon Valdez.

  3. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N ELM A ORC HARD PARK-H AMBU RG DANLEY CORNERS ST ILLWAT ER CHAFF EE-ARCAD E FAYETT E-WATERLOO LAKEVIEW JAVA SEN EC A W ELLER Y AU RORA E ZOAR BU FFALO TIOGA SILVER LAKE AKR ON ROM E RAT HBON E ALM A BET HANY WYOMING ULYSSES BR ANCH W SAN DY CREEK COL LINS BLOOMFIELD E LEBANON

  4. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This infographic was created by students from Williamsburg HS for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a broad and complex topic. The ideas

  5. BioenergizeME Infographic Challenge Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winners BioenergizeME Infographic Challenge Winners BioenergizeME Spring 2015 Infographic Challenge Award Ceremomy at Bioenergy 2015. BioenergizeME Spring 2015 Infographic Challenge Award Ceremomy at Bioenergy 2015. Spring 2015 Challenge Winners: Winning Team, Director's Prize for Excellence in Content, Design, and Social Media Promotion: Cellulosic Ethanol-Williamsburg High School for Architecture and Design in Brooklyn, New York First Runner Up: Algae: for a Cleaner and Greener

  6. Mr. Anthony Reale Engineering Department Lutheran Medical Center

    Office of Legacy Management (LM)

    Anthony Reale Engineering Department Lutheran Medical Center 1550 55th Street Brooklyn, NY 11220 Dear Mr. Reale: The site of the Lutheran Medical Center was formerly used by the American Machine and Foundry Company (AMF) to provide various serviceslto the 111 Department of Energy's predecessor agency, the U.S. The services included the machining and shaping of two uranium and thorium. At the request of the Department with the consent of the Lutheran Medical Center, Oak Ridge Associated

  7. STGWG Meeting Minutes for May 3, 2010

    Energy Savers [EERE]

    Meeting Summary-Nashville 2010 Page 1 State and Tribal Government Working Group Meeting Notes May 3, 2010 Doubletree Downtown Nashville Nashville, Tennessee TRIBAL EXECUTIVE SESSION (closed session) 9:00am-10:15am Attendees: Vice Chairman Brooklyn Baptiste, Gabe Bohnee, Rico Cruz, Greg Kaufman, Governor Joshua Madalena, Brooke Oleen Tieperman, Willie Preacher, Michael Sobotta and John Stanfill. Neil Weber and Peter Chestnut-participated by conference call. Governor Madalena of the Jemez Pueblo

  8. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  9. Theoretical studies of nonadiabatic and spin-forbidden processes: Investigations of the reactions and spectroscopy of radical species relevant to combustion reactions and diagnostics

    SciTech Connect (OSTI)

    Yarkony, D.R.

    1993-12-01

    This research program focusses on studies of spin-forbidden and electronically nonadiabatic processes involving radical species relevant to combustion reactions and combustion diagnostics. To study the electronic structure aspects of these processes a unique and powerful system of electronic structure programs, developed over the past nine years, the BROOKLYN codes, is employed. These programs enable the authors to address questions basic to the understanding of elementary combustion processes not tractable using more standard quantum chemistry codes.

  10. Field Office, Osk Ridge

    Office of Legacy Management (LM)

    ,_ . -... .,- .._ -,,. ..- _~ ,.- .- ,~._ _- "- .- Depanment of Energy Field Office, Osk Ridge P.O. Box 2001 Oak Ridge, Tennessee 37831- 8723 April 20, 1993 Ms. Rita Aldrich Principle Radiophysicist Oivisfon of Safety and Health New York State Department of Labor 1 Rain Street Brooklyn, New York 11201 Dear Iis. Aldrich: BAKER AND WILLIAM WAREHOUSES SITE - COMPLETION OF CLEANUP ACTIVITIES The purpose of this notice is to inform you about further scheduled cleanup activities to be conducted

  11. I-

    Office of Legacy Management (LM)

    -- ..~ ,_^ ,-_ I- -,- ,- .- ~.- - Department of Energy Oak Ridge Oprntkm P.O. Box PO1 Oak Ridge, Tmnnror 37Wl- September 27. 1990 07 I63C 90~ 75, Dr. Leonard Solon Director, Bureau of Radiation Control New York City Department of Health 111 Livingston Street Brooklyn, NY 11201 Dear Dr. Solon: DESIGNATION OF THE FORHER BAKER AND WILLIAMS YAREHOUSES INTO DOE'S FORMERLY UTILIZED SITES REHEDIAL ACTION PROGRAH As discussed in our telephone conversation on September 24, 1990, this letter to inform

  12. A Case for Commissioning of CHP Systems - Presentation, April 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Commissioning of CHP Systems - Presentation, April 2008 A Case for Commissioning of CHP Systems - Presentation, April 2008 This presentation details four example case studies. A San Francisco hotel was retrofitted with a "packaged" microturbine generator/double-effect chiller plant; a Los Angeles casino was retrofitted with an advanced reciprocating engine, hot water heat recovery, and a single-effect absorption chiller; a Brooklyn laundry was retrofitted

  13. ENG-RCAL-028-r1.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USE AND DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Project Manager Norine H. Karins Prepared by ENERGY MANAGEMENT & RESEARCH ASSOCIATES Fredric S. Goldner, C.E.M. 448 Neptune Avenue, Suite 15P Brooklyn, NY 11224 1647-EEED-BES-9 1 Energy Authority Report 94-19 November 1994 NOTICE This report was prepared by the Energy Management & Research Associates in the course of performing work contracted for and

  14. Commissioning of CHP Systems- White Paper, April 2008

    Broader source: Energy.gov [DOE]

    This paper details four example case studies: San Francisco hotel was retrofitted with a “packaged” microturbine generator/double-effect chiller plant; a Los Angeles casino was retrofitted with an advanced reciprocating engine, hot water heat recovery, and a single-effect absorption chiller; a Brooklyn laundry was retrofitted with two reciprocating engine generators and a hot water recovery system; and a state-of-the-art hospital in Austin, Texas, was retrofitted with a combustion turbine, heat recovery steam generator, absorption and electric chillers, and thermal storage.

  15. Secretary Steven Chu's Remarks as Prepared for Delivery at the Polytechnic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institute of New York University | Department of Energy Polytechnic Institute of New York University Secretary Steven Chu's Remarks as Prepared for Delivery at the Polytechnic Institute of New York University May 23, 2011 - 1:04pm Addthis President Hultin, provosts, trustees, faculty, family and friends, thank you for letting me share this wonderful day with you. I'm happy to return to NYU Polytechnic, or "Brooklyn Poly," as the school was known in the days when my father was on

  16. Microsoft Word - EDUconnectPolyNYU5-11 _2_

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EDU c c c o o o n n n n n n e e e c c c t t t i i i o o o n n n s s s Nobel Laureates Associated with DOE 1 /Predecessor(s) and the Polytechnic Institute of New York University/Predecessor(s) 2 Nobel Laureate Date/Award In Associations with Polytechnic Institute of NYU 2 Association with DOE 1 /Predecessor Rudolph Marcus 1992 Chemistry Polytechnic Institute of Brooklyn: Assistant Professor 1951 - 1954 Associate Professor 1954 - 1958 Professor 1958 - 1964 Acting Head, Division of Physical

  17. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frank Casella US ITER Quality Assurance, Environmental, Safety and Health and Licensing Support Manager Tell us about your background Frank Casella Frank Casella I was born in Brooklyn, New York, but grew up in northern New Hampshire, where I went to high school. I attended Colgate University and then joined the Navy. I trained for the nuclear power program and specifically for nuclear submarines, and then spent four years on a nuclear sub. What were you doing before you came to US ITER? After I

  18. Field O

    Office of Legacy Management (LM)

    -- ! Department of Energy Field O ffice, O s k Ridge P.O . Box 2001 Oak Ridge, Tennessee 37031- 0723 April 20. 1993 Dr. Robert Kulikowskf Director, Bureau of Radiation Control New York City Department of Health 111 Livingston Street Brooklyn, New York 11201 Dear Dr. Kulfkowskf: BAKER AN0 W ILLIAM W AREHOUSES SITE - CORPLETION O F CLEANUP ACTIVITIES The purpose of this notice is to inform you about further scheduled c leanup activities to be conducted by the Department of Energy (WE) at 513-519

  19. Oak Ridge Opw~tlon~

    Office of Legacy Management (LM)

    634 eo.7to Department of Energy Oak Ridge Opw~tlon~ P.O. Box 2001 Oak Ridge, Tmnmeea 37Wl- September 27. 1990 ,- __ .._ .- Dr. Frank Bradley Principle Radiophy??t.ist New York State Departront of Labor 1 Main Street Brooklyn, NY 11201 Dear Dr. Bradley: DESIGNATION OF THE FORMER BAKER AND WILLIAMS WAREHOUSES INTO DOE'S FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM The purpose of this letter is to inform you that on August 9, 1990, the site of :;; former Baker and Williams warehouses, currently

  20. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect (OSTI)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  1. DoD Climate Change Fuel Cell Program

    SciTech Connect (OSTI)

    Steven A. Gabrielle

    2007-04-30

    A grant was awarded to PPL EnergyPlus, LLC for two (2) 250kW Molten Carbonate Fuel Cells at Pepperidge Farm, Inc. on 9/30/03. Pepperidge Farm subsequently signed a contract for one 250kW fuel cell. A request was made and granted to apply the award for the second fuel cell to the Sheraton New York Hotel & Towers (see attached email). This report discusses the first year of operation of a fuel cell power plant located at Pepperidge Farm, Inc., Bloomfield, Connecticut and a fuel cell power plant located at Sheraton New York Hotel & Towers, New York, New York. PPL EnergyPlus, LLC installed the plants under a contract with Pepperidge Farm and Starwood Hotels & Resorts Worldwide, Inc. Two DFC 300 fuel cells, manufactured by FuelCell Energy, Inc. of Danbury, CT were selected for the project. The fuel cell located at Pepperidge Farm successfully operated from January 16, 2006 to January 15, 2007. The fuel cell located at Sheraton New York Hotel & Tower successfully operated from May 19, 2005 to May 18, 2006.This report discusses the performance of these plants during these periods.

  2. Elevated tritium levels at the World Trade Center

    SciTech Connect (OSTI)

    Semkow, Thomas M.; Hafner, Ronald S.; Parekh, Pravin P.; Wozniak, Gordon J.; Haines, Douglas K.; Husain, Liaquat; Rabun, Robert L.; Williams, Philip G.

    2002-05-14

    Traces of tritiated water (HTO) were detected at [the]World Trade Center (WTC) ground zero after the 9/11/01 terrorist attack. A method of ultralow-background liquid scintillation counting was used after distilling HTO from the samples. A water sample from the WTC sewer, collected on 9/13/01, contained 0.174 plus or minus 0.074 (2s) nCi/L of HTO. A split water sample, collected on 9/21/01 from the basement of WTC Building 6, contained 3.53 plus or minus 0.17 and 2.83 plus or minus 0.15 nCi/L, respectively. Several water and vegetation samples were analyzed from areas outside the ground zero, located in Manhattan, Brooklyn, Queens, and Kensico Reservoir. No HTO above the background was found in those samples. All these results are well below the levels of concern to human exposure.

  3. Development of Pollution Prevention Technologies

    SciTech Connect (OSTI)

    Polle, Juergen; Sanchez-Delgado, Roberto

    2013-12-30

    This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies. Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts for reactions of relevance to the manufacture of cleaner fossil fuels and biodiesel, and to hydrogen storage in organic liquids. Specifically the catalysts are highly active in the hydrogenation of aromatic and heteroaromatic components of fossil fuels, the reduction of unsaturated C=C bonds in biodiesel, and the dehydrogenation of nitrogen heterocycles. In the course of our studies we identified a novel dual-site substrate-dependent hydrogenation mechanism that explains the activity and selectivity data obtained and the resistance of the new catalysts to poisoning. These results represent an important advance in basic catalytic science, regarding design and synthesis and reaction mechanisms. Additionally, this project allowed the enhancement of the laboratory facilities in the Chemistry Department of Brooklyn College for catalysis and energy research, and served as an excellent vehicle for the training of several young researchers at the undergraduate, graduate and postdoctoral level, to join the national scientific workforce.

  4. Historical overview of domestic spent fuel shipments: Update

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    This report presents available historic data on most commercial and research reactor spent fuel shipments in the United States from 1964 through 1989. Data include sources of the spent fuel shipped, types of shipping casks used, number of fuel assemblies shipped, and number of shipments made. This report also addresses the shipment of spent research reactor fuel. These shipments have not been documented as well as commercial power reactor spent fuel shipment activity. Available data indicate that the greatest number of research reactor fuel shipments occurred in 1986. The largest campaigns in 1986 were from the Brookhaven National Laboratory, Brooklyn, New York, to the Idaho Chemical Processing Plant (ICPP) and from the Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) in Tennessee and the Rockwell International Reactor in California to the Savannah River Plant near Aiken, South Carolina. For all years addressed in this report, DOE facilities in Idaho Falls and Savannah River were the major recipients of research reactor spent fuel. In 1989, 10 shipments were received at the Idaho facilities. These originated from universities in California, Michigan, and Missouri. 9 refs., 12 figs., 7 tabs.

  5. Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Blazek, C.F.; Rowley, P.F.; Grimes, J.W.

    1995-07-01

    The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

  6. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  7. A survey of spatially distributed exterior dust lead loadings in New York City

    SciTech Connect (OSTI)

    Caravanos, Jack; Weiss, Arlene L.; Blaise, Marc J.; Jaeger, Rudolph J. . E-mail: jaegerr@envmed.com

    2006-02-15

    This work documents ambient lead dust deposition values (lead loading) for the boroughs of New York City in 2003-2004. Currently, no regulatory standards exist for exterior concentrations of lead in settled dust. This is in contrast to the clearance and risk assessment standards that exist for interior residential dust. The reported potential for neurobehavioral toxicity and adverse cognitive development in children due to lead exposure prompts public health concerns about undocumented lead sources. Such sources may include settled dust of outdoor origin. Dust sampling throughout the five boroughs of NYC was done from the top horizontal portion of pedestrian traffic control signals (PTCS) at selected street intersections along main thoroughfares. The data (n=214 samples) show that lead in dust varies within each borough with Brooklyn having the highest median concentration (730{mu}g/ft{sup 2}), followed in descending order by Staten Island (452{mu}g/ft{sup 2}), the Bronx (382{mu}g/ft{sup 2}), Queens (198{mu}g/ft{sup 2}) and finally, Manhattan (175{mu}g/ft{sup 2}). When compared to the HUD/EPA indoor lead in dust standard of 40{mu}g/ft{sup 2}, our data show that this value is exceeded in 86% of the samples taken. An effort was made to determine the source of the lead in the dust atop of the PTCS. The lead in the dust and the yellow signage paint (which contains lead) were compared using isotopic ratio analysis. Results showed that the lead-based paint chip samples from intact signage did not isotopically match the dust wipe samples taken from the same surface. We know that exterior dust containing lead contributes to interior dust lead loading. Therefore, settled leaded dust in the outdoor environment poses a risk for lead exposure to children living in urban areas, namely, areas with elevated childhood blood lead levels and background lead dust levels from a variety of unidentified sources.

  8. High efficiency thin film CdTe and a-Si based solar cells

    SciTech Connect (OSTI)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10{sup {minus}5} torr) was beneficial for growing high-quality films from ITO targets.

  9. Safer Vehicles for People and the Planet: Letter to the Editor

    SciTech Connect (OSTI)

    Wenzel, Thomas P; Wenzel, Thomas P; Ross, Marc

    2008-05-01

    Letter to the Editors from Leonard Evans, Bloomfield Hills, MI: Single-vehicle crashes, which account for half of occupant fatalities, are not mentioned in 'Safer Vehicles for People and the Planet', by Thomas P. Wenzel and Marc Ross (March-April). Simple physics shows that in such crashes risk declines as vehicle mass increases. The authors write 'driving imported luxury cars carries extremely low risk, for reasons that are not obvious'. The reasons are obvious--the cars are purchased by low-risk drivers. If they swapped vehicles with drivers of sports cars (which have high risk), the risks would stick with the drivers, not the vehicles. The article reflects the American belief that death on our roads can be substantially reduced by making vehicles in which it is safer to crash. From 1979 through 2002, Great Britain, Canada and Australia reduced fatalities by an average of 49 percent, compared with 16 percent in the U.S. Accumulating the differences over this time shows that by merely matching the safety performance of these other countries, about 200,000 fewer Americans would have died. These trends continue. In 2006 the U.S. recorded 42,642 traffic deaths, a modest 22 percent decline from our all-time high. Sweden recorded 445, a reduction of 66 percent from their all-time high. The obsessive focus on vehicles rather than on countermeasures that scientific research shows substantially reduce risk is at the core of our dramatic safety failure. The only way to substantially reduce deaths is to reduce the risk of crashing, not to make it safer to crash. The response from Drs. Wenzel and Ross: Of course Dr. Evans is correct in stating that driver behavior influences crash risk. In our article we made clear that our estimates of risk include how well a vehicle/driver combination avoids a crash, as well as how crash-worthy a vehicle (and robust a driver) is once a crash occurs. We also analyzed two variables that can account for driver behavior: the fraction of all driver fatalities that are young men, and a 'bad driver' rating that combines information about the current crash (drug or alcohol involvement, driving without a license, or reckless driving) as well as the operator's driving record for the previous three years. For example, the high risks of sports cars, and the low risks of minivans, are clearly influenced by who drives these types of vehicles (36 percent young males and 0.77 bad driver rating for sports cars, vs. 4 percent and 0.21 for minivans; the average values for all types of cars are 20 percent and 0.50). On the other hand, we were surprised to find that the imported luxury cars, with the lowest risks, have only average drivers (21 percent young males, 0.57 bad driver rating). That is the basis for our conclusion that the design of imported luxury vehicles, or at least specific safety features on them, overcome risky behavior taken by their drivers. The safety of vehicles has greatly improved over the years. In our studies we have found several examples of models that greatly reduced their risks over time; for example, the Ford Focus has a much better risk to its drivers (118) than the Ford Escort it replaced (148). Our data indicate that more young males drive the Focus (21 percent) than the Escort (15 percent), and that Focus drivers are perhaps slightly more risky (0.50 vs. 0.44 bad driver rating). Clearly vehicle design does not play as small a role in vehicle safety as Dr. Evans suggests. Dr. Evans asserts that we ignore single-vehicle crashes and that simple physics dictates that vehicle mass provides safety in single-vehicle crashes. By itself, additional vehicle mass does provide some protection from rapid deceleration in crashes with a movable object, particularly for an unbelted occupant. However, when it comes to vehicle safety, our research by vehicle model indicates that there is essentially no relationship between car mass and risk, even in frontal crashes. In his own papers, Dr. Evans appears to admit that it is not clear whether mass, or size (specifically crush space) is inherent to vehi

  10. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect (OSTI)

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz and coworkers at ANL is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

  11. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz at U. Wisc. Milwaukee is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

  12. Museum security and the Thomas Crown Affair.

    SciTech Connect (OSTI)

    Michaud, E. C.

    2010-01-01

    Over the years, I've daydreamed about stealing a Vermeer, a Picasso, or Rembrandt. It tickles me, as much as watching the reboot of The Thomas Crown Affair. Why is it, do you suppose, so much fun to think about stealing a world renowned piece off the wall of a major metropolitan museum? Is it the romantic thoughts of getting away with it, walking past infrared detectors, and pressure sensors ala Indiana Jones with the sack of sand to remove the idol without triggering the security system? Is it the idea of snatching items with such fantastic prices, where the romance of possessing an item of such value is less intoxicating than selling it to a private collector for it to never be seen again? I suspect others share my daydreams as they watch theater or hear of a brazen daylight heist at museums around the world, or from private collections. Though when reality sets in, the mind of the security professional kicks in. How could one do it, why would one do it, what should you do once it's done? The main issue a thief confronts when acquiring unique goods is how to process or fence them. They become very difficult to sell because they are one-of-a-kind, easy to identify, and could lead to the people involved with the theft. The whole issue of museum security takes up an ironic twist when one considers the secretive British street artist 'Banksy'. Banksy has made a name for himself by brazenly putting up interesting pieces of art in broad daylight (though many critics don't consider his work to be art) on building walls, rooftops, or even museums. I bring him up for a interesting take on what may become a trend in museum security. In March of 2005, Banksy snuck a piece of his called 'Vandalized Oil Painting' into the Brooklyn Museum's Great Historical Painting Wing, plus 3 other pieces into major museums in New York. Within several days, 2 paintings had been torn down, but 2 stayed up much longer. In his home country of the UK, a unauthorized piece he created and placed in the British Museum known as 'Early Man Goes to Market' received different treatment when placed inside the walls. It was adopted into the permanent collection! I like his story because it's so counter-intuitive. Who would have thought that modern museum security might involve preventing people not just from stealing art, but from sneaking 'unauthorized' art into museums? What is next, tampering with the archive records in order to make it look like the piece in question has always been there? To learn more about museum security, I interviewed multiple experts in the field. It turns out that the glamorous lifestyle of Thomas Crown is not particularly relevant. In fact, usually nobody can point to a Mr. Big of the underworld coordinating thefts, though some organized crime families have been known to use stolen art as black market chips to trade. The common consensus among experts in the field of art theft is that, instead of most high-value pieces being stolen by outsiders with a blue print in hand and rappelling from a ceiling skylight, in reality, 80 percent of art thefts involve insiders or accomplices that execute the crime over a period of time while working or volunteering in the museum. Indeed, according to FBI statistics, between 70 and 80 percent of all solved art theft cases involve insider participation of some kind, yet according to Tom Cremers of the Musuem Security Network, 'Having been involved in risk assessments in over hundreds of museums over the past ten years, it is quite astonishing how rarely the risk of insider participation is discussed.' In regards to the insider threat, a museum is not much different from any corporation or other organization. There are directors, employees, interns, and cleaning staff (very often outsourced), security guards (again outsourced, typically with very high turnover rates). Unlike corporations, most museums also have volunteer staff, docents, and authorized visiting scholars. All these people can potentially take advantage of their position, or to be exploited by a clever attacker on the outside or insid

  13. Tritium in the World Trade Center September 11, 2001 Terrorist Attack: It's Possible Sources and Fate

    SciTech Connect (OSTI)

    Parekh, P; Semkow, T; Husain, L; Haines, D; Woznial, G; Williams, P; Hafner, R; Rabun, R

    2002-05-03

    Traces of tritiated water (HTO) were determined at World Trade Center (WTC) ground zero after the 9/11/01 terrorist attack. A method of ultralow-background liquid scintillation counting was used after distilling HTO from the samples. A water sample from the WTC sewer, collected on 9/13/01, contained 0.174{plus_minus}0.074 (2{sigma}) nCi/L of HTO. A split water sample, collected on 9/21/01 from the basement of WTC Building 6, contained 3.53{plus_minus}0.17 and 2.83{plus_minus}0.15 nCi/L, respectively. Several water and vegetation samples were analyzed from areas outside the ground zero, located in Manhattan, Brooklyn, Queens, and Kensico Reservoir. No HTO above the background was found in those samples. All these results are well below the levels of concern to human exposure. Several tritium radioluminescent (RL) devices were investigated as possible sources of the traces of tritium at ground zero. Tritium is used in self-luminescent emergency EXIT signs. No such signs were present inside the WTC buildings. However, it was determined that Boeing 767-222 aircraft operated by the United Airlines that hit WTC Tower 2 as well as Boeing 767-223ER operated by the American Airlines, that hit WTC Tower 1, had a combined 34.3 Ci of tritium at the time of impact. Other possible sources of tritium include dials and lights of fire and emergency equipment, sights and scopes in weaponry, as well as time devices equipped with tritium dials. It was determined that emergency equipment was not a likely source. However, WTC hosted several law-enforcement agencies such as ATF, CIA, US Secret Service and US Customs. The ATF office had two weapon vaults in WTC Building 6. Also 63 Police Officers, possibly carrying handguns with tritium sights, died in the attack. The weaponry containing tritium was therefore a likely and significant source of tritium. It is possible that some of the 2830 victims carried tritium watches, however this source appears to be less significant that the other two. The fate of tritium in the attack depended on its chemistry. Any tritium present in the vicinity of jet-fuel explosion or fire would convert to HTO. The molecular tritium is also known to quickly exchange with water adsorbed on surfaces at ambient temperatures. Therefore, the end product of reacted tritium was HTO. A part of it would disperse into the atmosphere and a part would remain on site. The dynamic aspect of HTO removal was investigated taking into a consideration water flow at ground zero. Most of ground zero is encircled by the Slurry Wall, 70 ft deep underground, called a Bathtub. Approximately three million gallons of water were hosed on site in the fire-fighting efforts, and 1 million gallons fell as rainwater, between 9/11 and 9/21 (the day of the reported measurement). The combined water percolated through the debris down to the bottom of the Bathtub dissolving and removing HTO with it. That water would meet and combine with the estimated 26 million gallons of water that leaked from the Hudson River as well as broken mains, during the same period of 10 days after the attack. The combined water was collecting in the PATH train tunnel and continuously being pumped out to prevent flooding. A %Box model of water flow was developed to describe the above scenario. Considering the uncertainty in the amount of tritium present from sources other than the aircraft, as well as the dynamic character of tritium removal from the site, it is feasible to provide only a qualitative picture of the fate and behavior of tritium at WTC with the limited experimental data available. If the time history of tritium concentration at WTC had been measured, this study could have been a tracer study of water flow at WTC possibly useful to civil engineering.