National Library of Energy BETA

Sample records for block-copolymer electrolyte membranes

  1. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Wednesday, 27 January 2010 00:00 Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the

  2. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  3. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  4. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  5. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  6. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  7. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  8. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  9. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  10. Self-doped microphase separated block copolymer electrolyte

    DOE Patents [OSTI]

    Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying

    2002-01-01

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  11. Non-crosslinked, amorphous, block copolymer electrolyte for batteries

    DOE Patents [OSTI]

    Mayes, Anne M.; Ceder, Gerbrand; Chiang, Yet-Ming; Sadoway, Donald R.; Aydinol, Mehmet K.; Soo, Philip P.; Jang, Young-Il; Huang, Biying

    2006-04-11

    Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0.degree. C. to about 70.degree. C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of Li.sub.xM.sub.yN.sub.zO.sub.2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the M.sub.yN.sub.z portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries. The present invention also includes methods of predicting the potential utility of metal dichalgogenide compounds for use in lithium intercalation compounds. It also provides methods for processing lithium intercalation oxides with the structure and compositional homogeneity necessary to realize the increased formation energies of said compounds. An article is made of a dimensionally-stable, interpenetrating microstructure of a first phase including a first component and a second phase, immiscible with the first phase, including a second component. The first and second phases define interphase boundaries between them, and at least one particle is positioned between a first phase and a second phase at an interphase boundary. When the first and second phases are electronically-conductive and ionically-conductive polymers, respectively, and the particles are ion host particles, the arrangement is an electrode of a battery.

  12. Block copolymer battery separator

    DOE Patents [OSTI]

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  13. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... plates to the anode on one side of the fuel cell, while oxidant (oxygen or air) is ... The PEM allows only the positively charged ions to pass through it to the cathode. The ...

  14. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  15. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    SciTech Connect (OSTI)

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  16. Lower Cost, Nanoporous Block Copolymer Battery Separator - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Lower Cost, Nanoporous Block Copolymer Battery Separator Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication A.K. Jha, S.L. Tsang, A.E. Ozcam, R.D. Offeman, N.P. Balsara. "Master Curve Captures the Effect of Domain Morphology on Ethanol Pervaporation Through Block Copolymer Membranes," Journal of Membrane Science, published online, 2011. (695 KB) Technology Marketing Summary Although the polyolefin polymer

  17. Nanoparticle-Driven Assembly of Highly Conducting Hybrid Block Copolymer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolytes - Joint Center for Energy Storage Research January 13, 2015, Research Highlights Nanoparticle-Driven Assembly of Highly Conducting Hybrid Block Copolymer Electrolytes (Top) The addition of 2 wt% nanoparticles (SEO-LiTFSI-POSS-2) results in an increase in ionic conductivity. STEM images show the bicontinuous morphology of the electrolyte with 2 wt% of nanoparticles. (Bottom) The value of morphology factor, f, for SEO-LiTFSI-POSS-2 is close to unity, the value expected for an

  18. Deformation Processes in Block Copolymer Toughened Epoxies (Journal...

    Office of Scientific and Technical Information (OSTI)

    Deformation Processes in Block Copolymer Toughened Epoxies Citation Details In-Document Search Title: Deformation Processes in Block Copolymer Toughened Epoxies Authors:...

  19. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  20. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  1. Mixed-Salt Effects on the Ionic Conductivity of Lithium-Doped PEO-Containing Block Copolymers

    SciTech Connect (OSTI)

    Young, Wen-Shiue; Albert, Julie N.L.; Schantz, A. Benjamin; Epps, III, Thomas H.

    2012-10-10

    We demonstrate a simple, yet effective, mixed-salt method to increase the room temperature ionic conductivity of lithium-doped block copolymer electrolyte membranes by suppressing the crystalline phases in the conducting block. We examined a mixed-salt system of LiClO{sub 4} and LiN(SO{sub 2}CF{sub 3}){sub 2} (LiTFSI) doped into a lamellae-forming poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymer. The domain spacings, morphologies, thermal behavior, and crystalline phases of salt-doped PS-PEO samples were characterized, and the ionic conductivities of block copolymer electrolytes were obtained through ac impedance measurements. Comparing the ionic conductivity profiles of salt-doped PS-PEO samples at different mixed-salt ratios and total salt concentrations, we found that the ionic conductivity at room temperature can be improved by more than an order of magnitude when coinhibition of crystallite growth is promoted by the concerted behavior of the PEO:LiClO{sub 4} and PEO:LiTFSI phases. Additionally, we examined the influence of mixed-salt ratio and total salt concentration on copolymer energetics, and we found that the slope of the effective interaction parameter ({chi}{sub eff}) vs salt concentration in our lamellae-forming PS-PEO system was lower than that reported for a cylinder-forming PS-PEO system due to the balance between chain stretching and salt segregation in the PEO domains.

  2. Structural response of a prealigned cylindrical block copolymer...

    Office of Scientific and Technical Information (OSTI)

    melt to extensional flow Citation Details In-Document Search Title: Structural response of a prealigned cylindrical block copolymer melt to extensional flow Authors: McCready, ...

  3. Association of a Multifunctional Ionic Block Copolymer in a Selective...

    Office of Scientific and Technical Information (OSTI)

    Results Journal Article: Association of a Multifunctional Ionic Block Copolymer in a Selective Solvent. Citation Details ... Publication Date: 2014-04-01 OSTI Identifier: 1143261 Report ...

  4. Hydrogen Production by Polymer Electrolyte Membrane (PEM)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis-Spotlight on Giner and Proton | Department of Energy by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton" held on May 23, 2011. Water Electrolysis

  5. Webinar: Hydrogen Production by Polymer Electrolyte Membrane...

    Broader source: Energy.gov (indexed) [DOE]

    Above is the video recording for the webinar, "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton," originally held on May 23, ...

  6. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers...

  7. Light-emitting block copolymers composition, process and use

    DOE Patents [OSTI]

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  8. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  9. Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications A ...

  10. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and ...

  11. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOE Patents [OSTI]

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  12. Fuel cell electrolyte membrane with acidic polymer

    DOE Patents [OSTI]

    Hamrock, Steven J.; Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Haugen, Gregory M.; Lamanna, William M.

    2009-04-14

    An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.

  13. DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    polymer electrolyte membrane (PEM) fuel cell components: membrane electrode assemblies, membranes, electrocatalysts, and bipolar plates. These targets have been developed with ...

  14. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect (OSTI)

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  15. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    DOE Patents [OSTI]

    Russell, Thomas P.; Hong, Sung Woo; Lee, Doug Hyun; Park, Soojin; Xu, Ting

    2015-10-13

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  16. Reordering transitions during annealing of block copolymer cylinder phases

    SciTech Connect (OSTI)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene-block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the final horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.

  17. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOE Patents [OSTI]

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  18. Electrically conductive doped block copolymer of polyacetylene and polyisoprene

    DOE Patents [OSTI]

    Aldissi, Mahmoud

    1985-01-01

    An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

  19. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined...

  20. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  1. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  2. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  3. DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Polymer Electrolyte Membrane Fuel Cell Components DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components These tables list the U.S. Department of Energy (DOE) technical targets for polymer electrolyte membrane (PEM) fuel cell components: membrane electrode assemblies, membranes, electrocatalysts, and bipolar plates. These targets have been developed with input from the U.S. DRIVE Partnership, which includes automotive and energy companies, and

  4. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropymore » is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  5. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    SciTech Connect (OSTI)

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  6. ELECTROLYTIC MEMBRANE DIALYSIS FOR TREATING WASTEWATER STREAMS

    SciTech Connect (OSTI)

    Ronald C. Timpe

    2000-04-01

    This project will determine whether electrolytic dialysis has promise in the separation of charged particles in an aqueous solution. The ability to selectively move ions from one aqueous solution to another through a semipermeable membrane will be studied as a function of emf, amperage, and particle electrical charge. The ions selected for the study are Cl{sup -} and SO{sub 4}{sup 2-}. These ions are of particular interest because of their electrical conduction properties in aqueous solution resulting with their association with the corrosive action of metals. The studies will be performed with commercial membranes on solutions prepared in the laboratory from reagent salts. pH adjustments will be made with dilute reagent acid and base. Specific objectives of the project include testing a selected membrane currently available for electrolytic dialysis, membrane resistance to extreme pH conditions, the effectiveness of separating a mixture of two ions selected on the basis of size, the efficiency of the membranes in separating chloride (Cl{sup 1-}) from sulfate (SO{sub 4}{sup 2-}), and separation efficiency as a function of electromotive force (emf).

  7. Reordering transitions during annealing of block copolymer cylinder phases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene-block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the final horizontalmore » state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.« less

  8. Radical-cured block copolymer-modified thermosets

    SciTech Connect (OSTI)

    Redline, Erica M.; Francis, Lorraine F.; Bates, Frank S.

    2013-01-10

    Poly(ethylene-alt-propylene)-b-poly(ethylene oxide) (PEP-PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP-PEO. The diblock copolymers self-assembled into well-dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer-modified epoxies, and an explanation is proposed.

  9. Polymer-electrolyte membrane, electrochemical fuel cell, and related method

    DOE Patents [OSTI]

    Krishnan, Lakshmi; Yeager, Gary William; Soloveichik, Grigorii Lev

    2014-12-09

    A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120.degree. C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.

  10. Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis-Spotlight on Giner and Proton | Department of Energy Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Above is the video recording for the webinar, "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton," originally held on May 23, 2011. In addition to this recording, you

  11. Self-assembly of block copolymers on topographically patterned polymeric substrates

    DOE Patents [OSTI]

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  12. Single Helix to Double Gyroid in Chiral Block Copolymers

    SciTech Connect (OSTI)

    C Chen; H Hsueh; Y Chiang; R Ho; S Akasaka; H Hasegawa

    2011-12-31

    An order-order phase transition of chiral block copolymers (BCPs*) from single helix to double gyroid (H* {yields} G) through a nucleation and growth process was demonstrated. The H* and G phases can be obtained by solution casting from fast and slow solvent evaporation, respectively, suggesting that the H* phase is a metastable phase. Consequently, the coexistence of H* and G phases can be found in the solution-cast samples from intermediate solvent evaporation. To truly examine the transition mechanism of the H* {yields} G, electron tomography was carried out to directly visualize the morphological evolution in real space, in particular, the transition zone at interface. Unlike the mechanisms for the transitions of block copolymers (BCPs) by considering the interdomain spacing matching, a significant mismatch in the lattices for the H* {yields} G was found. Consequently, the transition may require an adjustment on the geometric dimensions to justify corresponding lattice mismatch. As a result, the morphological observations from electron tomography offer new insights into BCP phase transitions.

  13. Measuring Physical Properties of Polymer Electrolyte Membranes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Measuring Physical Properties of Polymer Electrolyte Membranes Measuring Physical Properties of Polymer Electrolyte Membranes Presented by Cortney Mittelsteadt of Giner Electrochemical Systems, LLC, at the DOE High Temperature Membrane Working Group held September 14, 2006. htmwg_mittelsteadt.pdf (450.28 KB) More Documents & Publications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications 2006 DOE Hydrogen Program Dimensionally Stable High

  14. Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. mays.pdf (100.9 KB) More Documents & Publications Polyphenylene Sulfonic Acid: a new PEM High Temperature Polymer Membrane Development at Argonne National Laboratory Advanced Materials for Proton

  15. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOE Patents [OSTI]

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  16. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks

  17. Non-immunogenic, hydrophilic/cationic block copolymers and uses thereof

    DOE Patents [OSTI]

    Scales, Charles W.; Huang, Faqing; McCormick, Charles L.

    2010-05-18

    The present invention provides novel non-immunogenic, hydrophilic/cationic block copolymers comprising a neutral-hydrophilic polymer and a cationic polymer, wherein both polymers have well-defined chain-end functionality. A representative example of such a block copolymer comprises poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly(N-[3-(dimethylamino)propyl]methacrylamide) (PDMAPMA). Also provided is a synthesis method thereof in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization. Further provided are uses of these block copolymers as drug delivery vehicles and protection agents.

  18. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  19. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOE Patents [OSTI]

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  20. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enormous parameter space for the creation of new morphologies. Illustration from F.S. Bates and G.H. Fredrickson, "Block copolymers-designer soft materials," Physics Today 52, 32...

  1. Method of producing nanopatterned articles using surface-reconstructed block copolymer films

    DOE Patents [OSTI]

    Russell, Thomas P; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2013-08-27

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  2. Well-defined PI-b-PAA/PS-b-PI-b-PAA Block Copolymers: Synthesis...

    Office of Scientific and Technical Information (OSTI)

    Media Citation Details In-Document Search Title: Well-defined PI-b-PAAPS-b-PI-b-PAA Block Copolymers: Synthesis and Their Self-Assembled Hierarchical Structures in Aqueous Media ...

  3. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block ... has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 ...

  4. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  5. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  6. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  7. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  8. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  9. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  10. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  11. Measuring Physical Properties of Polymer Electrolyte Membranes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the DOE High Temperature Membrane Working Group held September 14, 2006. htmwgmittelsteadt.pdf (450.28 KB) More Documents & Publications Membrane Performance and Durability ...

  12. Molecular origin of photovoltaic performance in donor-block-acceptor all-conjugated block copolymers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Kendall A.; Lin, Yen -Hao; Mok, Jorge W.; Yager, Kevin G.; Strzalka, Joseph; Nie, Wanyi; Mohite, Aditya D.; Verduzco, Rafael

    2015-11-03

    All-conjugated block copolymers may be an effective route to self-assembled photovoltaic devices, but we lack basic information on the relationship between molecular characteristics and photovoltaic performance. Here, we synthesize a library of poly(3-hexylthiophene) (P3HT) block poly((9,9-dialkylfluorene)-2,7-diyl-alt-[4,7-bis(alkylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT) donor-block-acceptor all-conjugated block copolymers and carry out a comprehensive study of processing conditions, crystallinity, domain sizes, and side-chain structure on photovoltaic device performance. We find that all block copolymers studied exhibit an out-of-plane crystal orientation after deposition, and on thermal annealing at high temperatures the crystal orientation flips to an in-plane orientation. By varying processing conditions on polymer photovoltaic devices, we show thatmore » the crystal orientation has only a modest effect (15-20%) on photovoltaic performance. The addition of side-chains to the PFTBT block is found to decrease photovoltaic power conversion efficiencies by at least an order of magnitude. Through grazing-incidence X-ray measurements we find that the addition of side-chains to the PFTBT acceptor block results in weak segregation and small (< 10 nm) block copolymer self-assembled donor and acceptor domains. This work is the most comprehensive to date on all-conjugated block copolymer systems and suggests that photovoltaic performance of block copolymers depends strongly on the miscibility of donor and acceptor blocks, which impacts donor and acceptor domain sizes and purity. Lastly, strategies for improving the device performance of block copolymer photovoltaics should seek to increase segregation between donor and acceptor polymer domains.« less

  13. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOE Patents [OSTI]

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  14. Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer

    SciTech Connect (OSTI)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Besson, M.; Descorme, C.; Khrouz, L.

    2015-01-15

    Manganese oxides supported on mesoporous titanium oxides were synthesized via a sol–gel route using block copolymer self-assembly. The oxides were characterized by X-ray diffraction, infrared spectroscopy, thermal analyses, nitrogen adsorption/desorption, electron microscopy and electronic paramagnetic resonance. A mesoporous anatase containing amorphous manganese oxide particles could be obtained with a 0.2 Mn:Ti molar ratio. At higher manganese loading (0.5 Mn:Ti molar ratio), segregation of crystalline manganese oxide occurred. The influence of block copolymer and manganese salt on the oxide structure was discussed. The evolution of the textural and structural characteristics of the materials upon hydrothermal treatment was also investigated. - Graphical abstract: One-pot amorphous MnO{sub 2} supported on mesoporous anataseTiO{sub 2}. - Highlights: • Mesoporous manganese titanium oxides were synthesized using block copolymer. • Block copolymers form complexes with Mn{sup 2+} from MnCl{sub 2}. • With block copolymer, manganese oxide can be dispersed around the titania crystallites. • With Mn(acac){sub 2}, manganese is dispersed inside titania. • MnOOH crystallizes outside mesoporous titania during hydrothermal treatment.

  15. Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; Smith, Gregory Scott; Do, Changwoo

    2015-01-01

    The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less

  16. Millisecond ordering of block-copolymer films via photo-thermal gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore » than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less

  17. Millisecond ordering of block-copolymer films via photo-thermal gradients

    SciTech Connect (OSTI)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in less than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.

  18. Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly

    DOE Patents [OSTI]

    Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

    2013-10-29

    The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

  19. Electrically conductive doped block copolymer of polyacetylene and polyisoprene. [Soluble in organic solvents

    DOE Patents [OSTI]

    Aldissi, M.

    1984-06-27

    An electrically conductive block copolymer of polyisoprene and polyacetylene and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I/sub 2/ to give it an electrical conductivity in the metallic regime.

  20. Theory for dynamical self arrest and gelation in microemulsions and the block copolymer systems

    SciTech Connect (OSTI)

    Wu, Sangwook

    2005-05-01

    The main purpose of this work is to investigate the glassy behavior of microemulsions and block copolymers. The origin of glassy behavior in microemulsions and block copolymers is frustration due to a competition between short-range interaction and long range interaction. According to the charge frustrated Ising model, the competition between ferromagnetic interaction and antiferromagnetic interaction is the origin of frustration in microemulsions. The competition between entropic effects and stoichiometric constraints responsible for the formation of micelles in microemulsions can lead to the emergence of a self generated glassy behavior in these systems. In the block copolymer, the competition between the repulsive short range interaction between monomers in polymer chains and the long range interaction by chemical bonds can lead to the emergence of a self generated glassy behavior. The criteria for the fluctuation induced first order transition and our microemulsion and block copolymer glasses are essentially the same. Both are a consequence of the large phase space of low energy excitations (14) (62) (all states with momenta q which fulfill |q| = q{sub m}) and are of at the most a moderate supercooling of the liquid state is required. This is strongly supported by the observation in Ref. (14) that the metastable states which are first to appear at a fluctuation induced first order transition are the ones build by a superposition of large amplitude waves of wavenumber q{sub m}, but with random orientations and phases, i.e. just the ones which form the metastable states of our microemulsion and block copolymer glass. (38)

  1. Relationship between Structural and Stress Relaxation in a Block-Copolymer Melt

    SciTech Connect (OSTI)

    Patel, Amish J.; Narayanan, Suresh; Sandy, Alec; Mochrie, Simon G. J.; Garetz, Bruce A.; Watanabe, Hiroshi; Balsara, Nitash P.

    2006-06-30

    The relationship between structural relaxation on molecular length scales and macroscopic stress relaxation was explored in a disordered block-copolymer melt. Experiments show that the structural relaxation time, measured by x-ray photon correlation spectroscopy is larger than the terminal stress relaxation time, measured by rheology, by factors as large as 100. We demonstrate that the structural relaxation data are dominated by the diffusion of intact micelles while the stress relaxation data are dominated by contributions due to disordered concentration fluctuations.

  2. Molecular origin of photovoltaic performance in donor-block-acceptor all-conjugated block copolymers

    SciTech Connect (OSTI)

    Smith, Kendall A.; Lin, Yen -Hao; Mok, Jorge W.; Yager, Kevin G.; Strzalka, Joseph; Nie, Wanyi; Mohite, Aditya D.; Verduzco, Rafael

    2015-11-03

    All-conjugated block copolymers may be an effective route to self-assembled photovoltaic devices, but we lack basic information on the relationship between molecular characteristics and photovoltaic performance. Here, we synthesize a library of poly(3-hexylthiophene) (P3HT) block poly((9,9-dialkylfluorene)-2,7-diyl-alt-[4,7-bis(alkylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT) donor-block-acceptor all-conjugated block copolymers and carry out a comprehensive study of processing conditions, crystallinity, domain sizes, and side-chain structure on photovoltaic device performance. We find that all block copolymers studied exhibit an out-of-plane crystal orientation after deposition, and on thermal annealing at high temperatures the crystal orientation flips to an in-plane orientation. By varying processing conditions on polymer photovoltaic devices, we show that the crystal orientation has only a modest effect (15-20%) on photovoltaic performance. The addition of side-chains to the PFTBT block is found to decrease photovoltaic power conversion efficiencies by at least an order of magnitude. Through grazing-incidence X-ray measurements we find that the addition of side-chains to the PFTBT acceptor block results in weak segregation and small (< 10 nm) block copolymer self-assembled donor and acceptor domains. This work is the most comprehensive to date on all-conjugated block copolymer systems and suggests that photovoltaic performance of block copolymers depends strongly on the miscibility of donor and acceptor blocks, which impacts donor and acceptor domain sizes and purity. Lastly, strategies for improving the device performance of block copolymer photovoltaics should seek to increase segregation between donor and acceptor polymer domains.

  3. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    SciTech Connect (OSTI)

    Michael Duane Determan

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  4. Gel polymer electrolytes for batteries

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  5. Thermally-induced transition of lamellae orientation in block-copolymer films on ‘neutral’ nanoparticle-coated substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; Satija, Sushil K.; Page, Kirt A.; Patton, Derek L.; Jones, Ronald L.; Karin, Alamgir; Douglas, Jack F.

    2015-06-01

    Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmedmore » using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.« less

  6. Thermally-induced transition of lamellae orientation in block-copolymer films on ‘neutral’ nanoparticle-coated substrates

    SciTech Connect (OSTI)

    Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; Satija, Sushil K.; Page, Kirt A.; Patton, Derek L.; Jones, Ronald L.; Karin, Alamgir; Douglas, Jack F.

    2015-06-01

    Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmed using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.

  7. Nanostructured polymer membranes for proton conduction

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  8. Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed statement of work for the upcoming solicitation for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy.

  9. Process Controlled Multiscale Morphologies in Metal-containing Block Copolymer Thin Films

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL] [ORNL; Kilbey, II, S Michael [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL)

    2014-01-01

    Poly(styrene-block-ferrocenyldimethylsilane) (PS-b-PFS) is a metal-containing block copolymer that exhibits certain advantages as a mask for lithographic applications. These advantages include compatibility with a wide range of substrates, ease of control over domain morphologies and robust stability to etch plasma, which aid in the development of high-aspect-ratio patterns. An asymmetric cylinder-forming PS-b-PFS copolymer is subjected to different processing to manipulate the morphology of the phase-separated domains. Control of film structure and domain morphology is achieved by adjusting the film thickness, mode of annealing, and/or annealing time. Changing the process from thermal or solvent annealing to hybrid annealing (thermal and then solvent annealing in sequence) leads to the formation of mesoscale spherulitic and dendritic morphologies. In this communication, we show that reversing the order of the hybrid annealing (solvent annealing first and then thermal annealing) of relatively thick films (>100 nm) on homogeneously thick substrates develops disordered lamellar structure. Furthermore, the same processing applied on a substrate with a thin, mechanically flexible window in the center leads to the formation of sub-micron scale concentric ring patterns. Enhanced material mobility in the thick film during hybrid annealing along with dynamic rippling effects that may arise from the vibration of the thin window during spin casting are likely causes for these morphologies.

  10. Thermoreversible Changes in Aligned and Cross-Linked Block Copolymer Melts Studied by Two Color Depolarized Light Scattering

    SciTech Connect (OSTI)

    Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.; Garetz, Bruce A.; Balsara, Nitash P.

    2012-09-04

    A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversible aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.

  11. High performance radiation-grafted membranes and electrodes for polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Nezu, Shinji; Seko, Hideo; Gondo, Masaki; Ito, Naoki

    1996-12-31

    Polymer electrolyte fuel cells (PEFC) have attracted much attention for stationary and electric vehicle applications. Much progress has been made to improve their performance recently. However there are still several problems to overcome for commercialization. Among them, the cost of polymer electrolyte membranes seems to be rather critical, because a cost estimate of a practical fuel cell stack shows that the membrane cost must be reduced at least by two orders of magnitude based on current perfluorosulfonic acid membranes eg. Nafion{reg_sign}. Thus the development of new membrane materials is strongly desired. Styrene grafted tetrafluoroethylene-hexafluoropropylene copolymer (FEP) membranes have been studied for a fuel cell application by G. Scherer et al. These authors showed that membranes obtained by radiation grafting served as an alternative membrane for fuel cells although there were several problems to overcome in the future. These problems include shorter life time which was concluded to result from the decomposition of grafted polystyrene side chains. We report here the performance of our fuel cells which were fabricated from our radiation grafted membranes (IMRA MEMBRANE) and gas diffusion electrodes.

  12. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    SciTech Connect (OSTI)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  13. Trifluorostyrene containing compounds, and their use in polymer electrolyte membranes

    DOE Patents [OSTI]

    Choudhury, Biswajit; Roelofs, Mark Gerrit; Yang; Zhen-Yu

    2009-07-21

    A fluorinated ion exchange polymer is prepared by grafting a monomer onto a base polymer, wherein the grafting monomer is selected from the group consisting of structure 1a, 1b and mixture thereof; ##STR00001## wherein Y is selected from the group consisting of --R.sub.FSO.sub.2F, --R.sub.FSO.sub.3M, --R.sub.SO.sub.2NH.sub.2 and --R.sub.FSO.sub.2N(M)SO.sub.2R.sup.2.sub.F, where in M is hydrogen, an alkali cation or ammonium; and R.sub.F and R.sup.2.sub.F are perfluorinated or partially fluorinated, and may optionally include ether oxygens; and n is between 1 and 2 for 1a, or n is between 1 and 3 for 1b. These ion exchange polymers are useful is preparing catalyst coated membranes and membrane electrode assemblies for fuel cells.

  14. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    SciTech Connect (OSTI)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  15. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    SciTech Connect (OSTI)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  16. Electrolyte membrane, methods of manufacture thereof and articles comprising the same

    DOE Patents [OSTI]

    Tamaki, Ryo; Rice, Steven Thomas; Yeager, Gary William

    2012-06-12

    Disclosed herein is a method of forming an electrolyte membrane comprising forming a mixture; the mixture comprising a polyhydroxy compound, an aromatic polyhalide compound and an alkali metal hydroxide; disposing the mixture on a porous substrate; reacting the mixture to form a proton conductor; and crosslinking the proton conductor to form a cross-linked proton-conducting network. Disclosed herein too is an article comprising a porous substrate; and a crosslinked proton conductor disposed on the porous substrate.

  17. Electrolyte membrane, methods of manufacture thereof and articles comprising the same

    DOE Patents [OSTI]

    Tamaki, Ryo; Rice, Steven Thomas; Yeager, Gary William

    2013-11-05

    Disclosed herein is a method of forming an electrolyte membrane comprising forming a mixture; the mixture comprising a polyhydroxy compound, an aromatic polyhalide compound and an alkali metal hydroxide; disposing the mixture on a porous substrate; reacting the mixture to form a crosslinked proton conductor; and sulfonating the proton conductor. Disclosed herein too is an article comprising a porous substrate; and a sulfonated crosslinked proton conductor disposed within pores of the porous substrate.

  18. Manipulating Interfaces through Surface Confinement of Poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone), a Dually Reactive Block Copolymer

    SciTech Connect (OSTI)

    Lokitz, Bradley S; Wei, Jifeng; Hinestrosa Salazar, Juan P; Ivanov, Ilia N; Browning, James B; Ankner, John Francis; Kilbey, II, S Michael; Messman, Jamie M

    2012-01-01

    The assembly of dually reactive, well-defined diblock copolymers incorporating the chemoselective/functional monomer, 4,4-dimethyl-2-vinylazlactone (VDMA) and the surface-reactive monomer glycidyl methacrylate (GMA) is examined to understand how competition between surface attachment and microphase segregation influences interfacial structure. Reaction of the PGMA block with surface hydroxyl groups not only anchors the copolymer to the surface, but limits chain mobility, creating brush-like structures comprising PVDMA blocks, which contain reactive azlactone groups. The block copolymers are spin coated at various solution concentrations and annealed at elevated temperature to optimize film deposition to achieve a molecularly uniform layer. The thickness and structure of the polymer thin films are investigated by ellipsometry, infrared spectroscopy, and neutron reflectometry. The results show that deposition of PGMA-b-PVDMA provides a useful route to control film thickness while preserving azlactone groups that can be further modified with biotin-poly(ethylene glycol)amine to generate designer surfaces. The method described herein offers guidance for creating highly functional surfaces, films, or coatings through the use of dually reactive block copolymers and postpolymerization modification.

  19. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Patents [OSTI]

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  20. Defect reduction in epitaxial GaSb grown on nanopatterned GaAs substrates using full wafer block copolymer lithography

    SciTech Connect (OSTI)

    Jha, Smita; Liu, C.-C.; Nealey, P. F.; Kuech, T. F.; Kuan, T. S.; Babcock, S. E.; Park, J. H.; Mawst, L. J.

    2009-08-10

    Defect reduction in the large lattice mismatched system of GaSb on GaAs, {approx}7%, was accomplished using full wafer block copolymer (BCP) lithography. A self-assembled BCP mask layer was used to generate a hexagonal pattern of {approx}20 nm holes on {approx}40 nm centers in a 20 nm SiO{sub 2} layer. GaSb growth initially takes place selectively within these holes leading to a dense array of small, strain-relaxed epitaxial GaSb islands. The GaSb grown on the patterned SiO{sub 2} layer exhibits a reduction in the x-ray linewidth attributed to a decrease in the threading dislocation density when compared to blanket pseudomorphic film growth.

  1. Mesoporous Silica Films with Long-Range Order Prepared from Strongly Segregated Block Copolymer/Homopolymer Blend Templates

    SciTech Connect (OSTI)

    Tirumala, Vijay R.; Pai, Rajaram A.; Agarwal, Sumit; Testa, Jason J.; Bhatnagar, Gaurav; Romang, Alvin H.; Chandler, Curran; Gorman, Brian P.; Jones, Ronald L.; Lin, Eric K.; Watkins, James J.

    2008-06-30

    Well-ordered mesoporous silica films were prepared by infusion and selective condensation of Si alkoxides within preorganized block copolymer/homopolymer blend templates using supercritical CO{sub 2} as the delivery medium. The morphologies of the mesoporous silica films reflect significant improvements in the strength of segregation and long-range order of template blends of poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymers with selectively associating homopolymers such as poly(acrylic acid) or poly(4-hydroxystyrene) prior as compared to templates comprised of the neat copolymer. Control over film porosity, pore ordering, and morphology of the films is achieved through simple variations in the homopolymer concentration. The films were characterized using X-ray reflectivity, small-angle X-ray scattering, and transmission electron microscopy.

  2. Elucidating through-plane liquid water profile in a polymer electrolyte membrane fuel cell.

    SciTech Connect (OSTI)

    Wang, Yun; Chen, Ken Shuang

    2010-10-01

    In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented.

  3. High elastic modulus polymer electrolytes

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  4. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & Evaluate ...

  5. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  6. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    SciTech Connect (OSTI)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymer films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.

  7. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOE Patents [OSTI]

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  8. Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications

    SciTech Connect (OSTI)

    Mays, Jimmy W.

    2011-03-07

    The goal of this research project was to create and develop fuel cell membranes having high proton conductivity at high temperatures and high chemical and mechanical durability. Poly(1,3-cyclohexadiene) (PCHD) is of interest as an alternative polymer electrolyte membrane (PEM) material due to its ring-like structure which is expected to impart superior mechanical and thermal properties, and due to the fact that PCHD can readily be incorporated into a range of homopolymer and copolymer structures. PCHD can be aromatized, sulfonated, or fluorinated, allowing for tuning of key performance structure and properties. These factors include good proton transport, hydrophilicity, permeability (including fuel gas impermeability), good mechanical properties, morphology, thermal stability, crystallinity, and cost. The basic building block, 1,3-cyclohexadiene, is a hydrocarbon monomer that could be inexpensively produced on a commercial scale (pricing typical of other hydrocarbon monomers). Optimal material properties will result in novel low cost PEM membranes engineered for high conductivity at elevated temperatures and low relative humidities, as well as good performance and durability. The primary objectives of this project were: (1) To design, synthesize and characterize new non-Nafion PEM materials that conduct protons at low (25-50%) RH and at temperatures ranging from room temperature to 120 C; and (2) To achieve these objectives, a range of homopolymer and copolymer materials incorporating poly(cyclohexadiene) (PCHD) will be synthesized, derivatized, and characterized. These two objectives have been achieved. Sulfonated and crosslinked PCHD homopolymer membranes exhibit proton conductivities similar to Nafion in the mid-RH range, are superior to Nafion at higher RH, but are poorer than Nafion at RH < 50%. Thus to further improve proton conductivity, particularly at low RH, poly(ethylene glycol) (PEG) was incorporated into the membrane by blending and by

  9. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    SciTech Connect (OSTI)

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.

  10. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  11. Using Fuel Cell Membranes to Improve Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Membranes to Improve Power As part of its Sustainable Energy Program, Sandia National Laboratories works to find new ways to use fuel cell membranes to improve energy generation and storage. Work in this area explores elements of fuel cell membrane composition and behavior including synthesis of block copolymers for improved separation, cross-linked membranes for greater stability and resonance- stabilized ionic groups that are used in a number of other applications. While Sandia

  12. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate ...

  13. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    DOE Patents [OSTI]

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W

    2013-11-26

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  14. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    DOE Patents [OSTI]

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  15. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Hood, Zachary D.; Xia, Younan; Liang, Chengdu

    2016-04-25

    All-solid-state lithium batteries are attractive candidates for next-generation energy storage devices because of their anticipated high energy density and intrinsic safety. Owing to their excellent ionic conductivity and stability with metallic lithium anodes, nanostructured lithium thiophosphate solid electrolytes such as β-Li3PS4 have found use in the fabrication of all-solid lithium batteries for large-scale energy storage systems. However, current methods for preparing air-sensitive solid electrolyte membranes of lithium thiophosphates can only generate thick membranes that compromise the battery's gravimetric/volumetric energy density and thus its rate performance. To overcome this limitation, the solid electrolyte's thickness needs to be effectively decreased to achievemore » ideal energy density and enhanced rate performance. In this paper, we show that the evaporation-induced self-assembly (EISA) technique produces ultrathin membranes of a lithium thiophosphate solid electrolyte with controllable thicknesses between 8 and 50 μm while maintaining the high ionic conductivity of β-Li3PS4 and stability with metallic lithium anodes up to 5 V. Finally, it is clearly demonstrated that this facile EISA approach allows for the preparation of ultrathin lithium thiophosphate solid electrolyte membranes for all-solid-state batteries.« less

  16. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOE Patents [OSTI]

    Willit, James L.

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  17. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOE Patents [OSTI]

    Willit, James L.

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  18. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate materials & additives that enhance thermal & overcharge abuse ...

  19. Directed Spontaneous Assembly of Membrane Protein with Amphiphilic Block

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copolymers - Energy Innovation Portal Directed Spontaneous Assembly of Membrane Protein with Amphiphilic Block Copolymers Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention describes a method for using membrane proteins (MPs) in synthetic systems for biosensor design, high-throughput drug-screening, catalysis or energy harvesting. DescriptionCurrent efforts in the art face a challenge that practical applications involving liposomes have been

  20. Electrolytic purification of metals

    DOE Patents [OSTI]

    Bowman, Kenneth A.

    1980-01-01

    A method of electrolytically separating metal from impurities comprises providing the metal and impurities in a molten state in a container having a porous membrane therein, the membrane having a thickness in the range of about 0.01 to 0.1 inch, being capable of containing the molten metal in the container, and being permeable by a molten electrolyte. The metal is electrolytically transferred through the membrane to a cathode in the presence of the electrolyte for purposes of separating or removing impurities from the metal.

  1. Thickness dependent hierarchical meso/nano scale morphologies of a metal-containing block copolymer thin film induced by hybrid annealing and their pattern transfer abilities.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Center for Nanoscale Materials

    2009-01-01

    In this paper we describe dewetting phenomena in organic (polystyrene, PS)/inorganic (polyferrocenyldimethylsilane, PFS) block copolymer thin films. Mesoscale dendritic structures are induced when the spin-cast thin film of this polymer is subjected to so-called hybrid annealing, which involves both thermal and solvent annealing. We show that the development and arrangement of these mesoscale dendritic structures depends on the initial film thickness in addition to the annealing time. Importantly, there are two criteria that must be fulfilled to achieve these mesoscale morphologies: (i) the film has to be subjected to hybrid annealing, i.e. either only thermal or only solvent annealing does not produce any notable mesostructures and (ii) both PS and PFS blocks must be present during the thermal and solvent annealing procedures; if one of the blocks, for instance PS, is removed before annealing then there is no mesostructure. Various possible mechanisms for the formation of these structures are discussed and results indicate that the PFS block dominates the structure formation. We also observe a ring- or worm-like nanostructure which develops only when the film is subjected to hybrid annealing at a particular film thickness. Apart from these results, here we demonstrate that mesoscale structures can be successfully transferred onto underlying substrates.

  2. Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors

    SciTech Connect (OSTI)

    Hu, Michael Z.; Lai, Peng

    2015-01-01

    Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed to explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.

  3. Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Michael Z.; Lai, Peng

    2015-01-01

    Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed tomore » explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.« less

  4. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOE Patents [OSTI]

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  5. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    DOE Patents [OSTI]

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  6. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect (OSTI)

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  7. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  8. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING COST ANALYSIS OF 10 KW AND 25 KW DIRECT HYDROGEN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELL FOR MATERIAL HANDLING APPLICATIONS Prepared by: BATTELLE Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Prepared for: U.S. Department of Energy Golden Field Office Golden, CO DOE Contract No. DE-EE0005250 March 25, 2013 This report is a work prepared for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any

  9. POLYMER ELECTROLYTE MEMBRANE ELECTROLYZER OPERATION WITH VARYING INLET WATER FEED CONFIGURATIONS

    SciTech Connect (OSTI)

    Fox, E

    2008-09-12

    Proton Exchange Membrane (PEM) electrolysis is a potential alternative technology to crack water in specialty applications where a dry gas stream is needed, such as isotope production. One design proposal is to feed the cathode of the electrolyzer with vapor phase water. This feed configuration would allow isotopic water to be isolated on the cathode side of the electrolyzer and the isotope recovery system could be operated in a closed loop. Tests were performed to characterize the difference in the current-voltage behavior between a PEM electrolyzer operated with a cathode water vapor feed and with an anode liquid water feed. The cathode water vapor feed cell had a maximum limiting current density of 100 mA/cm2 at 70 C compared to a current density of 800 mA/cm2 for the anode liquid feed cell at 70 C. The limiting current densities for the cathode water vapor feed cell were approximately 3 times lower than predicted by a water mass transfer model. It is estimated that a cathode water vapor feed electrolyzer system will need to be between 8-14 times larger in active area or number of cells than an anode liquid feed system.

  10. Dynamics of Block Copolymer Nanocomposites

    SciTech Connect (OSTI)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 10?19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 C change in temperature.

  11. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  12. Reference electrode for electrolytic cell

    DOE Patents [OSTI]

    Kessie, R.W.

    1988-07-28

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  13. Multi-scale First-Principles Modeling of Three-Phase System of Polymer Electrolyte Membrane Fuel Cel

    SciTech Connect (OSTI)

    Brunello, Giuseppe; Choi, Ji; Harvey, David; Jang, Seung

    2012-07-01

    The three-phase system consisting of Nafion, graphite and platinum in the presence of water is studied using molecule dynamics simulation. The force fields describing the molecular interaction between the components in the system are developed to reproduce the energies calculated from density functional theory modeling. The configuration of such complicated three-phase system is predicted through MD simulations. The nanophase-segregation and transport properties are investigated from the equilibrium state. The coverage of the electrolyte on the platinum surface and the dissolution of oxygen are analyzed.

  14. Summary of Electrolytic Hydrogen Production: Milestone Completion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  15. Development of Advanced Electrolytes and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes and Electrolyte Additives Development of Advanced Electrolytes and Electrolyte Additives 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and ...

  16. Annealing induced interfacial layers in niobium-clad stainless steel developed as a bipolar plate material for polymer electrolyte membrane fuel cell stacks

    SciTech Connect (OSTI)

    Hong, Sung Tae; Weil, K. Scott; Choi, Jung-Pyung; Bae, In-Tae; Pan, Jwo

    2010-05-01

    Niobium (Nb)-clad 304L stainless steel (SS) manufactured by cold rolling is currently under consideration for use as a bipolar plate material in polymer electrolyte membrane fuel cell (PEMFC) stacks. To make the fabrication of bipolar plates using the Nb-clad SS feasible, annealing may be necessary for the Nb-clad SS to reduce the springback induced by cold rolling. However, the annealing can develop an interfacial layer between the Nb cladding and the SS core and the interfacial layer plays a key role in the failure of the Nb-clad SS as reported earlier [JPS our work]. In this investigation, the Nb-clad SS specimens in as-rolled condition were annealed at different combinations of temperature and time. Based on the results of scanning electron microscope (SEM) analysis, an annealing process map for the Nb-clad SS was obtained. The results of SEM analysis and Transmission Electron Microscope (TEM) analysis also suggest that different interfacial layers occurred based on the given annealing conditions.

  17. Electrolytic dissolver

    DOE Patents [OSTI]

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  18. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect (OSTI)

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  19. CNEEC - Electrolyte Gating by David Goldhaber-Gordon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte Gating

  20. Block Copolymer Separators for Lithium Batteries

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Cellulose nanocrystal-based composite electrolyte with superior...

    Office of Scientific and Technical Information (OSTI)

    Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes Prev Next Title: Cellulose nanocrystal-based composite ...

  2. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    SciTech Connect (OSTI)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

  3. New Solid Polymer Electrolytes Based on Phosphotungstic Acid | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Solid Polymer Electrolytes Based on Phosphotungstic Acid New Solid Polymer Electrolytes Based on Phosphotungstic Acid A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. linkous.pdf (2.43 MB) More Documents & Publications Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program Membrane Performance and Durability Overview for Automotive Fuel Cell Applications High Temperature Membrane Working Group,

  4. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect (OSTI)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance

  5. Solid electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  6. Novel electrolytes and electrolyte additives for PHEV applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel electrolytes and electrolyte additives for PHEV applications 2009 DOE Hydrogen ... More Documents & Publications Novel Electrolytes and Additives Novel Electrolytes and ...

  7. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  8. Resonance-Stabilized Anion Exchange Polymer Electrolytes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resonance-Stabilized Anion Exchange Polymer Electrolytes Resonance-Stabilized Anion Exchange Polymer Electrolytes Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 seung_lanl_kickoff.pdf (532.46 KB) More Documents & Publications 2011 Alkaline Membrane Fuel Cell Workshop Final Report 2016 Alkaline Membrane Fuel Cell Workshop 2011 Alkaline Membrane Fuel Cell

  9. Mixed Solvent Electrolyte Model

    Broader source: Energy.gov [DOE]

    With assistance from AMO, OLI Systems, Inc., developed the mixed-solvent electrolyte model, a comprehensive physical property package that can predict the properties of electrolyte systems ranging...

  10. Protic Salt Polymer Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protic Salt Polymer Membranes Protic Salt Polymer Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. More Documents & Publications Design and Development of High-Performance Polymer Fuel Cell Membranes High Temperature Membrane with HUmidification-Independent Cluster Structure Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications

  11. Elucidating through-plane liquid water profile in a polymer electrolyt...

    Office of Scientific and Technical Information (OSTI)

    liquid water profile in a polymer electrolyte membrane fuel cell. Citation Details In-Document Search Title: Elucidating through-plane liquid water profile in a ...

  12. Fuel cell having electrolyte

    DOE Patents [OSTI]

    Wright, Maynard K. (Bethel Park, PA)

    1989-01-01

    A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

  13. Poly(arylene)-based anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Bae, Chulsung

    2015-06-09

    Poly(arylene) electrolytes including copolymers lacking ether groups in the polymer may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  14. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik

    2013-09-10

    Solid anion exchange polymer electrolytes include chemical compounds comprising a polymer backbone with side chains that include guanidinium cations.

  15. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  16. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  17. Nanoporous polymer electrolyte

    DOE Patents [OSTI]

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  18. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  19. Nanoengineered membrane electrode assembly interface

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  20. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same

    DOE Patents [OSTI]

    Gerald, II; Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

    2011-02-15

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  1. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOE Patents [OSTI]

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2013-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  2. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOE Patents [OSTI]

    Iverson, Eric J; Pierpont, Daniel M; Yandrasits, Michael A; Hamrock, Steven J; Obradovich, Stephan J; Peterson, Donald G

    2014-01-28

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  3. Sulfonated polysulfone battery membrane for use in corrosive environments

    DOE Patents [OSTI]

    Arnold, Jr., Charles; Assink, Roger

    1987-01-01

    For batteries containing strong oxidizing electrolyte and a membrane separating two electrolyte solutions, e.g., a zinc ferricyanide battery, an improved membrane is provided comprising an oxidative resistant, conductive, ion-selective membrane fabricated from a catenated aromatic polymer having an absence of tertiary hydrogens, e.g., a sulfonated polysulfone.

  4. Ceramic electrolyte coating methods

    DOE Patents [OSTI]

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  5. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  6. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  7. Novel Electrolytes for Lithium ...

    Office of Scientific and Technical Information (OSTI)

    ... Solid State Lett. 2011, 14, A161- A164. Methylene Ethylene Carbonate: Novel Additive to ... Electrolytes, Brandon Knight, Daniel Seo, and Brett F. Fucht Manuscript in Preparation. ...

  8. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update UEC Corner

  9. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 ALSNews Vol. 305 Print Wednesday, 27 January 2010 00:00 Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and

  10. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update UEC Corner

  11. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update UEC Corner

  12. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update UEC Corner

  13. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update UEC Corner

  14. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update UEC Corner

  15. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update UEC Corner

  16. ALSNews Vol. 305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALSNews Vol. 305 Print Welcome to the new ALSNews layout! Give us your feedback here! In This Issue Director's Update Structures of Three Membrane Transport Proteins Yield Functional Insights Using Light to Control How X Rays Interact with Matter Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Solving Structures with Collaborative Crystallography A User Support Building Tour This Month's Polls Announcements: Science Café Friday 1/29 and Guest House Special Operations Update

  17. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K.; Chin, Der-Tau

    1989-01-01

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  18. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K.; Chin, Der-Tau

    1989-02-07

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  19. ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte membrane, which could be a key factor in realizing a hydrogen car. Current automotive ...

  20. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  1. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect (OSTI)

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  2. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S.; Shlomo, Golan; Anderson, Marc A.

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  3. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  4. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, Laszlo; Bloom, Ira D.

    1989-01-01

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured with high spatial resolution.

  5. Systems and methods for rebalancing redox flow battery electrolytes

    DOE Patents [OSTI]

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  6. Electrolytic cell stack with molten electrolyte migration control

    DOE Patents [OSTI]

    Kunz, H.R.; Guthrie, R.J.; Katz, M.

    1987-03-17

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate. 5 figs.

  7. Electrolytic cell stack with molten electrolyte migration control

    DOE Patents [OSTI]

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  8. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - ...

  9. Electrochemically stable electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  10. Electrochemically stable electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1999-01-01

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.

  11. Novel Electrolytes for Lithium ...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Brett L. Lucht Department of Chemistry University of Rhode Island 51 Lower College Rd. Kingston, RI 02881 Tel (401)874-5071 Fax (401) ...

  12. Reflectivity studies on adsorbed block copolymers under shear

    SciTech Connect (OSTI)

    Smith, G.S.; Wages, S.; Baker, S.M.; Toprakcioglu, C.; Hadziioannou, G.

    1994-12-01

    The authors report neutron reflectivity data on (poly)styrene-(poly)ethylene oxide (PS-PEO) diblock copolymers adsorbed onto quartz from the selective solvent cyclohexane (a non-solvent for PEO and a poor solvent for PS). The PEO ``anchor block`` adsorbs strongly to form a thin layer on the quartz substrate, while the deuterated PS chains dangle into the solvent. They find that under static conditions the density profile of the PS block in a poor solvent can be well described by a Schultz function which is indicative of a polymer ``mushroom.`` Furthermore, they have studied the same system under shear at shear rates from 0--400s{sup {minus}1}. They find that there is a dramatic increase in the thickness of the PS layer under shear in cyclohexane and that the relaxation time from the shear-on profile back to the static profile is on the order of several days.

  13. Tunable Encapsulation Structure of Block Copolymer Coated Single...

    Office of Scientific and Technical Information (OSTI)

    Authors: Han, Youngkyu 1 ; Ahn, Suk-Kyun 1 ; Zhang, Zhe 2 ; Smith, Gregory Scott 1 ; Do, Changwoo 1 + Show Author Affiliations Oak Ridge National Lab. (ORNL), Oak Ridge, ...

  14. Directed Assembly of Lamellae Forming Block Copolymer Thin Films...

    Office of Scientific and Technical Information (OSTI)

    Identifier: 1149628 Resource Type: Journal Article Resource Relation: Journal Name: Nano Lett.; Journal Volume: 14; Journal Issue: (1) ; 01, 2014 Research Org: Advanced Photon...

  15. Square Grains in Asymmetric Rod-Coil Block Copolymers (Journal...

    Office of Scientific and Technical Information (OSTI)

    Unlike the rounded grains that are well known to form in most soft materials, square grains of microphase-separated lamellae are observed in thin films of a rod-coil block ...

  16. Block Copolymer Cathode Binder to Simultaneously Transport Electronic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single material serves as cathode binder and conductor of electronic charge and ions Lower cost Semiconducting properties Simpler battery assembly process Lighter weight ...

  17. Performance of composite electrolyte SOFCs

    SciTech Connect (OSTI)

    Khandkar, A.C.; Elangovan, S.; Milliken, C.; Guruswamy, S.

    1994-12-31

    In an effort to minimize the ohmic losses in solid oxide fuel cells (SOFC), especially at lower operating temperatures around 800 C, an alternate electrolyte material such as ceria is often adopted. However, ceria based electrolytes develop mixed conduction, which lowers faradaic efficiency. To alleviate this effect, ceria electrolytes were coated with a thin layer zirconia using high temperature magnetron sputter deposition. This paper discusses the characterization of electrolytes and performance of single cells fabricated from these composite electrolytes.

  18. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  19. Multilayered composite proton exchange membrane and a process for manufacturing the same

    SciTech Connect (OSTI)

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  20. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    SciTech Connect (OSTI)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-04-24

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl{sub 2}O{sub 4})] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF{sub 6} in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl{sub 2}O{sub 4} exhibits high ionic conductivity of 2.80 × 10{sup −3} S/cm at room temperature. The charge-discharge capacity of Li/LiCoO{sub 2} coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl{sub 2}O{sub 4}] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

  1. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electrolytic orthoborate salts for lithium batteries Title: Electrolytic orthoborate salts for lithium batteries Orthoborate salts suitable for use as electrolytes in lithium ...

  2. High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids

    Broader source: Energy.gov [DOE]

    Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  3. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    SciTech Connect (OSTI)

    Kuan, Aaron T.; Szalay, Tamas; Lu, Bo; Xie, Ping; Golovchenko, Jene A.

    2015-05-18

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

  4. Li2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; Keum, Jong Kahk; Liang, Chengdu

    2016-01-22

    In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solidmore » electrolytes where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.« less

  5. Integrated photoelectrochemical cell and system having a liquid electrolyte

    SciTech Connect (OSTI)

    Deng, Xunming; Xu, Liwei

    2010-07-06

    An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

  6. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  7. Electrolytic production of praseodymium

    SciTech Connect (OSTI)

    Ghandehari, M.H.

    1986-12-09

    A method is described for preparing praseodymium metal by electrolyzing praseodymium oxide in a molten electrolyte comprising lithium fluoride and praseodymium fluoride, wherein an initial weight ratio of lithium fluoride to praseodymium fluoride is about 0.1 to about 0.4 and collecting the praseodymium metal at temperatures at or above the melting point of the metal.

  8. Spin coating of electrolytes

    DOE Patents [OSTI]

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  9. Electrolyte additive for lithium rechargeable organic electrolyte battery

    SciTech Connect (OSTI)

    Behl, W.K.; Chin, D.T.

    1988-02-08

    This invention relates in general to a rechargeable lithium organic electrolyte battery and, in particular, to an electrolyte additive for such a battery that provides overcharge protection. Rechargeable lithium-organic electrolyte batteries are being developed to provide low-cost, high-energy-density power sources for communication, night vision and various other Army applications. Typically, a rechargeable lithium organic electrolyte battery includes a lithium anode, a cathode including compounds such as titanium disulfide, molybdenum oxide, molybdenum sulfide, vanadium oxide, vanadium sulfide, chromium oxide, etc an electrolyte solution including an inorganic lithium salt such as lithium hexafluoroarsenate, lithium perchlorate, etc.

  10. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

    2011-03-08

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  11. High Temperature Membrane Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at

  12. 2006 DOE Hydrogen Program Dimensionally Stable High Temperature Membranes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dimensionally Stable High Temperature Membranes 2006 DOE Hydrogen Program Dimensionally Stable High Temperature Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. mittelsteadt.pdf (843.4 KB) More Documents & Publications High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 Measuring Physical Properties of Polymer Electrolyte Membranes Membrane Performance and Durability Overview for Automotive

  13. Electrolyte additive for improved battery performance

    DOE Patents [OSTI]

    Bellows, Richard J. (Hampton, NJ); Kantner, Edward (E. Brunswick, NJ)

    1989-04-04

    In one embodiment of the present invention, there is provided an electrochemical cell having a metal bromine couple. The cell includes an electrode structure on which to deposit the metal of the couple and a counterelectrode at which to generate bromine. A microporous membrane separates the electrode and counterelectrode. Importantly, the aqueous electrolyte comprises an aqueous metal bromide solution containing a water soluble bromine complexing agent capable of forming a water immiscible complex with bromine and an additive capable of decreasing the wettability of the microporous separators employed in such cells by such water immiscible bromine complexes.

  14. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  15. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  16. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  17. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  18. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  19. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  20. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  1. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  2. Fuel cell membrane humidification

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  3. Ceramic electrolyte coating and methods

    DOE Patents [OSTI]

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  4. Glass electrolyte composition

    DOE Patents [OSTI]

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  5. Glass electrolyte composition

    DOE Patents [OSTI]

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  6. Electrolytic oxide reduction system

    SciTech Connect (OSTI)

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  7. Fe/V Redox Flow Battery Electrolyte Investigation and Optimization

    SciTech Connect (OSTI)

    Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

    2013-05-01

    Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

  8. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOE Patents [OSTI]

    Li, Jian; Farooque, Mohammad; Yuh, Chao-Yi

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  9. Electrolytes - Technology review

    SciTech Connect (OSTI)

    Meutzner, Falk; Urea de Vivanco, Mateo

    2014-06-16

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

  10. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  11. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  12. Electrolyte treatment for aluminum reduction

    DOE Patents [OSTI]

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  13. Electrolytic decontamination of conductive materials

    SciTech Connect (OSTI)

    Nelson, T.O.; Campbell, G.M.; Parker, J.L.; Getty, R.H.; Hergert, T.R.; Lindahl, K.A.; Peppers, L.G.

    1993-10-01

    Using the electrolytic method, the authors have demonstrated removal of Pu from contaminated conductive material. At EG&G Rocky Flats, they electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging > 1,000,000 counts per minute (cpm) down to levels ranging from 1,500 to < 250 cpm with the electrolytic method. More recently, the electrolytic work has continued at LANL as a joint project with EG&G. Impressively, electrolytic decontamination experiments on removal of Pu from oralloy coupons have shown decreases in swipable contamination that initially ranged from 500,000 to 1,500,000 disintegrations per minute (dpm) down to 0--2 dpm.

  14. Nanoscale Investigation of Solid Electrolyte Interphase Inhibition...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Investigation of Solid Electrolyte Interphase Inhibition on Li-ion Battery MnO ... Citation Details In-Document Search Title: Nanoscale Investigation of Solid Electrolyte ...

  15. Fuel cell membranes and crossover prevention

    DOE Patents [OSTI]

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  16. Electrolyte paste for molten carbonate fuel cells

    DOE Patents [OSTI]

    Bregoli, Lawrance J.; Pearson, Mark L.

    1995-01-01

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  17. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  18. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  19. Electrolyte composition for electrochemical cell

    DOE Patents [OSTI]

    Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.

    1979-01-01

    A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.

  20. Electrolyte Genome Reveals New Instability Mechanism in Mg Electrolytes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research February 10, 2015, Research Highlights Electrolyte Genome Reveals New Instability Mechanism in Mg Electrolytes (Top) The Mg salt and solvent combinations simulated for solvation shell structures and dynamics (Bottom) The TFSI- decomposition mechanism triggered by partial reduction of Mg2+ ->Mg+. This mechanism consumes anion, disrupts the deposition of Mg0 on the anode and may deposit anion fragments on the anode. Scientific Achievement Simulations

  1. Non-aqueous electrolytes for electrochemical cells

    DOE Patents [OSTI]

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  2. Electrolyte salts for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  3. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  4. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  5. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  6. High cation transport polymer electrolyte

    DOE Patents [OSTI]

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  7. 2003 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High Temperature Membrane Working Group Meeting Archives 2003 High Temperature Membrane Working Group Meeting Archives View 2003 meeting presentations from the High Temperature Membrane Working Group. October 17, 2003, Orlando, Florida High T Membrane Development at Foster-Miller, Bindu Nair, Foster-Miller Highly Sulfonated Polymers for High Temperature Applications, Morton Litt, Case Western Reserve University Assessing Transport in New Electrolytes, Bryan Pivovar, LANL

  8. 2006 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6 High Temperature Membrane Working Group Meeting Archives 2006 High Temperature Membrane Working Group Meeting Archives View 2006 meeting presentations from the High Temperature Membrane Working Group. September 14, 2006, San Francisco, California Agenda Minutes Discussion Overview, James Fenton, University of Central Florida Membrane Performance and Durability Overview for Automotive Fuel Cell Applications, Tom Greszler, GM Measuring Physical Properties of Polymer Electrolyte

  9. Membrane stabilizer

    DOE Patents [OSTI]

    Mingenbach, William A.

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  10. Functional electrolyte for lithium-ion batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Functional electrolyte for lithium-ion batteries Title: Functional electrolyte for lithium-ion batteries Functional electrolyte solvents include ...

  11. Gel polymer electrolytes for batteries (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Gel polymer electrolytes for batteries Citation Details In-Document Search Title: Gel polymer electrolytes for batteries Nanostructured gel polymer electrolytes that have both high ...

  12. Electrolyte Genome Could Be Battery Game-Changer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte Genome Could Be Battery Game-Changer Electrolyte Genome Could Be Battery Game-Changer The Materials Project screens molecules to accelerate electrolyte discovery April ...

  13. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes - Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of ...

  14. Molecular dynamics simulation and ab intio studies of electrolytes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High Voltage Electrolytes for Li-ion Batteries Molecular Dynamics Simulation Studies of Electrolytes and ElectrolyteElectrode Interfaces

  15. Performance of direct methanol polymer electrolyte fuel cell

    SciTech Connect (OSTI)

    Shin, Dong Ryul; Jung, Doo Hwan; Lee, Chang Hyeong; Chun, Young Gab

    1996-12-31

    Direct methanol fuel cells (DMFC) using polymer electrolyte membrane are promising candidate for application of portable power sources and transportation applications because they do not require any fuel processing equipment and can be operated at low temperature of 60{degrees}C - 130{degrees}C. Elimination of the fuel processor results in simpler design, higher operation reliability, lower weight volume, and lower capital and operating cost. However, methanol as a fuel is relatively electrochemical inert, so that kinetics of the methanol oxidation is too slow. Platinum and Pt-based binary alloy electrodes have been extensively studied for methanol electro-oxidation in acid electrolyte at ambient and elevated temperatures. Particularly, unsupported carbon Pt-Ru catalyst was found to be superior to the anode of DMFC using a proton exchange membrane electrolyte (Nafion). The objective of this study is to develop the high performance DNTC. This paper summarizes the results from half cell and single cell tests, which focus on the electrode manufacturing process, catalyst selection, and operating conditions of single cell such as methanol concentration, temperature and pressure.

  16. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect (OSTI)

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  17. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect (OSTI)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  18. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  19. Separations by supported liquid membrane cascades

    DOE Patents [OSTI]

    Danesi, Pier R.

    1986-01-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.

  20. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  1. ELECTROLYTIC SEPARATION PROCESS AND APPARATUS

    DOE Patents [OSTI]

    McLain, M.E. Jr.; Roberts, M.W.

    1962-03-01

    A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)

  2. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  3. Rechargeable solid polymer electrolyte battery cell

    DOE Patents [OSTI]

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  4. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Potential Impacts to Utilities Electrolytic Hydrogen Production Workshop February 28, 2014 Frank Novachek Director, Corporate Planning 2 Electrolytic Hydrogen Production Potential Impacts - Electric System * Reliability * Capacity * Regulation * Generation Resources * On/Off Peak * Dispatchability Renewables Integration System Operations Electric Load Hydrogen Production * Ramp Control * Reserves * Plant Cycling 3 Unique Opportunities - Electric  Increased

  5. Zinc-bromine batteries with improved electrolyte

    SciTech Connect (OSTI)

    Kantner, E.

    1985-01-01

    The coulombic efficiency of aqueous zinc bromine batteries can be increased if, in addition to the bromide ions required to be present in the electrolyte to charge the cell to rated capacity, chloride ions are added to the electrolyte in amounts sufficient to reduce the amount of free bromine present in the electrolyte during operation of the cell.

  6. Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells

    SciTech Connect (OSTI)

    Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; Ye, Siyu; More, Karren Leslie

    2015-12-03

    Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of well dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.

  7. Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; Ye, Siyu; More, Karren Leslie

    2015-12-03

    Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of wellmore » dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.« less

  8. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  9. Membrane stabilizer

    DOE Patents [OSTI]

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  10. Cold-start characteristics of polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Mishler, Jeff; Mukundan, Rangachary; Wang, Yun; Mishler, Jeff; Mukherjee, Partha P

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  11. Electrolyte measurement device and measurement procedure

    DOE Patents [OSTI]

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  12. Polymeric electrolytes for ambient temperature lithium batteries

    SciTech Connect (OSTI)

    Farrington, G.C. . Dept. of Materials Science and Engineering)

    1991-07-01

    A new type of highly conductive Li{sup +} polymer electrolyte, referred to as the Innovision polymer electrolyte, is completely amorphous at room temperature and has an ionic conductivity in the range of 10{sup {minus}3} S/cm. This report discusses the electrochemical characteristics (lithium oxidation and reduction), conductivity, and physical properties of Innovision electrolytes containing various dissolved salts. These electrolytes are particularly interesting since they appear to have some of the highest room-temperature lithium ion conductivities yet observed among polymer electrolytes. 13 refs. 11 figs., 2 tabs.

  13. Fuel cell with electrolyte feed system

    DOE Patents [OSTI]

    Feigenbaum, Haim (Highland Park, NJ)

    1984-01-01

    A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

  14. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect (OSTI)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  15. Anion Solvation in Carbonate Electrolytes

    SciTech Connect (OSTI)

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  16. Composite electrode/electrolyte structure

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  17. Monolithic solid electrolyte oxygen pump

    DOE Patents [OSTI]

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  18. On a Pioneering Polymer Electrolyte Fuel Cell Model

    SciTech Connect (OSTI)

    Weber, Adam Z.; Meyers, Jeremy P.

    2010-07-07

    "Polymer Electrolyte Fuel Cell Model" is a seminal work that continues to form the basis for modern modeling efforts, especially models concerning the membrane and its behavior at the continuum level. The paper is complete with experimental data, modeling equations, model validation, and optimization scenarios. While the treatment of the underlying phenomena is limited to isothermal, single-phase conditions, and one-dimensional flow, it represents the key interactions within the membrane at the center of the PEFC. It focuses on analyzing the water balance within the cell and clearly demonstrates the complex interactions of water diffusion and electro-osmotic flux. Cell-level and system-level water balance are key to the development of efficient PEFCs going forward, particularly as researchers address the need to simplify humidification and recycle configurations while increasing the operating temperature of the stack to minimize radiator requirements.

  19. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  20. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced ...

  1. Metal-gas cell with electrolyte reservoir

    SciTech Connect (OSTI)

    Miller, L.E.; Carr, D.D.

    1984-10-16

    A metal-gas electrochemical cell is disclosed wherein electrolyte is progressively supplied from a reservoir into the electrode or cell stack as needed, so as to maintain each stack component with adequate electrolyte, as the plates ''grow'' and absorb electrolyte with repeated cycling. The reservoir preferably is a compressible bladder positioned between on end of the plate stack and a retaining plate. As the plate stack ''grows'' with repeated cycling, the bladder is slowly compressed, forcing electrolyte from the bladder through an electrolyte distribution tube located within the plate stack. One end of the electrolyte distribution tube is fixed to an end plate of the plate stack and the second end of the distribution tube may be connected to a Belleville washer or other spring which acts through the distribution tube to compress the plate stack. The elasticity of the spring permits the stack to expand as the electrodes grow.

  2. Fuel cell assembly with electrolyte transport

    DOE Patents [OSTI]

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  3. Electrolytic cell. [For separating anolyte and catholyte

    DOE Patents [OSTI]

    Bullock, J.S.; Hale, B.D.

    1984-09-14

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  4. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Workshop Electrolytic Hydrogen Production Workshop The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office (FCTO) held the Electrolytic Hydrogen Production Workshop on February 27-28, 2014, at The National Renewable Energy Laboratory (NREL) in Golden, Colorado, to discuss and share information on the research, development, and demonstration (RD&D) needs for enabling low-cost, effective hydrogen

  5. Polymeric electrolytes based on hydrosilyation reactions

    DOE Patents [OSTI]

    Kerr, John Borland; Wang, Shanger; Hou, Jun; Sloop, Steven Edward; Han, Yong Bong; Liu, Gao

    2006-09-05

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  6. Solid-oxide fuel cell electrolyte

    DOE Patents [OSTI]

    Bloom, Ira D.; Hash, Mark C.; Krumpelt, Michael

    1993-01-01

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  7. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  8. Basic energy properties of electrolytic solutions database. ...

    Office of Scientific and Technical Information (OSTI)

    Basic energy properties of electrolytic solutions database. Viscosity, thermal conductivity, density, enthalpy Citation Details In-Document Search Title: Basic energy properties ...

  9. Electrolyte Solvation and Ionic Association. V. Acetonitrile...

    Office of Scientific and Technical Information (OSTI)

    mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity ...

  10. Coordination Chemistry in Magnesium Battery Electrolytes: How...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2014, Research Highlights Coordination Chemistry in Magnesium Battery Electrolytes: How Ligands Affect Their Performance (Top) Schematic illustration of the solution ...

  11. Rebalancing electrolytes in redox flow battery systems

    DOE Patents [OSTI]

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  12. Lithium Ion Conducting Ionic Electrolytes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Lithium Ion Conducting ... electrolytes which combine lithium salts with high molecular weight anionic polymers. ...

  13. Electrochemical cell with high conductivity glass electrolyte

    DOE Patents [OSTI]

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1986-04-17

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  14. Electrochemical cell with high conductivity glass electrolyte

    DOE Patents [OSTI]

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1987-04-21

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

  15. Electrochemical cell with high conductivity glass electrolyte

    DOE Patents [OSTI]

    Nelson, Paul A.; Bloom, Ira D.; Roche, Michael F.

    1987-01-01

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  16. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Randy Petri, Versa Power Systems PDF icon Renewables and Grid Integration, Kevin Harrison, NREL PDF icon Electrolytic Hydrogen Production: Potential Impacts to Utilities, ...

  17. Electrolytic fabrication of atomic clock cells

    SciTech Connect (OSTI)

    Gong, F.; Jau, Y.-Y.; Jensen, K.; Happer, W.

    2006-07-15

    We describe an electrolytic method to release controlled amounts of free alkali metal into miniature cells in a silicon wafer with anodically bonded glass windows.

  18. Immobilized fluid membranes for gas separation

    DOE Patents [OSTI]

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  19. Interfacial behavior of polymer electrolytes

    SciTech Connect (OSTI)

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  20. High performance electrolytes for MCFC

    DOE Patents [OSTI]

    Kaun, T.D.; Roche, M.F.

    1999-08-24

    A carbonate electrolyte of the Li/Na or CaBaLiNa system is described. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca{sub 2}CO{sub 3} and BaCO{sub 3}, and preferably of equimolar amounts. The presence of both Ca and BaCO{sub 3} enables lower temperature fuel cell operation. 15 figs.

  1. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  2. High performance electrolytes for MCFC

    DOE Patents [OSTI]

    Kaun, Thomas D.; Roche, Michael F.

    1999-01-01

    A carbonate electrolyte of the Li/Na or CaBaLiNa system. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca.sub.2 CO.sub.3 and BaCO.sub.3, and preferably of equimolar amounts. The presence of both Ca and BaCO.sub.3 enables lower temperature fuel cell operation.

  3. Zinc deposition in acid electrolytes

    SciTech Connect (OSTI)

    McBreen, J.; Gannon, E.

    1981-01-01

    In the past decade, two aqueous zinc/halogen batteries, the zinc/chlorine, and the zinc/bromine systems, have been considered for load-leveling and vehicular applications. Even though considerable progress has been made in engineering these batteries, several problems related to the zinc electrode have yet to be solved. These are related to the growth of dendritic zinc and a maldistribution of the zinc deposit that can occur during cycling. Both problems are exacerbated by recharge of the battery after partial discharge of the zinc deposit. A survey of the literature indicates that a more desireable zinc morphology can be achieved by use of inorganic additives, fluorinated surfactants, and A-C modulation of the charging current. In this investigation, the deposition of zinc from zinc bromide and zinc chloride electrolytes was investigated under conditions that precluded dendrite growth. The techniques used were cyclic voltammetry, the potential step technique and scanning electron microscopy. The variables investigated were the substrate (zinc and dense graphite), electrolyte pH, inorganic additives (Pb/sup + +/ and Bi/sup 3 +/) and A-V modulation of the charging potential by superimposed square waves.

  4. Multicomponent membranes

    DOE Patents [OSTI]

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  5. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  6. Toward Cost-Effective Polymer Electrolyte Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward Cost-Effective Polymer Electrolyte Fuel Cells Toward Cost-Effective Polymer Electrolyte Fuel ... finding the next generation of fuel cell technology that is low cost, long ...

  7. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  8. Energy storage devices having anodes containing Mg and electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Energy storage devices having anodes containing Mg and electrolytes utilized therein Title: Energy storage devices having anodes containing Mg and electrolytes utilized therein For ...

  9. Sichuan Minjiang Electrolyte Management Hydro Power Co Ltd |...

    Open Energy Info (EERE)

    Electrolyte Management Hydro Power Co Ltd Jump to: navigation, search Name: Sichuan Minjiang Electrolyte Management Hydro Power Co., Ltd. Place: Mianyang, Sichuan Province, China...

  10. Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation ...

  11. High Temperature/Low Humidity Polymer Electrolytes Derived from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High TemperatureLow Humidity Polymer Electrolytes Derived from Ionic Liquids High TemperatureLow Humidity Polymer Electrolytes Derived from Ionic Liquids Presentation on High ...

  12. Towards predicting the voltage drop between electrode and electrolyte...

    Office of Scientific and Technical Information (OSTI)

    drop between electrode and electrolyte in lithium ion batteries. Citation Details In-Document Search Title: Towards predicting the voltage drop between electrode and electrolyte ...

  13. Novel Electrolytes for Lithium Ion Batteries (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Technical Report: Novel Electrolytes for Lithium Ion Batteries Citation Details In-Document Search Title: Novel Electrolytes for Lithium Ion ...

  14. Organosilicon-Based Electrolytes for Long-Life Lithium Primary...

    Office of Scientific and Technical Information (OSTI)

    Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries Citation Details In-Document Search Title: Organosilicon-Based Electrolytes for Long-Life Lithium Primary ...

  15. High elastic modulus polymer electrolytes suitable for preventing...

    Office of Scientific and Technical Information (OSTI)

    electrolytes suitable for preventing thermal runaway in lithium batteries Citation Details In-Document Search Title: High elastic modulus polymer electrolytes suitable for ...

  16. Process of making electrolyte structure for molten carbonate fuel cells

    DOE Patents [OSTI]

    Arendt, R.H.; Curran, M.J.

    1980-08-05

    An electrolyte structure is produced by forming matrix material powder into a blank at room temperature and impregnating the resulting matrix blank with molten electrolyte.

  17. Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered by In-Situ Scanning ... to evaluate stability and degradation in battery electrolytes Developed a rapid method ...

  18. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Broader source: Energy.gov (indexed) [DOE]

    Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes ...

  19. Non-aqueous electrolyte for lithium-ion battery

    SciTech Connect (OSTI)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-12-22

    An electrolyte including an alkali metal salt; a polar aprotic solvent; and a triazinane trione; wherein the electrolyte is substantially non-aqueous.

  20. Process Development and Scale up of Advanced Electrolyte Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced ... More Documents & Publications Process Development and Scale up of Advanced Electrolyte ...

  1. Non-aqueous electrolytes for lithium ion batteries (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte. Inventors: Chen, Zonghai ; Amine, Khalil Issue Date: 2015-11-12 ...

  2. Methods and energy storage devices utilizing electrolytes having...

    Office of Scientific and Technical Information (OSTI)

    Methods and energy storage devices utilizing electrolytes having surface-smoothing additives Title: Methods and energy storage devices utilizing electrolytes having ...

  3. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011

  4. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2012

  5. Lithium Salt-doped, Gelled Polymer Electrolyte with a Nanoporous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Lithium Salt-doped, Gelled Polymer Electrolyte with a ... electrolyte material for use in lithium ion batteries that exhibits better ion ...

  6. Key Issues Regarding Electrolytes at Interfacial Regions (subtask...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Development of Electrolytes for Lithium-ion Batteries Novel Compounds for Enhancing Electrolyte ...

  7. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  8. Design and synthesis of guest-host nanostructures to enhance ionic conductivity across nanocomposite membranes

    DOE Patents [OSTI]

    Hu, Michael Z. [Knoxville, TN; Kosacki, Igor [Oak Ridge, TN

    2010-01-05

    An ion conducting membrane has a matrix including an ordered array of hollow channels and a nanocrystalline electrolyte contained within at least some or all of the channels. The channels have opposed open ends, and a channel width of 1000 nanometers or less, preferably 60 nanometers or less, and most preferably 10 nanometers or less. The channels may be aligned perpendicular to the matrix surface, and the length of the channels may be 10 nanometers to 1000 micrometers. The electrolyte has grain sizes of 100 nanometers or less, and preferably grain sizes of 1 to 50 nanometers. The electrolyte may include grains with a part of the grain boundaries aligned with inner walls of the channels to form a straight oriented grain-wall interface or the electrolyte may be a single crystal. In one form, the electrolyte conducts oxygen ions, the matrix is silica, and the electrolyte is yttrium doped zirconia.

  9. Electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.

    1997-01-28

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

  10. Electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, John B.; Dudney, Nancy J.

    1997-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  11. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2008-08-31

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  12. Aqua-vanadyl ion interaction with Nafion membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Thevuthasan, Suntharampillai; Sprenkle, Vince L.; Wang, Wei

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  13. Aqua-vanadyl ion interaction with Nafion® membranes

    SciTech Connect (OSTI)

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Thevuthasan, Suntharampillai; Sprenkle, Vince L.; Wang, Wei

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  14. Apparatus for the electrolytic production of metals

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  15. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  16. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  17. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    array of morphologies and properties that make them candidates for applications in biomaterials, fuel cells and batteries, magnetic storage, and more. So far, so good, but the...

  18. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now, an international team from the United States, Korea, and Japan has succeeded in ... Research conducted by: C. Wang and A. Hexemer (ALS), D.H. Lee (Dankook University, Korea), ...

  19. Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study

    SciTech Connect (OSTI)

    Rissanou, Anastassia N.; Tzeli, Despoina S.; Anastasiadis, Spiros H.; Bitsanis, Ioannis A.

    2014-05-28

    Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (A{sub n}B{sub n}){sub m} consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 5005000 units) and very differing energetic conditions for the two blocks (very goodalmost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks.

  20. Microstructured block copolymer surfaces for control of microbe capture and aggregation

    SciTech Connect (OSTI)

    Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.; Lokitz, Bradley S; Doktycz, Mitchel John; Retterer, Scott T

    2014-01-01

    The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates captured was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

  1. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Korea), M.I. Kim (University of California, Berkeley), W. Zhao and T.P. Russell (University of Massachusetts, Amherst), H. Hasegawa (Kyoto University, Japan), and H. Ade (North ...

  2. The effect of block copolymer on the phase behavior of a polymer blend

    SciTech Connect (OSTI)

    Sung, L.; Jackson, C.L.; Hess, D.

    1995-12-31

    The effect of an interfacial modifier on the phase behavior of a blend has been investigated using time-resolved fight scattering and small angle neutron scattering techniques. A low molecular weight binary blend of deuterated polystyrene/polybutadiene (PSD/PB) with PSD-PB diblock copolymer as the added interfacial modifier was studied. We observed that the critical temperature of the blend decreases with increasing copolymer content and the kinetics of the phase separation (via spinodal decomposition) slows down in the presence of the copolymer. The transition from early to late stage spinodal decomposition in a near critical mixture of the binary blend was analyzed and compared to available theories. In addition, transmission electron microscopy and optical microscopy studies were used to examine the morphology of the system under various temperature quench conditions.

  3. Communication: Nanoscale ion fluctuations in Nafion polymer electrolyte

    SciTech Connect (OSTI)

    Rumberger, Brant; Bennett, Mackenzie; Zhang, Jingyun; Israeloff, N. E.; Dura, J. A.

    2014-08-21

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.

  4. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOE Patents [OSTI]

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1998-10-20

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

  5. The Electrolyte Genome Project - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte Genome Project Traditional chemistry relies on intuition and experience to select a few materials that might work well for new electrolytes. The Electrolyte Genome streamlines this process by evaluating thousands of materials by simulation on the computer and choosing the most promising few for synthesis in the laboratory. Download Electrolyte Genome

  6. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Zhang, Sheng-Shui (Tucson, AZ); Xu, Kang (Tempe, AZ)

    1998-01-01

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents.

  7. Intermediate Temperature SOFC Operation Using Lanthanum Gallate Electrolyte

    SciTech Connect (OSTI)

    Elangovan, S.; Balagopal, S. Hartvigsen, J.; Tipmer, M.; Larsen, D.

    2005-01-27

    This presentation discusses intermediate temperature SOFC operation using lanthanum gallate electrolyte.

  8. Self-doped molecular composite battery electrolytes

    DOE Patents [OSTI]

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  9. Solid electrolyte material manufacturable by polymer processing...

    Office of Scientific and Technical Information (OSTI)

    Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher ...

  10. Surfactant addition to phosphoric acid electrolyte

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Kunkle, Richard P. (Irwin, PA)

    1987-01-01

    A phosphoric acid fuel cell having an improved electrolyte comprising concentrated H.sub.3 PO.sub.4 and at least 0.5 wt. percent lauryl dimethyl amine.

  11. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    SciTech Connect (OSTI)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  12. Fuel cell with electrolyte matrix assembly

    DOE Patents [OSTI]

    Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.

    1988-01-01

    This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.

  13. Electrolyte for zinc bromine storage batteries

    SciTech Connect (OSTI)

    Ando, Y.; Ochiai, T.

    1985-04-09

    A negative electrolyte for electrolyte circulation-type storage batteries has a composition basically comprising zinc bromide as an active material and this active material is mixed with specified amounts of quaternary ammonium bromides of heterocyclic compounds such as morpholine, pyridine and pyrrolidine or ammonia as a bromine complexing agent and a dendrite inhibitor with or without specified amounts of Sn/sup 2 +/ and Pb/sup 2 +/.

  14. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  15. Nonaqueous electrolyte for electrical storage devices

    DOE Patents [OSTI]

    McEwen, Alan B. (Melrose, MA); Yair, Ein-Eli (Waltham, MA)

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  16. Electrolytic recovery of reactor metal fuel

    DOE Patents [OSTI]

    Miller, W.E.; Tomczuk, Z.

    1994-09-20

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

  17. Electrolytic recovery of reactor metal fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

    1994-01-01

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  18. Electrolytic recovery of reactor metal fuel

    DOE Patents [OSTI]

    Miller, W.E.; Tomczuk, Z.

    1993-02-03

    This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  19. Electrolyte Genome Could Be Battery Game-Changer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte Genome Could Be Battery Game-Changer Electrolyte Genome Could Be Battery Game-Changer The Materials Project screens molecules to accelerate electrolyte discovery April 15, 2015 Julie Chao, JHChao@lbl.gov, +1 510 486 6491 Persson Electrolyte Genome 628x465 Berkeley Lab scientist Kristin Persson (right) and her Electrolyte Genome team, Nav Nidhi Rajput and Xiaohui Qu. (Roy Kaltschmidt, Berkeley Lab) A new breakthrough battery-one that has significantly higher energy, lasts longer, and

  20. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research July 11, 2016, Research Highlights Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries Precipitation-dissolution Li-S chemistry achieved by sparingly solvating electrolyte and various electrolyte design concepts Scientific Achievement This work presents the promising new concepts of using sparingly solvating electrolyte to enable Li-S battery operation at lean electrolyte condition, as well as the design rules

  1. EFFECT OF COMPRESSION ON CONDUCTIVITY AND MORPHOLOGY OF PFSA MEMBRANES

    SciTech Connect (OSTI)

    Kusoglu, Ahmet; Weber, Adam; Jiang, Ruichin; Gittleman, Craig

    2011-07-20

    Polymer-Electrolyte-Fuel-Cells (PEFCs) are promising candidates for powering vehicles and portable devices using renewable-energy sources. The core of a PEFC is the solid electrolyte membrane that conducts protons from anode to cathode, where water is generated. The conductivity of the membrane, however, depends on the water content of the membrane, which is strongly related to the cell operating conditions. The membrane and other cell components are typically compressed to minimize various contact resistances. Moreover, the swelling of a somewhat constrained membrane in the cell due to the humidity changes generates additional compressive stresses in the membrane. These external stresses are balanced by the internal swelling pressure of the membrane and change the swelling equilibrium. It was shown using a fuel-cell setup that compression could reduce the water content of the membrane or alter the cell resistance. Nevertheless, the effect of compression on the membrane’s transport properties is yet to be understood, as well as its implications in the structure-functions relationships of the membrane. We previously studied, both experimentally and theoretically, how compression affects the water content of the membrane.6 However, more information is required the gain a fundamental understanding of the compression effects. In this talk, we present the results of our investigation on the in-situ conductivity of the membrane as a function of humidity and cell compression pressure. Moreover, to better understand the morphology of compressed membrane, small-angle X-ray-scattering (SAXS) experiments were performed. The conductivity data is then analyzed by investigating the size of the water domains of the compressed membrane determined from the SAXS measurements.

  2. Active membrane having uniform physico-chemically functionalized ion channels

    DOE Patents [OSTI]

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  3. Membranes > Batteries & Fuel Cells > Research > The Energy Materials Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Cornell Batteries & Fuel Cells In This Section Battery Anodes Battery Cathodes Depletion Aggregation Membranes Membranes Fig. 1 PEM Fuel Cell Fuel cells are highly efficient devices that convert the chemical energy stored in a fuel directly intoelectricity. Within a fuel cell, the polymer electrolyte membrane (PEM) serves as the conducting interface between the anode and cathode, transporting the ions (Figure 1). As a result, the PEM is a central, and often performance-limiting,

  4. Membrane-electrode assemblies for electrochemical cells

    DOE Patents [OSTI]

    Swathirajan, Sundararajan; Mikhail, Youssef M.

    1993-01-01

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  5. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect (OSTI)

    Dr. Brian Dixon

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  6. Combination for electrolytic reduction of alumina

    DOE Patents [OSTI]

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  7. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  9. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  10. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOE Patents [OSTI]

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  11. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  12. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  13. Method of fabrication of electrodes and electrolytes

    DOE Patents [OSTI]

    Jankowski, Alan F.; Morse, Jeffrey D.

    2004-01-06

    Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.

  14. Solid electrolytes strengthened by metal dispersions

    DOE Patents [OSTI]

    Lauf, R.J.; Morgan, C.S.

    1981-10-05

    An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

  15. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  16. Solid electrolytes strengthened by metal dispersions

    DOE Patents [OSTI]

    Lauf, Robert J.; Morgan, Chester S.

    1983-01-01

    An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

  17. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect (OSTI)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  18. MultiLayer solid electrolyte for lithium thin film batteries...

    Office of Scientific and Technical Information (OSTI)

    Patent: MultiLayer solid electrolyte for lithium thin film batteries Citation Details In-Document Search Title: MultiLayer solid electrolyte for lithium thin film batteries A ...

  19. Development of Novel Electrolytes for Use in High Energy Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with ...

  20. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  1. Solid Electrolyte: the Key for High-Voltage Lithium Batteries...

    Office of Scientific and Technical Information (OSTI)

    Solid Electrolyte: the Key for High-Voltage Lithium Batteries Citation Details In-Document Search Title: Solid Electrolyte: the Key for High-Voltage Lithium Batteries Authors: Li, ...

  2. Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents

    DOE Patents [OSTI]

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    The present invention relates to electrolyte solvents for use in liquid or rubbery electrolyte solutions. Specifically, this invention is directed to boron-containing electrolyte solvents and boron-containing electrolyte solutions.

  3. Electrolytic Cell For Production Of Aluminum From Alumina

    DOE Patents [OSTI]

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2004-11-02

    An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

  4. Interaction Between Like-Charged Colloidal Spheres in Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ELECTROLYTES; SOLUTIONS; CHEMISTRY; LAWRENCE BERKELEY ...

  5. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  6. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.

    1987-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  7. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.

    1985-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  8. Materials Project and Electrolyte Genome - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Materials Project and Electrolyte Genome The Materials Project and Electrolyte Genome are computer modeling tools designed to accelerate the discovery process before testing in the laboratory. Developing beyond-lithium-ion batteries requires the discovery of new working ions, cathodes, anodes, and electrolytes. The Materials Project and the Electrolyte Genome use high-throughput computer modeling to: identify new candidates for battery materials, predict their performance, and

  9. The State of Water in Proton Conducting Membranes

    SciTech Connect (OSTI)

    Allcock, Harry R., Benesi, Alan, Macdonald, Digby, D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 -May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  10. The State of Water in Proton Conducting Membranes

    SciTech Connect (OSTI)

    Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  11. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    DOE Patents [OSTI]

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  12. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOE Patents [OSTI]

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  13. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  14. Electrolytic plating apparatus for discrete microsized particles

    DOE Patents [OSTI]

    Mayer, Anton

    1976-11-30

    Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur.

  15. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  16. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOE Patents [OSTI]

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  17. High Voltage Electrolyte for Lithium Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es113_amine_2011_p.pdf (246.67 KB) More Documents & Publications High Voltage Electrolyte for Lithium Batteries Vehicle Technologies Office Merit Review 2015: Fluorinated Electrolyte for 5-V Li-Ion Chemistry High Voltage Electrolytes for Li-ion Batteries

  18. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOE Patents [OSTI]

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  19. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis ? Electrolytic cell)

    SciTech Connect (OSTI)

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang; Li, Xiaodong; Yang, Hui; Xian, Liang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2 stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)

  20. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect (OSTI)

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  1. Method and apparatus for storage battery electrolyte circulation

    DOE Patents [OSTI]

    Inkmann, Mark S.

    1980-09-09

    An electrolyte reservoir in fluid communication with the cell of a storage battery is intermittently pressurized with a pulse of compressed gas to cause a flow of electrolyte from the reservoir to the upper region of less dense electrolyte in the cell. Upon termination of the pressure pulse, more dense electrolyte is forced into the reservoir from the lower region of the cell by the differential pressure head between the cell and reservoir electrolyte levels. The compressed gas pulse is controlled to prevent the entry of gas from the reservoir into the cell.

  2. Non-aqueous electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  3. Fuel cell and system for supplying electrolyte thereto

    DOE Patents [OSTI]

    Adlhart, Otto J.; Feigenbaum, Haim

    1984-01-01

    An electrolyte distribution and supply system for use with a fuel cell having means for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells of the stack. Individual storage compartments are coupled by capillary tubes to the respective fuel cells. Hydrostatic pressure is maintained individually for each of the fuel cells by separately elevating each compartment of the storing means to a specific height above the corresponding fuel cell which is to be fed from that compartment of the storing means. The individual compartments are filled with electrolyte by allowing the compartments to overflow thereby maintaining the requisite depth of electrolyte in each of the storage compartments.

  4. Magnetic Membrane System

    DOE Patents [OSTI]

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  5. Electrolyte reservoir for carbonate fuel cells

    DOE Patents [OSTI]

    Iacovangelo, Charles D. (Schenectady, NY); Shores, David A. (Minneapolis, MN)

    1985-01-01

    An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  6. Functional electrolyte for lithium-ion batteries

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  7. Environmentally Benign Electrolytes With Wide Electrochemical Windows -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Environmentally Benign Electrolytes With Wide Electrochemical Windows DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing SummaryAs mobile electronics continue to evolve, the need for safe, long-lasting rechargeable batteries has grown tremendously. In the search for suitable materials from which to construct high energy density solid state batteries, one of the principal obstacles has

  8. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOE Patents [OSTI]

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  9. Anti-perovskite solid electrolyte compositions

    DOE Patents [OSTI]

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  10. Manufacturing and Scale Up Challenges: Cell Components, Membranes, & Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M Confidential. 1 28 April 2014 . All Rights Reserved. © 3M Electrolytic Hydrogen Production Workshop DOE Fuel Cell Technologies Office hosted by: NREL, Golden, Colorado Feb. 27th and 28th, 2014. "Manufacturing and Scale Up Challenges: Cell Components, Membranes, & Catalysts". by Krzysztof A. Lewinski, 3M 3M Confidential. 2 28 April 2014 . All Rights Reserved. © 3M Greatest Challenges and Opportunities:  PEM electrolyzer market at an early stage;  Market development gaining

  11. Direct Lorentz force compensation flowmeter for electrolytes

    SciTech Connect (OSTI)

    Vasilyan, S. Froehlich, Th.

    2014-12-01

    A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known electromagnetic force compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20?S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 10{sup 6?}S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1?S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.

  12. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Alonso-Vante, Nicolas (Buxerolles, FR); Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

    2009-09-15

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  13. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  14. Computer model for characterizing, screening, and optimizing electrolyte systems

    SciTech Connect (OSTI)

    Gering, Kevin L.

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced models are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.

  15. Computer model for characterizing, screening, and optimizing electrolyte systems

    Energy Science and Technology Software Center (OSTI)

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced modelsmore » are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.« less

  16. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOE Patents [OSTI]

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  17. Electrolyte matrix in a molten carbonate fuel cell stack

    DOE Patents [OSTI]

    Reiser, Carl A.; Maricle, Donald L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

  18. Electrolyte matrix in a molten carbonate fuel cell stack

    DOE Patents [OSTI]

    Reiser, C.A.; Maricle, D.L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

  19. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOE Patents [OSTI]

    Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  20. Summary of Electrolytic Hydrogen Production: Milestone Completion Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of Electrolytic Hydrogen Production: Milestone Completion Report Summary of Electrolytic Hydrogen Production: Milestone Completion Report This report provides an overview of the current state of electrolytic hydrogen production techonologies and an economic analysis of the processes and systems available as of December 2003. 36734.pdf (719.5 KB) More Documents & Publications Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water

  1. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es025_zhang_2011_p.pdf (443.82 KB) More Documents & Publications Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte

  2. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes | Department of Energy es089_kerr_2011_o.pdf (1.23 MB) More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - Interfacial and Bulk Properties and Stability

  3. Lithium Ion Solvation and Intercalation at Anode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Interface from First Principles Citation Details In-Document Search Title: Lithium Ion Solvation and Intercalation at Anode-Electrolyte Interface from First ...

  4. Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThe lithium ion battery found in electronics like cell phones uses liquid electrolytes ...

  5. Electrolytic cell for production of aluminum from alumina

    DOE Patents [OSTI]

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2005-03-15

    Electrolysis of alumina dissolved in a molten salt electrolyte employing inert anode and cathodes, the anode having a box shape with slots for the cathodes.

  6. Monitoring electrolyte concentrations in redox flow battery systems

    SciTech Connect (OSTI)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  7. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, Hung-Sui; Geng, Lin; Skotheim, Terje A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  8. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  9. Lithium Ion Solvation and Intercalation at Anode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium Ion Solvation and Intercalation at Anode-Electrolyte Interface from First Principles Authors: Ong, M T ; Lordi, V ; Draeger, E W ; Pask, J E Publication Date: ...

  10. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Authors: Ong, M T ; Verners, O ; Draeger, E ...

  11. Development of Novel Electrolytes for Use in High Energy Lithium...

    Energy Savers [EERE]

    Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  12. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion ...

  13. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast ...

  14. Method of synthesizing polymers from a solid electrolyte

    DOE Patents [OSTI]

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  15. Method of synthesizing polymers from a solid electrolyte

    DOE Patents [OSTI]

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  16. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    DOE Patents [OSTI]

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  17. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    in Bulk Organic Electrolytes from First Principles Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion Solvation and Diffusion in Bulk Organic ...

  18. Electrolytes for Lithium Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Electrolytes for Lithium Ion Batteries DOE Grant Recipients Arizona ... the need for high-output, long-lasting rechargeable batteries has grown tremendously. ...

  19. Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion Batteries Lawrence ... Coulombic Efficiency for Lithium Ion Batteries," Journal of the Electrochemical ...

  20. Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li+H+ Exchange in Aqueous Solutions Citation Details In-Document Search Title: Excellent ...

  1. Development of Electrolytes for Lithium-ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Yardney) * D. Abraham (ANL) * M. Smart (NASA JPL) * V. Battaglia (LBNL) Partners ... ion battery electrolytes. * M. Smart (NASA JPL, National Lab, ABRT Program): ...

  2. Compliant Glass-Polymer Hybrid Single Ion-ConductingElectrolytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliant Glass-Polymer Hybrid Single Ion-ConductingElectrolytes for Lithium Batteries ... excellent electrochemical stability, and limit the dissolution of lithium polysulfides. ...

  3. Short protection device for stack of electrolytic cells

    DOE Patents [OSTI]

    Katz, M.; Schroll, C.R.

    1984-11-29

    The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.

  4. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    DOE Patents [OSTI]

    Sharp, Donald J.; Armstrong, Pamela S.; Panitz, Janda Kirk G.

    1998-01-01

    A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

  5. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    DOE Patents [OSTI]

    Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

    1998-03-17

    A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

  6. Novel Compounds for Enhancing Electrolyte Stability and Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Lithium-ion Cells Novel Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review...

  7. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near ...

  8. Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes

    SciTech Connect (OSTI)

    Tenhaeff, Wyatt E; Yu, Xiang; Hong, Kunlun; Perry, Kelly A; Dudney, Nancy J

    2011-01-01

    A study of lithium cation transport across solid-solid electrolyte interfaces to identify critical resistances in nanostructured solid electrolytes is reported. Bilayers of glass and polymer thin film electrolytes were fabricated and characterized for this study. The glass electrolyte was lithium phosphorous oxynitride (Lipon), and two polymer electrolytes were studied: poly(methyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) and poly(styrene-co-poly(ethylene glycol) methyl ether methacrylate). Both copolymers contained LiClO{sub 4} salt. In bilayers where polymer electrolyte layers are fabricated on top of Lipon, the interfacial resistance dominates transport. At 25 C, the interfacial resistance is at least three times greater than the sum of the Lipon and polymer electrolyte resistances. By reversing the structure and fabricating Lipon on top of the polymer electrolytes, the interfacial resistance is eliminated. Experiments to elucidate the origin of the interfacial resistance in the polymer-on-Lipon bilayers reveal that the solvent mixtures used to fabricate the polymer layers do not degrade the Lipon layer. The importance of the polymer electrolytes' mechanical properties is also discussed.

  9. Zinc halogen battery electrolyte composition with lead additive

    DOE Patents [OSTI]

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  10. Resonance-Stabilized Anion Exchange Polymer Electrolytes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    N C L A S S I F I E D Resonance-Stabilized Anion Exchange Polymer Electrolytes Yu Seung Kim yskim@lanl.gov Los Alamos National Laboratory DOE Kickoff meeting for fuel cell applied R&D award programs, September 30- October 1, Washington, DC 1 Innovative Concepts U N C L A S S I F I E D Project Objectives * Technical Barriers: Fuel cell commercialization is a cost issue. Pt is the primary driver for cost. * Technical Cost Target: $50/kW for fuel cell system. * Objective: Reduce fuel cell cost

  11. Cantera and Cantera Electrolyte Thermodynamics Objects

    SciTech Connect (OSTI)

    John Hewson, Harry Moffat

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia’s contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a “Get the numbers

  12. Cantera and Cantera Electrolyte Thermodynamics Objects

    Energy Science and Technology Software Center (OSTI)

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia’s contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Canteramore » that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a “Get the

  13. Cathode for aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  14. Composite sensor membrane

    DOE Patents [OSTI]

    Majumdar, Arun; Satyanarayana, Srinath; Yue, Min

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  15. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5_es_wise_2012_p.pdf (321.02 KB) More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011 Annual Progress Report for Energy Storage R&D

  16. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K.; Arnold, Jr., Charles

    1997-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  17. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  18. Solid electrolyte-electrode system for an electrochemical cell

    DOE Patents [OSTI]

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.

    1995-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.

  19. Solid electrolyte-electrode system for an electrochemical cell

    DOE Patents [OSTI]

    Tuller, H.L.; Kramer, S.A.; Spears, M.A.

    1995-04-04

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.

  20. Apparatus and method for the electrolytic production of metals

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  1. MultiLayer solid electrolyte for lithium thin film batteries

    DOE Patents [OSTI]

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  2. Preparation of ceramic matrix and alumina fiber composites for use as solid electrolytes

    DOE Patents [OSTI]

    Dudney, N.J.

    1987-04-30

    A process for making solid electrolytes using a fibrous stabilizing dispersed second phase for enhanced conductivity of the electrolyte after deformation and annealing. 1 tab.

  3. Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion Batteries Lawrence Berkeley ... have invented nanostructured gel polymer electrolytes for lithium ion batteries. ...

  4. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOE Patents [OSTI]

    Keller, Rudolf (Export, PA); Larimer, Kirk T. (Pittsburgh, PA)

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  5. New Membranes for High Temperature Proton Exchange Membrane Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids New Membranes for High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids ...

  6. Solid polymeric electrolytes for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  7. Electrocatalysis in Alkaline Electrolytes - Research Overview

    Office of Environmental Management (EM)

    Sanjeev Mukerjee Nagappan Ramaswamy, Qinggang He, Daniel Abbott, and Michael Bates Department of Chemistry and Chemical Biology Northeastern University, Boston, MA 02115 Electrocatalysis in Alkaline Electrolytes - Research Overview AMFC Workshop Seminar - May 8, 2011 Acidic pH Alkaline pH 1e - + 1H + C H H 3 C Pt OH OH 2 CH 3 CH 2 OH Pt 1e - + 1H + Pt C O H 3 C Pt C O H 3 C H OH 2 Pt O H Pt O C O H 3 C + H H C O H 3 C O Pt 1e - + 1H + -H 2 at low coord Pt Pt CH x Pt C O CO 2 Pt 2OH 111 sites O H

  8. Non-aqueous electrolytes for electrochemical cells

    DOE Patents [OSTI]

    Dong, Jian; Zhang, Zhengcheng; Amine, Khalil

    2016-07-12

    A electrolyte for a lithium battery includes a silane/siloxane compound represented by SiR.sub.4-x-yR'.sub.xR''.sub.y, by Formula II, or Formula III: ##STR00001## where each R is individually an alkenyl, alkynyl, alk(poly)enyl, alk(poly)ynyl, aryl; each R' is represented by; ##STR00002## each R'' is represented by Formula I-B; ##STR00003## R.sup.1 is an organic spacer; R.sup.2 is a bond or an organic spacer; R.sup.3 is alkyl or aryl; k is 1-15; m is 1-15; n is 1 or 2; p is 1-3; x' is 1-2; and y' is 0-2.

  9. Electrolyte matrix for molten carbonate fuel cells

    DOE Patents [OSTI]

    Huang, Chao M.; Yuh, Chao-Yi

    1999-01-01

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  10. Electrolyte matrix for molten carbonate fuel cells

    DOE Patents [OSTI]

    Huang, C.M.; Yuh, C.Y.

    1999-02-09

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  11. Modeling of polymer electrolyte fuel cell systems

    SciTech Connect (OSTI)

    Kumar, R.; Ahluwalia, R.; Geyer, H.K.; Krumpelt, M.

    1993-09-01

    Propulsion systems based on the polymer electrolyte fuel cell (PEFC) are being developed. This paper reports an analysis undertaken to design improved PEFC systems. A reference system design with some variants were set up for a methanol-fueled PEFC propulsion system. Efficiency improves from 38.4 to 44.1% as cell current density goes from 0.75 to 0.45 A/cm{sup 2}, while fuel cell efficiency increases from 52.6 to 60.0%; to get a net power output of 80 kWe, the active fuel cell area must increase from 18.8 to 27.3 m{sup 2}. Three parametric studies were conducted on the off-design performance of the reference system.

  12. Composite zeolite membranes

    DOE Patents [OSTI]

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  13. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

  14. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Supported inorganic membranes

    DOE Patents [OSTI]

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  16. Membrane catalyst layer for fuel cells

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  17. Method of making a layered composite electrode/electrolyte

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-01-25

    An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

  18. Electric current-producing device having sulfone-based electrolyte

    DOE Patents [OSTI]

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  19. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  20. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, Keith R. (Lake Jackson, TX); Rehg, Timothy J. (Lake Jackson, TX); Davis, Larry W. (West Columbia, TX); Carl, William P. (Marble Falls, TX); Cisar, Alan J. (Cypress, TX); Eastland, Charles S. (West Columbia, TX)

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  1. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  2. Electrochemical membrane incinerator

    DOE Patents [OSTI]

    Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  3. In-situ Neutron Scattering Determination of 3D Phase-Morphology Correlations in Fullerene Block Copolymer Systems

    SciTech Connect (OSTI)

    Karim, Alamgir; Bucknall, David; Raghavan, Dharmaraj

    2015-02-23

    High efficiency solar energy devices can potentially meet all global energy requirements by efficiently harvesting energy from the solar spectrum. However, for solar technologies to be ubiquitous and meet the global power requirements, innovative and revolutionary approaches to trap solar energy are needed. In this regard, organic photovoltaics (OPVs) have drawn much attention, largely due to the ease with which OPVs can be manufactured at much lower costs compared to conventional inorganic PVs. Currently the most efficient OPV devices (at ~10%) are still below a technologically useful efficiency (~15%). It can be argued that to date most of the development of the OPVs has been driven by their electronic properties, without much consideration or understanding of the structure and morphology of the organic components and in particular how these affect the performance of the solar cell devices. It is only in the last few years that the latter has begun to be addressed. Arguably, without a complete understanding of the effect of morphology and structure on device performance, the theoretical maximum efficiency of these devices is unlikely to ever be realized. A thorough understanding of the structure and morphology of the polymers and how this affects device efficiency is vital to achieve the full potential of OPVs. If OPV devices with 15% efficiency can be achieved, coupled with the predicted low cost of processing, such devices would create an enabling technology, making these types of solar cells significant power generators and thereby reduce the dependency on conventional energy sources. This would fulfill the economic solar energy challenge identified by the NAE in their Grand Challenges of the 21st Century. In this project, we conducted a directed series of experiments to determine morphology-property correlations in bulk heterojunction films by careful control of the OPV structure and morphology. Unlike most research undertaken in the PV arena, this is mostly a fundamental study that does not set out to evaluate new materials or produce devices, but rather we wish to understand from first principles how the molecular structure of polymer-fullerene mixtures determined using neutron scattering (small angle neutron scattering and neutron reflection) affects device characteristics and consequently performance. While this seems a very obvious question to ask, this critical understanding is far from being realized despite the wealth of studies into OPV’s and is severely limiting organic PV devices from achieving their theoretical potential. Despite the fundamental nature of proposed work, it is essential to remain technologically relevant and therefore to ensure we address these issues we have developed relationships on the fundamental nature of structure-processing-property paradigm as applied to future need for large area, flexible OPV devices. Nanoscale heterojunction systems consisting of fullerenes dispersed in conjugated polymers are promising materials candidates for achieving high performance organic photovoltaic (OPV) devices. In order to understand the phase behavior in these devices, neutron reflection is used to determine the behavior of model conjugated polymer-fullerene mixtures. Neutron reflection is particularly useful for these types of thin film studies since the fullerene generally have a high scattering contrast with respect to most polymers. We are studying model bulk heterojunction (BHJ) films based on mixtures of poly(3-hexyl thiophene)s (P3HT), a widely used photoconductive polymer, and different fullerenes (C60, PCBM and bis-PCBM). The characterization technique of neutron reflectivity measurements have been used to determine film morphology in a direction normal to the film surfaces. The novelty of the approach over previous studies is that the BHJ layer is sandwiched between a PEDOT/PSS and Al layers in real device configuration. Using this model system, the effect of typical thermal annealing processes on the film development as a function of the polythiophene-fullerene mixtures is measured.

  4. Cadmium sulfide membranes

    DOE Patents [OSTI]

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  5. Cadmium sulfide membranes

    DOE Patents [OSTI]

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  6. Meniscus membranes for separations

    DOE Patents [OSTI]

    Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  7. Polyphosphazene semipermeable membranes

    DOE Patents [OSTI]

    Allen, Charles A.; McCaffrey, Robert R.; Cummings, Daniel G.; Grey, Alan E.; Jessup, Janine S.; McAtee, Richard E.

    1988-01-01

    A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

  8. Meniscus Membranes For Separation

    DOE Patents [OSTI]

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  9. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOE Patents [OSTI]

    Marchant, David D.; Bates, J. Lambert

    1984-01-01

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  10. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOE Patents [OSTI]

    Bates, J.L.; Marchant, D.D.

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In/sub 2/O/sub 3/. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  11. Methods and electrolytes for electrodeposition of smooth films

    DOE Patents [OSTI]

    Zhang, Jiguang; Xu, Wu; Graff, Gordon L; Chen, Xilin; Ding, Fei; Shao, Yuyan

    2015-03-17

    Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.

  12. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOE Patents [OSTI]

    Poa, Davis S.; Pierce, R. Dean; Mulcahey, Thomas P.; Johnson, Gerald K.

    1993-01-01

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  13. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    SciTech Connect (OSTI)

    Wilson, M.S.; Moeller-Holst, S.; Webb, D.M.; Zawodzinski, C.; Gottesfeld, S.

    1998-08-01

    The objective is to develop and demonstrate a 4 kW, hydrogen-fueled polymer electrolyte fuel cell (PEFC) stack, based on non-machined stainless steel hardware and on membrane/electrode assemblies (MEAs) of low catalyst loadings. The stack is designed to operate at ambient pressure on the air-side and can accommodate operation at higher fuel pressures, if so required. This is to be accomplished by working jointly with a fuel cell stack manufacturer, based on a CRADA. The performance goals are 57% energy conversion efficiency hydrogen-to-electricity (DC) at a power density of 0.9 kW/liter for a stack operating at ambient inlet pressures. The cost goal is $600/kW, based on present materials costs.

  14. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOE Patents [OSTI]

    Spiegel, Ella F.; Sammells, Anthony F.

    2001-01-01

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  15. High Voltage Electrolytes for Li-ion Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es024_jow_2011_p.pdf (1.87 MB) More Documents & Publications High Voltage Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries Molecular dynamics simulation and ab intio studies of electrolytes and electrolyte/electrode interfaces

  16. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  17. High temperature solid electrolyte fuel cell configurations and interconnections

    DOE Patents [OSTI]

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  18. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect (OSTI)

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  19. Method of preparing electrolyte for use in fuel cells

    DOE Patents [OSTI]

    Kinoshita, Kimio; Ackerman, John P.

    1978-01-01

    An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.

  20. Operating a redox flow battery with a negative electrolyte imbalance

    DOE Patents [OSTI]

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.