Powered by Deep Web Technologies
Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic...

2

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

3

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

4

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

5

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

6

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

7

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Wednesday, 27 January 2010 00:00 Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

8

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

of poly(ethylene oxide) molten-salt rubbery electrolytes.of poly(ethylene oxide) molten-salt rubbery electrolytes.

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

9

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

10

Thermodynamics and Ionic Conductivity of Block Copolymer Electrolytes  

E-Print Network (OSTI)

2.3 REFERENCES Flory, P.J. , Thermodynamics of high polymerBlock Copolymer Thermodynamics - Theory And Experiment.on block copolymer thermodynamics by measuring the changes

Wanakule, Nisita Sidra

2010-01-01T23:59:59.000Z

11

Thermodynamics and Ionic Conductivity of Block Copolymer Electrolytes  

E-Print Network (OSTI)

of Poly(Ethylene Oxide) Molten-Salt Rubbery Electrolytes.Imides: A New Family of Molten Salts and Conductive Plasticof Poly(Ethylene Oxide) Molten-Salt Rubbery Electrolytes.

Wanakule, Nisita Sidra

2010-01-01T23:59:59.000Z

12

Available Technologies: Block Copolymer Cathode Binder to ...  

Lower Cost, Nanoporous Block Copolymer Battery Separator, IB-3024. Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion Batteries, JIB-2731.

13

Argonne CNM Highlight: Block copolymer lithography approach to nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Block copolymer lithography approach to nanoscale self-assembly Block copolymer lithography approach to nanoscale self-assembly hybrid organic-organomemtalliic block copolymer thin film cast on a silicon nitride membrane substrate This image created by Seth Darling and Nathan Ramanathan was selected for the September 2009 cover of Materials Today. Block copolymer lithography represents a promising next-generation alternative to traditional top-down methodologies. The figure shows an optical micrograph of a hybrid organic-organometallic block copolymer thin film cast on a silicon nitride membrane substrate, which reveals thickness-induced coloring effects reminiscent of art glass. This polymer self-assembles into an ordered nanoscale cylindrical morphology, the orientation of which can be controlled with film thickness. Cylinders

14

Magnetic nanostructures patterned by block copolymer lithography  

E-Print Network (OSTI)

The aim of this research was twofold: understanding the methods of patterning magnetic films using self-assembled block copolymer masks and examining the magnetic reversal mechanisms of as deposited and patterned magnetic ...

Ilievski, Filip, 1980-

2008-01-01T23:59:59.000Z

15

Commercial applications of block copolymer photonic gels  

E-Print Network (OSTI)

Block copolymer photonic gels are a simple and easily processed material which responds rapidly to environmental stimuli through a color change. The diblock copolymer that forms the gel self-assembles into a lamellar ...

Lou, Sally S

2008-01-01T23:59:59.000Z

16

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

wind power – as well as other renewable methods that produce power on a timescale out of sync with variable energy usage, will benefit

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

17

Block copolymer electrolytes for lithium batteries.  

E-Print Network (OSTI)

??Increasing interest in renewable energy technologies has recently brought compact and cost-effective energy storage into the spotlight. A wide variety of applications could benefit from… (more)

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

18

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

in the energy equation, battery capacity, is defined as theperformance and capacity fading of a lithium-ion batteryof large-capacity lithium- ion battery systems. With new

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

19

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

solar and wind power – as well as other renewable methods that produce power on a timescale out of sync with variable energy usage,

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

20

Studies of Block Copolymer Thin Films and Mixtures with an Ionic Liquid  

E-Print Network (OSTI)

increase in the block copolymer glass transition temperaturedecrease in the block copolymer glass transition temperatureto the change in the block copolymer’s glass transition

Virgili, Justin

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Controlled Self Assembly of Conjugated Polymer Containing Block Copolymers  

E-Print Network (OSTI)

decrease the glass transition temperature of this block andof block copolymer with varying fractions of low glassglass transition temperature for suitable periods of time, the block

McCulloch, Bryan

2012-01-01T23:59:59.000Z

22

Block Copolymer at Nano-Patterned Surfaces  

E-Print Network (OSTI)

We present numerical calculations of lamellar phases of block copolymers at patterned surfaces. We model symmetric di-block copolymer films forming lamellar phases and the effect of geometrical and chemical surface patterning on the alignment and orientation of lamellar phases. The calculations are done within self-consistent field theory (SCFT), where the semi-implicit relaxation scheme is used to solve the diffusion equation. Two specific set-ups, motivated by recent experiments, are investigated. In the first, the film is placed on top of a surface imprinted with long chemical stripes. The stripes interact more favorably with one of the two blocks and induce a perpendicular orientation in a large range of system parameters. However, the system is found to be sensitive to its initial conditions, and sometimes gets trapped into a metastable mixed state composed of domains in parallel and perpendicular orientations. In a second set-up, we study the film structure and orientation when it is pressed against a hard grooved mold. The mold surface prefers one of the two components and this set-up is found to be superior for inducing a perfect perpendicular lamellar orientation for a wide range of system parameters.

Xingkun Man; David Andelman; Henri Orland

2010-07-02T23:59:59.000Z

23

Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries  

SciTech Connect

Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

2013-10-08T23:59:59.000Z

24

Strategies for incorporating functional block copolymers into polyelectrolyte multilayer coatings  

E-Print Network (OSTI)

This thesis explores the creation of thin film responsive hydrogel coatings via Layer-by Layer assembly (LbL) of temperature (T) responsive block copolymer - polyelectrolyte multilayers (PEMs). First, the LbL conditions ...

Tan, Wui Siew

2011-01-01T23:59:59.000Z

25

Combinatorial Block Copolymer Ordering on Tunable Rough  

DOE Green Energy (OSTI)

Morphology control of block copolymer (BCP) thin films through substrate interaction via controlled roughness parameters is of significant interest for numerous high-tech applications ranging from solar cells to high-density storage media. While effects of substrate surface energy (SE) and roughness (R) on BCP morphology have been individually investigated, their synergistic effects have not been explored in any systematic manner. Interestingly, orientation response of BCP to changes in SE can be similar to what can be accomplished with variations in R. Here we present a novel approach for orienting lamellar BCP films of poly(styrene)-block-poly(methyl methacrylate) (PS-PMMA) on spin-coated xerogel (a dried gel of silica nanoparticle network) substrate with simultaneously tunable surface energy, {gamma}{sub s} {approx} 29-53 mJ/m{sup 2}, by UVO exposure and roughness, R{sub rms} {approx} 0.5-30 nm, by sol-gel processing steps of regulating the catalyst concentration and sol aging time. As in previous BCP orientation studies on 20 nm diameter monodisperse silica nanoparticle coated surface, we find a similar but broadened oscillatory BCP orientation behavior with film thickness due to the random rather than periodic rough surfaces. We also find that higher random roughness amplitude is not the necessary criteria for obtaining a vertical orientation of BCP lamellae. Rather, a high surface fractal dimension (D{sub f} > 2.4) of the rough substrate in conjunction with an optimal substrate surface energy {gamma}{sub s} 29 mJ/m{sup 2} results in 100% vertically oriented lamellar microdomains. The AFM measured film surface microstructure correlates well with the internal 3D BCP film structure probed by grazing incidence small-angle X-ray scattering (GISAXS) and rotational small-angle neutron scattering (SANS). In contrast to tunable self-assembled monolayer (SAM)-coated substrates, the xerogel films are very durable and retain their chemical properties over period of several months. These results also highlight importantly that BCP orientation control for nanotechnology is possible not only on specially prepared patterned substrates but also on industrially viable sol-gel substrates.

Kulkarni M. M.; Yager K.; Sharma, A.; Karim, A.

2012-05-01T23:59:59.000Z

26

Fuel cell electrolyte membrane with acidic polymer  

DOE Patents (OSTI)

An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.

Hamrock, Steven J. (Stillwater, MN); Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

2009-04-14T23:59:59.000Z

27

Electrically conductive doped block copolymer of polyacetylene and polyisoprene  

SciTech Connect

An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

Aldissi, Mahmoud (Los Alamos, NM)

1985-01-01T23:59:59.000Z

28

COMPLETED: Templated Assembly of Block Copolymer Films  

Science Conference Proceedings (OSTI)

... magnetic data storage, nanoscale electronics, and high efficiency membranes for energy. ... thermal zones, or “zone annealing”, as a primary driver of ...

2012-10-01T23:59:59.000Z

29

Flow controlled solvent vapor annealing of block copolymers for lithographic applications  

E-Print Network (OSTI)

Self-assembly of block copolymer thin-films may provide an inexpensive alternative to patterning lithographic features below the resolution limits of traditional optical methods. Block copolymers (BCPs) are polymers made ...

Gotrik, Kevin Willy

2013-01-01T23:59:59.000Z

30

Block copolymer photonic crystals : towards self-assembled active optical elements  

E-Print Network (OSTI)

Block copolymers have proven to be a unique materials platform for easily fabricated large-area photonic crystals. While the basic concept of block copolymer based photonic band gap materials has been well demonstrated, ...

Yoon, Jongseung

2006-01-01T23:59:59.000Z

31

Thermodynamics and Ionic Conductivity of Block Copolymer Electrolytes  

E-Print Network (OSTI)

to the differences in instrument resolution at SSRL vs ALS.ALS has better resolution than SSRL. The samples with ImTFSIhigher were measured at SSRL. The rest of the samples were

Wanakule, Nisita Sidra

2010-01-01T23:59:59.000Z

32

Fuel cell electrolyte membrane with basic polymer  

DOE Patents (OSTI)

The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

2010-11-23T23:59:59.000Z

33

2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells  

DOE Green Energy (OSTI)

In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

Wheeler, D.; Sverdrup, G.

2008-03-01T23:59:59.000Z

34

Increased Water Retention in Polymer Electrolyte Membranes at ...  

Di Vision, National Center for Electron Microscopy, En Vironmental Energy ... made from block copolymers with hydrophilic and hydro-phobic blocks.

35

Gamma radiation induced degradation in PE-PP block copolymer  

SciTech Connect

In the present investigation, effect of gamma irradiation on the PP-PE block copolymer has been studied. The polymer has been subjected to gamma irradiation from 100 to 500 Mrad dosages. Characterization of the polymer using XRD and FTIR was done both before irradiation and after irradiation in each step. Effect of irradiation on the electrical properties of the material has also been studied. FTIR study shows that the sample loses C - C stretching mode of vibration but gains C=C stretching mode of vibration after irradiation. Present investigation clearly indicates that though the electrical conductivity increases in the material, it undergoes degradation and shows brittleness due to irradiation.

Ravi, H. R.; Sreepad, H. R.; Ahmed, Khaleel; Govindaiah, T. N. [P.G. Department of Physics, Government College (Autonomous), Mandya - 571401, Karnataka State (India)

2012-06-05T23:59:59.000Z

36

Analysis of Order Formation in Block Copolymer Thin Films Using Resonant Soft X-Ray Scattering  

E-Print Network (OSTI)

Radiation Laboratory (SSRL). The beamline was configuredwere performed at the SSRL. Both are national userassistance at the SSRL. Table 1: Block Copolymer

Virgili, Justin M.; Tao, Yuefei; Kortright, Jeffrey B.; Balsara, Nitash P.; Segalman, Rachel A.

2006-01-01T23:59:59.000Z

37

Single Helix to Double Gyroid in Chiral Block Copolymers  

SciTech Connect

An order-order phase transition of chiral block copolymers (BCPs*) from single helix to double gyroid (H* {yields} G) through a nucleation and growth process was demonstrated. The H* and G phases can be obtained by solution casting from fast and slow solvent evaporation, respectively, suggesting that the H* phase is a metastable phase. Consequently, the coexistence of H* and G phases can be found in the solution-cast samples from intermediate solvent evaporation. To truly examine the transition mechanism of the H* {yields} G, electron tomography was carried out to directly visualize the morphological evolution in real space, in particular, the transition zone at interface. Unlike the mechanisms for the transitions of block copolymers (BCPs) by considering the interdomain spacing matching, a significant mismatch in the lattices for the H* {yields} G was found. Consequently, the transition may require an adjustment on the geometric dimensions to justify corresponding lattice mismatch. As a result, the morphological observations from electron tomography offer new insights into BCP phase transitions.

C Chen; H Hsueh; Y Chiang; R Ho; S Akasaka; H Hasegawa

2011-12-31T23:59:59.000Z

38

2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells  

SciTech Connect

In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

Wheeler, D.; Sverdrup, G.

2008-03-01T23:59:59.000Z

39

Attenuation of dilute aromatic hydrocarbon transport by a block copolymer in a compacted vertisol  

E-Print Network (OSTI)

Municipal solid waste landfills in the United States are built with a composite bottom liner consisting of a flexible membrane liner of high-density polyethylene overlying a compacted soil liner. Hydrocarbons have been shown to pass through the flexible membrane liner by diffusion. Flexible membrane liners often have flaws allowing direct contact between the leachate and the compacted soil liner. The transmission of hydrocarbons to the compacted soil liner presents a threat to groundwater supplies. The study was performed to determine if the modification of a compacted soil liner with a thermoplastic elastomer block copolymer could successfully sequester benzene, toluene, ethylbenzene, and xylenes and meet the United States Environmental Protection Agency's saturated hydraulic conductivity requirement of 1x10?? cm sec?¹. Compacted Ships clay modified with 0, 1, 3, 5, and 10% weight of a thermoplastic elastomer block copolymer was tested for saturated hydraulic conductivity using 10.2 cm fixed wall permeameters. The compacted Ships clay met the United States Environmental Protection Agency's mandated saturated hydraulic conductivity of 10?? cm sec?¹ at polymer contents of 3% (wt) polymer or less. The presence of dissolved aromatic hydrocarbons had no effect on the saturated hydraulic conductivity. The ability of the polymer to attenuate the transport of dilute aromatic hydrocarbons was tested by permeating the compacted soil/polymer treatments with a 0.01N CaSO4 solution contaminated with benzene, toluene, ethylbenzene, and xylenes. Leachate from permeameters packed with soil containing more than 1% (wt) polymer had BTEX concentrations below the drinking water standard for 3 or more pore volumes. The findings of this research were applied to a hypothetical compacted soil liner constructed with Ships clay modified to include 3% (wt) polymer and having a saturated hydraulic conductivity of 4.23 x 10?? cm sec?¹. It was assumed that the soil liner was in direct contact with landfill leachate. The hypothetical liner would protect the groundwater from contamination above the maximum contamination limit for drinking water by benzene for 350 years, toluene for 140 years, and ethylbenzene for 260 years.

Akin, James Browning

2001-01-01T23:59:59.000Z

40

Chemical and physical methods of the templated direction of block copolymers  

E-Print Network (OSTI)

This thesis discusses the investigation of various aspects of templated self-assembly of block copolymer (BCP) thin films for nanofeature fabrication. Two chapters outline the research of a combined physical and chemical ...

Nicaise, Samuel M. (Samuel Mospens)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly  

SciTech Connect

The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

2013-10-29T23:59:59.000Z

42

Emerging Trends in Metal-Containing Block Copolymers for Nanomanufacturing Applications  

SciTech Connect

Block copolymers with metals confined in one or more blocks are emerging as candidate materials for nanomanufacturing applications due to their unprecedented nanoscale pattern transfer capabilities. In this article we highlight recent developments in metal-containing block copolymers in terms of their novel synthetic methodologies with particular emphasis on sequential infiltration synthesis, their hierarchical self-assembly from nano, meso, and submicron scales, and their applications as an etch mask for high-throughput, high aspect-ratio nano and meso scale patterning.

Ramanathan, Nathan Muruganathan [ORNL; Ariga, Katsuhiko [National Institute for Materials Science, Tsukuba, Japan; Tseng, Dr. Yu-Chih [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Darling, Seth B. [Argonne National Laboratory (ANL)

2013-01-01T23:59:59.000Z

43

Electrically conductive doped block copolymer of polyacetylene and polyisoprene. [Soluble in organic solvents  

DOE Patents (OSTI)

An electrically conductive block copolymer of polyisoprene and polyacetylene and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I/sub 2/ to give it an electrical conductivity in the metallic regime.

Aldissi, M.

1984-06-27T23:59:59.000Z

44

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

45

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

46

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

47

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

48

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

49

Analytic Structure of the SCFT Energy Functional of Multicomponent Block Copolymers  

E-Print Network (OSTI)

This paper concerns the analytic structure of the self-consistent field theory (SCFT) energy functional of multicomponent block copolymer systems which contain more than two chemically distinct blocks. The SCFT has enjoyed considered success and wide usage in investigation of the complex phase behavior of block copolymers. It is well-known that the physical solutions of the SCFT equations are saddle points, however, the analytic structure of the SCFT energy functional has received little attention over the years. A recent work by Fredrickson and collaborators [see the monograph by Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, (2006), pp. 203-209] has analysed the mathematical structure of the field energy functional for polymeric systems, and clarified the index-1 saddle point nature of the problem produced by the incompressibility constraint. In this paper, our goals are to draw further attention to multicomponent block copolymers utilizing the Hubbard-Stratonovich transformation used by Fredrickson and co-workers. We first show that the saddle point character of the SCFT energy functional of multicomponent block copolymer systems may be high index, not only produced by the incompressibility constraint, but also by the Flory-Huggins interaction parameters. Our analysis will be beneficial to many theoretical studies, such as the nucleation theory of ordered phases, the mesoscopic dynamics. As an application, we then utilize the discovery to develop the gradient-based iterative schemes to solve the SCFT equations, and illustrate its performance through several numerical experiments taking ABC star triblock copolymers as an example.

Kai Jiang; Weiquan Xu; Pingwen Zhang

2013-10-04T23:59:59.000Z

50

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

51

The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell  

E-Print Network (OSTI)

The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The STR PEM fuel cell was employed to examine fuel cell start- up, and its dynamic responses to changes in load, temperature and reactant flow rates. Multiple time scales in systems response are found to correspond to water absorption by the membrane, water transport through the membrane and stress-related mechanical changes of the membrane.

Benziger, J; Karnas, E; Moxley, J; Teuscher, C; Kevrekidis, Yu G; Benziger, Jay

2003-01-01T23:59:59.000Z

52

Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications  

Science Conference Proceedings (OSTI)

Self-assembly is a powerful tool in forming structures with nanoscale dimensions. Self-assembly of macromolecules provides an efficient and rapid pathway for the formation of structures from the nanometer to micrometer range that are difficult, if not impossible to obtain by conventional lithographic techniques [1]. Depending on the morphologies obtained (size, shape, periodicity, etc.) these self-assembled systems have already been applied or shown to be useful for a number of applications in nanotechnology [2], biomineralization [3, 4], drug delivery [5, 6] and gene therapy [7]. In this respect, amphiphilic block copolymers that self-organize in solution have been found to be very versatile [1]. In recent years, polymer-micellar systems have been designed that are adaptable to their environment and able to respond in a controlled manner to external stimuli. In short, synthesis of 'nanoscale objects' that exhibit 'stimulus-responsive' properties is a topic gathering momentum, because their behavior is reminiscent of that exhibited by proteins [8]. By integrating environmentally sensitive homopolymers into amphiphilic block copolymers, smart block copolymers with self assembled supramolecular structures that exhibit stimuli or environmentally responsive properties can be obtained [1]. Several synthetic polymers are known to have environmentally responsive properties. Changes in the physical, chemical or biochemical environment of these polymers results in modulation of the solubility or chain conformation of the polymer [9]. There are many common schemes of engineering stimuli responsive properties into materials [8, 9]. Polymers exhibiting lower critical solution temperature (LCST) are soluble in solvent below a specific temperature and phase separate from solvent above that temperature while polymers exhibiting upper critical solution temperatures (UCST) phase separate below a certain temperature. The solubility of polymers with ionizable moieties depends on the pH of the solution. Polymers with polyzwitterions, anions and cations have been shown to exhibit pH responsive self assembly. Other stimuli responsive polymers include glucose sensitive polymers, calcium ion-sensitive polymers and so on. Progress in living radical polymerization (LRP) methods [10] has made it possible for the facile synthesis of these block copolymer systems with controlled molecular weights and well defined architectures. The overall theme of this work is to develop novel smart block copolymers for biomineralization and biomedical applications. Synthesis and characterization of self-assembling thermoreversible ionic block copolymers as templates in biomimetic nanocomposite synthesis using a bottom-up approach is a novel contribution in this respect. Further, we have extended these families of copolymers to include block copolymer-peptide conjugates to enhance biological specificity. Future directions on this work will focus on enhancing the polymer templating properties for biomineralization by expanding the family of block copolymers with organic polypeptides and biological polypeptide scaffolds as well as a detailed understanding of the polymer-inorganic nanocomposites at the molecular level using small angle scattering analysis. Glucose responsive polymer hydrogels for drug delivery, polymer-ligand conjugates for non-viral therapy and thermoresponsive injectable photocrosslinkable hydrogels for posttraumatic arthritis cartilage healing are other applications of these novel copolymers synthesized in our work.

Mathumai Kanapathipillai

2008-08-18T23:59:59.000Z

53

Block copolymer micellar thin films as templates for the production of tunable inorganic nanocluster arrays and their applications  

E-Print Network (OSTI)

In the past decade, the use of self-assembling systems for the fabrication of materials on the nanometer scale has been an active area of research. Block copolymer thin films are a subclass of' self-assembling systems that ...

Bennett, Ryan Derek

2007-01-01T23:59:59.000Z

54

Self-Assembly of Rod-Coil Block Copolymers And Their Application in Electroluminescent Devices  

SciTech Connect

The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod-coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rod-shaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces.

Tao, Y.; Ma, B.; Segalman, R.A.

2009-05-26T23:59:59.000Z

55

Performance of Polymer Electrolyte Membrane Fuel Cell Based on New Polymeric Ionomers  

Science Conference Proceedings (OSTI)

In this paper, novel polymer electrolyte membranes (PEMs) based on new sulfonated polyimides have been prepared. These polymers have structure of rigid aromatic polymer backbone and flexible aliphatic side chain terminated with sulfonic acid group. Membrane ... Keywords: PEM fuel cell, polymer electrolyte membrane, proton conductivity, fuel cell performance

Yan Yin; Qing Du; Kenichi Okamoto

2010-12-01T23:59:59.000Z

56

Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications  

SciTech Connect

The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.

Michael Duane Determan

2005-12-17T23:59:59.000Z

57

Evolution of block-copolymer order through a moving thermal zone  

Science Conference Proceedings (OSTI)

We investigate block-copolymer (BCP) thin film ordering kinetics during annealing across a moving in-plane temperature gradient. We operate in the so-called cold zone annealing (CZA) regime, where ordering temperatures are above the glass-transition, but well below the order-disorder transition. By measuring the order through the in-plane gradient, using atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS), we confirm that CZA greatly enhances ordering kinetics, as compared to uniform oven annealing. The maximal ordering occurs over a narrow range of the heating-up phase, and not during the subsequent cooling phase. The large grain sizes obtained using CZA are due to enhanced kinetics, and not the preferential formation of certain grain orientations. Kinetic enhancement is apparent even below the bulk glass-transition temperature. We suggest that the in-plane temperature gradient drives enhanced kinetics.

Yager, Kevin G.; Fredin, Nathaniel J.; Zhang, Xiaohua; Berry, Brian C.; Karim, Alamgir; Jones, Ronald L. (Akron)

2012-07-11T23:59:59.000Z

58

Self-Assembly of Stimuli-Responsive Water-Soluble [60]Fullerene End-Capped Ampholytic Block Copolymer  

E-Print Network (OSTI)

Well-defined, water-soluble, pH and temperature stimuli-responsive [60]fullerene (C??) containing ampholytic block copolymer of poly((methacrylic acid)-block-(2-(dimethylamino)ethyl methacrylate))-block–C?? (P(MAA-b-DMAEMA)-b-C??) ...

Ravi, P.

59

Nanostructured polymer membranes for proton conduction  

DOE Patents (OSTI)

Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

Balsara, Nitash Pervez; Park, Moon Jeong

2013-06-18T23:59:59.000Z

60

Influence of electrolytes and membranes on cell operation for syn-gas production  

DOE Green Energy (OSTI)

The impact of membrane type and electrolyte composition for the electrochemical generation of synthesis gas (CO + H2) using a Ag gas diffusion electrode are presented. Changing from a cation exchange membrane to an anion exchange membrane (AEM) extended the cell operational time at low Ecell values (up to 4x) without impacting product composition. The use of KOH as the catholyte decreased the Ecell and resulted in a minimum electrolyte cost reduction of 39%. The prime factor in determining operational time at low Ecell values was the ability to maintain a sufficiently high anolyte pH.

Eric J. Dufek; Tedd E. Lister; Michael E. McIlwain

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The role of viscoelastic contrast in orientation selection of block copolymer lamellar phases under oscillatory shear  

E-Print Network (OSTI)

The mesoscale rheology of a lamellar phase of a block copolymer is modeled as a structured fluid of uniaxial symmetry. The model predicts a viscoelastic response that depends on the angle between the the local lamellar planes and velocity gradients. We focus on the stability under oscillatory shear of a two layer configuration comprising a parallel and a perpendicularly oriented domain, so that the two layers have a different viscoelastic modulus $G^{*}(\\omega)$. A long wave, low Reynolds number expansion is introduced to analytically obtain the region of stability. When the response of the two layers is purely viscous, we recover earlier results according to which the interface is unstable for non zero Reynolds number flows when the thinner layer is more viscous. On the other hand, when viscoelasticity is included, we find that the interface can become unstable even for zero Reynolds number. The interfacial instability is argued to dynamically favor perpendicular relative to parallel orientation, and hence we suggest that the perpendicular orientation would be selected in a multi domain configuration in the range of frequency $\\omega$ in which viscoelastic contrast among orientations is appreciable.

Chi-Deuk Yoo; Jorge Vinals

2013-01-10T23:59:59.000Z

62

Polydispersity-Driven Block Copolymer Amphiphile Self-Assembly into Prolate-Spheroid Micelles  

SciTech Connect

The aqueous self-assembly behavior of polydisperse poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) macromolecular triblock amphiphiles is examined to discern the implications of continuous polydispersity in the hydrophobic block on the resulting aqueous micellar morphologies of otherwise monodisperse polymer surfactants. The chain length polydispersity and implicit composition polydispersity of these samples furnishes a distribution of preferred interfacial curvatures, resulting in dilute aqueous block copolymer dispersions exhibiting coexisting spherical and rod-like micelles with vesicles in a single sample with a O weight fraction, w{sub O}, of 0.18. At higher w{sub O} = 0.51-0.68, the peak in the interfacial curvature distribution shifts and we observe the formation of only American football-shaped micelles. We rationalize the formation of these anisotropically shaped aggregates based on the intrinsic distribution of preferred curvatures adopted by the polydisperse copolymer amphiphiles and on the relief of core block chain stretching by chain-length-dependent intramicellar segregation.

Schmitt, Andrew L.; Repollet-Pedrosa, Milton H.; Mahanthappa, Mahesh K. (UW)

2013-09-26T23:59:59.000Z

63

Polymeric Electrolytes and Catalysts for Anion-Exchange-Membrane ...  

Science Conference Proceedings (OSTI)

Alternatively, our newly developed solid anion-exchange-membrane fuel cells ( AEMFCs) have several intrinsic advantages to PEMFCs including: 1) more ...

64

High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane  

Science Conference Proceedings (OSTI)

Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

2009-01-01T23:59:59.000Z

65

State-of-the-Art Assessment of Polymer Electrolyte Membrane Fuel Cells for Distributed Power Applications  

Science Conference Proceedings (OSTI)

Low-temperature polymer electrolyte membrane fuel cell technology targeted for transportation markets has been rapidly advancing the past few years. This technology represents a potentially strategic retail access technology that could be useful in a variety of utility, commercial, and residential distributed power and retail energy service applications.

1997-01-08T23:59:59.000Z

66

Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate  

SciTech Connect

Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

2010-08-05T23:59:59.000Z

67

Test of Polymer Electrolyte Membrane Fuel Cell / Uninterruptible Power Supply for Electric Utility Battery Replacement Markets  

Science Conference Proceedings (OSTI)

A sub-scale polymer electrolyte membrane (PEM) fuel cell/capacitor uninterruptible power supply (UPS) was designed and constructed based on previous research. Testing of this sub-scale UPS as a replacement for existing battery systems is documented in this report. The project verified that the PEM fuel cells, coupled with an ultracapacitor, could functionally replace batteries used for emergency power at electric generating stations. Remaining steps to commercialization include continuing market research...

2001-12-18T23:59:59.000Z

68

Electrolyte membrane, methods of manufacture thereof and articles comprising the same  

SciTech Connect

Disclosed herein is a method of forming an electrolyte membrane comprising forming a mixture; the mixture comprising a polyhydroxy compound, an aromatic polyhalide compound and an alkali metal hydroxide; disposing the mixture on a porous substrate; reacting the mixture to form a proton conductor; and crosslinking the proton conductor to form a cross-linked proton-conducting network. Disclosed herein too is an article comprising a porous substrate; and a crosslinked proton conductor disposed on the porous substrate.

Tamaki, Ryo (Santa Clarita, CA); Rice, Steven Thomas (Scotia, NY); Yeager, Gary William (Rexford, NY)

2012-06-12T23:59:59.000Z

69

Electrolyte  

Science Conference Proceedings (OSTI)

Table 2   Electrolytes for the electrochemical machining of various metals...NaCl or KCl 0.30 (2 ) 2.1 (0.13) NaNO 3 0.60 (5) 2.1 (0.13) Steel; hardened tool steel NaClO 3 0.78 (6 ) 2.0 (0.12) Gray iron NaCl 0.30 (2 ) 2.0 (0.12) (a) (b) NaNO 3 0.60 (5) 2.0 (0.12) (a) (b) White cast iron NaNO 3 0.60 (5) 1.6 (0.10) (c) Aluminum and aluminum alloys (d) NaNO 3 0.60...

70

Electrolytes  

Science Conference Proceedings (OSTI)

Table 3   Electrolytes for the electrochemical machining of metals...cobalt-base alloys NaCl or KCl 0.30 2.5 2.1 0.13 NaNO 3 0.60 5 2.1 0.13 Steel; hardened tool steel NaClO 3 0.78 6.5 2.0 0.12 Gray iron NaCl 0.30 2.5 2.0 (a) (b) 0.12 (a) (b) NaNO 3 0.60 5 2.0 (a) (b) 0.12 (a) (b) White cast iron NaNO 3 0.60 5 1.6 (c) 0.10 (c) Aluminum and aluminum

71

Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes  

SciTech Connect

An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

2012-09-18T23:59:59.000Z

72

Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells  

Science Conference Proceedings (OSTI)

The feasibility of using nonvolatile molten and solid acidic electrolyte impregnated ion-exchange membranes in higher temperature proton-exchange membrane fuel cells (PEMFCs) to alleviate their water dependence is investigated. Higher temperature PEMFC operation reduces CO poisoning as well as passivation of the Pt electrocatalyst by other condensable species. Further, higher temperature operation could eventually allow direct use of low-temperature reformable fuels such as methanol in the PEMFC. The methodology proposed here involves supporting an appropriate acidic solid, melt, or solution of low volatility within the pores of Nafion{reg_sign} so as to enhance its protonic conductivity at higher temperatures and lower humidity levels. Preliminary experimental results reported here for a PEM fuel cell operating at temperatures of 110 to 120 C based on Nafion supported solutions of heteropolyacid indicate the feasibility of the technique.

Malhotra, S.; Datta, R. [Univ. of Iowa, Iowa City, IA (United States). Dept. of Chemical and Biochemical Engineering

1997-02-01T23:59:59.000Z

73

The use of fuel cell ion exchange membranes in electrolytic cells les membranes echangeuses d'ions des piles a combustibles  

SciTech Connect

Ion exchange membranes, previously used in fuel cells, were studied in order to examine their application to water electrolysis. State-of-the-art is reviewed from the bibliography, comparing this process with a classic one. Results show that only the cationic membranes are adequate for electrolytic cell use, being sufficiently resistant to heat and oxidation.

Damien, A.; Sohm, J.C.

1977-06-01T23:59:59.000Z

74

Elucidating through-plane liquid water profile in a polymer electrolyte membrane fuel cell.  

DOE Green Energy (OSTI)

In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented.

Wang, Yun (University of California, Irvine, CA); Chen, Ken Shuang

2010-10-01T23:59:59.000Z

75

Freezing and sorption/desorption of water confined in a Polymeric Electrolyte Membrane  

E-Print Network (OSTI)

Nafion is a perfluorosulfonated polymer, widely used in Proton Exchange Membrane Fuel Cells. This amphiphilic polymer adopts a structural organisation made of channels and cavities formed by the organisation of the sulfonate groups. Upon hydration, the cavities are filled with water in which are released the acidic protons to form a solution of hydronium ions in water, confined in the polymer matrix. Below 0OC, a phenomenon of water sorption/desorption occurs, whose origin is still an open question. Performing neutron diffraction, we monitored the quantity of ice formed during the sorption/desorption as a function of temperature down to 180 K. Upon cooling, we observe that ice forms outside of the membrane and crystallises in the hexagonal Ih form. Simultaneously, the membrane shrinks and dehydrate, leading to an increase of the hydronium ions concentration inside the matrix. Reversibly, the ice melts and the membrane re-hydrate upon heating. A model of solution, whose freezing point varies with the hydronium concentration, is proposed to calculate the quantity of ice formed as a function of temperature. The quantitative agreement between the model and experimental data explains the smooth and reversible behavior observed during the sorption or desorption of water, pointing out the origin of the phenomena. Other examples of water filled electrolyte nano-structures are eventually discussed, in the context of clarifying the conditions for water transport at low temperature.

Marie Plazanet; Renato Torre; Paolo Bartolini; Bruno Deme; Caterina Petrillo; Francesco Sacchetti

2013-05-02T23:59:59.000Z

76

Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications  

DOE Green Energy (OSTI)

The goal of this research project was to create and develop fuel cell membranes having high proton conductivity at high temperatures and high chemical and mechanical durability. Poly(1,3-cyclohexadiene) (PCHD) is of interest as an alternative polymer electrolyte membrane (PEM) material due to its ring-like structure which is expected to impart superior mechanical and thermal properties, and due to the fact that PCHD can readily be incorporated into a range of homopolymer and copolymer structures. PCHD can be aromatized, sulfonated, or fluorinated, allowing for tuning of key performance structure and properties. These factors include good proton transport, hydrophilicity, permeability (including fuel gas impermeability), good mechanical properties, morphology, thermal stability, crystallinity, and cost. The basic building block, 1,3-cyclohexadiene, is a hydrocarbon monomer that could be inexpensively produced on a commercial scale (pricing typical of other hydrocarbon monomers). Optimal material properties will result in novel low cost PEM membranes engineered for high conductivity at elevated temperatures and low relative humidities, as well as good performance and durability. The primary objectives of this project were: (1) To design, synthesize and characterize new non-Nafion PEM materials that conduct protons at low (25-50%) RH and at temperatures ranging from room temperature to 120 C; and (2) To achieve these objectives, a range of homopolymer and copolymer materials incorporating poly(cyclohexadiene) (PCHD) will be synthesized, derivatized, and characterized. These two objectives have been achieved. Sulfonated and crosslinked PCHD homopolymer membranes exhibit proton conductivities similar to Nafion in the mid-RH range, are superior to Nafion at higher RH, but are poorer than Nafion at RH < 50%. Thus to further improve proton conductivity, particularly at low RH, poly(ethylene glycol) (PEG) was incorporated into the membrane by blending and by copolymerization. Conductivity measurements at 120 C over RH ranging from 20 to 100% using the BekkTech protocol showed much improved proton conductivities. Conductivities for the best of these new membranes exceed the DOE Year 3 milestone of 100 mS/cm at 50% RH at 120 C. Further optimization of these very promising low cost membranes could be pursued in the future.

Mays, Jimmy W.

2011-03-07T23:59:59.000Z

77

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

78

Investigation of the performance and water transport of a polymer electrolyte membrane (pem) fuel cell  

E-Print Network (OSTI)

Fuel cell performance was obtained as functions of the humidity at the anode and cathode sites, back pressure, flow rate, temperature, and channel depth. The fuel cell used in this work included a membrane and electrode assembly (MEA) which possessed an active area of 25, 50, and 100 cm2 with the Nafion® 117 and 115 membranes. Higher flow rates of inlet gases increase the performance of a fuel cell by increasing the removal of the water vapor, and decrease the mass transportation loss at high current density. Higher flow rates, however, result in low fuel utilization. An important factor, therefore, is to find the appropriate stoichiometric flow coefficient and starting point of stoichiometric flow rate in terms of fuel cell efficiency. Higher air supply leads to have better performance at the constant stoichiometric ratio at the anode, but not much increase after the stoichiometric ratio of 5. The effects of the environmental conditions and the channel depth for an airbreathing polymer electrolyte membrane fuel cell were investigated experimentally. Triple serpentine designs for the flow fields with two different flow depths was used. The shallow flow field deign improves dramatically the performance of the air-breathing fuel cell at low relative humidity, and slightly at high relative humidity. For proton exchange membrane fuel cells, proper water management is important to obtain maximum performance. Water management includes the humidity levels of the inlet gases as well as the understanding of the water process within the fuel cell. Two important processes associated with this understanding are (1) electro-osmotic drag of water molecules, and (2) back diffusion of the water molecules. There must be a neutral water balance over time to avoid the flooding, or drying the membranes. For these reasons, therefore, an investigation of the role of water transport in a PEM fuel cell is of particular importance. In this study, through a water balance experiment, the electro-osmotic drag coefficient was quantified and studied. For the cases where the anode was fully hydrated and the cathode suffered from the drying, when the current density was increased, the electro- osmotic drag coefficient decreased.

Park, Yong Hun

2007-12-01T23:59:59.000Z

79

Effects of Membrane- and Catalyst-layer-thickness Nonuniformities in Polymer-electrolyte Fuel Cells  

E-Print Network (OSTI)

thicknesses for the membrane and catalyst layer. Figure 2.of dry membrane (a) and catalyst-layer (b) thickness (andhollow symbols) and catalyst-layer (filled symbols)

Weber, Adam Z.; Newman, John

2006-01-01T23:59:59.000Z

80

Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same  

Science Conference Proceedings (OSTI)

The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W

2013-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes  

Science Conference Proceedings (OSTI)

Perfluorosulfonic acid membranes, the polymer of choice for polymer electrolyte hydrogen fuel cells, are susceptible to degradation due to attacks on polymer chains from radicals. Mitigation of this attack by cerium-based radical scavengers is an approach that has shown promise. In this work, two formulations of single-crystal cerium oxide nanoparticles, with an order of magnitude difference in particle size, are incorporated into said membranes and subjected to proton conductivity measurements and ex-situ durability tests. We found that ceria is reduced to Ce(III) ions in the acidic environment of a heated, humidified membrane which negatively impacts proton conductivity. In liquid and gas Fenton testing, fluoride emission is reduced by an order of magnitude, drastically increasing membrane longevity. Side-product analysis demonstrated that in the liquid Fenton test, the main point of attack are weak polymer end groups, while in the gas Fenton test, there is additional side-chain attack. Both mechanisms are mitigated by the addition of the ceria nanoparticles, whereby the extent of the durability improvement is found to be independent of particle size.

Pearman, Benjamin P [ORNL; Mohajeri, Nahid [ORNL; Slattery, Darlene [Florida Solar Energy Center (FSEC); Hampton, Michael [University of Florida; Seal, Sudipta [University of Central Florida; Cullen, David A [ORNL

2013-01-01T23:59:59.000Z

82

Theory of proton exchange membranes fuel cells and the testing of performance characteristics of polymer electrolyte membranes  

E-Print Network (OSTI)

Proton exchange membrane (PEM) fuel cells hold great promise as source of power. A hydrogen and oxygen PEM fuel is a simple fuel cell that can be theoretically characterized. The performance of a PEM fuel cell can be ...

Cruz-Gonzalez, Tizoc, 1982-

2004-01-01T23:59:59.000Z

83

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

SciTech Connect

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

84

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents (OSTI)

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

85

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents (OSTI)

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Ratavia, IL)

2007-09-11T23:59:59.000Z

86

Mechanics and multi-physics deformation behavior of polymer electrolyte membranes  

E-Print Network (OSTI)

Fuel cells are a developing technology within the energy sector that offer both efficiency and environmental advantages over traditional combustion processes. In particular, proton exchange membrane fuel cells (PEMFC) are ...

Silberstein, Meredith N

2011-01-01T23:59:59.000Z

87

High resolution neutron imaging of water in the polymer electrolyte membrane  

DOE Green Energy (OSTI)

To achieve a deeper understanding of water transport and performance issues associated with water management, we have conducted in situ water examinations to help understand the effects of components and operation. High Frequency Resistance (HFR), AC Impedance and neutron radiography were used to measure water content in operating fuel cells under various operating conditions. Variables examined include: sub-freezing conditions, inlet relative humidities, cell temperature, current density and response transients, different flow field orientations and different component materials (membranes, GDLs and MEAs). Quantification of the water within the membrane was made by neutron radiography after equilibration to different humidified gases, during fuel cell operation and in hydrogen pump mode. The water content was evaluated in bare Nafion{reg_sign} membranes as well as in MEAs operated in both fuel cell and H{sub 2} pump mode. These in situ imaging results allow measurement of the water content and gradients in the PEFC membrane and relate the membrane water transport characteristics to the fuel cell operation and performance under disparate materials and operational combinations. Flow geometry makes a large impact on MEA water content. Higher membrane water with counter flow was measured compared with co-flow for sub-saturated inlet RH's. This correlates to lower HFR and higher performance compared with co-flow. Higher anode stoichiometry helps remove water which accumulates in the anode channels and GDL material. Cell orientation was measured to affect both the water content and cell performance. While membrane water content was measured to be similar regardless of orientation, cells with the cathode on top show flooding and loss of performance compared with similarly operated cells with the anode on top. Transient fuel cell current measurements show a large degree of hysteresis in terms of membrane hydration as measured by HFR. Current step transients from 0.01 A cm{sup -2} to 0.68 A cm{sup -2} consistently show PEM wetting occurring within 5 to 20 sec. Whereas the PEM drying response to the reverse step transient of 0.68 A cm{sup -2} to 0.01 A cm{sup -2}, takes several minutes. The observed faster wetting response is due to reaction water being produced in the cathode and back diffusing into the membrane. The slower PEM drying is due to the water slowly being removed out of the wetted GDLs. This rate of removal of water and hence the PEM hydration level was found to be influenced strongly by the PTFE loadings in the GDL substrate and Microporous layer (MPL). The drying of the membrane is influenced by both the anode and cathode GDL PTFE loadings. Lower PTFE loading in the anode GDL leads to better membrane hydration probably due to the easier incorporation of water from the anode GDL into the membrane. Similarly a lower PTFE loading in the cathode GDL also results in better membrane hydration probably due to the better water retention properties (less hydrophobic) of this GDL. Fuel cells operated isothermal at sub-freezing temperatures show gradual cell performance decay over time and eventually drops to zero. AC impedance analysis indicates that losses are initially due to increasing charge transfer resistance. After time, the rate of decay accelerates rapidly due to mass transport limitations. High frequency resistance also increases over time and is a function of the initial membrane water content. These results indicate that catalyst layer ice formation is influenced strongly by the MEA and is responsible for the long-term degradation of fuel cells operated at sub-freezing temperatures. Water distribution measurements indicate that ice may be fonning mainly in the GDLs at -10 C but are concentrated in the catalyst layer at -20 C.

Spernjak, Dusan [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Davey, John [Los Alamos National Laboratory; Fairweather, Joseph [Los Alamos National Laboratory; Mukherjee, Partha [ORNL

2010-01-01T23:59:59.000Z

88

Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact  

DOE Green Energy (OSTI)

An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

1998-11-01T23:59:59.000Z

89

Gas-Crossover and Membrane-Pinhole Effects in Polymer-Electrolyte Fuel Cells  

DOE Green Energy (OSTI)

This paper investigates the effects of gas crossover. Specifically, mathematical simulations are conducted to elucidate the fundamental changes in fuel-cell operation as permeation of the various gases through the membrane increases. Two cases are explored, with the first one examining uniform increases in the set of gas-permeation coefficients, and the second one the existence of regions of high gas crossover (i.e., membrane pinholes). For the first case, operation at 120 C is studied and a maximum limit for the hydrogen permeation coefficient of 1 x 10{sup -10} mol/bar-cm-s for a 25 {micro}m membrane is determined. For the second case, it is shown that negative current densities and temperature spikes can arise due to mixed-potential and direct-combustion effects where there are large enough pinholes, thereby impacting performance and water and thermal management.

Weber, Adam; Weber, Adam Z.

2008-04-01T23:59:59.000Z

90

Computational Modeling of Electrolyte/Cathode Interfaces in Proton Exchange Membrane Fuel Cells  

E-Print Network (OSTI)

interface is simulated by a MD approach. Initial results show the interfacial water dipole orientation the contributions of acidic groups on the proton exchange membrane, further perturbs interfacial water structure developed C++ MD code. Related Publications K.-Y. Yeh, S. A. Wasileski, M. J. Janik. "Electronic structure

Bjørnstad, Ottar Nordal

91

Preliminary Design and Cost Structure of a 50-kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) System for Stationary Applications  

Science Conference Proceedings (OSTI)

There is a growing interest in using Polymer Electrolyte Membrane Fuel Cell (PEMFC) technology in commercial on-site power and co-generation systems. However, little quantitative information is available on such factors as cost structure, size/weight characteristics, and cost/performance tradeoffs. This report both updates and refines results of prior studies to provide a more quantitative basis for developing a program that supports sound product strategy and business decisions.

1998-12-31T23:59:59.000Z

92

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

93

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

at the Advanced Photon Source (APS). 15 The azimuthallyat the Advanced Photon Source (APS). 15 The azimuthally

Wong, David Tunmin

2012-01-01T23:59:59.000Z

94

Alternate Fuel Cell Membranes for Energy Independence  

SciTech Connect

The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely within the hydrophilic chain elements of the polymer, will yield highly conductive materials with excellent mech

Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

2012-12-18T23:59:59.000Z

95

The Degradation Mitigation Effect of Cerium Oxide in Polymer Electrolyte Membranes in Extended Fuel Cell Durability Tests  

SciTech Connect

In this work, two formulations of single-crystal cerium oxide nanoparticles of varying particle sizes were incorporated into perfluorosulfonic acid membrane electrode assemblies (MEAs) and their ability to improve the in-situ membrane durability was studied by subjecting them to 94 and 500 hours open-circuit voltage hold accelerated durability tests . In the shorter test the open circuit voltage decay rate was reduced by half and the fluoride emission by at least one order of magnitude, though no effect on hydrogen crossover or performance of the baseline MEAs was measured. The presence of the additive increased the particle size but decreased the number of platinum catalyst particles that were deposited in the membrane. The main Pt band was found at the predicted location; however, the incorporation of ceria caused a broadening with particles reaching further into the membrane. In 500 h tests, ceria-containing MEAs demonstrated a seven-fold decrease in open-circuit voltage decay and three order of magnitude reduction in fluoride emission rates with unchanged performance and hydrogen crossover, remaining effectively pristine whilst the baseline MEA underwent catastrophic failure.

Pearman, Benjamin P [ORNL; Mohajeri, Nahid [ORNL; Brooker, R. Paul [Florida Solar Energy Center (FSEC); Rodgers, Marianne [ORNL; Slattery, Darlene [Florida Solar Energy Center (FSEC); Hampton, Michael [University of Florida; Cullen, David A [ORNL; Seal, Sudipta [University of Central Florida

2013-01-01T23:59:59.000Z

96

Durable Fuel Cell Membrane Electrode Assembly (MEA) - Energy ...  

Technology Marketing Summary The membrane electrode assembly (MEA) is an essential, yet highly expensive component of any polymer electrolyte membrane ...

97

Electrolytic dissolver  

DOE Patents (OSTI)

This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

Wheelwright, E.J.; Fox, R.D.

1975-08-26T23:59:59.000Z

98

Book Review of Electrolytes...  

Science Conference Proceedings (OSTI)

Book Review of Electrolytes. Properties of Solutions. ... We review the book entitled, "Electrolytes. Properties of Solutions. ...

99

Lower Cost, Nanoporous Block Copolymer Battery Separator ...  

A Berkeley Lab team led by Nitash Balsara has developed an inexpensive and easily controlled process yielding a nanoporous polymer separator that performs just as ...

100

Available Technologies: Lower Cost, Nanoporous Block Copolymer ...  

A Berkeley Lab team led by Nitash Balsara has developed an inexpensive and easily controlled process yielding a nanoporous polymer separator that performs just as ...

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Photo-responsive liquid crystal block copolymers/  

E-Print Network (OSTI)

Photo-responsive liquid crystal polymers (LCP) which contain azobenzene moieties have gained interest for their ability to change properties by merely irradiating them with the correct wavelength of light in the appropriate ...

Petr, Michael Thomas

2012-01-01T23:59:59.000Z

102

Block Copolymer Cathode Binder to Simultaneously Transport ...  

A Berkeley Lab team led by Nitash Balsara has developed a highly efficient lithium ion battery in which a single inactive material—a ... Lower cost; ...

103

Lower Cost, Nanoporous Block Copolymer Battery Separator ...  

Although the polyolefin polymer material often used for lithium battery separators costs approximately $1.30/kg, the difficult process used to make it ...

104

Directed Self-Assembly of Block Copolymers  

Science Conference Proceedings (OSTI)

... We are taking advantage of recent advances in low-energy x-ray ... changes in the domain structure dynamically to enable the optimization of a ...

2012-12-26T23:59:59.000Z

105

Polymer Nanocomposites: Bimodal and Block Copolymer Grafted ...  

Science Conference Proceedings (OSTI)

Lately, we have used this understanding to develop optimized materials for use in motor insulation, higher efficiency light emitting diodes, and field grading ...

106

Correlated disorder in random block-copolymers  

E-Print Network (OSTI)

We study the effect of a random Flory-Huggins parameter in a symmetric diblock copolymer melt which is expected to occur in a copolymer where one block is near its structural glass transition. In the clean limit the microphase segregation between the two blocks causes a weak, fluctuation induced first order transition to a lamellar state. Using a renormalization group approach combined with the replica trick to treat the quenched disorder, we show that beyond a critical disorder strength, that depends on the length of the polymer chain, the character of the transition is changed. The system becomes dominated by strong randomness and a glassy rather than an ordered lamellar state occurs. A renormalization of the effective disorder distribution leads to nonlocal disorder correlations that reflect strong compositional fluctuation on the scale of the radius of gyration of the polymer chains. The reason for this behavior is shown to be the chain length dependent role of critical fluctuations, which are less important for shorter chains and become increasingly more relevant as the polymer length increases and the clean first order transition becomes weaker.

Harry Westfahl Jr.; Joerg Schmalian

2005-01-27T23:59:59.000Z

107

Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells  

E-Print Network (OSTI)

Proton Exchange Membrane Fuel Cell , Numerical Heat Transferof Polymer Electrolyte Fuel Cells Using a Two-EquationExchange Membrane Fuel Cells 2. Absolute Permeability ,

Weber, Adam Z.

2008-01-01T23:59:59.000Z

108

High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers  

DOE Green Energy (OSTI)

Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

McGrath, James E.; Baird, Donald G.

2010-06-03T23:59:59.000Z

109

Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role...  

NLE Websites -- All DOE Office Websites (Extended Search)

of polymer electrolyte membrane fuel cell (PEMFC) performance, Establish dominant catalyst and cathode degradation * mechanisms for Pt, Pt-Co alloys, and Pt 3 Sc, Identify key...

110

A Thermal Model to Evaluate Sub-Freezing Startup for a Direct Hydrogen Hybrid Fuel Cell Vehicle Polymer Electrolyte Fuel Cell Stack and System  

E-Print Network (OSTI)

V Solid Polymer Electrolyte Fuel Cell, I. Mechanistic ModelI V Solid Polymer Electrolyte Fuel Cell, II. Empirical Modelexchange membrane fuel cells," Journal of Power Sources,

Sundaresan, Meena

2004-01-01T23:59:59.000Z

111

A Thermal Model to Evaluate Sub-Freezing Startup for a Direct Hydrogen Hybrid Fuel Cell Vehicle Polymer Electrolyte Fuel Cell Stack and System  

E-Print Network (OSTI)

IV Solid Polymer Electrolyte Fuel Cell, I. Mechanistic ModelIV Solid Polymer Electrolyte Fuel Cell, II. Empirical Modelexchange membrane fuel cells," Journal of Power Sources,

Sundaresan, Meena

2004-01-01T23:59:59.000Z

112

Electrolyte salts for nonaqueous electrolytes  

Science Conference Proceedings (OSTI)

Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

2012-10-09T23:59:59.000Z

113

Gradient Porous Composite Membrane for Fuel Cell Applications  

The heart of current polymer electrolyte fuel cells are the membrane electrode assemblies (MEA), which are composed of (i) an ionomer polymer membrane ...

114

Fuel Cell Technologies Office: High Temperature Membrane Working...  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60C-80C due to structural limitations of the membrane. Operating PEM fuel...

115

Task 1: Modeling Study of CO Effects on Polymer Electrolyte Fuel Cell Anodes Task 2: Study of Ac Impedance as Membrane/Electrode Manufacturing Diagnostic Tool  

DOE Green Energy (OSTI)

Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of major CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the effects of dilution of the feedstream with significant fractions of carbon dioxide and nitrogen and of mass transport losses in the gas diffusion backing. Not included in the anode model are ionic resistance and diffusion losses in the catalyst layer. They are looking to see if the overall pattern of polarization curves calculated based on such a purely kinetic model indeed mimics the central features of polarization curves observed for PEFCs operating on hydrogen with low levels of CO.

Thomas E. Springer

1998-01-30T23:59:59.000Z

116

The effect of Na{sup +} impurities on the conductivity and water uptake of nafion 115 polymer electrolyte fuel cell membranes.  

DOE Green Energy (OSTI)

Water uptake and ionic conductivities are reported for Nafion 115 membranes as functions of water activity and percentage of sulfonic groups occupied by sodium impurities. Water content was determined gravimetrically under liquid hydration and at 100, 75.3, and 11.3% relative humidity (RH). Water content exponentially decreased from the H{sup +}-form membrane water uptake isotherm to the Na{sup +}-form isotherm when hydrated by water vapor. Ninety percent of this decrease is reached at a substitution level of 0.2Na{sup +}/SO{sub 3}{sup -}. Water uptake under liquid water hydration decreased more gradually, only 50% to completion at 0.2Na{sup +}/SO{sub 3}{sup -}. Four-probe conductivity testing of Nafion 115 membranes, normalized against dry dimensions, revealed that although hydration decreases immediately with the introduction of sodium impurities, ionic conductivity at 100% RH remains constant up to 0.15Na{sup +}/SO{sub 3}{sup -}. Above 0.15Na{sup +}/SO{sub 3}{sup -} an exponential decrease in ionic conductivity is observed with higher sodium content. The dependence of ionic conductivity on water content is also reported for sodium contents of 0, 0.27, 0.62 and 1Na{sup +}/SO{sub 3}{sup -}.

Bendert, J. C.; Papadias, D. D.; Myers, D. J.; Chemical Sciences and Engineering Division

2010-08-25T23:59:59.000Z

117

Investigation of Electric Conductivity on Electrolyte-free Fuel Cells by ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Single-component electrolyte-free fuel cells possess a similar function to the traditional fuel ... Composite Membranes for Hydrogen Production.

118

Molten salt electrolyte separator  

DOE Patents (OSTI)

A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

Kaun, Thomas D. (New Lenox, IL)

1996-01-01T23:59:59.000Z

119

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

120

Solid polymer electrolyte compositions  

DOE Patents (OSTI)

An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nanoporous polymer electrolyte  

DOE Patents (OSTI)

A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

Elliott, Brian (Wheat Ridge, CO); Nguyen, Vinh (Wheat Ridge, CO)

2012-04-24T23:59:59.000Z

122

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

123

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

124

Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures  

Science Conference Proceedings (OSTI)

The electro-osmotic drag coefficient of water in two polymer electrolytes was experimentally determined as a function of water activity and current density for temperatures up to 200 C. The results show that the electro-osmotic drag coefficient varies from 0.2 to 0.6 in Nafion{reg_sign}/H{sub 3}PO{sub 4} membrane electrolyte, but is essentially zero in phosphoric acid-doped PBI (polybenzimidazole) membrane electrolyte over the range of water activity considered. The near-zero electro-osmotic drag coefficient found in PBI indicates that this electrolyte should lessen the problems associated with water redistribution in proton exchange membrane fuel cells.

Weng, D.; Wainright, J.S.; Landau, U.; Savinell, R.F. [Case Western Reserve Univ., Cleveland, OH (United States)

1996-04-01T23:59:59.000Z

125

Recent advances in solid polymer electrolyte fuel cell technology  

DOE Green Energy (OSTI)

With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.

Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.

1988-01-01T23:59:59.000Z

126

Sulfonated polysulfone battery membrane for use in corrosive environments  

SciTech Connect

For batteries containing strong oxidizing electrolyte and a membrane separating two electrolyte solutions, e.g., a zinc ferricyanide battery, an improved membrane is provided comprising an oxidative resistant, conductive, ion-selective membrane fabricated from a catenated aromatic polymer having an absence of tertiary hydrogens, e.g., a sulfonated polysulfone.

Arnold, Jr., Charles (Albuquerque, NM); Assink, Roger (Albuquerque, NM)

1987-01-01T23:59:59.000Z

127

Electrolytes for power sources  

DOE Patents (OSTI)

Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

1995-01-01T23:59:59.000Z

128

Electrolytes for power sources  

DOE Patents (OSTI)

Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

Doddapaneni, N.; Ingersoll, D.

1995-01-03T23:59:59.000Z

129

Electrolyte additive for lithium rechargeable organic electrolyte battery  

DOE Patents (OSTI)

A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

Behl, Wishvender K. (Ocean, NJ); Chin, Der-Tau (Winthrop, NY)

1989-01-01T23:59:59.000Z

130

Solid-polymer-electrolyte fuel cells  

DOE Green Energy (OSTI)

A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

Fuller, T.F.

1992-07-01T23:59:59.000Z

131

Macroscopic Modeling of Polymer-Electrolyte Membranes  

E-Print Network (OSTI)

Fuel Cells Iv, The Electrochemical Society Proceeding Series, Pennington, NJ,Fuel Cells, PV 95-23, The Electrochemical Society Proceeding Series, Pennington, NJ,Fuel Cell, and Photoenergy Conversion Systems, PV 86-12, The Electrochemical Society Proceeding Series, Pennington, Nj,

Weber, A.Z.; Newman, J.

2008-01-01T23:59:59.000Z

132

Molten salt electrolyte separator  

DOE Patents (OSTI)

The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

Kaun, T.D.

1996-07-09T23:59:59.000Z

133

Modeling of Mechano-chemical Degradation of Polymer Membranes ...  

Science Conference Proceedings (OSTI)

Abstract Scope, A transient, non-isothermal, two-dimensional (2D) model for the mechano-chemical degradation of a polymer membrane in a polymer electrolyte

134

Fuel Cell Technologies Office: Alkaline Membrane Fuel Cell Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Laboratory Anion Exchange Membranes for Fuel Cells, Prof. Andrew Herring, Colorado School of Mines Electrocatalysis in Alkaline Electrolytes, Prof. Sanjeev...

135

Morphology and Mechanical Properties of Block Copolymer Gels ...  

Science Conference Proceedings (OSTI)

First Principles Modeling of Shape Memory Alloy Magnetic Refrigeration Materials ... of Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): A Comparative ... Forming-Crush Simulation Optimization Using Internal State Variable Model.

136

Controlled Self Assembly of Conjugated Polymer Containing Block Copolymers  

E-Print Network (OSTI)

copolymers. Angewandte Chemie-International Edition 2008,Copolymers13. Angewandte Chemie International Edition 2008,copolymers. Angewandte Chemie-International Edition 2006,

McCulloch, Bryan

2012-01-01T23:59:59.000Z

137

Amphiphilic linear-dendritic block copolymers for drug delivery  

E-Print Network (OSTI)

Polymeric drug delivery systems have been widely used in the pharmaceutical industry. Such systems can solubilize and sequester hydrophobic drugs from degradation, thereby increasing circulation half-life and efficacy. ...

Nguyen, Phuong, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

138

Fabrication Method Can Affect the Use of Block Copolymer ...  

Science Conference Proceedings (OSTI)

... But scientists who study film formation often use a different method of casting films than a manufacturer would. One method used in industry is "flow ...

2012-10-18T23:59:59.000Z

139

Controlled Self Assembly of Conjugated Polymer Containing Block Copolymers  

E-Print Network (OSTI)

in dye/polymer blend photovoltaic cells. Advanced MaterialsA. J. , Polymer Photovoltaic Cells - Enhanced Efficiencies2-Layer Organic Photovoltaic Cell. Applied Physics Letters

McCulloch, Bryan

2012-01-01T23:59:59.000Z

140

Electrolytic cell stack with molten electrolyte migration control  

DOE Patents (OSTI)

An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate. 5 figs.

Kunz, H.R.; Guthrie, R.J.; Katz, M.

1987-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Battery utilizing ceramic membranes  

SciTech Connect

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

142

Anion exchange polymer electrolytes  

DOE Patents (OSTI)

Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

2013-07-23T23:59:59.000Z

143

Diffuse charge effects in fuel cell membranes  

E-Print Network (OSTI)

It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, ...

Biesheuvel, P. M.

144

Solid-polymer-electrolyte fuel cells  

DOE Green Energy (OSTI)

A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

Fuller, T.F.

1992-07-01T23:59:59.000Z

145

Solid Lithium Ion Conducting Electrolytes Suitable for ...  

Batteries with solid lithium ion conducting electrolytes would ... The invention is cost-effective and suitable for manufacturing solid electrolyte ...

146

Improved electrolytes for fuel cells  

DOE Green Energy (OSTI)

Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

Gard, G.L.; Roe, D.K.

1991-06-01T23:59:59.000Z

147

Batteries using molten salt electrolyte  

SciTech Connect

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

148

Integrated photoelectrochemical cell and system having a liquid electrolyte  

DOE Patents (OSTI)

An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

Deng, Xunming (Sylvania, OH); Xu, Liwei (Sylvania, OH)

2010-07-06T23:59:59.000Z

149

Electrolytic tritium production  

SciTech Connect

This paper reports fifty-three electrolytic cells of various configurations and electrode compositions examined for tritium production. Significant tritium was found in 11 cells at levels between 1.5 and 80 times the starting concentration after enrichment corrections are made.

Storms, E.; Talcott, C. (Los Alamos National Lab., Nuclear Materials Technology Div. and Material Science and Technology Div., MS C348, Los Alamos, NM (US))

1990-07-01T23:59:59.000Z

150

Integrated photovoltaic electrolytic cell  

SciTech Connect

A photovoltaic-electrolytic unit is provided to produce an electric current from solar energy and utilize the current to produce hydrogen by the electrolysis of water. The unit floats in an aqueous medium so that photoelectric cells are exposed to solar radiation, and electrodes submerged in the medium produce oxygen which is vented and hydrogen which is collected in the unit.

Ohkawa, T.

1982-10-05T23:59:59.000Z

151

Spin coating of electrolytes  

DOE Patents (OSTI)

Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

Stetter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-01-01T23:59:59.000Z

152

Electrolyte additive for improved battery performance  

DOE Patents (OSTI)

In one embodiment of the present invention, there is provided an electrochemical cell having a metal bromine couple. The cell includes an electrode structure on which to deposit the metal of the couple and a counterelectrode at which to generate bromine. A microporous membrane separates the electrode and counterelectrode. Importantly, the aqueous electrolyte comprises an aqueous metal bromide solution containing a water soluble bromine complexing agent capable of forming a water immiscible complex with bromine and an additive capable of decreasing the wettability of the microporous separators employed in such cells by such water immiscible bromine complexes.

Bellows, Richard J. (Hampton, NJ); Kantner, Edward (E. Brunswick, NJ)

1989-04-04T23:59:59.000Z

153

Definition: Electrolyte | Open Energy Information  

Open Energy Info (EERE)

Electrolyte Electrolyte Jump to: navigation, search Dictionary.png Electrolyte A substance that conducts charged ions from one electrode to the other in a fuel cell, battery, or electrolyzer.[1] View on Wikipedia Wikipedia Definition An electrolyte is a compound that ionizes when dissolved in suitable ionizing solvents such as water. This includes most soluble salts, acids, and bases. Some gases, such as hydrogen chloride, under conditions of high temperature or low pressure can also function as electrolytes. Electrolyte solutions can also result from the dissolution of some biological and synthetic polymers, termed polyelectrolytes, which contain charged functional groups. Electrolyte solutions are normally formed when a salt is placed into a solvent such as water and the individual components

154

Solid polymer electrolytes  

DOE Patents (OSTI)

This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

Abraham, K.M.; Alamgir, M.; Choe, H.S.

1995-12-12T23:59:59.000Z

155

Ice electrode electrolytic cell  

DOE Patents (OSTI)

This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

156

Ice electrode electrolytic cell  

DOE Patents (OSTI)

This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

1993-04-06T23:59:59.000Z

157

Solid polymer electrolytes  

DOE Patents (OSTI)

This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

1995-01-01T23:59:59.000Z

158

Ice electrode electrolytic cell  

DOE Patents (OSTI)

This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

1992-12-31T23:59:59.000Z

159

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

1996-01-01T23:59:59.000Z

160

Battery utilizing ceramic membranes  

DOE Patents (OSTI)

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fuel cell membrane humidification  

DOE Patents (OSTI)

A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

Wilson, Mahlon S. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

162

Ceramic electrolyte coating and methods  

SciTech Connect

Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

Seabaugh, Matthew M. (Columbus, OH); Swartz, Scott L. (Columbus, OH); Dawson, William J. (Dublin, OH); McCormick, Buddy E. (Dublin, OH)

2007-08-28T23:59:59.000Z

163

Glass electrolyte composition  

DOE Patents (OSTI)

An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

Kucera, G.H.; Roche, M.F.

1985-01-08T23:59:59.000Z

164

Fe/V Redox Flow Battery Electrolyte Investigation and Optimization  

Science Conference Proceedings (OSTI)

Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

2013-05-01T23:59:59.000Z

165

Proton exchange membrane fuel cells with chromium nitride nanocrystals as electrocatalysts  

E-Print Network (OSTI)

S. Srinivasan, V. Antonucci, Fuel Cells 1, 133 (2001). 15 Y.Proton exchange membrane fuel cells with chromium nitridePolymer electrolyte membrane fuel cells (PEMFCs) are energy

Zhong, Hexiang; Chen, Xiaobo; Zhang, Huamin; Wang, Meiri; Mao, Samuel S.

2007-01-01T23:59:59.000Z

166

DOE Hydrogen Analysis Repository: Electrolytic Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

by Principal Investigator Projects by Date U.S. Department of Energy Electrolytic Hydrogen Production Project Summary Full Title: Summary of Electrolytic Hydrogen Production:...

167

Electrolyte Materials for AMFCs and AMFC Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

May 8 th 2011 AMFC Workshop 2011 AMFC WORKSHOP 2011 AMFC WORKSHOP Electrolyte Materials for AMFCs Electrolyte Materials for AMFCs and AMFC Performance and AMFC Performance May 8...

168

Electrolyte treatment for aluminum reduction  

DOE Patents (OSTI)

A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

2002-01-01T23:59:59.000Z

169

Fuel cell membranes and crossover prevention  

DOE Patents (OSTI)

A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

Masel, Richard I. (Champaign, IL); York, Cynthia A. (Newington, CT); Waszczuk, Piotr (White Bear Lake, MN); Wieckowski, Andrzej (Champaign, IL)

2009-08-04T23:59:59.000Z

170

Electrolyte paste for molten carbonate fuel cells  

DOE Patents (OSTI)

The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

Bregoli, Lawrance J. (Southwick, MA); Pearson, Mark L. (New London, CT)

1995-01-01T23:59:59.000Z

171

The State of Water in Proton Conducting Membranes  

DOE Green Energy (OSTI)

All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

Allcock, Harry R., Benesi, Alan, Macdonald, Digby, D.

2010-08-27T23:59:59.000Z

172

Lithium ion conducting ionic electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

1996-01-01T23:59:59.000Z

173

Electrolytic production of hydrogen utilizing photovoltaic cells  

DOE Green Energy (OSTI)

Hydrogen has the potential to serve as both an energy storage means and an energy carrier in renewable energy systems. When renewable energy sources such as solar or wind power are used to produce electrical power, the output can vary depending on weather conditions. By using renewable sources to produce hydrogen, a fuel which can be stored and transported, a reliable and continuously available energy supply with a predictable long-term average output is created. Electrolysis is one method of converting renewable energy into hydrogen fuel. In this experiment we examine the use of an electrolyzer based on polymer-electrolyte membrane technology to separate water into hydrogen and oxygen. The oxygen is vented to the atmosphere and the hydrogen is stored in a small pressure vessel.

Daugherty, M.A.

1996-10-01T23:59:59.000Z

174

Automated membrane test cell apparatus and method for so using  

SciTech Connect

Disclosed is an automated electrolytic membrane test cell apparatus adaptable for the purpose of accurately measuring the electrolytic properties of membranes used in chlor-alkali cells under operating conditions similar to those used in such cells. The apparatus comprises a test cell, said test cell being adapted to hold a permselective membrane sealingly supported therein so as to create separate anode and cathode compartments. An important feature of this invention is the use of reference voltage measurement means in each of said compartments to measure the voltage drop and power consumption within the membrane.

Yeager, H. L.; Malinsky, J. D.

1985-10-08T23:59:59.000Z

175

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

176

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

177

Market potential for electrolytic hydrogen  

SciTech Connect

By the year 2000, the potential market for advanced-technology electrolytic hydrogen among specialty users is projected to be about half of what the merchant hydrogen market would be in the absence of electrolytic hydrogen. This potential market, representing an annual demand of about 16 billion SCF of hydrogen, will develop from market penetrations of electrolyzers assumed to begin in the early 1980s. 6 refs.

Fein, E.

1981-01-01T23:59:59.000Z

178

High cation transport polymer electrolyte  

DOE Patents (OSTI)

A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL); Klingler, Robert J. (Westmont, IL)

2007-06-05T23:59:59.000Z

179

Thin-film electrolytes for reduced temperature solid oxide fuel cells  

DOE Green Energy (OSTI)

Solid oxide fuel cells produce electricity at very high efficiency and have very low to negligible emissions, making them an attractive option for power generation for electric utilities. However, conventional SOFC`s are operated at 1000{degrees}C or more in order to attain reasonable power density. The high operating temperature of SOFC`s leads to complex materials problems which have been difficult to solve in a cost-effective manner. Accordingly, there is much interest in reducing the operating temperature of SOFC`s while still maintaining the power densities achieved at high temperatures. There are several approaches to reduced temperature operation including alternative solid electrolytes having higher ionic conductivity than yttria stabilized zirconia, thin solid electrolyte membranes, and improved electrode materials. Given the proven reliability of zirconia-based electrolytes (YSZ) in long-term SOFC tests, the use of stabilized zirconia electrolytes in reduced temperature fuel cells is a logical choice. In order to avoid compromising power density at intermediate temperatures, the thickness of the YSZ electrolyte must be reduced from that in conventional cells (100 to 200 {mu}m) to approximately 4 to 10 {mu}m. There are a number of approaches for depositing thin ceramic films onto porous supports including chemical vapor deposition/electrochemical vapor deposition, sol-gel deposition, sputter deposition, etc. In this paper we describe an inexpensive approach involving the use of colloidal dispersions of polycrystalline electrolyte for depositing 4 to 10 {mu}m electrolyte films onto porous electrode supports in a single deposition step. This technique leads to highly dense, conductive, electrolyte films which exhibit near theoretical open circuit voltages in H{sub 2}/air fuel cells. These electrolyte films exhibit bulk ionic conductivity, and may see application in reduced temperature SOFC`s, gas separation membranes, and fast response sensors.

Visco, S.J.; Wang, L.S.; De Souza, S.; De Jonghe, L.C.

1994-11-01T23:59:59.000Z

180

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS  

DOE Green Energy (OSTI)

A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.

Keqin Huang

2003-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solid Lithium Ion Conducting Electrolytes Suitable for ...  

not applicable to an assembly line manufacturing process. The invention is cost-effective and suitable for manufacturing solid electrolyte

182

Degradation Mechanism of SOFC Cathode Electrolyte Systems ...  

Science Conference Proceedings (OSTI)

Presentation Title, Degradation Mechanism of SOFC Cathode Electrolyte Systems Incorporating Doped Lathanum Gallates. Author(s), Chuan Zhang, Anh T.

183

Separation of gases with solid electrolyte ionic conductors  

DOE Green Energy (OSTI)

The authors have developed a novel method of gas separation based on electrolyte ionic membrane technology. Separation of one gas from another occurs through an ion-conducting membrane by the passage of selected ions. Most systems studied have focused on oxygen ion conduction for the separation of oxygen from air, although protonic and halide-conducting solid materials also exist. As an example of this system, this paper concentrates on a study of a membrane reactor used in the production of syngas (CO + H{sub 2}) from methane. The membrane material is a modified perovskite-type oxide exhibiting mixed (electronic/ionic) conductivity. Mixed-conductivity oxides are promising materials for oxygen-permeating membranes that can operate without electrodes or external electrical circuitry. Extruded tubes of this material have been evaluated in a reactor operating at {approx} 850 C for partial oxidation of methane into syngas in the presence of a reforming catalyst. Separated oxygen on one side of the reactor wall was obtained from air on the other side. Methane conversion efficiencies of > 99% were observed, and some of the reactor tubes have been operated for > 1,000 h. Membrane tubes were fabricated from calcined powders by a plastic extrusion technique. Characterization of the mechanical, physical, and chemical properties of this material confirmed the stability exhibited in the reactor.

Balachandran, U.; Dusek, J.T.; Maiya, P.S.; Mieville, R.L.; Ma, B. [Argonne National Lab., IL (United States); Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration and Production, Naperville, IL (United States)

1996-11-01T23:59:59.000Z

184

Rechargeable solid polymer electrolyte battery cell  

SciTech Connect

A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

Skotheim, Terji (East Patchoque, NY)

1985-01-01T23:59:59.000Z

185

ELECTROLYTIC SEPARATION PROCESS AND APPARATUS  

DOE Patents (OSTI)

A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)

McLain, M.E. Jr.; Roberts, M.W.

1962-03-01T23:59:59.000Z

186

Intermediate temperature electrolytes for SOFC  

DOE Green Energy (OSTI)

The objective of this work is to identify a new set of materials that would allow the operation of the solid oxide fuel cell in the 600--800{sup degrees}C temperature range. The approach that is being used is to start with a systematic evaluation of new electrolyte materials and then to develop compatible electrode and interconnect materials.

Bloom, I.; Krumpelt, M.; Hash, M.C.; Zebrowski, J.P.; Zurawski, D.

1992-01-01T23:59:59.000Z

187

Intermediate temperature electrolytes for SOFC  

DOE Green Energy (OSTI)

The objective of this work is to identify a new set of materials that would allow the operation of the solid oxide fuel cell in the 600--800{sup degrees}C temperature range. The approach that is being used is to start with a systematic evaluation of new electrolyte materials and then to develop compatible electrode and interconnect materials.

Bloom, I.; Krumpelt, M.; Hash, M.C.; Zebrowski, J.P.; Zurawski, D.

1992-09-01T23:59:59.000Z

188

Zinc electrode in alkaline electrolyte  

DOE Green Energy (OSTI)

The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

McBreen, J.

1995-12-31T23:59:59.000Z

189

Solid lithium-ion electrolyte  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-01-01T23:59:59.000Z

190

Solid lithium-ion electrolyte  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-02-10T23:59:59.000Z

191

Fuel cell with electrolyte feed system  

DOE Patents (OSTI)

A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

Feigenbaum, Haim (Highland Park, NJ)

1984-01-01T23:59:59.000Z

192

Polymeric electrolytes for ambient temperature lithium batteries  

DOE Green Energy (OSTI)

A new type of highly conductive Li{sup +} polymer electrolyte, referred to as the Innovision polymer electrolyte, is completely amorphous at room temperature and has an ionic conductivity in the range of 10{sup {minus}3} S/cm. This report discusses the electrochemical characteristics (lithium oxidation and reduction), conductivity, and physical properties of Innovision electrolytes containing various dissolved salts. These electrolytes are particularly interesting since they appear to have some of the highest room-temperature lithium ion conductivities yet observed among polymer electrolytes. 13 refs. 11 figs., 2 tabs.

Farrington, G.C. (Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering)

1991-07-01T23:59:59.000Z

193

Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems  

Science Conference Proceedings (OSTI)

Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

Mahadevan, Kathyayani

2011-10-04T23:59:59.000Z

194

Solvation and Ionic Transport in Polymer Electrolyte Membranes  

DOE Green Energy (OSTI)

We developed a general theoretical framework to study the problem of proton solvation and transport in Nafion{reg_sign} and related materials.

Zawodzinski, T.A., Jr.; Paddison, S.J.; Reagor, D.; Pratt, L.R.

1999-06-03T23:59:59.000Z

195

Steady State Multiplicity in a Polymer Electrolyte Membrane Fuel Cell  

E-Print Network (OSTI)

A simplified differential reactor model that embodies the essential physics controlling PEM fuel cell (PEM-FC) dynamics is presented. A remarkable analogy exists between water management in the differential PEM-FC and energy balance in the classical exothermic stirred tank reactor. Water, the reaction product in the PEM-FC autocatalytically accelerates the reaction rate by enhancing proton transport through the PEM. Established analyses of heat autocatalyticity in a CSTR are modified to present water management autocatalyticity in a stirred tank reactor PEM-FC.

Ee-Sunn J. Chia; Jay B. Benziger; Ioannis G. Kevrekidis

2003-06-16T23:59:59.000Z

196

Improved Membrane Materials for PEM Fuel Cell Application  

DOE Green Energy (OSTI)

The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

Kenneth A. Mauritz; Robert B. Moore

2008-06-30T23:59:59.000Z

197

Membrane stabilizer  

DOE Patents (OSTI)

A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

Mingenbach, W.A.

1988-02-09T23:59:59.000Z

198

Composite electrode/electrolyte structure  

DOE Patents (OSTI)

Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2004-01-27T23:59:59.000Z

199

Perovskite solid electrolytes for SOFC  

DOE Green Energy (OSTI)

Selected perovskite solid electrolytes incorporated into research size fuel cells have shown stability for > 4000 hours at 600{degrees}C. Perovskite lattice requirements which favor low E{sub a} for ionic conduction include (i) that the perovskite lattice possess a moderate enthalpy of formation, (ii) perovskite lattice possess large free volumes, (iii) that the lattice minimally polarizes the mobile ion and (iv) that the crystallographic saddle point r{sub c} for ionic conduction is {approx_equal} 1.

Sammells, A.F.

1992-09-01T23:59:59.000Z

200

Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell  

Science Conference Proceedings (OSTI)

The performance of a liquid-feed direct methanol fuel cell employing a proton-exchange membrane electrolyte with Pt-Ru/C as anode and Pt/C as cathode is reported. The fuel cell can deliver a power density of ca. 0.2 W/cm{sup 2} at 95 C, sufficient to suggest that the stack construction is well worthwhile. Methanol crossover across the polymer electrolyte at concentrations beyond 2 M methanol affects the performance of the cell which appreciates with increasing operating temperature.

Ravikumar, M.K.; Shukla, A.K. [Indiana Inst. of Science, Bangalore (India). Solid State and Structural Chemistry Unit

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PEM fuel cellstack development based on membrane-electrode assemblies of ultra-low platinum loadings  

DOE Green Energy (OSTI)

Attempt is made to scale-up single cell technology, based on ultra-low platinum loadings, to develop a polymer electrolyte membrane fuel cell stack for stationary power generation.

Zawodzinski, C.; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

202

Solid-oxide fuel cell electrolyte  

DOE Patents (OSTI)

This invention is comprised of a solid-oxide electrolyte operable at between 600{degrees}C and 800{degrees}C and a method of producing the solid-oxide electrolyte. The solid-oxide electrolyte comprises a combination of a compound having a weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

Bloom, I.D.; Hash, M.C.; Krumpelt, M.

1991-12-31T23:59:59.000Z

203

Fuel cell assembly with electrolyte transport  

DOE Patents (OSTI)

A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

Chi, Chang V. (Brookfield, CT)

1983-01-01T23:59:59.000Z

204

Electrolytic cell. [For separating anolyte and catholyte  

DOE Patents (OSTI)

An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

Bullock, J.S.; Hale, B.D.

1984-09-14T23:59:59.000Z

205

Implementing Wireless Electrolytic Cell Monitoring System at ...  

Science Conference Proceedings (OSTI)

Based on Kennecott Utah Copper's innovation, Outotec has developed in partnership a novel electrolytic cell monitoring system, CellSenseTM System. As the ...

206

Electrolytic process for preparing uranium metal  

SciTech Connect

An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

Haas, Paul A. (Knoxville, TN)

1990-01-01T23:59:59.000Z

207

Novel Electrolyte Enables Stable Graphite Anodes in ...  

Berkeley Lab researchers led by Gao Liu have developed an improved lithium ion battery electrolyte containing a solvent that remains liquid at typical ...

208

Environmentally Benign Electrolytes With Wide Electrochemical ...  

Very few electrolytes have been developed thus far that exhibit the above combination of performance ... cells without significant extra cost. ... Cyc ...

209

Electrochemical cell with high conductivity glass electrolyte  

DOE Patents (OSTI)

A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

Nelson, P.A.; Bloom, I.D.; Roche, M.F.

1987-04-21T23:59:59.000Z

210

Electrochemical cell with high conductivity glass electrolyte  

DOE Patents (OSTI)

A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

Nelson, P.A.; Bloom, I.D.; Roche, M.F.

1986-04-17T23:59:59.000Z

211

Nanopower: Avoiding Electrolyte Failure in Nanoscale Lithium ...  

Science Conference Proceedings (OSTI)

... most of which is the battery itself—which ... wide—solid-state lithium ion batteries to see just ... cathode material, electrolyte, and anode materials with ...

2012-04-11T23:59:59.000Z

212

The Market Potential for Electrolytic Hydrogen  

Science Conference Proceedings (OSTI)

Analyzes the small-user hydrogen market. Improvements in current electrolyzer technology may make electrolytic hydrogen competitive with purchased (merchant) hydrogen for many specialty users.

1979-08-01T23:59:59.000Z

213

Electrolytic cells for hydrogen gas production  

SciTech Connect

An electrolytic cell bank is described comprising two end plate electrodes, a plurality of intermediate electrodes, a plurality of dielectric separators spaced between the electrodes to form electrolytic cell chambers, a plurality of gas separator diaphragms, alkaline electrolyte, manifolds for allowing off-gas withdrawal of hydrogen and oxygen and means for back-pressuring the exterior walls of each end plate to counter-balance pressures developed within the electrolytic cell chambers. The cell bank is utilized to convert water into its constituent gases of oxygen and hydrogen, and the cell bank is sufficiently large to commercially produce hydrogen at pressures equal to the pressures utilized in commercial gas transmission lines.

Hall, F.F.

1980-11-25T23:59:59.000Z

214

ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

Lofthouse, E.

1954-08-31T23:59:59.000Z

215

Gel electrolyte for lithium-ion batteries.  

DOE Green Energy (OSTI)

The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li{sub 1.1}[Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3}]{sub 0.9}O{sub 2} lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces.

Chen, Z.; Zhang, L. Z.; West, R.; Amine, K.; Chemical Sciences and Engineering Division; Univ. of Wisconsin-Madison

2008-03-10T23:59:59.000Z

216

Solid composite electrolytes for lithium batteries  

DOE Patents (OSTI)

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

217

Process of making electrolyte structure for molten carbonate fuel cells  

DOE Patents (OSTI)

An electrolyte structure is produced by forming matrix material powder into a blank at room temperature and impregnating the resulting matrix blank with molten electrolyte.

Arendt, R.H.; Curran, M.J.

1980-08-05T23:59:59.000Z

218

Process of making electrolyte structure for molten carbonate fuel cells  

DOE Patents (OSTI)

An electrolyte structure is produced by forming matrix material powder into a blank at room temperature and impregnating the resulting matrix blank with molten electrolyte.

Arendt, Ronald H. (Schenectady, NY); Curran, Matthew J. (Schenectady, NY)

1980-01-01T23:59:59.000Z

219

Amorphous LLZO sol gel solid electrolyte  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Li Conducting Solid State Novel Li Conducting Solid State Electrolyte by Sol Gel Technique Davorin Babic, Ph. D. Excellatron Solid State LLC 263 Decatur St Atlanta, GA 30312 (404) 584-2475 dbabic@excellatron.com Objective Develop novel inorganic solid state lithium ion conductor: a) high Li ion conductivity b) transport number of ~1 c) stable with Li metal d) thermally stable e) adequate electrochemical window of stability Construct and test a battery that contains the novel electrolyte Novel sol gel solid electrolyte (NSGSE) In contact with Li metal: Organic electrolytes (liquid/polymer) get reduced: HAZARDS Most oxide solid electrolytes become mixed conductor: SHORTS NSGSE by sol gel process, spin coated: an oxide & stable with Li !! -100000 0 100000 200000 300000 400000 -400000

220

Proton Exchange Membranes for Fuel Cells  

Science Conference Proceedings (OSTI)

Proton exchange membrane, also known as polymer electrolyte membrane, fuel cells (PEMFCs) offer the promise of efficient conversion of chemical energy of fuel, such as hydrogen or methanol, into electricity with minimal pollution. Their widespread use to power zero-emission automobiles as part of a hydrogen economy can contribute to enhanced energy security and reduction in greenhouse gas emissions. However, the commercial viability of PEMFC technology is hindered by high cost associated with the membrane electrode assembly (MEA) and poor membrane durability under prolonged operation at elevated temperature. Membranes for automotive fuel cell applications need to perform well over a period comparable to the life of an automotive engine and under heavy load cycling including start-stop cycling under sub-freezing conditions. The combination of elevated temperature, changes in humidity levels, physical stresses and harsh chemical environment contribute to membrane degradation. Perfluorinated sulfonic acid (PFSA)-based membranes, such as Nafion®, have been the mainstay of PEMFC technology. Their limitations, in terms of cost and poor conductivity at low hydration, have led to continuing research into membranes that have good proton conductivity at elevated temperatures above 120 °C and under low humidity conditions. Such membranes have the potential to avoid catalyst poisoning, simplify fuel cell design and reduce the cost of fuel cells. Hydrocarbon-based membranes are being developed as alternatives to PFSA membranes, but concerns about chemical and mechanical stability and durability remain. Novel anhydrous membranes based on polymer gels infused with protic ionic liquids have also been recently proposed, but considerable fundamental research is needed to understand proton transport in novel membranes and evaluate durability under fuel cell operating conditions. In order to advance this promising technology, it is essential to rationally design the next generation of PEMs based on an understanding of chemistry, membrane morphology and proton transport obtained from experiment, theory and computer simulation.

Devanathan, Ramaswami

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electrolyte for an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.

1997-01-28T23:59:59.000Z

222

Electrolyte for an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1997-01-01T23:59:59.000Z

223

Controlling Domain Orientations in Thin Films of AB and ABA Block Copolymers  

SciTech Connect

Domain orientations in thin films of lamellar copolymers are evaluated as a function of copolymer architecture, film thickness, and processing conditions. Two copolymer architectures are considered: An AB diblock of poly(styrene-b-methyl methacrylate) and an ABA triblock of poly(methyl methacrylate-b-styrene-b-methyl methacrylate). All films are cast on substrates that are energetically neutral with respect to the copolymer constituents. Film structures are evaluated with optical microscopy, atomic force microscopy, and grazing-incidence small-angle X-ray scattering. For AB diblock copolymers, the domain orientations are very sensitive to film thickness, annealing temperature, and imperfections in the 'neutral' substrate coating: Diblock domains are oriented perpendicular to the substrate when annealing temperature is elevated ({>=} 220 C) and defects in the substrate coating are minimized; otherwise, parallel or mixed parallel/perpendicular domain orientations are detected for most film thicknesses. For ABA triblock copolymers, the perpendicular domain orientation is stable for all the film thicknesses and processing conditions that were studied. The orientations of diblock and triblock copolymers are consistent with recent works that consider architectural effects when calculating the copolymer surface tension (Macromolecules 2006, 39, 9346 and Macromolecules 2010, 43, 1671). Significantly, the data demonstrate that triblocks are easier to process for applications in nanopatterning - in particular, when high-aspect-ratio nanostructures are required. However, both diblock and triblock films contain a high density of 'tilted' or bent domains, and these kinetically trapped defects should be minimized for most patterning applications.

Vu, Thai; Mahadevapuram, Nikhila; Perera, Ginusha M.; Stein, Gila E. (Houston)

2012-03-15T23:59:59.000Z

224

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network (OSTI)

9 Figure 1.9. Schematic of a traditional lithium-ion batterythan traditional lithium-ion battery batteries. OrganicBattery Design A lithium-ion battery consists of a negative

Patel, Shrayesh

2013-01-01T23:59:59.000Z

225

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network (OSTI)

lithium-ion battery is shown in Figure 1.9. When discharging a battery, the positive electrode is the cathode

Patel, Shrayesh

2013-01-01T23:59:59.000Z

226

Kinetics of oil dispersion in the absence and presence of block copolymers  

Science Conference Proceedings (OSTI)

Dispersion of oil into fine droplets is important in many applications, such as flotation, selective agglomeration, solvent extraction, wastewater treatment, and oil drilling. Size distribution of oil droplets determines the rate of mass transfer between the continuous and the disperse phase and the outcome of the process in these applications. A phenomenological model proposed describes droplet breakup in the turbulently agitated lean oil-in-water dispersions and provides a correlation between the median droplet size in an agitated vessel of standard geometry and the time of dispersion. It was assumed that the droplet breakup takes place in the dispersion-only region and coalescence is negligible. The model described the data from this study and the literature quite satisfactorily under these conditions. The effect of adding triblock PEO/PPO/PEO copolymeric surfactants on the dispersion kinetics of oil was also investigated. Addition of surfactant reduced the median oil droplet size significantly, and the extent of this reduction was a strong function of surfactant concentration. Application of the model on these data demonstrated that the change in the median droplet size could be divided into two distinct regions. The breakage rate was high initially, most probably due to continuous adsorption of surfactant molecules at the oil/water interface. A lower breakage rate was attained at longer times, as the surfactant molecules were depleted from the solution. The time of transition between the two was affected strongly by the concentration of the surfactant added. Furthermore, the time of addition of the surfactant did not affect the final droplet-size distribution in the system.

Polat, H. [Izmir Inst. of Tech. (Turkey). Dept. of Chemistry] [Izmir Inst. of Tech. (Turkey). Dept. of Chemistry; Polat, M. [Dokuz Eyluel Univ., Izmir (Turkey). Mining Engineering Dept.] [Dokuz Eyluel Univ., Izmir (Turkey). Mining Engineering Dept.; Chander, S. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Energy and Geo-Environmental Engineering] [Pennsylvania State Univ., University Park, PA (United States). Dept. of Energy and Geo-Environmental Engineering

1999-08-01T23:59:59.000Z

227

Nanostructured electrospun fibers : from superhydrophobicity to block copolymer self-assembly  

E-Print Network (OSTI)

Electrospinning has emerged in recent years as a relatively easy, efficient and robust method to make ultrafine continuous fibers with diameter on the order of -100 nm from a variety of materials. As a result, numerous ...

Ma, Minglin

2008-01-01T23:59:59.000Z

228

Understanding barriers to efficient nucleic acid delivery with bioresponsive block copolymers  

E-Print Network (OSTI)

The delivery of nucleic acids has the potential to revolutionize medicine by allowing previously untreatable diseases to be clinically addressed. Viral delivery systems have been held back by immunogenicity and toxicity ...

Bonner, Daniel Kenneth

2012-01-01T23:59:59.000Z

229

The design, synthesis and properties of pressure-processable biodegradable block copolymers  

E-Print Network (OSTI)

In this thesis, biodegradable block copolyesters were specifically designed and synthesized for their susceptibility to pressure-induced mixing. These baroplastic materials are capable of being processed and molded through ...

Lovell, Nathan Gary

2005-01-01T23:59:59.000Z

230

Studies of Block Copolymer Thin Films and Mixtures with an Ionic Liquid  

E-Print Network (OSTI)

experimental assistance at the SSRL. 2.6. References Bates,assistance at the SSRL, and Dr. Yuri Melnichenko and Dr.Radiation Laboratory (SSRL). The beamline was configured

Virgili, Justin

2009-01-01T23:59:59.000Z

231

Studies of Block Copolymer Thin Films and Mixtures with an Ionic Liquid  

E-Print Network (OSTI)

by the Scientific User Facilities Division, Office of Basicthe SSRL. Both are national user facilities supported by theBoth are national user facilities supported by the

Virgili, Justin

2009-01-01T23:59:59.000Z

232

Low temperature processing of baroplastic core-shell nanoparticles and block copolymers  

E-Print Network (OSTI)

Baroplastics are nanophase polymeric materials comprised of two components that can miscibilize under pressure thereby facilitating flow. The possibility of processing these materials at low temperatures was the main focus ...

González-León, Juan A. (Juan Antonio)

2006-01-01T23:59:59.000Z

233

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS...

234

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network (OSTI)

that the non-conducting blocks have a high glass transitionthe glass transition temperature of the amorphous block. 72-

Patel, Shrayesh

2013-01-01T23:59:59.000Z

235

Electrolytic orthoborate salts for lithium batteries  

DOE Patents (OSTI)

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

2008-01-01T23:59:59.000Z

236

Washer with electrolytic water dissociation. Final report  

SciTech Connect

The development of a washing machine with turbo-electrolytic pre-wash facility is described. This process involves a preliminary electro-chemical process which is characterized by an overall reduction in energy consumption during the wash cycle. Comparative studies between the turbo-electrolytic washing machine and a standard washing machine have been carried out. Although the production cost of the turbo-electrolytic machine is greater, savings on energy costs will give rise to a net reduction in costs over the lifetime of the machine.

Morello, M.

1984-01-01T23:59:59.000Z

237

Intermediate Temperature SOFC Operation Using Lanthanum Gallate Electrolyte  

DOE Green Energy (OSTI)

This presentation discusses intermediate temperature SOFC operation using lanthanum gallate electrolyte.

Elangovan, S.; Balagopal, S. Hartvigsen, J.; Tipmer, M.; Larsen, D.

2005-01-27T23:59:59.000Z

238

Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases  

DOE Green Energy (OSTI)

The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

2012-10-01T23:59:59.000Z

239

Electrolytic Infiltration into Laser Sintered Porous Graphite  

Science Conference Proceedings (OSTI)

Symposium, Green Technologies for Materials Manufacturing and Processing V. Presentation Title, Electrolytic Infiltration into Laser Sintered Porous Graphite ... Tensile and Fatigue Testing of 304 Stainless Steel after Gaseous Hydrogen ...

240

Photo-electrolytic production of hydrogen  

SciTech Connect

Hydrogen and oxygen are produced from water in a process involving the photodissociation of molecular bromine with radiant energy at wavelengths within the visible light region and a subsequent electrolytic dissociation of hydrogen halides.

Meyerand, R.G. Jr.; Krascella, N.L.; McMahon, D.G.

1978-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A disposable, self-administered electrolyte test  

E-Print Network (OSTI)

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z

242

Fuel cell with electrolyte matrix assembly  

DOE Patents (OSTI)

This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.

Kaufman, Arthur (West Orange, NJ); Pudick, Sheldon (Sayreville, NJ); Wang, Chiu L. (Edison, NJ)

1988-01-01T23:59:59.000Z

243

Nonaqueous electrolyte for electrical storage devices  

DOE Patents (OSTI)

Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

McEwen, Alan B. (Melrose, MA); Yair, Ein-Eli (Waltham, MA)

1999-01-01T23:59:59.000Z

244

Electrolytic production of hydrogen. [from carbonaceous materials  

SciTech Connect

A cyclic electrolytic process is claimed for the manufacture of hydrogen from carbonaceous material such as coal, agricultural wastes and garbage to produce commercial hydrogen. An alakli metal sulfate is reduced to an alkali metal sulfide by reaction of the sulfate and carbonaceous fuel at an elevated temperature. The sulfide and impurities derived from the fuel are digested with an aqueous solution to dissolve the sulfide and separate out the impurities. The solution of the alkali sulfide is added to electrolytic cells in which an electric current is utilized to generate hydrogen at the cathode while oxidizing the sulfide substantially to sulfate at the anode. The cell electrolyte temperature is greater than 150/sup 0/C and less than 350/sup 0/C. Under these conditions the polarization problem encountered in hydrogen/oxygen cells is substantially avoided. The alkali sulfate is then separated from the electrolyte stream exiting from the electrolytic cells, reduced again by burning with fuel and recycled to the electrolytic cell.

Spitzer, R.

1978-03-28T23:59:59.000Z

245

Electrolytic recovery of reactor metal fuel  

DOE Patents (OSTI)

A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

Miller, W.E.; Tomczuk, Z.

1994-09-20T23:59:59.000Z

246

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

DOE Green Energy (OSTI)

This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

2003-03-31T23:59:59.000Z

247

Electrolytic production of uranous nitrate  

SciTech Connect

Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP.

Orebaugh, E.G.; Propst, R.C.

1980-04-01T23:59:59.000Z

248

Membranes – Phosphazene  

INL’s new phosphazene membrane technology provides a method for making polydichlorophosphazene using solid state reactants that simplifies previous processes with a “single pot” two-step process. The process eliminates use of chlorinated hydrocarbon ...

249

Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors  

Science Conference Proceedings (OSTI)

Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovationâ??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

Dr. Brian Dixon

2008-12-30T23:59:59.000Z

250

Membrane reactor advantages for methanol reforming and similar reactions  

Science Conference Proceedings (OSTI)

Membrane reactors achieve efficiencies by combining in one unit a reactor that generates a product with a semipermeable membrane that extracts it. One well-known benefit of this is greater conversion, as removal of a product drives reactions toward completion, but there are several potentially larger advantages that have been largely ignored. Because a membrane reactor tends to limit the partial pressure of the extracted product, it fundamentally changes the way that total pressure in the reactor affects equilibrium conversion. Thus, many gas-phase reactions that are preferentially performed at low pressures in a conventional reactor are found to have maximum conversion at high pressures in a membrane reactor. These higher pressures and reaction conversions allow greatly enhanced product extraction as well. Further, membrane reactors provide unique opportunities for temperature management which have not been discussed previously. These benefits are illustrated for methanol reforming to hydrogen for use with PEM (polymer electrolyte membrane) fuel cells.

Buxbaum, R.E. [REB Research and Consulting Co., Ferndale, MI (United States)

1999-07-01T23:59:59.000Z

251

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

252

'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film  

Science Conference Proceedings (OSTI)

Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped protein is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.

Parthasarathy, Meera [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, Maharashtra (India); Pillai, Vijayamohanan K. [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, Maharashtra (India)], E-mail: vk.pillai@ncl.res.in; Mulla, Imtiaz S. [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, Maharashtra (India); Shabab, Mohammed; Khan, M.I. [Biochemical Sciences Division, National Chemical Laboratory, Pune 411 008, Maharashtra (India)

2007-12-07T23:59:59.000Z

253

Combination for electrolytic reduction of alumina  

DOE Patents (OSTI)

An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Lynnwood, WA); Juric, Drago D. (Bulleen, AU)

2002-04-30T23:59:59.000Z

254

Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.  

SciTech Connect

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

2004-10-05T23:59:59.000Z

255

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

256

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

257

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

258

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

259

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

260

Solid electrolytes strengthened by metal dispersions  

DOE Patents (OSTI)

An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

Lauf, R.J.; Morgan, C.S.

1981-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solid electrolytes for medium temperature steam electrolysis  

SciTech Connect

A research program has been initiated to screen and select electrolyte materials for use in steam electrolyzers in the 300 to 600/sup 0/C temperature range. Screening of a significant number of acid anhydrides, hydroxides, oxides, and phosphates for their electrolytic conductivity properties is underway. Of the binary materials examined to date, only polymerized phosphoric acid, immobilized on an H/sup +/ substituted zeolite, shows promise. A substantial number of ternary compounds remain to be synthesized and evaluated. 7 references, 4 figures, 4 tables.

Findl, E.; Kulesa, F.; Montoneri, E.

1984-04-01T23:59:59.000Z

262

Cathode for electrolytic production of hydrogen  

SciTech Connect

A cathode for use in the electrochemical production of hydrogen and a process for making it which involves direct electrochemical cathodic action on a thermally produced adherent oxide on a nickel cathode surface are disclosed. Examples include a nickel sheet thermally oxidized in air at 600/sup 0/ C. for one hour and used directly in the production of electrolytic hydrogen and an iron sheet plasma sprayed with nickel to provide a surface containing thermal oxidation product of nickel and again used directly in the electrolytic production of hydrogen.

Hall, D.E.

1983-10-18T23:59:59.000Z

263

Solid electrolyte battery materials. Technical report  

SciTech Connect

This is the third technical report relating to work on Solid Electrolyte Battery Materials. During the past 18 months our efforts have had two major aims: one is to develop a novel technique for producing beta alumina solid electrolytes for use in the sodium-sulfur cell. The other is to search for new fast ion conducting materials for lithium and potassium ions, as well as to examine mixed conductor materials for potential application as electrodes in advanced secondary battery designs. The details and results of our efforts for the first year are presented in Technical Report No. 2. The present report covers the first six months of effort in the second year.

Huggins, R.A.

1974-11-30T23:59:59.000Z

264

Solid composite electrolytes for lithium batteries  

DOE Patents (OSTI)

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2001-01-01T23:59:59.000Z

265

Electrolytes: transport properties and non-equilibrium thermodynamics  

Science Conference Proceedings (OSTI)

This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

Miller, D.G.

1980-12-01T23:59:59.000Z

266

Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB  

E-Print Network (OSTI)

of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

Zhang, Xueyuan; Devine, Thomas M.

2008-01-01T23:59:59.000Z

267

Electrolytic Cell For Production Of Aluminum From Alumina  

SciTech Connect

An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

Bradford, Donald R (Underwood, WA); Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR)

2004-11-02T23:59:59.000Z

268

Solar Thermal Electrolytic Production of Metals from Their Oxides  

Science Conference Proceedings (OSTI)

Symposium, Alternative Energy Resources for Metals and Materials Production Symposium. Presentation Title, Solar Thermal Electrolytic Production of Metals ...

269

Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells  

DOE Patents (OSTI)

An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

Borglum, Brian P. (Edgewood, PA); Bessette, Norman F. (N. Huntingdon, PA)

2000-01-01T23:59:59.000Z

270

Ultrasonic hydrometer. [Specific gravity of electrolyte  

DOE Patents (OSTI)

The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

Swoboda, C.A.

1982-03-09T23:59:59.000Z

271

Process for electrolytically preparing uranium metal  

DOE Patents (OSTI)

A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

Haas, Paul A. (Knoxville, TN)

1989-01-01T23:59:59.000Z

272

A study of electrolytic tritium production  

SciTech Connect

Tritium production is being investigated using cathodes made from palladium and its alloys with various surface treatments. Three anode materials have been studied as well as different impurities in the electrolyte. Tritium has been produced in about 10% of the cells studied but there is, as yet, no pattern of behavior that would make the effect predictable. 15 refs., 4 figs., 6 tabs.

Storms, E.K.; Talcott, C.L.

1990-01-01T23:59:59.000Z

273

Cathode for the electrolytic production of hydrogen  

SciTech Connect

The invention relates to a cathode for the electrolytic production of hydrogen. The cathode comprises an active surface consisting of a metal oxide obtained by the thermal decomposition of a thermally decomposable compound of a metal chosen from amongst cobalt, iron, manganese or nickel. The cathode is particularly suitable for the electrolysis of aqueous sodium chloride solutions in cells with a permeable diaphragm.

Nicolas, E.

1983-07-19T23:59:59.000Z

274

Electrolytic plating apparatus for discrete microsized particles  

SciTech Connect

Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur.

Mayer, Anton (Los Alamos, NM)

1976-11-30T23:59:59.000Z

275

Anhydrous hydrogen fluoride electrolyte battery. [Patent application  

DOE Patents (OSTI)

It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

Not Available

1972-06-26T23:59:59.000Z

276

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS  

DOE Green Energy (OSTI)

A thorough literature survey on low-temperature electrolyte and electrode materials for solid oxide fuel cells (SOFC) is presented. Preliminary results of co-sintering LaGaO{sub 3} (LSGM) film on the cathode substrate were also reported. The chemical stability of LSGM in various SOFC environments was thermodynamically assessed and verified by the molten-salt technique.

Keqin Huang

2001-04-30T23:59:59.000Z

277

The State of Water in Proton Conducting Membranes  

SciTech Connect

The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 -May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

Allcock, Harry R., Benesi, Alan, Macdonald, Digby, D.

2010-08-27T23:59:59.000Z

278

Method and apparatus for storage battery electrolyte circulation  

SciTech Connect

An electrolyte reservoir in fluid communication with the cell of a storage battery is intermittently pressurized with a pulse of compressed gas to cause a flow of electrolyte from the reservoir to the upper region of less dense electrolyte in the cell. Upon termination of the pressure pulse, more dense electrolyte is forced into the reservoir from the lower region of the cell by the differential pressure head between the cell and reservoir electrolyte levels. The compressed gas pulse is controlled to prevent the entry of gas from the reservoir into the cell.

Inkmann, Mark S. (Milwaukee, WI)

1980-09-09T23:59:59.000Z

279

Components and materials issues in polymer electrolyte fuel cells for transportation applications  

DOE Green Energy (OSTI)

Recent research work on the polymer electrolyte fuel cell (PEFC) is described. This research work addresses the goal of bringing the PEFC technology to the performance and the cost levels required for its wide spread use in transportation. The main topics are (a) a new approach to the fabrication of Pt/C catalyst layers of high performance, employing loadings as low as 0.1 mgPt/cm{sup 2}; (b) measurements and modeling of membrane, cathode catalyst and cathode backing contributions to cell loses in the PEFC; and (c) carbon monoxide poisoning of anode electrocatalysts in the PEFC -- the problem and possible solutions. 13 refs.

Derouin, C.R.; Springer, T.E.; Uribe, F.A.; Valerio, J.A.; Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.

1992-01-01T23:59:59.000Z

280

Fuel cell and system for supplying electrolyte thereto  

DOE Patents (OSTI)

An electrolyte distribution and supply system for use with a fuel cell having means for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells of the stack. Individual storage compartments are coupled by capillary tubes to the respective fuel cells. Hydrostatic pressure is maintained individually for each of the fuel cells by separately elevating each compartment of the storing means to a specific height above the corresponding fuel cell which is to be fed from that compartment of the storing means. The individual compartments are filled with electrolyte by allowing the compartments to overflow thereby maintaining the requisite depth of electrolyte in each of the storage compartments.

Adlhart, Otto J. (Tenafly, NJ); Feigenbaum, Haim (Highland Park, NJ)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electrolyte reservoir for carbonate fuel cells  

DOE Patents (OSTI)

An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

Iacovangelo, C.D.; Shores, D.A.

1984-05-23T23:59:59.000Z

282

Electrolyte reservoir for carbonate fuel cells  

DOE Patents (OSTI)

An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

Iacovangelo, Charles D. (Schenectady, NY); Shores, David A. (Minneapolis, MN)

1985-01-01T23:59:59.000Z

283

Market potential for electrolytic hydrogen. Final report  

SciTech Connect

The economics of hydrogen production by the major users of hydrogen (petroleum refiners and manufacturers of ammonia and methanol) favor the continued use of fossil fuels for hydrogen generation. However, there are a large number of miscellaneous small users for whom hydrogen produced by advanced electrolyzers may become economically attractive. Many of these small users, with hydrogen demands of < 0.5 million SCF per day, purchase their hydrogen requirements from industrial gas suppliers. Forseeable improvements in current electrolyzer technology, which will reduce plant capital costs and improve plant performance and efficiency, may make electrolytic hydrogen competitive with purchased hydrogen for many specialty users. This study analyzed the small user hydrogen market. Telephone interviews were conducted with representative hydrogen users in the chemical, pharmaceutical, electronics, metals, fats and oils, and float glass industries to determine the decision factors governing the choice of their hydrogen supply. Cost projections to the year 2000 for production of hydrogen by advanced electrolyzers were made and compared with price projections for merchant hydrogen, and the estimates of the potential market for each of the industrial sub-sectors were determined. By the year 2000, the potential market for advanced technology electrolytic hydrogen among specialty users is projected to be about half of what the merchant hydrogen market would be in the absence of electrolytic hydrogen. This potential market, representing an annual demand of about 16 billion SCF of hydrogen, will develop from market penetrations of electrolyzers assumed to begin in the early 1980s.

Fein, E.; Mathey, C.J.; Arnstein, C.

1979-08-01T23:59:59.000Z

284

Nonaqueous Electrolyte Development for Electrochemical Capacitors  

DOE Green Energy (OSTI)

The objectives of this project were to demonstrate and develop new nonaqueous electrolytes that enable the development of high power (in excess of 2 kW/kg) and high energy (in excess of 8 Wh/kg) capacitors. Electrochemical capacitors are attractive to use because of their long cycle life and inherent high-power (or fast charge/discharge) capabilities. To realize the inherent high-power nature of the capacitor, the resistance of the capacitor needs to be low. The main focus of this project is on the ionic part of capacitor resistance, which is largely determined by the electrolyte, especially the electrolyte's conductivity. To achieve the objectives of this project, two approaches were used. The first was to search for the proper solvent mixtures within the commercially available quaternary ammonium salts such as tetraethyl ammonium tetrafluoroborate (Et4NBF4) or tetraethyl ammonium hexafluorophosphate (Et4NPF6). The second approach was to use the commonly available solvent system s but develop new salts. Substantial advances were made in quaternary ammonium salts and solvent systems were identified that can withstand high voltage operations. However, improvement in the salt alone is not sufficient. Improvements in the low-temperature stability of a capacitor rely not only on the salts but also on the solvents. Likewise, the high-temperature stability of the capacitor will depend not only on the salts but also on the solvents and carbon electrode materials.

K. Xu; S. P. Ding; T. R. Jow

1999-09-01T23:59:59.000Z

285

Chalcogen catalysts for polymer electrolyte fuel cell  

DOE Patents (OSTI)

A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Alonso-Vante, Nicolas (France, FR); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

2010-08-24T23:59:59.000Z

286

Membrane catalyst layer for fuel cells  

DOE Patents (OSTI)

A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 {mu}m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm{sup 2}. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

Wilson, M.S.

1991-02-19T23:59:59.000Z

287

Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator  

DOE Patents (OSTI)

Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

Joshi, Ashok V. (Salt Lake City, UT); Balagopal, Shekar (Sandy, UT); Pendelton, Justin (Salt Lake City, UT)

2011-12-13T23:59:59.000Z

288

Electrolyte matrix in a molten carbonate fuel cell stack  

DOE Patents (OSTI)

A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

Reiser, C.A.; Maricle, D.L.

1987-04-21T23:59:59.000Z

289

Electrolyte matrix in a molten carbonate fuel cell stack  

DOE Patents (OSTI)

A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

Reiser, Carl A. (Glastonbury, CT); Maricle, Donald L. (Glastonbury, CT)

1987-04-21T23:59:59.000Z

290

Electrolyte matrix in a molten carbonate fuel cell stack  

DOE Patents (OSTI)

A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack to the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

Reiser, C.A.; Maricle, D.L.

1986-05-27T23:59:59.000Z

291

Boron compounds as anion binding agents for nonaqueous battery electrolytes  

DOE Patents (OSTI)

Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

Lee, Hung Sui (East Setauket, NY); Yang, Xia-Oing (Port Jefferson Station, NY); McBreen, James (Bellport, NY); Xiang, Caili (Upton, NY)

2000-02-08T23:59:59.000Z

292

STUDIES ON ZINC NODULES ELECTRODEPOSITED FROM ACID ELECTROLYTES  

E-Print Network (OSTI)

Electrolytic Nucleation Brass on Platinum Single Crystalepoxied to a which threaded brass mount. This was then setmechanical polishing. A tapered brass mount was used a dummy

Anderson, R.

2011-01-01T23:59:59.000Z

293

Method of synthesizing polymers from a solid electrolyte  

DOE Patents (OSTI)

A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

Skotheim, T.A.

1984-10-19T23:59:59.000Z

294

Autogenous electrolyte, non-pyrolytically produced solid capacitor structure  

DOE Patents (OSTI)

This report discusses the design of a solid electrolytic capacitor having a solid electrolyte comprised of manganese dioxide dispersed in an aromatic polyamide capable of to forming polyimide linkages. This solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

Sharp, D.J.; Armstrong, P.S.; Paintz, J.K.G.

1998-04-01T23:59:59.000Z

295

Autogenous electrolyte, non-pyrolytically produced solid capacitor structure  

DOE Patents (OSTI)

A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

Sharp, Donald J. (Albuquerque, NM); Armstrong, Pamela S. (Abingdon, MD); Panitz, Janda Kirk G. (Edgewood, NM)

1998-01-01T23:59:59.000Z

296

Fluorinated Arylboron Oxalate for Non-Aqueous Battery Electrolytes  

A range of new fluorinated arylboron oxalate compounds for use as additives and anion receptors in lithium-based battery electrolytes have been ...

297

Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion Batteries  

Berkeley Lab researchers led by Gao Liu have developed an improved lithium ion battery electrolyte containing a solvent that remains liquid at typical ...

298

ESS 2012 Peer Review - Organic and Inorganic Solid Electrolytes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Good match between calculated and synthesized electrolyte (crystal structure and lattice parameters) Figure 9: Actual battery pellet and first cycle voltage profile of the...

299

Zinc halogen battery electrolyte composition with lead additive  

SciTech Connect

This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

Henriksen, Gary L. (Troy, MI)

1981-01-01T23:59:59.000Z

300

NASICON-Type Electrolytes for Low Temperature Sodium Battery ...  

Science Conference Proceedings (OSTI)

Presentation Title, NASICON-Type Electrolytes for Low Temperature Sodium Battery Applications. Author(s), Hui Zhang, Xingbo Liu. On-Site Speaker ( Planned) ...

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Layer-by-Layer Assembled Thin Films for Battery Electrolytes  

Science Conference Proceedings (OSTI)

Presentation Title, Layer-by-Layer Assembled Thin Films for Battery Electrolytes ... Abstract Scope, Exponential layer-by-layer (eLBL) assembled battery ...

302

Solid Electrolyte Developed for Safer Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

Feb 19, 2013 ... Today's lithium-ion batteries rely on a liquid electrolyte to conduct ions between the negatively charged anode and positive cathode.

303

Short protection device for stack of electrolytic cells  

DOE Patents (OSTI)

The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.

Katz, M.; Schroll, C.R.

1984-11-29T23:59:59.000Z

304

Copper Refining Electrolyte Purification by the Use of Molecular ...  

Science Conference Proceedings (OSTI)

Presentation Title, Copper Refining Electrolyte Purification by the Use of Molecular ... An Experimental Study of Chemical Oxygen Demand Removal from the ...

305

Investigation of 5 MOL% YSZ Electrolyte for SOFC  

Science Conference Proceedings (OSTI)

Presentation Title, Investigation of 5 MOL% YSZ Electrolyte for SOFC. Author(s), Nilufer Evcimen, Ahmet Ekerim. On-Site Speaker (Planned), Nilufer Evcimen.

306

Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status  

DOE Green Energy (OSTI)

Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

1993-01-01T23:59:59.000Z

307

Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status  

DOE Green Energy (OSTI)

Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

1993-05-01T23:59:59.000Z

308

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell ...  

Science Conference Proceedings (OSTI)

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell Miniaturizations · Fabrication of TiN Nanoparticle Dispersed Si3N4 Ceramics by Wet Jet ...

309

Mesoporous silica as a membrane for ultra-thin implantable direct glucose Tushar Sharma,a  

E-Print Network (OSTI)

failure warning systems, glucose and electrolyte sensors with systems such as an automated implantable car-linked hydro- gels, sulfonated polypropylene and cuprophan,20­22 have been used to facilitate glucose diffusion and separate the electrodes. Rao et al.20,23 and Atanasov and Wilkins24 have used hydro- phobic membranes

310

Electrolytic decontamination of the 3013 inner can  

SciTech Connect

Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. This standard specifies both the requirements for containment and furthermore specifies that the inner container be decontaminated to a level of {le}20 dpm/100 cm{sup 2} swipable and {le}500 dpm/100 cm{sup 2} direct alpha such that a failure of the outer containment barrier will have a lower probability of resulting in a spread of contamination. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. The passage of current through this electrolytic cell results in a uniform anodic dissolution of the surface metal layers of the can. This process results in a rapid decontamination of the can. The electrolyte is fully recyclable, and the separation of the chromium from the actinides results in a compact, non RCRA secondary waste product.

Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E.; Limback, S.

1998-12-31T23:59:59.000Z

311

Liquid-gas separation in colloidal electrolytes  

E-Print Network (OSTI)

The liquid-gas transition of an electroneutral mixture of oppositely charged colloids, studied by Monte Carlo simulations, is found in the low temperature -- low density region. The critical temperature shows a non-monotonous behavior as a function of the interaction range, $\\kappa^{-1}$, with a maximum at $\\kappa \\sigma \\approx 10$, implying an island of coexistence in the $\\kappa$-$\\rho$ plane. The system is arranged in such a way that each particle is surrounded by shells of particles with alternating charge. In contrast with the electrolyte primitive model, both neutral and charged clusters are obtained in the vapor phase

Jose B. Caballero; Antonio M. Puertas; Antonio Fernandez-Barbero; F. Javier de las Nieves; J. M. Romero-Enrique; L. F. Rull

2005-08-10T23:59:59.000Z

312

Membrane Purification Cell for Aluminum Recycling  

Science Conference Proceedings (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

313

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

314

Method of preparing thin film polymeric gel electrolytes  

DOE Patents (OSTI)

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

1997-01-01T23:59:59.000Z

315

Parametric ARX Modeling of the Electrolytic Smelter Pot  

Science Conference Proceedings (OSTI)

The Anode effect that occurs in electrolytic smelter pot is responsible for gases such as PFC's. These gases contributeto the greenhouse effect, and in addition jeopardizes its productive capacity. From the voltage (output) and current(input) signals ... Keywords: Parametric Estimation, Transfer Function, ARX model, Parametric modeling of Dynamic Systems, Electrolytic Smelter Pot, System identification, Anode Effect

Antonio José da Silva; João Viana da_Fonseca Neto; Nilton Freixo Nagem

2009-03-01T23:59:59.000Z

316

Magnetic resonance imaging of polymer electrolytes and insertion electrodes.  

DOE Green Energy (OSTI)

This program seeks to better define electrode-electrolyte interfaces and solid-state ion transport mechanisms that are a central feature of fuel cells and advanced electrochemical systems. The goal is to develop a new generation of materials with enhanced energy efficiency and reduced tendency toward dendrite or passive film formation at the electrode-electrolyte interface.

Gerald, R. E., II; Klingler, R. J.; Rathke, J. W.

1999-05-19T23:59:59.000Z

317

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

318

Composite sensor membrane  

DOE Patents (OSTI)

A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

Majumdar, Arun (Orinda, CA); Satyanarayana, Srinath (Berkeley, CA); Yue, Min (Albany, CA)

2008-03-18T23:59:59.000Z

319

THERMODYNAMICS OF ELECTROLYTES. X. ENTHALPY AND THE EFFECT OF TEMPERATURE ON THE ACTIVITY COEFFICIENTS.  

E-Print Network (OSTI)

09 THERMODYNAMICS OFELECI'ROLYTES. X'rights. r'-" e. ct THERMODYNAMICS OF ELECTROLYTES. X.Coefficient, Electrolyte, Thermodynamics v ~p , I J ! l

Silvester, Leonard F.

2011-01-01T23:59:59.000Z

320

Preparation of ceramic matrix and alumina fiber composites for use as solid electrolytes  

DOE Patents (OSTI)

A process for making solid electrolytes using a fibrous stabilizing dispersed second phase for enhanced conductivity of the electrolyte after deformation and annealing. 1 tab.

Dudney, N.J.

1987-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Poisson-Boltzmann approach for a lipid membrane in an electric field  

E-Print Network (OSTI)

The behavior of a non-conductive quasi-planar lipid membrane in an electrolyte and in a static (DC) electric field is investigated theoretically in the nonlinear (Poisson-Boltzmann) regime. Electrostatic effects due to charges in the membrane lipids and in the double layers lead to corrections to the membrane elastic moduli which are analyzed here. We show that, especially in the low salt limit, i) the electrostatic contribution to the membrane's surface tension due to the Debye layers crosses over from a quadratic behavior in the externally applied voltage to a linear voltage regime. ii) the contribution to the membrane's bending modulus due to the Debye layers saturates for high voltages. Nevertheless, the membrane undulation instability due to an effectively negative surface tension as predicted by linear Debye-H\\"uckel theory is shown to persist in the nonlinear, high voltage regime.

Falko Ziebert; David Lacoste

2010-04-16T23:59:59.000Z

322

Preparations, properties, and applications of periodic nano arrays using anodized aluminum oxide and di-block copolymer  

E-Print Network (OSTI)

dissolution and ultrasonic vibration of porous AAO,[122] and hydrothermal synthesis. [123] However, these methods

Noh, Kunbae

2011-01-01T23:59:59.000Z

323

Chemical analysis and aqueous solution properties of Charged Amphiphilic Block Copolymers PBA-b-PAA synthesized by MADIX  

E-Print Network (OSTI)

We have linked the structural and dynamic properties in aqueous solution of amphiphilic charged diblock copolymers poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA, synthesized by controlled radical polymerization, with the physico-chemical characteristics of the samples. Despite product imperfections, the samples self-assemble in melt and aqueous solutions as predicted by monodisperse microphase separation theory. However, the PBA core are abnormally large; the swelling of PBA cores is not due to AA (the Flory parameter chiPBA/PAA, determined at 0.25, means strong segregation), but to h-PBA homopolymers (content determined by Liquid Chromatography at the Point of Exclusion and Adsorption Transition LC-PEAT). Beside the dominant population of micelles detected by scattering experiments, capillary electrophoresis CE analysis permitted detection of two other populations, one of h-PAA, and the other of free PBA-b-PAA chains, that have very short PBA blocks and never self-assemble. Despite the presence of these free unimers, the self-assembly in solution was found out of equilibrium: the aggregation state is history dependant and no unimer exchange between micelles occurs over months (time-evolution SANS). The high PBA/water interfacial tension, measured at 20 mN/m, prohibits unimer exchange between micelles. PBA-b-PAA solution systems are neither at thermal equilibrium nor completely frozen systems: internal fractionation of individual aggregates can occur.

M. Jacquin; P. Muller; R. Talingting-Pabalan; H. Cottet; J. -F. Berret; T. Futterer; O. Theodoly

2007-08-27T23:59:59.000Z

324

Block Copolymers in Electric Fields: A Comparison of Single-Mode and Self-Consistent Field Approximations  

E-Print Network (OSTI)

We compare two theoretical approaches to dielectric diblock copolymer melts in an external electric field. The first is a relatively simple analytic expansion in the relative copolymer concentration, and includes the full electrostatic contribution consistent with that expansion. It is valid close to the order-disorder transition point, the weak segregation limit. The second employs self-consistent field (SCF) theory and includes the full electrostatic contribution to the free energy at any copolymer segregation. It is more accurate but computationally more intensive. Motivated by recent experiments, we explore a section of the phase diagram in the three-dimensional parameter space of the block architecture, the interaction parameter and the external electric field. The relative stability of the lamellar, hexagonal and distorted body-centered-cubic (bcc) phases is compared within the two models. As function of an increasing electric field, the distorted bcc region in the phase diagram shrinks and disappears above a triple point, at which the lamellar, hexagonal and distorted bcc phases coexist. We examine the deformation of the bcc phase under the influence of the external field. While the elongation of the spheres is larger in the one-mode expansion than that predicted by the full SCF theory, the general features of the schemes are in satisfactory agreement. This indicates the general utility of the simple theory for exploratory calculations.

Yoav Tsori; David Andelman; Chin-Yet Lin; M. Schick

2005-08-07T23:59:59.000Z

325

Electrocatalysis issues in polymer electrolyte fuel cells  

DOE Green Energy (OSTI)

Various electrocatalysis issues of impotance to low platinum loading polymer electrolyte fuel cells (PEFCs) are discussed. Thin film catalyst layer assemblies are used to investigate the effects of CO and CO{sub 2} on the anode as well as efforts to restore performance by oxygen bleeding into the anode feedstream. These electrodes behave differently than ionomer-impregnated E-TEK electrodes because the extra, exposed Pt in the latter case. The tolerance of Pt-Ru alloy thin film anodes to CO and CO{sub 2} are also evaluated. Thin film electrodes are also used to study Pt particle growth in aged electrodes as well as particle size effects on specific activity.

Wilson, M.S.; Derouin, C.R.; Valerio, J.A.; Gottesfeld, S.

1993-06-01T23:59:59.000Z

326

Electrocatalysis issues in polymer electrolyte fuel cells  

DOE Green Energy (OSTI)

Various electrocatalysis issues of impotance to low platinum loading polymer electrolyte fuel cells (PEFCs) are discussed. Thin film catalyst layer assemblies are used to investigate the effects of CO and CO[sub 2] on the anode as well as efforts to restore performance by oxygen bleeding into the anode feedstream. These electrodes behave differently than ionomer-impregnated E-TEK electrodes because the extra, exposed Pt in the latter case. The tolerance of Pt-Ru alloy thin film anodes to CO and CO[sub 2] are also evaluated. Thin film electrodes are also used to study Pt particle growth in aged electrodes as well as particle size effects on specific activity.

Wilson, M.S.; Derouin, C.R.; Valerio, J.A.; Gottesfeld, S.

1993-01-01T23:59:59.000Z

327

ELECTROLYTIC OXIDATION OF ZIRCONIUM IN NITRATE SOLUTIONS  

SciTech Connect

Zirconiurn alloys used in the fabrication of nuclear fuel elements can be disintegrated and converted to insoluble oxides by electrolytic treatment in concentrated nitrate solutions. This reaction shows promise as a technique for reprocessing nuclear fuels clad with Zircaloy-2. For a particular applied voltage, nitric acid achieves the highest rate of attack, but the reaction can be carried out at rates of 2 mg/(cm/sup 2/)(min) or greater in either 7.5M sodium nitrate or 2.3M aluminum nitrate. A reaction rate of 7 mg/(cm/sup 2/) (min) can be easily attained in either 8M nitric acid or 7.5M sodium nitrate. The rate of reaction is a function of the temperature and tho applied voltage. An as-yet unsolved problem is the carry--down of uranium with the insoluble zirconium oxide product. (auth)

Bomar, M.R.

1961-12-29T23:59:59.000Z

328

Separators for absorbed electrolyte recombinant batteries  

SciTech Connect

Starved electrolyte gas recombinant batteries are a fast growing segment of the lead-acid market. There is a great deal of development being carried out using the recombinant technology. New batteries of this design have been commercialized this year and more will probably be introduced next year. All of these batteries are sealed so that they can operate above atmospheric pressure, and all of them contain a highly porous, and partially saturated glass microfiber separator. The separator is white, pliable, and ribless. The separator is the key element of these batteries since it permits gas recombination to take place. The recombination of gas within the battery makes it possible to seal the battery. The operation of these batteries is discussed.

Wandzy, K.J.; Taylor, G.W.

1986-07-01T23:59:59.000Z

329

Electrolyte matrix for molten carbonate fuel cells  

DOE Patents (OSTI)

A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

Huang, Chao M. (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

1999-01-01T23:59:59.000Z

330

Electrolyte matrix for molten carbonate fuel cells  

DOE Patents (OSTI)

A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

Huang, C.M.; Yuh, C.Y.

1999-02-09T23:59:59.000Z

331

Modeling of polymer electrolyte fuel cell systems  

DOE Green Energy (OSTI)

Propulsion systems based on the polymer electrolyte fuel cell (PEFC) are being developed. This paper reports an analysis undertaken to design improved PEFC systems. A reference system design with some variants were set up for a methanol-fueled PEFC propulsion system. Efficiency improves from 38.4 to 44.1% as cell current density goes from 0.75 to 0.45 A/cm{sup 2}, while fuel cell efficiency increases from 52.6 to 60.0%; to get a net power output of 80 kWe, the active fuel cell area must increase from 18.8 to 27.3 m{sup 2}. Three parametric studies were conducted on the off-design performance of the reference system.

Kumar, R.; Ahluwalia, R.; Geyer, H.K.; Krumpelt, M.

1993-09-01T23:59:59.000Z

332

Electrolytic decontamination of the 3013 inner can  

SciTech Connect

Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. Los Alamos National Laboratory (LANL) has designed a containment package in accordance with the DOE standard. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. With or without the food pack can, the material is placed inside the primary can and welded shut under a helium atmosphere. This activity takes place totally within the confinement of the glove box line. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. This fixture is then filled with a flowing electrolyte solution. A low DC electric current is made to flow between the can, acting as the anode, and the fixture, acting as the cathode. Following the decontamination, the system provides a flow of rinse water through the fixture to rinse the can of remaining salt residues. The system then carried out a drying cycle. Finally, the fixture is opened from the opposite side of the partition and the can surface monitored directly and through surface smears to assure that decontamination is adequate.

Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E.; Limback, S.

1998-12-31T23:59:59.000Z

333

NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

4 * November 2010 4 * November 2010 2-D image of a PEM fuel cell membrane sample measured with the NREL device (corresponding optical image in inset). The image shows bubble defects and a color shift in the sample. An area of approximately three inches by three inches is shown. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells Project: Fuel Cell MEA Manufacturing R&D NREL Team: Hydrogen Technologies & Systems Center and National Center for Photovoltaics Accomplishment: NREL developed a technique to measure the two-dimensional thickness of polymer electrolyte membrane (PEM) fuel cell membranes for in-line quality control during manufacturing (first reported in May 2009). The technique is based on an NREL-developed instrument currently used in continuous manufacturing of photovoltaic cells. This

334

Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces Title Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces Publication Type Journal Article Year of Publication 2012 Authors Zormpa, Vasileia, Jaroslaw Syzdek, Xianglei Mao, Richard E. Russo, and Robert Kostecki Journal Applied Physics Letters Volume 100 Issue 23 Date Published 05-2012 ISSN 0003-6951 Keywords electrochemical electrodes, graphite, high-speed optical techniques, laser beam effects, organic compounds, pyrolysis, solid electrolytes Abstract Direct chemical analysis of electrode/electrolyte interfaces can provide critical information on surface phenomena that define and control the performance of Li-based battery systems. In this work, we introduce the use of ex situ femtosecond laser induced breakdown spectroscopy to probe compositional variations within the solid electrolyte interphase (SEI) layer. Nanometer-scale depth resolution was achieved for elemental and molecular depth profiling of SEI layers formed on highly oriented pyrolytic graphite electrodes in an organic carbonate-based electrolyte. This work demonstrates the unique ability of ultrafast laser spectroscopy as a highly versatile, light element-sensitive technique for direct chemical analysis of interfacial layers in electrochemical energy storage systems.

335

Electric current-producing device having sulfone-based electrolyte  

DOE Patents (OSTI)

Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

Angell, Charles Austen (Mesa, AZ); Sun, Xiao-Guang (Tempe, AZ)

2010-11-16T23:59:59.000Z

336

Method of making a layered composite electrode/electrolyte  

DOE Patents (OSTI)

An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2005-01-25T23:59:59.000Z

337

Electrowinning process with electrode compartment to avoid contamination of electrolyte  

DOE Patents (OSTI)

An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl{sub 2}-CaF{sub 2} with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

Poa, D.S.; Pierce, R.D.; Mulcahey, T.P.; Johnson, G.K.

1991-12-31T23:59:59.000Z

338

A New Fe/V Redox Flow Battery Using Sulfuric/Chloric Mixed Acid Supporting Electrolyte  

SciTech Connect

A redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.35 V with a nearly 100% utilization ratio and demonstrated stable cycling over 100 cycles with energy efficiency > 80% and no capacity fading at room temperature. A 25% improvement in the discharge energy density of the Fe/V cell was achieved compared with the previous reported Fe/V cell using pure chloride acid supporting electrolyte. Stable performance was also achieved in the temperature range between 0 C and 50 C as well as using microporous separator as the membrane. The improved electrochemical performance at room temperature makes the Fe/V redox flow battery a promising option as a stationary energy storage device to enable renewable integration and stabilization of the electrical grid.

Wang, Wei; Nie, Zimin; Chen, Baowei; Chen, Feng; Luo, Qingtao; Wei, Xiaoliang; Xia, Guanguang; Skyllas-Kazacos, Maria; Li, Liyu; Yang, Zhenguo

2012-04-01T23:59:59.000Z

339

Membrane catalyst layer for fuel cells  

DOE Patents (OSTI)

A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

Wilson, Mahlon S. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

340

Porosimetric study of catalyst layer of polymer electrolyte fuel cell (PEFC)  

DOE Green Energy (OSTI)

The cathode in a polymer electrolyte fuel cell (PEFC) contributes the largest energy loss due to the slow kinetics of the oxygen reduction reaction (ORR). This issue can be addressed by either developing new noble catalysts for the ORR or increasing catalyst utilization. One effective way to increase catalyst utilization is to increase the pore volume and porosity of the catalyst layer so that the catalyst clusters are maximally exposed to gas reactants. Here, we report our study on the porosimetry of the cathode catalyst layer made with the ultra-thin film catalyst layer technique which was developed by Mahlon Wilson in our group, the effect of the making process of this membrane electrode assembly (MEA) on the porosimetric profile of catalyst layers, and the correlation of the porosimetry with the performance of the catalyst layers.

Xie, J. (Jian); Wilson, K. V. (Kennard V.); Zawodzinski, T. A. (Thomas A.), Jr.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications  

Science Conference Proceedings (OSTI)

Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using Finite Element Analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius.

Kalnaus, Sergiy [ORNL; Tenhaeff, Wyatt E [ORNL; Sakamoto, Jeff [Michigan State University; Sabau, Adrian S [ORNL; Daniel, Claus [ORNL; Dudney, Nancy J [ORNL

2013-01-01T23:59:59.000Z

342

Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams  

DOE Patents (OSTI)

Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

Spiegel, Ella F. (Louisville, CO); Sammells, Anthony F. (Boulder, CO)

2001-01-01T23:59:59.000Z

343

Electrochemical Membrane Incinerator  

DOE Patents (OSTI)

Electrochemical incineration of benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 {micro}g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called ''supporting electrolyte'' was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

1998-12-08T23:59:59.000Z

344

Electrochemical membrane incinerator  

DOE Patents (OSTI)

Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

Johnson, Dennis C. (Ames, IA); Houk, Linda L. (Ames, IA); Feng, Jianren (Ames, IA)

2001-03-20T23:59:59.000Z

345

Composite zeolite membranes  

DOE Patents (OSTI)

A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

Nenoff, Tina M. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

346

Supported inorganic membranes  

DOE Patents (OSTI)

Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

Sehgal, Rakesh (Albuquerque, NM); Brinker, Charles Jeffrey (Albuquerque, NM)

1998-01-01T23:59:59.000Z

347

Composite fuel cell membranes  

DOE Patents (OSTI)

A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

1997-08-05T23:59:59.000Z

348

Method of preparing electrolyte for use in fuel cells  

DOE Patents (OSTI)

An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.

Kinoshita, Kimio (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

1978-01-01T23:59:59.000Z

349

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents (OSTI)

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

350

Polymer electrolytes for a rechargeable li-Ion battery  

SciTech Connect

Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

Argade, S.D.; Saraswat, A.K.; Rao, B.M.L. [Technochem Co., Greensboro, NC (United States); Lee, H.S.; Xiang, C.L.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States)

1996-10-01T23:59:59.000Z

351

Low Cost Aqueous Electrolyte Based Energy Storage: Materials and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Low Cost Aqueous Electrolyte Based Energy Storage: Materials and ... Deployment of New High Temperature Alloys for Power Generation Systems · Designing ... Materials Metrology for a Hydrogen Distribution Infrastructure.

352

Technoeconomic Evaluation of Large-Scale Electrolytic Hydrogen Production Technologies  

Science Conference Proceedings (OSTI)

Large-scale production of electrolytic hydrogen and oxygen could increase use of baseload and off-peak surplus power. To be competitive, however, water electrolysis will require low-cost electricity.

1985-09-20T23:59:59.000Z

353

Molten salt electrolyte battery cell with overcharge tolerance  

SciTech Connect

A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

1989-01-01T23:59:59.000Z

354

Success Stories: Solid Electrolyte Lithium Ion Batteries - Seeo, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Electrolyte May Usher in a New Generation of Solid Electrolyte May Usher in a New Generation of Rechargeable Lithium Batteries For Vehicles With sky rocketing gasoline prices and exploding laptops, there could not have been a better time for a new rechargeable battery breakthrough. Enter Lawrence Berkeley National Laboratory's (LBNL) nanostructured polymer electrolyte (NPE). NPE is a solid electrolyte designed for use in rechargeable lithium batteries. The unique material was developed by LBNL researchers Nitash Balsara, Hany Eitouni, Enrique Gomez, and Mohit Singh and licensed to startup company Seeo Inc. in 2007. With solid financial backing from Khosla Ventures, located in Menlo Park, California, and an impressive scientific team recruited from LBNL, University of California, Berkeley, and the battery industry, Seeo is now

355

Cadmium sulfide membranes  

DOE Patents (OSTI)

A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

1992-07-07T23:59:59.000Z

356

Cadmium sulfide membranes  

DOE Patents (OSTI)

A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

1991-10-22T23:59:59.000Z

357

Polyphosphazene semipermeable membranes  

DOE Patents (OSTI)

A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

Allen, Charles A. (Idaho Falls, ID); McCaffrey, Robert R. (Idaho Falls, ID); Cummings, Daniel G. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID); Jessup, Janine S. (Darlington, ID); McAtee, Richard E. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

358

Electrolytic cell. [operation at 500,000 amperes  

SciTech Connect

A novel electrolytic cell of the vertical electrode type comprising a novel cathode busbar structure, novel cathode elements and a novel anode base structure which enable the novel electrolytic cell to be designed to operate at high current capacities upward to about 500,000 amperes while maintaining high operating efficiencies is claimed. These high current capacities provide for high production capacities which result in high production rates for given cell room floor areas and reduce capital investment and operating costs.

Mose, L.; Kramer, W.; Strewe, W.; Strasser, B.

1977-04-12T23:59:59.000Z

359

Anion receptor compounds for non-aqueous electrolytes  

SciTech Connect

A new family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Oing (Port Jefferson Station, NY); McBreen, James (Bellport, NY)

2000-09-19T23:59:59.000Z

360

Effects of Nonaqueous Electrolytes on Primary Li-Air Batteries  

SciTech Connect

The effects of nonaqueous electrolytes on the performance of primary Li-air batteries operated in dry air environment have been investigated. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between Li anode and water during the discharge process. The polarity of aprotic solvents outweighs the viscosity, ion conductivity and oxygen solubility on the performance of Li-air batteries once these latter properties attain certain reasonable level, because the solvent polarity significantly affects the number of tri-phase regions formed by oxygen, electrolyte, and active carbons (with catalyst) in the air electrode. The most feasible electrolyte formulation is the system of LiTFSI in PC/EC mixtures, whose performance is relatively insensitive to PC/EC ratio and salt concentration. The quantity of such electrolyte added to a Li-air cell has notably effects on the discharge performance of the Li-air battery as well, and a maximum in capacity is observed as a function of electrolyte amount. The coordination effect from the additives or co-solvents [tris(pentafluorophenyl)borane and crown ethers in this study] also greatly affects the discharge performance of a Li-air battery.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Polymer electrolyte fuel cells for transportation applications  

DOE Green Energy (OSTI)

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scale transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.

Springer, T.E.; Wilson, M.S.; Garzon, F.H.; Zawodzinski, T.A.; Gottesfeld, S.

1993-01-01T23:59:59.000Z

362

Polymer electrolyte fuel cells for transportation applications  

DOE Green Energy (OSTI)

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scale transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.

Springer, T.E.; Wilson, M.S.; Garzon, F.H.; Zawodzinski, T.A.; Gottesfeld, S.

1993-03-01T23:59:59.000Z

363

Development of alternative oxygen production source using a zirconia solid electrolyte membrane  

SciTech Connect

The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation. (VC)

Suitor, J.W.; Clark, D.J.; Losey, R.W.

1990-08-01T23:59:59.000Z

364

Development of alternative oxygen production source using a zirconia solid electrolyte membrane. Final report  

SciTech Connect

The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation. (VC)

Suitor, J.W.; Clark, D.J.; Losey, R.W.

1990-08-01T23:59:59.000Z

365

Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Structural evolution with hydration and heating  

Science Conference Proceedings (OSTI)

Small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS) have been used to study the structural changes in fluorinated polyisoprene/sulfonated polystyrene (FISS) diblock copolymers as they evolved from the dry state to the water swollen state. A dilation of the nanometer-scale hydrophilic domains has been observed as hydration increased, with greater dilation occurring in the more highly sulfonated samples or upon hydration at higher temperatures. Furthermore, a decrease in the order in these phase separated structures is observed upon swelling. The glass transition temperatures of the fluorinated blocks have been observed to decrease upon hydration of these materials, and at the highest hydration levels, differential scanning calorimetry (DSC) has shown the presence of tightly bound water. A precipitous drop in the mechanical integrity of the 50% sulfonated materials is also observed upon exceeding the glass transition temperature (Tg), as measured by dynamic mechanical analysis (DMA).

Sodeye, Akinbode [Department of Polymer Science and Engineering, University of Massachusetts; Huang, Tianzi [University of Tennessee, Knoxville (UTK); Gido, Samuel [University of Massachusetts, Amherst; Mays, Jimmy [ORNL

2011-01-01T23:59:59.000Z

366

Proton exchange membrane fuel cells with chromium nitridenanocrystals as electrocatalysts  

DOE Green Energy (OSTI)

Polymer electrolyte membrane fuel cells (PEMFCs) are energy conversion devices that produce electricity from a supply of fuel, such as hydrogen. One of the major challenges in achieving efficient energy conversion is the development of cost-effective materials that can act as electrocatalysts for PEMFCs. In this letter, we demonstrate that, instead of conventional noble metals, such as platinum, chromium nitride nanocrystals of fcc structure exhibit attractive catalytic activity for PEMFCs. Device testing indicates good stability of nitride nanocrystals in low temperature fuel cell operational environment.

Zhong, Hexiang; Chen, Xiaobo; Zhang, Huamin; Wang, Meiri; Mao,Samuel S.

2007-07-01T23:59:59.000Z

367

Final Report - Membranes and MEA's for Dry, Hot Operating Conditions  

DOE Green Energy (OSTI)

The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20���ºC to 120���ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20���ºC to 120���ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA�¢����s comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20���ºC to 120���ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA�¢����s, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the 2005 Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year R&D Plan. In the course of this four-year program we developed a new PEM with improved proton conductivity, chemical stability and mechanical stability. We incorporated this new membrane into MEAs and evaluated performance and durability.

Hamrock, Steven J.

2011-06-30T23:59:59.000Z

368

ESS 2012 Peer Review - Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries - Fei Wang, EIC Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Fei Wang, Dharmasena Peramunage, James M. Sylvia, and Monsy M. Jocob EIC Laboratories, Inc. 111 Downey Street, Norwood, MA 02062. www.eiclabs.com Identification of the Problem and Technical Approach Redox flow batteries (RFB) hold great promise for large scale electrochemical energy storage. A critical component of RFB is the membrane which separates anode and cathode compartments. The current state-of-the-art membrane, NAFION is too expensive, lacks selectivity, permitting leakage between anode and cathode electrolyte compartments. EIC is developing a novel bilayer, interpenetrating network membrane. Thin Nafion layer for anode side protection providing oxidative stability. The bulk part of the membrane consists of a block

369

Substituted polyacetylene separation membrane  

DOE Patents (OSTI)

A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

1998-01-13T23:59:59.000Z

370

Supported liquid membrane system  

DOE Patents (OSTI)

A cell apparatus for a supported liquid membrane including opposing faceplates, each having a spirally configured groove, an inlet groove at a first end of the spirally configured groove, and an outlet groove at the other end of the spirally configured groove, within the opposing faces of the faceplates, a microporous membrane situated between the grooved faces of the faceplates, said microporous membrane containing an extractant mixture selective for a predetermined chemical species within the pores of said membrane, means for aligning the grooves of the faceplates in an directly opposing configuration with the porous membrane being situated therebetween, such that the aligned grooves form a pair of directly opposing channels, separate feed solution and stripping solution compartments connected to respective channels between the faceplates and the membrane, separate pumping means for passing feed solution and stripping solution through the channels is provided.

Takigawa, D.Y.; Bush, H. Jr.

1990-12-31T23:59:59.000Z

371

Substituted polyacetylene separation membrane  

DOE Patents (OSTI)

A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

Pinnau, I.; Morisato, Atsushi

1998-01-13T23:59:59.000Z

372

Heat and water transport in a polymer electrolyte fuel cell electrode  

SciTech Connect

In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

2010-01-01T23:59:59.000Z

373

[Polymer-in-salt electrolytes]. Annual report and extension proposal  

DOE Green Energy (OSTI)

The research proposed for the current grant consisted of five components, of which the authors have made substantial progress on three and have performed some exploratory work on a sixth for which they present here an argument for extending. The components on which they have made progress are: (1) development of and improvement on the basic polymer-in-salt idea. This will be separated into parts dealing with improvements in salt constitution, and improvements in polymer type, emphasizing the role of anionic polymers; (2) modifications of the polymer-in-salt electrolyte to include the addition of solid particulates to the salt-polymer matrix; and (3) physical measurements. The new component on which they have made some preliminary measurements over the summer period concerns the use of electrolytes developed under the present and other programs for improving the performance of photovoltaic cells. The rationale is that hole/electron separation in semiconductors under irradiation is aided by trapping the holes on a redox species in an adjacent electrolyte solution. The efficiency is proportional to a number of factors not fully understood, one of which is determined by the character of the electrolyte. Since the authors have new types of electrolytes under development, and since solar energy via photovoltaic is an environmentally important aspect of the energy sciences, they felt it was a desirable aspect of materials science to study in a laboratory in Arizona. Achievements in the past year are summarized.

Angell, C.A.

1998-12-31T23:59:59.000Z

374

Bath for electrolytic reduction of alumina and method therefor  

SciTech Connect

An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Lynnwood, WA); Juric, Drago D. (Bulleen, AU)

2001-07-10T23:59:59.000Z

375

Bath for electrolytic reduction of alumina and method therefor  

DOE Patents (OSTI)

An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Lynnwood, WA); Juric, Drago D. (Bulleen, AU)

2002-11-26T23:59:59.000Z

376

Nickel-hydrogen battery with oxygen and electrolyte management features  

SciTech Connect

A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

Sindorf, John F. (Pewaukee, WI)

1991-10-22T23:59:59.000Z

377

Siloxane-grafted membranes  

DOE Patents (OSTI)

Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

Friesen, D.T.; Obligin, A.S.

1989-10-31T23:59:59.000Z

378

Fuel cell and system for supplying electrolyte thereto with wick feed  

DOE Patents (OSTI)

An electrolyte distribution and supply system for use with a fuel cell having a means for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells of the stack. Individual storage compartments are coupled by tubes containing wicking fibers, the ends of the respective tubes terminating on the means for drawing electrolyte in each of the respective fuel cells. Each tube is heat shrunk to tightly bind the fibers therein.

Cohn, J. Gunther (West Orange, NJ); Feigenbaum, Haim (Highland Park, NJ); Kaufman, Arthur (West Orange, NJ)

1984-01-01T23:59:59.000Z

379

Membranes for Clean Water  

Science Conference Proceedings (OSTI)

Membranes for Clean Water. Summary: ... Description: Impact. Access to affordable, clean water is vital to the nation's economic growth and security. ...

2013-02-02T23:59:59.000Z

380

Anion exchange membrane  

DOE Patents (OSTI)

An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

2013-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen & Fuel Cells - Fuel Cell - Polymer Electrolyte  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymer Electrolyte Fuel Cell Research Polymer Electrolyte Fuel Cell Research Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. One of the main barriers to the commercialization of polymer electrolyte fuel cell (PEFC) systems, especially for automotive use, is the high cost of the platinum electrocatalysts. Aside from the cost of the precious metal, concern has also been raised over the adequacy of the world supply of platinum, if fuel cell vehicles were to make a significant penetration into the global automotive fleet. At Argonne, chemists are working toward the development of low-cost nonplatinum electrocatalysts for the oxygen reduction reaction--durable materials that would be stable in the fuel

382

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

Science Conference Proceedings (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

383

Aqueous electrolyte modeling in ASPEN PLUS{trademark}  

SciTech Connect

The presence of electrolytes in aqueous solutions has long been recognized as contributing to significant departures from thermodynamic ideality. The presence of ions in process streams can greatly add to the difficulty of predicting process behavior. The difficulties are increased as temperatures and pressures within a process are elevated. Because many chemical companies now model their processes with chemical process simulators it is important that such codes be able to accurately model electrolyte behavior under a variety of conditions. Here the authors examine the electrolyte modeling capability of ASPEN PLUS{trademark}, a widely used simulator. Specifically, efforts to model alkali metal halide and sulfate systems are presented. The authors show conditions for which the models within the code work adequately and how they might be improved for conditions where the simulator models fail.

Bloomingburg, G.F. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering]|[Oak Ridge National Lab., TN (United States); Simonson, J.M.; Moore, R.C.; Mesmer, R.E.; Cochran, H.D. [Oak Ridge National Lab., TN (United States)

1995-02-01T23:59:59.000Z

384

Electrolytic decontamination of conductive materials for hazardous waste management  

SciTech Connect

Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodium nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.

Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

1996-12-31T23:59:59.000Z

385

Novel electrolyte chemistries for Mg-Ni rechargeable batteries.  

DOE Green Energy (OSTI)

Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

2010-10-01T23:59:59.000Z

386

Electrochemical investigation of the gallium nitride-aqueous electrolyte interface  

SciTech Connect

GaN (E{sub g} = {approximately}3.4 eV) was photoelectrochemically characterized and the energetic position of its bandedges determined with respect to SHE. Electrochemical impedance spectroscopy was employed to analyze the interface, determine the space charge layer capacitance, and, subsequently obtain the flatband potential of GaN in different aqueous electrolytes. The flatband potential of GaN varied at an approximately Nernstian rate in aqueous buffer electrolytes of different pHs indicating acid-base equilibria at the interface.

Kocha, S.S.; Peterson, M.W.; Arent, D.J.; Turner, J.A. [National Renewable Energy Lab., Golden, CO (United States). Photoconversion Branch; Redwing, J.M.; Tischler, M.A. [Advanced Technology Materials, Inc., Danbury, CT (United States)

1995-12-01T23:59:59.000Z

387

Determination of optimum electrolyte composition for molten carbonate fuel cells  

DOE Green Energy (OSTI)

The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

Yuh, C.Y.; Pigeaud, A.

1987-01-01T23:59:59.000Z

388

Fuel cell system with separating structure bonded to electrolyte  

DOE Patents (OSTI)

A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY); Quek, Shu Ching (Clifton Park, NY); Hasz, Wayne Charles (Pownal, VT); Powers, James Daniel (Santa Monica, CA)

2010-09-28T23:59:59.000Z

389

Sealed absorbed electrolyte battery with bulge compensating end cells  

Science Conference Proceedings (OSTI)

A sealed absorbed electrolyte battery is described comprising, in combination: a sealed container divided into working cells by internal partition walls; each working cell containing an electrode stack comprising positive and negative plates and substantially porous separators intimately contacting and separating the positive and negative plates; an electrolyte substantially completely absorbed in the plates and separators; the working cells being dimensioned to hold the plates and separators within the working cell in contact with each other; and bulge compensating auxiliary cells for accommodating gas pressure changes within the battery without substantially deforming the working cells.

Oswald, T.L.

1988-03-08T23:59:59.000Z

390

Porous electrolyte retainer for molten carbonate fuel cell. [lithium aluminate  

DOE Patents (OSTI)

A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H/sub 2/ and CO opposite to oxidant gases such as O/sub 2/ and CO/sub 2/. The tile is prepared with a porosity of 55 to 65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

Singh, R.N.; Dusek, J.T.

1979-12-27T23:59:59.000Z

391

Process to remove rare earth from IFR electrolyte  

DOE Patents (OSTI)

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

Ackerman, John P. (Downers Grove, IL); Johnson, Terry R. (Wheaton, IL)

1994-01-01T23:59:59.000Z

392

Process to remove rare earth from IFR electrolyte  

DOE Patents (OSTI)

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

Ackerman, J.P.; Johnson, T.R.

1994-08-09T23:59:59.000Z

393

Process to remove rare earth from IFR electrolyte  

DOE Patents (OSTI)

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

Ackerman, J.P.; Johnson, T.R.

1992-01-01T23:59:59.000Z

394

Modeling Water Management in Polymer-Electrolyte Fuel Cells  

E-Print Network (OSTI)

membrane, liquid and ice phases; the movement of ice throughthe membrane, vapor, and ice phases. As in their 1-D model,species, element index, or ice phase = into the control

Weber, Adam; Department of Chemical Engineering, University of California, Berkeley

2008-01-01T23:59:59.000Z

395

Membrane module assembly  

DOE Patents (OSTI)

A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

Kaschemekat, J.

1994-03-15T23:59:59.000Z

396

Microporous alumina ceramic membranes  

DOE Patents (OSTI)

Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

Anderson, Marc A. (Madison, WI); Sheng, Guangyao (Madison, WI)

1993-01-01T23:59:59.000Z

397

Microporous alumina ceramic membranes  

DOE Patents (OSTI)

Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

Anderson, M.A.; Guangyao Sheng.

1993-05-04T23:59:59.000Z

398

Membranes with a boundary  

E-Print Network (OSTI)

We investigate the recently developed theory of multiple membranes. In particular, we consider open membranes, i.e. the theory defined on a membrane world volume with a boundary. We first restrict our attention to the gauge sector of the theory. We obtain a boundary action from the Chern-Simons terms. Secondly, we consider the addition of certain boundary terms to various Chern-Simons theories coupled to matter. These terms ensure the full bulk plus boundary action has the correct amount of supersymmetry. For the ABJM model, this construction motivates the inclusion of a boundary quartic scalar potential. The boundary dynamics obtained from our modified theory produce Basu-Harvey type equations describing membranes ending on a fivebrane. The ultimate goal of this work is to throw light on the theory of fivebranes using the theory of open membranes.

David S Berman; Daniel C Thompson

2009-04-01T23:59:59.000Z

399

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

400

Virus-assembled flexible electrode-electrolyte interfaces for enhanced polymer-based battery applications  

Science Conference Proceedings (OSTI)

High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. ...

Ayan Ghosh, Juchen Guo, Adam D. Brown, Elizabeth Royston, Chunsheng Wang, Peter Kofinas, James N. Culver

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Device for equalizing molten electrolyte content in a fuel cell stack  

DOE Patents (OSTI)

A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

Smith, James L. (Lemont, IL)

1987-01-01T23:59:59.000Z

402

Fuel cell and system for supplying electrolyte thereto utilizing cascade feed  

DOE Patents (OSTI)

An electrolyte distribution supply system for use with a fuel cell having a wicking medium for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells or groups thereof in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells or groups of cells of the stack. Individual storage compartments are coupled by individual tubes, the ends of the respective tubes terminating on the wicking medium in each of the respective fuel cells. The individual compartments are filled with electrolyte by allowing the compartments to overflow such as in a cascading fashion thereby maintaining the requisite depth of electrolyte in each of the storage compartments. The individual compartments can also contain packed carbon fibers to provide a three stage electrolyte distribution system.

Feigenbaum, Haim (Highland Park, NJ)

1984-01-01T23:59:59.000Z

403

Mixed hydrocarbon/fluoropolymer membrane/ionomer MEAs for durability studies  

SciTech Connect

The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the fuel cell components to increase the system reliability. The aim of this work is to separate ionomer degradation from membrane degradation via mixed membrane/ionomer MEA experiments. The challenges of mixed MEA fabrication due to the incompatibility of the membrane and the electrode are addressed. OCV accelerated testing experiment (AST) were performed. Development of in situ diagnostics and unique experiments to characterize the performance and properties of the ionomer in the electrode as a function of time is reported. These measurements, along with extensive ex situ and post-mortem characterization, can delineate the degradation mechanisms in order to develop more durable fuel cells and fuel cell components.

Li, Bo [Los Alamos National Laboratory; Kim, Yu Seung [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wilson, Mahlon S [Los Alamos National Laboratory; Welch, Cynthia [Los Alamos National Laboratory; Fenton, James [FLORIDA SOLAR ENERGY CENTER

2010-01-01T23:59:59.000Z

404

Poly(vinyl alcohol)-based buffering membranes for isoelectric trapping separations  

E-Print Network (OSTI)

Isoelectric trapping (IET) in multicompartment electrolyzers (MCE) has been widely used for the electrophoretic separation of ampholytic compounds such as proteins. In IET, the separation occurs in the buffering membranes that form a step-wise pH gradient in the MCE. Typically, buffering membranes have been made by copolymerizing acrylamide with Immobiline compounds, which are acidic and basic acylamido buffers. One major problem, however, is that these buffering membranes are not stable when exposed to high concentrations of acid and base due to hydrolysis of the amide bonds. Poly(vinyl alcohol)-based, or PVA-based, membranes were made as an alternative to the polyacrylamide-based membranes since they provide more hydrolytic and mechanical stability. Four mid-pH, PVA-based buffering membranes that contain single ampholytes were synthesized. These buffering membranes were used to trap small molecular weight pI markers for up to three hours, and were also used in desalting experiments to remove strong electrolytes from a solution of ampholytes. Additionally, the membranes were used in IET experiments to separate mixtures of pI markers, and to fractionate the major proteins in chicken egg white. The membranes did not show any degradation when stored in 3 M NaOH for up to 6 months and were shown to tolerate current densities as high as 16 mA/cm2. In addition, six series of PVA-based membranes, whose pH values can be tuned over the 3 < pH < 10 range, were synthesized by covalently binding aminodicarboxylic acids, and monoamines or diamines to the PVA matrix. These tunable buffering membranes were used in trapping experiments to trap ampholytes for up to three hours, and in desalting experiments to remove strong electrolytes from a solution of ampholytes. These tunable buffering membranes were also used in IET experiments to separate proteins, some with pI values that differ by only 0.1 pH unit. The tunable buffering membranes did not show any signs of degradation when exposed to 3 M NaOH for up to 3 months, and could be used in IET experiments with current densities as high as 20 mA/cm2. These tunable buffering membranes are expected to broaden the application areas of isoelectric trapping separations.

Craver, Helen C.

2007-05-01T23:59:59.000Z

405

Alternative flow-field and backing concepts for polymer electrolyte fuel cells  

DOE Green Energy (OSTI)

New concepts for potentially low cost flow-field and electrode backing components for polymer electrolyte fuel cells are investigated.

Wilson, M.S.; Springer, T.E.; Davey, J.R.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

406

Improved electrolytes for fuel cells. Final report, June 16, 1988--June 15, 1990  

DOE Green Energy (OSTI)

Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

Gard, G.L.; Roe, D.K.

1991-06-01T23:59:59.000Z

407

Lithium/V6O13 cells using silica nanoparticle-based composite electrolyte  

E-Print Network (OSTI)

Lithium/V6O13 cells using silica nanoparticle-based composite electrolyte Yangxing Li, Peter S) both in liquid electrolyte consisting of oligomeric poly(ethyleneglycol)dimethylether'/lithium bis of suppressing lithium dendrite growth due to the rigidity and immobility of the electrolyte structure

Khan, Saad A.

408

Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes  

SciTech Connect

Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.

Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Qing (Port Jefferson Station, NY); McBreen, James (Bellport, NY); Sun, Xuehui (Middle Island, NY)

2002-01-01T23:59:59.000Z

409

Transpassive electrodissolution of depleted uranium in alkaline electrolytes  

SciTech Connect

To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

1998-03-01T23:59:59.000Z

410

Method of making a mat-immobilized-electrolyte battery  

SciTech Connect

A method is described of assembling and preparing a mat-immobilized-electrolyte, Pb-acid storage battery for service comprising the steps of: alternatively stacking a plurality of positive and negative polarity electrodes together so as to provide a cell element having an inter-electrode gap between adjacent electrodes during the operation of the battery; positioning a separator in each said gap, said separator comprising a mat of randomly oriented, resilient glass fibers and a binder holding said mat in a stressed state at a compressed thickness which is at least about 10 percent less than said gap, said mat, in its uncompressed state, having a thickness greater than said gap, and said binder comprising a resin which is substantially insoluable in the battery's electrolyte but is sufficiently degradable therein under battery formation conditions as to free said mat from said stressed state during formation; positioning the stacked electrodes and separators in a battery container; introducing said electrolyte into said container such that it quickly flows between said electrodes substantially unencumbered by said compressed mat; allowing said battery to stand for a time sufficient to pickle said electrodes; and thereafter electrolytically forming said battery so as to initially charge said battery and so degrade said binder that said mat expands into tight engagement with the electrodes adjacent thereto.

Willmann, N.L.; Eisenhut, N.R.; Limbert, J.L.

1993-08-31T23:59:59.000Z

411

On-site production of electrolytic hydrogen for generator cooling  

SciTech Connect

Hydrogen produced by water electrolysis could be cost effective over the merchant hydrogen used for generator cooling. Advanced water electrolyzers are being developed specifically for this utility application. These designs are based on solid-polymer-electrolyte and alkaline water electrolysis technologies. This paper describes the status of electrolyzer development and demonstration projects.

Mehta, B.

1982-08-01T23:59:59.000Z

412

Low hydrostatic head electrolyte addition to fuel cell stacks  

DOE Patents (OSTI)

A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

Kothmann, Richard E. (Churchill Boro, PA)

1983-01-01T23:59:59.000Z

413

Electrolytic production of high purity aluminum using inert anodes  

DOE Patents (OSTI)

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2001-01-01T23:59:59.000Z

414

Electrolytic production of high purity aluminum using ceramic inert anodes  

DOE Patents (OSTI)

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

2002-01-01T23:59:59.000Z

415

UNDERSTANDING THE EFFECTS OF COMPRESSION AND CONSTRAINTS ON WATER UPTAKE OF FUEL-CELL MEMBRANES  

Science Conference Proceedings (OSTI)

Accurate characterization of polymer-electrolyte fuel cells (PEFCs) requires understanding the impact of mechanical and electrochemical loads on cell components. An essential aspect of this relationship is the effect of compression on the polymer membrane?s water-uptake behavior and transport properties. However, there is limited information on the impact of physical constraints on membrane properties. In this paper, we investigate both theoretically and experimentally how the water uptake of Nafion membrane changes under external compression loads. The swelling of a compressed membrane is modeled by modifying the swelling pressure in the polymer backbone which relies on the changes in the microscopic volume of the polymer. The model successfully predicts the water content of the compressed membrane measured through in-situ swelling-compression tests and neutron imaging. The results show that external mechanical loads could reduce the water content and conductivity of the membrane, especially at lower temperatures, higher humidities, and in liquid water. The modeling framework and experimental data provide valuable insight for the swelling and conductivity of constrained and compressed membranes, which are of interest in electrochemical devices such as batteries and fuel cells.

Kusoglu, Ahmet; Kienitz, Briian; Weber, Adam

2011-08-24T23:59:59.000Z

416

Electrostatic Interaction of Heterogeneously Charged Surfaces with Semipermeable Membranes  

E-Print Network (OSTI)

In this paper we study the electrostatic interaction of a heterogeneously charged wall with a neutral semipermeable membrane. The wall consists of periodic stripes, where the charge density varies in one direction. The membrane is in a contact with a bulk reservoir of an electrolyte solution and separated from the wall by a thin film of salt-free liquid. One type of ions (small counterions) permeates into the gap and gives rise to a distance-dependent membrane potential, which translates into a repulsive electrostatic disjoining pressure due to an overlap of counterion clouds in the gap. To quantify it we use two complementary approaches. First, we propose a mean-field theory based on a linearized Poisson-Boltzmann equation and Fourier analysis. These calculations allow us to estimate the effect of a heterogeneous charge pattern at the wall on the induced heterogeneous membrane potential, and the value of the disjoining pressure as a function of the gap. Second, we perform Langevin dynamics simulations of the same system with explicit ions. The results of the two approaches are in good agreement with each other at low surface charge and small gap, but differ due to nonlinearity at the higher charge. These results demonstrate that a heterogeneity of the wall charge can lead to a huge reduction in the electrostatic repulsion, which could dramatically facilitate a self-assembly in complex synthetic and biological systems.

Salim R. Maduar; Vladimir Lobaskin; Olga I. Vinogradova

2013-07-17T23:59:59.000Z

417

Membranes Improve Insulation Efficiency  

E-Print Network (OSTI)

It has been determined from extensive tests involving test models and home attics that loose fill and fiber batt insulation does not function as expected by the industry. The reason for this deficiency is current test methods do not accurately predict the magnitude of air infiltration into fiber insulation as used in home attics, radiant heat infiltration into the insulation during summer, or radiant heat loss through the insulation during winter conditions. The use of (1) moisture permeable membranes over the insulation, and (2) layered membranes between fiber batts to form closed cells in the insulation both dramatically improve the efficiency of the fiber insulation. The efficiency of this insulation will be improved to an even greater degree if these membranes reflect radiant heat as well as reduce convection air currents. Extensive tests have also been conducted which show that if moisture permeable membranes are used over fiber insulation, the moisture content of the insulation will be reduced.

Bullock, C. A.

1986-01-01T23:59:59.000Z

418

Microprobes aluminosilicate ceramic membranes  

DOE Patents (OSTI)

Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

Anderson, Marc A. (2114 Chadbourne Ave., Madison, WI 53705); Sheng, Guangyao (45 N. Orchard St., Madison, WI 53715)

1993-01-01T23:59:59.000Z

419

Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries  

Science Conference Proceedings (OSTI)

Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

Shao, Nan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Jiang, Deen [ORNL

2011-01-01T23:59:59.000Z

420

V(V) Electrolytes in a Vanadium Redox Battery  

Science Conference Proceedings (OSTI)

Pd-Based Membrane Reactor for Simultaneous CO2 Sequestration and Hydrogen Production from Syngas Produced from IGCC · Search and Study of a Solid ...

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Aqueous Electrolyte Modeling in Aspen Plus G. E  

Office of Scientific and Technical Information (OSTI)

Aqueous Electrolyte Modeling in Aspen Plus Aqueous Electrolyte Modeling in Aspen Plus G. E Bloomingburg (1)(3), J. M. Simonson (2), R C. Moore (2), I€ D. Cochran (3), and R. E. Mesmer (2) (1) Department of Chemical Engineering The University of Tennessee Knoxville, Tennessee 37996-2200 (2) Chemical and Analytical Sciences Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37831-6110 (3) Chemical Technology Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37831-6224 Presented at the 12th International Conference on the Properties of Water and Steam Orlando, Florida September 14, 1994 The submitted manuscript has been authored by a contractor o f the US. Government under contract No. DE-ACOS-84OR21400. Accordingly, the US. Government retains a nonexclusive, royalty free license to

422

Control of electrolyte fill to fuel cell stack  

DOE Patents (OSTI)

A fuel cell stack which can be operated with cells in a horizontal position so that the fuel cell stack does not have to be taken out of operation when adding an electrolyte such as an acid. Acid is supplied to each matrix in a stack of fuel cells at a uniform, low pressure so that the matrix can either be filled initially or replenished with acid lost in operation of the cell, without exceeding the bubble pressure of the matrix or the flooding pressure of the electrodes on either side of the matrix. Acid control to each cell is achieved by restricting and offsetting the opening of electrolyte fill holes in the matrix relative to openings in the plates which sandwich the matrix and electrodes therebetween.

Pollack, William (Scott Township, Allegheny County, PA)

1982-01-01T23:59:59.000Z

423

ELECTROLYTIC DISINTEGRATION OF ZIRCALOY-2 IN NITRIC ACID SOLUTIONS  

SciTech Connect

Zircaloy-2 is anodically converted to scaly ZrO/sub 2/ at 60 deg C in 8 M HNO/sub 3/. About 0.5 mole of acid is consumed per faraday, and after saturation of the electrolyte with nitrogen oxides about 0.3 mole of gas is evolved per faraday. The nitric acid is reduced to hydrogen, NO, and N0/sub 2/, with hydrogen predominating if the cathode is Zircaloy and NO if the cathode is platinum. Corrosion specimens of HRT metals were exposed to the electrolysis conditions. From determinations of the decomposition potential of nitric acid it appears that a metal container for the electrolytic process can be protected from stray-current corrosion by holdlng it at a potential --0.5 volt positive to a platinum cathode operating at a current density of 5 to 10 ma/cm/sup 2/. Practical laboratory experiments tended to confirm this conclusion. (auth)

Clark, W.E.; Peterson, S.

1959-11-27T23:59:59.000Z

424

Stationary power applications for polymer electrolyte fuel cells  

DOE Green Energy (OSTI)

The benefits provided by Polymer Electrolyte Fuel Cells (PEFC) for power generation (e.g. low operating temperatures, and non-corrosive and stable electrolyte), as well as advances in recent years in lowering their cost and improving anode poisoning tolerance, are stimulating interest in the system for stationary power applications. A significant market potentially exists for PEFCs in certain stationary applications where PEFC technology is a more attractive alternative to other fuel cell technologies. A difficulty with the PEFC is its operation on reformed fuels containing CO, which poisons the anode catalyst. This difficulty can be alleviated in several ways. One possible approach is described whereby the product reformate is purified using a relatively low cost, high-throughput hydrogen permselective separator. Preliminary experiments demonstrate the utility of the concept.

Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Landgrebe, A.R. [Dept. of Energy, Washington, DC (United States)

1996-02-01T23:59:59.000Z

425

Electric cell with a non-aqueous electrolyte  

Science Conference Proceedings (OSTI)

A secondary electric cell is described which includes: a non-aqueous electrolyte, a negative electrode whose active material includes at least one alkali metal in contact with the electrolyte, and a positive electrode whose active material is suitable for intercalating the active material of the negative electrode, wherein said positive electrode includes an active compound or solid solution whose general formula is Mxx, RyX3 where: M is an element chosen from lead and tin; R is an element chosen from bismuth and antimony; and X is an element chosen from sulphur and selenium, with X having a value lying between 0 and 1 (Inclusive), and Y having a value lying between 0 and 2 (Inclusive). Such cells may be used in watches or pacemakers.

Brec, R.; Dugast, A.; Le Mehaute, A.

1982-01-05T23:59:59.000Z

426

Electric cell with a non-aqueous electrolyte  

Science Conference Proceedings (OSTI)

An electric cell with a non-aqueous electrolyte. The cell includes a positive electrode whose active material is suitable for inserting the negative active material dynamically, a negative electrode whose active material includes at least one alkali metal, and an electrolyte, wherein said positive electrode includes at least one compound whose general formula is mx4rntp, where M represents an element chosen from among silicon, germanium, tin and lead, X represents sulphur, selenium or tellurium, R and T represent an element chosen from among copper, silver, manganese, iron, cobalt and nickel, N being greater than or equal to 0 and less than or equal to 4, P being greater than or equal to 0 and less than or equal to 2. The invention is used in connection with button type electric cells.

Le Blanc-Soreau, A.; Le Mehaute, A.; Rouxel, J.

1982-03-02T23:59:59.000Z

427

Solid polymer battery electrolyte and reactive metal-water battery  

SciTech Connect

In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

428

Improved Electrodes and Electrolytes for Dye-Based Solar Cells  

SciTech Connect

The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

2011-10-26T23:59:59.000Z

429

Highly conductive electrolyte composites and method of fabrication thereof  

DOE Patents (OSTI)

An electrolyte composite is manufactured by pressurizing a mixture of ionically conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800{degrees}C--1200{degrees}C), for example 1000{degrees}C, than are typically required (1400{degrees}C) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250{degrees}C with conductivity values of 2.5 to 4 {times} 10{sup {minus}2} (ohm-cm){sup {minus}1}. The matrix exhibits chemical stability against sodium for 100 hours at 250 to 300{degrees}C.

Hash, M.C.; Bloom, I.D.

1990-07-17T23:59:59.000Z

430

Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby  

DOE Patents (OSTI)

A method is described for making a combination, unitary, membrane and electrode assembly having a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane. 10 figs.

Swathirajan, S.; Mikhail, Y.M.

1994-05-31T23:59:59.000Z

431

Electrolytic recovery of mercury enriched in isotopic abundance  

DOE Patents (OSTI)

The present invention is directed to a method of electrolytically extracting liquid mercury from HgO or Hg.sub.2 Cl.sub.2. Additionally there are disclosed two related techniques associated with the present invention, namely (1) a technique for selectively removing product from different regions of a long photochemical reactor (photoreactor) and (2) a method of accurately measuring the total quantity of mercury formed as either HgO or Hg.sub.2 Cl.sub.2.

Grossman, Mark W. (Belmont, MA)

1991-01-01T23:59:59.000Z

432

Solid lithium ion conducting electrolytes and methods of preparation  

SciTech Connect

A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

Narula, Chaitanya K; Daniel, Claus

2013-05-28T23:59:59.000Z

433

A van der Waals free energy in electrolytes revisited  

E-Print Network (OSTI)

A system of three electrolytes separated by two parallel planes is considered. Each region is described by a dielectric constant and a Coulomb fluid in the Debye-H\\"uckel regime. In their book Dispersion Forces, Mahanty and Ninham have given the van der Waals free energy of this system. We rederive this free energy by a different method, using linear response theory and the electrostatic Maxwell stress tensor for obtaining the dispersion force.

B. Jancovici

2005-09-15T23:59:59.000Z

434

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.

Singh, P.; Vasilow, T.R.; Richards, V.L.

1996-05-14T23:59:59.000Z

435

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

Singh, Prabhakar (Export, PA); Vasilow, Theodore R. (Manor, PA); Richards, Von L. (Angola, IN)

1996-01-01T23:59:59.000Z

436

Novel electrolyte additives to enhance zinc electrode cycle life  

DOE Green Energy (OSTI)

Electrochemical power sources that utilize zinc electrodes possess many advantages. Zinc is abundantly available, benign, inexpensive, stable over a wide operating temperature range, and has a high oxidation potential. In spite of these advantageous characteristics, rechargeable electrochemical systems based on zinc chemistry have not found widespread use. The major disadvantages of zinc electrodes are that they have limited cycle life due to zinc slumping and zinc electrode shape changes in alkaline solutions resulting from the solubility of zincate (Zn(OH){sub 4}{sup 2-}) in these solutions. As a result, premature cell failure often results due to cell shorting caused by dendritic growth as well as zinc slumping. In this paper we describe the chemical and physical characteristics of electrolyte solutions employing additives, particularly for zinc based electrochemical systems. These electrolytes are prepared using the alkali metal salts of 1,3,5-phenyltrisulfonic acid in combination with potassium hydroxide. The alkali metal salts of the acid possess good thermal stability, good ionic conductivity, and have a wide electrochemical voltage window in aqueous systems. With these electrolyte solutions improved cycle life was achieved in Zn/NiOOH and Zn/AgO. Improved cycle life with this additive is attributed to decreased zincate solubility, resulting in reduced zinc slumping and electrode shape changes. In addition, increased shelf-life and reduced self-discharge were also observed in many alkaline power sources.

Doddapaneni, N.; Ingersoll, D.

1995-11-01T23:59:59.000Z

437

Oxygen Transport Ceramic Membranes  

Science Conference Proceedings (OSTI)

In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2006-05-01T23:59:59.000Z

438

The Automorphic Membrane  

E-Print Network (OSTI)

We present a 1-loop toroidal membrane winding sum reproducing the conjectured $M$-theory, four-graviton, eight derivative, $R^4$ amplitude. The $U$-duality and toroidal membrane world-volume modular groups appear as a Howe dual pair in a larger, exceptional, group. A detailed analysis is carried out for $M$-theory compactified on a 3-torus, where the target-space $Sl(3,\\Zint)\\times Sl(2,\\Zint)$ $U$-duality and $Sl(3,\\Zint)$ world-volume modular groups are embedded in $E_{6(6)}(\\Zint)$. Unlike previous semi-classical expansions, $U$-duality is built in manifestly and realized at the quantum level thanks to Fourier invariance of cubic characters. In addition to winding modes, a pair of new discrete, flux-like, quantum numbers are necessary to ensure invariance under the larger group. The action for these modes is of Born-Infeld type, interpolating between standard Polyakov and Nambu-Goto membrane actions. After integration over the membrane moduli, we recover the known $R^4$ amplitude, including membrane instantons. Divergences are disposed of by trading the non-compact volume integration for a compact integral over the two variables conjugate to the fluxes -- a constant term computation in mathematical parlance. As byproducts, we suggest that, in line with membrane/fivebrane duality, the $E_6$ theta series also describes five-branes wrapped on $T^6$ in a manifestly U-duality invariant way. In addition we uncover a new action of $E_6$ on ten dimensional pure spinors, which may have implications for ten dimensional super Yang--Mills theory. An extensive review of $Sl(3)$ automorphic forms is included in an Appendix.

Boris Pioline; Andrew Waldron

2004-04-02T23:59:59.000Z

439

Supported microporous ceramic membranes  

DOE Patents (OSTI)

A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

Webster, Elizabeth (Madison, WI); Anderson, Marc (Madison, WI)

1993-01-01T23:59:59.000Z

440

Supported microporous ceramic membranes  

DOE Patents (OSTI)

A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

Webster, E.; Anderson, M.

1993-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CHARACTERIZATION OF LOW-FLAMMABILITY ELECTROLYTES FOR LITHIUM-ION BATTERIES  

DOE Green Energy (OSTI)

In an effort to develop low-flammability electrolytes for a new generation of Li-ion batteries, we have evaluated physical and electrochemical properties of electrolytes with two proprietary phosphazene additives. We have studied performance quantities including conductivity, viscosity, flash point, and electrochemical window of electrolytes as well as formation of solid electrolyte interphase (SEI) films. In the course of study, the necessity for a simple method of SEI characterization was realized. Therefore, a new method and new criteria were developed and validated on 10 variations of electrolyte/electrode substrates. Based on the summation of determined physical and electrochemical properties of phosphazene-based electrolytes, one structure of phosphazene compound was found better than the other. This capability helps to direct our further synthetic work in phosphazene chemistry.

Sergiy V. Sazhin; Mason K. Harrup; Kevin L. Gering

2011-04-01T23:59:59.000Z

442

Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors  

Science Conference Proceedings (OSTI)

Electric double-layer capacitors (EDLCs) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLCs with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLCs hinges on the judicious selection of the electrode pore size and the electrolyte composition, which requires a comprehension of the charging behavior from a microscopic view. In this Perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic liquid and organic electrolyte EDLCs. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

Jiang, Deen [ORNL; Wu, Jianzhong [University of California, Riverside

2013-01-01T23:59:59.000Z

443

Microscopic Insights into the Electrochemical Behavior of Non-aqueous Electrolytes in Supercapacitors  

Science Conference Proceedings (OSTI)

Electric double-layer capacitors (EDLC) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLC with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLC hinges on the judicious selection of the electrode pore size and the electrolyte composition that requires a comprehension of the charging behavior from a microscopic view. In this perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic-liquid and organic-electrolyte EDLC. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

Jiang, Deen [ORNL; Wu, Jianzhong [ORNL

2013-01-01T23:59:59.000Z

444

Hydrogen-selective membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1997-07-29T23:59:59.000Z

445

Hydrogen-Selective Membrane  

SciTech Connect

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

1995-09-19T23:59:59.000Z

446

Hydrogen-selective membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

1997-01-01T23:59:59.000Z

447

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

448

Hydrogen-selective membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

449

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

450

HYDROGEN SEPARATION MEMBRANES  

DOE Green Energy (OSTI)

A likely membrane for future testing of high-temperature hydrogen separation from a gasification product stream was targeted as an inorganic analog of a dense-metal membrane, where the hydrogen would dissolve into and diffuse through the membrane structure. An amorphous membrane such as zinc sulfide appeared to be promising. Previously, ZnS film coating tests had been performed using an electron-beam vacuum coating instrument, with zinc films successfully applied to glass substrates. The coatings appeared relatively stable in air and in a simple simulated gasification atmosphere at elevated temperature. Because the electron-beam coating instrument suffered irreparable breakdown, several alternative methods were tested in an effort to produce a nitrogen-impermeable, hydrogen-permeable membrane on porous sintered steel substrates. None of the preparation methods proved successful in sealing the porous substrate against nitrogen gas. To provide a nitrogen-impermeable ZnS material to test for hydrogen permeability, two ZnS infrared sample windows were purchased. These relatively thick ''membranes'' did not show measurable permeation of hydrogen, either due to lack of absorption or a negligible permeation rate due to their thickness. To determine if hydrogen was indeed adsorbed, thermogravimetric and differential thermal analyses tests were performed on samples of ZnS powder. A significant uptake of hydrogen gas occurred, corresponding to a maximum of 1 mole H{sub 2} per 1 mole ZnS at a temperature of 175 C. The hydrogen remained in the material at ambient temperature in a hydrogen atmosphere, but approximately 50% would be removed in argon. Reheating in a hydrogen atmosphere resulted in no additional hydrogen uptake. Differential scanning calorimetry indicated that the hydrogen uptake was probably due to the formation of a zinc-sulfur-hydrogen species resulting in the formation of hydrogen sulfide. The zinc sulfide was found to be unstable above approximately 200 C, probably with the reduction to metallic zinc with the evolution of hydrogen sulfide. The work has shown that ZnS is not a viable candidate for a high-temperature hydrogen separation membrane.

Donald P. McCollor; John P. Kay

1999-08-01T23:59:59.000Z

451

Ceramic membranes having macroscopic channels  

DOE Patents (OSTI)

Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes.

Anderson, Marc A. (Madison, WI); Peterson, Reid A. (Madison, WI)

1996-01-01T23:59:59.000Z

452

Ceramic membranes having macroscopic channels  

DOE Patents (OSTI)

Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes. 1 fig.

Anderson, M.A.; Peterson, R.A.

1996-09-03T23:59:59.000Z

453

Copper Palladium Hydrogen Separation Membranes  

This patent-pending technology, “Cu-Pd Hydrogen Separation Membranes with Reduced Palladium Content and Improved Performance,” consists of copper-palladium alloy compositions for hydrogen separation membranes that use less palladium and have a ...

454

High-Rate Oxygen Reduction in Mixed Nonaqueous Electrolyte Containing Acetonitrile  

SciTech Connect

A mixed nonaqueous electrolyte that contains acetonitrile and propylene carbonate (PC) was found to be suitable for a LiO2 battery with a metallic Li anode. Both the concentration and diffusion coefficient for the dissolved O2 are significantly higher in the mixed electrolyte than those in the pure PC electrolyte. A powder microelectrode was used to investigate the O2 solubility and diffusion coefficient. A 10 mA?cm-2 discharge rate on a gas-diffusion electrode is demonstrated by using the mixed electrolyte in a LiO2 cell.

Zheng D.; Yang X.; Qu D.

2011-12-02T23:59:59.000Z

455

Hydrogen separation using silica membranes  

Science Conference Proceedings (OSTI)

Silica membranes were synthesized on tubular supports of alumina by dipping in silica colloidal solutions. The quality and the performance of the silica membranes were tested by experiments on single gas permeation and gas separation of mixed N2, ... Keywords: Knudsen diffusion, colloidal solution, gas permeation, hydrogen separation, silica membranes

Salvador Alfaroa; Miguel A. Valenzuelaa; Pedro Bosch

2008-11-01T23:59:59.000Z

456

Electrolytic production of metals using a resistant anode  

DOE Patents (OSTI)

An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

1986-11-04T23:59:59.000Z

457

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

SciTech Connect

This report provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are summarized. Detailed economic analyses of three systems for which cost and economic data were available were completed. The contributions of the cost of electricity, system efficiency, and capital costs to the total cost of electrolysis are discussed.

Ivy, J.

2004-09-01T23:59:59.000Z

458

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

SciTech Connect

This report provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are summarized. Detailed economic analyses of three systems for which cost and economic data were available were completed. The contributions of the cost of electricity, system efficiency, and capital costs to the total cost of electrolysis are discussed.

Ivy, J.

2004-04-01T23:59:59.000Z

459

METHOD AND MEANS FOR ELECTROLYTIC PURIFICATION OF PLUTONIUM  

DOE Patents (OSTI)

The technique of electrodepositing pure plutonium from a fused salt electrolyte of PuCl/sub 3/ and aixati metal halides is described. When an iron cathode is used, the plutonium deposit alloys therewith in the liquid state at the 400 to 600 deg C operating temperature, such liquid being allowed to drip through holes in the cathode and collect in a massive state in a tantallum cup. The process is adaptable to continuous processing by the use of depleted plutonium fuel as the anode: good to excellent separation from fission products is obtained with a Pu--Fe "fission" anode containing representative fractions of Ce, Ru, Zr, La, Mo, and Nb.

Bjorklund, C.W.; Benz, R.; Maraman, W.J.; Leary, J.A.; Walsh, K.A.

1960-02-01T23:59:59.000Z

460

Molten salt bath circulation design for an electrolytic cell  

DOE Patents (OSTI)

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "block-copolymer electrolyte membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Molten salt bath circulation design for an electrolytic cell  

DOE Patents (OSTI)

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

1999-08-17T23:59:59.000Z

462

Electrolytic production of metals using a resistant anode  

DOE Patents (OSTI)

An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

1986-01-01T23:59:59.000Z

463

OXYGEN TRANSPORT CERAMIC MEMBRANES  

Science Conference Proceedings (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

464

Membrane Stability Testing  

DOE Green Energy (OSTI)

The Electrosynthesis Co. Inc. (ESC) was contracted by the Westinghouse Savannah River Company to investigate the long term performance and durability of cell components (anode, membrane, cathode) in an electrochemical caustic recovery process using a simulated SRC liquid waste as anolyte solution. This report details the results of two long-term studies conducted using an ICI FM01 flow cell. This cell is designed and has previously been demonstrated to scale up directly into the commercial scale ICI FM21 cell.

Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-09-30T23:59:59.000Z

465

Novel Catalytic Membrane Reactors  

DOE Green Energy (OSTI)

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

466

Entropic Tension in Crowded Membranes  

E-Print Network (OSTI)

Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function in vivo. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2 kBT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant

Martin Lindén; Pierre Sens; Rob Phillips

2012-01-01T23:59:59.000Z

467

Solid Electrolyte/Electrode Interfaces: Atomistic Behavior Analyzed Via UHV-AFM, Surface Spectroscopies, and Computer Simulations Computational and Experimental Studies of the Cathode/Electrolyte Interface in Oxide Thin Film Batteries  

DOE Green Energy (OSTI)

The goals of the research were to understand the structural, dynamic, and chemical properties of solid electrolyte surfaces and the cathode/electrolyte interface at an atomistic and nanometer level using both computational and experimental techniques.

Garofalini, Stephen H.

2012-03-21T23:59:59.000Z

468

Sulfide ceramics in molten-salt electrolyte batteries  

DOE Green Energy (OSTI)

Sulfide ceramics are finding application in the manufacture of advanced batteries with molten salt electrolyte. Use of these ceramics as a peripheral seal component has permitted development of bipolar Li/FeS{sub 2} batteries. This bipolar battery has a molten lithium halide electrolyte and operates at 400 to 450C. Initial development and physical properties evaluations indicate the ability to form metal/ceramic bonded seal (13-cm ID) components for use in high-temperature corrosive environments. These sealants are generally CaAl{sub 2}S{sub 4}-based ceramics. Structural ceramics (composites with oxide or nitride fillers), highly wetting sealant formulations, and protective coatings are also being developed. Sulfide ceramics show great promise because of their relatively low melting point, high-temperature viscous flow, chemical stability, high-strength bonding, and tailored coefficients of thermal expansion. Our methodology of generating laminated metal/ceramic pellets (e.g., molybdenum/sulfide ceramic/molybdenum) with which to optimize materials formulation and seal processing is described.

Kaun, T.D.; Hash, M.C.; Simon, D.R.

1995-06-01T23:59:59.000Z

469

Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report  

DOE Green Energy (OSTI)

Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1995-09-01T23:59:59.000Z

470

Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report  

DOE Green Energy (OSTI)

The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

Not Available

1980-12-01T23:59:59.000Z

471

Oxygen Transport Membranes  

Science Conference Proceedings (OSTI)

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

472

An Insoluble Titanium-Lead Anode for Sulfate Electrolytes  

SciTech Connect

The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the