Sample records for block heat transfer

  1. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  2. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  3. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  4. About convective heat transfer in geothermal systems

    SciTech Connect (OSTI)

    Pashkevich, R.I. [Kamchatsky Complex Department of NIPIgeotherm Institute, Petropavlovsk-Kamchatsky (Russian Federation)

    1996-12-31T23:59:59.000Z

    The interphase fluid-rock heat exchange in convective beat transfer in geothermal systems is investigated Nonlinear model of interphase heat exchange is suggested. Calculation for one dimension case and comparison with known Anzelius-Schumann solution is presented Generalized type block heat transfer model is formulated. The model is adequate for case of geothermal systems and reservoir when a rock block size is comparable with filtration path length. Criterion equations for nonstationary coefficients of interphase heat exchange we presented these equations were obtained in laboratory experiments with diorites.

  5. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  6. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  7. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  8. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  9. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer 

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  10. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  11. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  12. Analysis of radial fin assembly heat transfer with dehumidification

    SciTech Connect (OSTI)

    Rosario, L.; Rahman, M.M. [Univ. of South Florida, Tampa, FL (United States). Dept. of Mechanical Engineering

    1996-12-31T23:59:59.000Z

    The aim of this paper is the analysis of heat transfer in a radial fin assembly during the process of dehumidification. An individual finned tube geometry is a reasonable representation of heat exchangers used in air conditioning. The condensation process involves both heat and mass transfer and the cooling takes place by the removal of sensible as well as latent heat. The ratio of sensible to total heat is an important quantity that defines the heat transfer process during a dehumidifier operation. A one-dimensional model for heat transfer in the fin and the heat exchanger block is developed to study the effects of condensation on the fin surface. The combined heat and mass transfer process is modeled by incorporating the ratio of sensible to total heat in the formulation. The augmentation of heat transfer due to fin was established by comparing heat transfer rate with and without fins under the same operating conditions. Numerical calculations were carried out to study the effects of relative humidity and dry bulb temperature of the incoming air, and cold fluid temperature inside the coil on the performance of the heat exchanger. Results were compared to those published for rectangular fin under humid condition showed excellent agreement when the present model was used to compute that limiting condition. It was found that the heat transfer rate increased with increment in both dry bulb temperature and relative humidity of the air. The augmentation factor, however, decreased with increment in relative humidity and the dry bulb temperature.

  13. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01T23:59:59.000Z

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  14. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09T23:59:59.000Z

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  15. HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Session on Heat Transfer in Nuclear Waste Disposal, C'.heat transfer processes associated with underground nuclear wasteheat transfer and related processes in an un­ derground environment similar to that expected in a mined nuclear waste

  16. Heat Transfer Technology

    E-Print Network [OSTI]

    Lefevre, M. R.

    1984-01-01T23:59:59.000Z

    crossflow and counterflow plume. 3) COMBINATION OF HET AND DRY TOWERS When there is not enough water available to provide the makeup for a conventional wet cooling tower, the only solution is to use "DRY" cooling to dissipate part of the heat load. a... 11. The water is cooled first in the DRY section because DRY cooling is much more expensive than WET cooling and this arrangement leads to the smallest DRY tower. It must also be kept in mind that the DRY tower has a physical cooling limit equal...

  17. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df the fuel rod, and the volumetric generation rate is known to vary sinusoidally with distance along the rod to exist between the surface of the rod and the water. Axial conduction can be neglected in rod and fluid

  18. Journal of Heat Transfer1999 JHT Heat Transfer Gallery Department of Mechanical 8. Aerospace Engineering

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    Journal of Heat Transfer1999 JHT Heat Transfer Gallery S. M. You Department of Mechanical 8 Transfer Visualization Committee organized two photo gallery sessions in 1998. The International Heat Transfer Photo Gallery was held at the l la' International Heat Transfer Conference (IHTC) in Kyongju

  19. AN EXPERIMENTAL INVESTIGATION OF THE HEAT TRANSFER FROM A BUOYANT GAS PLUME TO A

    E-Print Network [OSTI]

    Winfree, Erik

    Temperature E. Heat Transfer Model 1. Determining the Ceiling Heat Transfer 2. Ceiling Heat Transfer

  20. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

  1. Heat transfer via dropwise condensation on hydrophobic microstructured surfaces

    E-Print Network [OSTI]

    Ruleman, Karlen E. (Karlen Elizabeth)

    2009-01-01T23:59:59.000Z

    Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

  2. Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies

    E-Print Network [OSTI]

    Camci, Cengiz

    AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine

  3. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07T23:59:59.000Z

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  4. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  5. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-24T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  6. Heat-Traced Fluid Transfer Lines

    E-Print Network [OSTI]

    Schilling, R. E.

    1984-01-01T23:59:59.000Z

    HEAT-TRACED FLUID TRANSFER LINES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio This paper discusses basic considerations in designing a heat tracing system using either steam or electrical tracing. Four basic reasons to heat...

  7. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...

    Open Energy Info (EERE)

    heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on...

  8. Nuclear reactor safety heat transfer

    SciTech Connect (OSTI)

    Jones, O.C.

    1982-07-01T23:59:59.000Z

    Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

  9. "Developing novel heat transfer diagnostics for nanosystems."

    E-Print Network [OSTI]

    Acton, Scott

    become an increasingly popular technology for waste heat recovery in the last few years. The efficiency"Developing novel heat transfer diagnostics for nanosystems." Patrick Hopkins Assistant Professor Young Investigator Award for heat transfer across solid/fluid interfaces · 2013 AFOSR Young Investigator

  10. Heat-transfer coefficients in agitated vessels. Latent heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)

    1996-03-01T23:59:59.000Z

    Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

  11. Analysis of heat transfer in unlooped and looped pulsating

    E-Print Network [OSTI]

    Zhang, Yuwen

    , Tubing Abstract An advanced heat transfer model for both unlooped and looped Pulsating Heat Pipes (PHPs

  12. Enhanced heat transfer for thermionic power modules

    SciTech Connect (OSTI)

    Johnson, D.C.

    1981-07-01T23:59:59.000Z

    The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

  13. Heat Transfer Fluids Containing Nanoparticles | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a minimal increase in...

  14. Radiative heat transfer in porous uranium dioxide

    SciTech Connect (OSTI)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

    1992-12-01T23:59:59.000Z

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  15. Development of a Heat Transfer Model for the Integrated Facade Heating

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  16. Development of a Heat Transfer Model for the Integrated Facade Heating 

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  17. MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER

    E-Print Network [OSTI]

    Lahey, Richard T.

    MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER "ENGINEERING APPLICATIONS OF FRACTAL AND CHAOS THEORY" RICHARD T. LAHEY, JR. Center for Multiphase Research Rensselaer Polytechnic Institute Troy and multiphase flow & heat transfer will be stressed. This paper will begin by reviewing some important concepts

  18. Radiative heat transfer between dielectric bodies

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-16T23:59:59.000Z

    The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

  19. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  20. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  1. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  2. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  3. Heat-transfer coefficients in agitated vessels. Sensible heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.

    1995-12-01T23:59:59.000Z

    Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

  4. Heat Transfer Derivation of differential equations for heat transfer conduction

    E-Print Network [OSTI]

    Veress, Alexander

    ) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

  5. Dynamics of heat transfer between nano systems

    E-Print Network [OSTI]

    Svend-Age Biehs; Girish S. Agarwal

    2012-10-18T23:59:59.000Z

    We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

  6. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01T23:59:59.000Z

    is little radiative heat transfer and little impact on thereturn air extrac- tion and heat transfer to the plenum. ItUFAD is often used and heat transfer out of the room through

  7. HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS

    E-Print Network [OSTI]

    Heperkan, H.

    2013-01-01T23:59:59.000Z

    Proceedings of the 1963 Heat Transfer and Fluid Mechanicsto the Journal of Heat Transfer HEAT TRANSFER DURING THETechniques for Heat Transfer and Force Measurements in a

  8. Modelling Heat Transfer of Carbon Nanotubes

    E-Print Network [OSTI]

    Yang, Xin-She

    2010-01-01T23:59:59.000Z

    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.

  9. Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation

    SciTech Connect (OSTI)

    Fleming, W.H. Jr.

    1999-10-20T23:59:59.000Z

    This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

  10. ME 339 Heat Transfer ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 339­ Heat Transfer Page 1 ABET EC2000 syllabus ME 339 ­ Heat Transfer Spring 2010 Required convection; radiation; introduction to phase change heat transfer and to heat exchangers. Prerequisite(s): ME, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley Other Required Material: NA Course Objectives

  11. Clean Boiler Waterside Heat Transfer Surfaces

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  12. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12T23:59:59.000Z

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  13. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  14. Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger

    E-Print Network [OSTI]

    Singh, K. P.

    1979-01-01T23:59:59.000Z

    The concept of a "Divided-flow" heat exchanger is generalized by locating the shell inlet (or outlet) nozzle off-center such that the two shell sub-streams are unequal and traverse unequal flow paths. The governing equations for heat transfer...

  15. Heat transfer in gas tungsten arc welding

    SciTech Connect (OSTI)

    Smartt, H.B.; Stewart, J.A.; Einerson, C.J.

    1986-05-01T23:59:59.000Z

    The heat transferred from an electrode negative, argon gas tungsten arc to an anode has been measured for a wide range of conditions suitable for mechanized welding applications. The results are given as (1) the arc efficiency; and (2) the anode heat and current input distribution functional shapes and radii for various anode materials and groove shapes over a wide range of current and voltage, using different electrode geometries, as well as both He and Ar-He shielding gases. The nominal arc is Gaussian with a diameter of about 4 mm and a heat transfer efficiency to the anode of about 75%. Variations from these values are discussed in terms of current knowledge of the electrical and thermal energy transport mechanisms. A new method of measuring the heat transferred from the arc to the anode, using a boiling liquid nitrogen calorimeter, has been developed which gives rapid, accurate values.

  16. Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    -dependent radiation and conduction bio-heat transfer model. Ultrashort pulsed radiation transport in the cylindrical a combined transient heat transfer and Pennes bio-heat transfer model is developed to simulate the heat transfer models; and concluded that the Pennes model is still the most practical for fast prediction

  17. Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money

    E-Print Network [OSTI]

    Beyrau, J. A.; Bogel, N. G.; Seifert, W. F.; Wuelpern, L. E.

    1984-01-01T23:59:59.000Z

    constraints of an existing installation makes the conventional flue gas to air energy recovery technology impractical to employ. A successful alternative is the transfer of waste heat to an intermediate heat transfer fluid (i.e., DOWTHERM Heat Transfer Fluid...

  18. Heat transfer 1990. Proceedings of the ninth international heat transfer conference

    SciTech Connect (OSTI)

    Hetsroni, G.

    1990-01-01T23:59:59.000Z

    This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 6 are the following chapters: Local void fraction measurements in finned tube bundles, Unsteady heat and mass transfer in low two-phase flows and The effect of physical properties on drop size in annular flow.

  19. Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem in a Heterogeneous Domain

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -cooled reactor. It is typically made of many prismatic blocks of graphite in which are inserted the nuclear fuel in the homogenization of heat transfer in periodic porous media where the fluid part is made of long thin parallel in the solid part of the domain and by conduction, convection and radiative transfer in the fluid part (the

  20. Numerical methods in heat transfer

    SciTech Connect (OSTI)

    Emery, A.F.; Douglass, R.W.

    1988-01-01T23:59:59.000Z

    This book contains nine papers. Some of the titles are: Numerical calculation of bubble growth in nucleate boiling from inception through departure; An evaluation of a translator for finite element data to resistor/capacitor data for the heat diffusion; Thermophoretic deposition due to jet impingement on an inclined plane; and A three-dimensional boundary-fitted coordinate system.

  1. Radiative Heat Transfer between Neighboring Particles

    E-Print Network [OSTI]

    Alejandro Manjavacas; F. Javier Garcia de Abajo

    2012-01-26T23:59:59.000Z

    The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

  2. 5. Heat transfer Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    ) Heat conductance as Gheat =1/Rheat = Q/T (unit: W/K or W/°C) For a plane material with thickness L (m) and conductivity (W/mK): Gheat = ·A/L Rheat = L/(·A) . . . Åbo Akademi University | Thermal and Flow Engineering rate Q through a cross-sectional area A (m2). If is a constant: with thermal conductivity , unit: W

  3. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01T23:59:59.000Z

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  4. Self supporting heat transfer element

    DOE Patents [OSTI]

    Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)

    2002-01-01T23:59:59.000Z

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  5. Convective heat transfer in rotating, circular channels

    E-Print Network [OSTI]

    Hogan, Brenna Elizabeth

    2012-01-01T23:59:59.000Z

    Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first ...

  6. Heat Transfer between Graphene and Amorphous SiO2

    E-Print Network [OSTI]

    B. N. J. Persson; H. Ueba

    2010-07-22T23:59:59.000Z

    We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer result from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  7. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink

    E-Print Network [OSTI]

    Peles, Yoav

    transfer in a horizontal tube bundle and reported an increase in local heat transfer coefficient boiling heat transfer of water in small horizontal tube bundles at low velocities. How- ever, the dataBoiling heat transfer in a hydrofoil-based micro pin fin heat sink Ali Kosßar, Yoav Peles

  8. CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER

    E-Print Network [OSTI]

    Kandlikar, Satish

    1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

  9. Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio. M-la-Vall´ee cedex 2, France (Dated: October 23, 2008) Abstract Fully developed turbulent flow and heat transfer square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, ...). To validate

  10. A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH

    E-Print Network [OSTI]

    A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH ATTACHED WALL JETS By WEIXIU KONGQuest Information and Learning Company. #12;II A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS

  11. July 2008 Mold heat transfer in continuous casting

    E-Print Network [OSTI]

    Thomas, Brian G.

    with the 1-D heat transfer model, CON1D. To account for the multi- dimensional thermal behavior around speeds and new mold designs. COND Model Description The heat transfer model CON1D1 models sev- eral

  12. Hydrodynamics, heat transfer and flow boiling instabilities in microchannels 

    E-Print Network [OSTI]

    Barber, Jacqueline Claire

    2010-01-01T23:59:59.000Z

    Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...

  13. Nanofluid heat transfer enhancement for nuclear reactor applications

    E-Print Network [OSTI]

    Buongiorno, Jacopo

    Colloidal dispersions of nanoparticles are known as `nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (i.e., erosion, ...

  14. Experimental evaluation of heat transfer characteristics of silica nanofluid

    E-Print Network [OSTI]

    Zhang, Zihao, S.B. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    The laminar convective heat transfer characteristics were investigated for silica nanofluid. An experimental loop was built to obtain heat transfer coefficients for single-phase nanofluids in a circular conduit in laminar ...

  15. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  16. DEVELOPING FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS OF RECTANGULAR CROSS-SECTION

    E-Print Network [OSTI]

    Yee, G.

    2010-01-01T23:59:59.000Z

    DEVELOpiNG FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS9092 Developing Flow and Heat Transfer in Strongly CurvedForced Convection Heat Transfer in Curved Rectangular

  17. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Gustavsen, Arild

    2009-01-01T23:59:59.000Z

    free convection. In: Heat Transfer and Turbulent Buoyantof convection heat transfer and develop correlations.and radiation heat transfer and develop correlations for

  18. Heat transfer of finned tube bundles in crossflow

    SciTech Connect (OSTI)

    Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.

    1988-01-01T23:59:59.000Z

    This volume correlates findings on heat transfer and hydraulic drag of bundles of finned tubes in crossflow at Reynolds numbers from 10/sup 4/ to 10/sup 6/. These studies illustrate fin, local, and mean heat transfer coefficients; effects of geometric parameters of the fins; effect of tube location within the bundle on heat transfer and hydraulic drag; and resistance of finned tube bundles.

  19. Dt2boool2> Nora Heat Transfer Correlations

    E-Print Network [OSTI]

    Dt2boool2> Nora Heat Transfer Correlations in Nuclear Reactor Safety Calculations VW ÉAiiattÉaii #12;fcflison cufiMiMltt lor yhdyiifci aomicantfgy RIS0-M-25O4 6«.*). HEAT TRANSFER of work 26 3. PRESENT KNOWLEDGE 27 3.1. General considerations 27 3.2. Heat transfer in different flow

  20. Proceeding of the 1st International Forum on Heat Transfer

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Proceeding of the 1st International Forum on Heat Transfer November 24-26, 2004, Kyoto, Japan Paper No. HEAT TRANSFER PROBLEMS RELATED WITH CARBON NANOTUBES BY MOLECULAR DYNAMICS-BASED SIMULATIONS Dynamics Simulation, Thermal Conductance ABSTRACT Several heat transfer problems related to single

  1. Proceedings of NHTC'00: 34 th National Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of NHTC'00: 34 th National Heat Transfer Conference Pittsburgh, Pennsylvania, August 20 ON SINGLE- AND TWO-PHASE HEAT TRANSFER CHARACTERISTICS IN A MICROCHANNEL Michael S June Graduate Student study investigates the heat transfer characteristics of single and two-phase flows in a 200 m wide

  2. RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer

  3. High flux heat transfer in a target environment

    E-Print Network [OSTI]

    McDonald, Kirk

    High flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe ­ Dittus Boelter correlation Achenbach correlation for heat transfer in a packed bed of spheres Max power density for a sphere

  4. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph Gabriel (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  5. A comparison of the heat transfer capabilities of two manufacturing methods for high heat flux water-cooled devices

    SciTech Connect (OSTI)

    McKoon, R.H.

    1986-10-01T23:59:59.000Z

    An experimental program was undertaken to compare the heat transfer characteristics of water-cooled copper devices manufactured via conventional drilled passage construction and via a technique whereby molten copper is cast over a network of preformed cooling tubes. Two similar test blocks were constructed; one using the drilled passage technique, the other via casting copper over Monel pipe. Each test block was mounted in a vacuum system and heated uniformly on the top surface using a swept electron beam. From the measured absorbed powers and resultant temperatures, an overall heat transfer coefficient was calculated. The maximum heat transfer coefficient calculated for the case of the drilled passage test block was 2534 Btu/hr/ft/sup 2///sup 0/F. This corresponded to an absorbed power density of 320 w/cm/sup 2/ and resulted in a maximum recorded copper temperature of 346/sup 0/C. Corresponding figures for the cast test block were 363 Btu/hr/ft/sup 2///sup 0/F, 91 w/cm/sup 2/, and 453/sup 0/C.

  6. Heat Transfer Operators Associated with Quantum Operations

    E-Print Network [OSTI]

    Ç. Aksak; S. Turgut

    2011-04-14T23:59:59.000Z

    Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

  7. Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot

  8. Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers

    E-Print Network [OSTI]

    Thole, Karen A.

    Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers Paul A transfer along the tube wall of the compact heat exchanger through the use of winglets placed of attack, aspect ratio, direction, and shape, were all evaluated based on heat transfer augmentation

  9. Journal of Enhanced Heat Transfer, 19 (5): 457476 (2012) EXPERIMENTAL INVESTIGATION OF HEAT

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    2012-01-01T23:59:59.000Z

    Journal of Enhanced Heat Transfer, 19 (5): 457­476 (2012) EXPERIMENTAL INVESTIGATION OF HEAT microfin tubes, most of the heat transfer and friction factor studies were focused on the turbulent region. However, there is a lack of information about the heat transfer and friction factor behavior of microfin

  10. Numerical study of high heat ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Numerical study of high heat ¯ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b , Shigeo simulation model of boiling heat transfer is proposed based on a numerical macrolayer model [S. Maruyama, M. Shoji, S. Shimizu, A numerical simulation of transition boiling heat transfer, in: Proceedings

  11. Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer

    E-Print Network [OSTI]

    Martin, Timothy

    Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

  12. Thermal conductivity and heat transfer in superlattices

    SciTech Connect (OSTI)

    Chen, G.; Neagu, M.; Borca-Tasciuc, T.

    1997-07-01T23:59:59.000Z

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  13. Outside heat transfer coefficients for atmospheric coolers

    E-Print Network [OSTI]

    George, David Mark

    1950-01-01T23:59:59.000Z

    for the same conditions of operation is given by Robinson ()i. 9). TABLE I Comparison of various authors' values of outside heat transfer coefficients Btugour x square foot x F ~ ) Adams (1 ) 1001 1041 915 74, 6 1021 981 910 Clarke 945 997 841... ozeventing any recycling of the wet air. "M~4~ 1 f jc, : 1 C. X L, w 38 Cooled water fro~ the tower is centrifugally pmnoed through a 2 inch pipe to a rotameter and a I and operated control valve, Figure 8, before entering a 1 1/g inch by 5 foot...

  14. FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS

    E-Print Network [OSTI]

    Sen, Mihir

    = heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

  15. Heat transfer to impacting drops and post critical heat flux dispersed flow

    E-Print Network [OSTI]

    Kendall, Gail E.

    1978-01-01T23:59:59.000Z

    Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...

  16. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  17. On the design of heat-transfer probes

    SciTech Connect (OSTI)

    Brich, M.A.; Ganzha, V.L.; Saxena, S.C. [Univ. of Illinois, Chicago, IL (United States)] [Univ. of Illinois, Chicago, IL (United States)

    1997-03-01T23:59:59.000Z

    Saxena and coworkers have reported heat-transfer coefficient values for magnetofluidized beds using electrically heated heat-transfer probes. Here, a two-dimensional heat-transfer model is employed to investigate the influence of significant design features on measured parameters. Numerical calculations reveal that the thermal conductivity of the probe material has an insignificant contribution but the material of end caps and relative sizes and locations of the probe and heater appreciably influence the heat-transfer rates through end-conduction.

  18. Heat transfer assembly for a fluorescent lamp and fixture

    SciTech Connect (OSTI)

    Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)

    1992-01-01T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  19. RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI­MONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena

  20. CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011

    E-Print Network [OSTI]

    Dyer, Bill

    ME 525 CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011 Office: 201C Roberts Hall Lecture Room of conduction heat transfer. Important results which are useful for engineering application will also: 121 Roberts Hall Phone: 994-6295 Lecture Periods: 12:45- 2:00, TR TEXT: Heat Conduction, M. N. Ozisik

  1. art heat transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer Texas A&M University - TxSpace Summary: ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-8-5 Urban Sewage Delivery Heat Transfer System...

  2. accident heat transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer Texas A&M University - TxSpace Summary: ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-8-5 Urban Sewage Delivery Heat Transfer System...

  3. accurate heat transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer Texas A&M University - TxSpace Summary: ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-8-5 Urban Sewage Delivery Heat Transfer System...

  4. Heat transfer enhancement resulting from induction electrohydrodynamic pumping 

    E-Print Network [OSTI]

    Margo, Bryan David

    1992-01-01T23:59:59.000Z

    pump operated at various tilt angles with two working fluids. The main difference between this study and other work in EHD heat transfer enhancement is that the induction EHD pump is the only source of pumping as well as the basis for heat transfer... HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  5. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01T23:59:59.000Z

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  6. Heat transfer in bundles of finned tubes in crossflow

    SciTech Connect (OSTI)

    Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.

    1986-01-01T23:59:59.000Z

    This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.

  7. Heat transfer analysis capabilities of the scale computational system

    SciTech Connect (OSTI)

    Parks, C.V.; Giles, G.E.; Childs, K.W.; Bryan, C.B.

    1986-01-01T23:59:59.000Z

    The heat transfer capabilities within the modular SCALE computational system are centered about the HEATING6 functional module. This paper reviews the features and modeling capabilities of HEATING6, discusses the supportive plotting capabilities of REGPLOT6 and HEATPLOT-S, and finally provides a general description of the Heat Transfer Analysis Sequence No.1 (HTASI) available in SCALE for performing thermal analyses of transport casks via HEATING6. The HTASI control module is an easy-to-use tool that allows an inexperienced HEATING6 user to obtain reliable thermal analysis results. A summary of the recent verification efforts undertaken for HEATING6 is also provided. 16 refs., 14 figs.

  8. Heat Transfer Study of Polymer Solutions with Different Rigidities 

    E-Print Network [OSTI]

    Huang, Yao

    2014-05-08T23:59:59.000Z

    The heat transfer behaviors of non-Newtonian fluids under laminar flow conditions in circular tubes are presented in this study. The constant wall heat flux is considered as a boundary condition for dilute polymer solutions with different polymer...

  9. 2.51 Intermediate Heat and Mass Transfer, Fall 2001

    E-Print Network [OSTI]

    Lienhard, John H., 1961-

    Analysis, modeling, and design of heat and mass transfer processes with application to common technologies. Unsteady heat conduction in one or more dimensions, steady conduction in multidimensional configurations, numerical ...

  10. Heat transfer and pressure drop in tape generated swirl flow

    E-Print Network [OSTI]

    Lopina, Robert F.

    1967-01-01T23:59:59.000Z

    The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...

  11. Heat Transfer Interface for Thermo-Solar Energy - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Heat Transfer Interface for Thermo-Solar Energy Lawrence Berkeley...

  12. Characterization and Development of Advanced Heat Transfer Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. ape11kelly.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics...

  13. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-01-01T23:59:59.000Z

    Heat Flow in Fractured Reservoirs, SPE Advanced TechnologyTransfer Area in Fractured Reservoirs Karsten Pruess 1 , Tonbehavior arises in fractured reservoirs. As cold injected

  14. asme heat transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of...

  15. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  16. advanced heat transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires...

  17. Proceedings of HT'03 2003 Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Walker, D. Greg

    Proceedings of HT'03 2003 Summer Heat Transfer Conference July 21­23, 2003, Las Vegas, Nevada, USA HT2003-47016 A NEW TECHNIQUE FOR HEAT FLUX DETERMINATION D.G. Walker Department of Mechanical@vt.edu ABSTRACT A new method for estimating heat fluxes from heating rate measurements and an approach to measure

  18. Nanofluids for heat transfer : an engineering approach.

    SciTech Connect (OSTI)

    Timofeeva, E. V.; Yu, W.; France, D. M.; Singh, D.; Routbort, J. L. (Energy Systems); ( NE); (Univ. of Illinois at Chicago)

    2011-02-28T23:59:59.000Z

    An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles), the liquid phase (fluid media), and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.

  19. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph G. (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2011-04-12T23:59:59.000Z

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  20. Submersible pumping system with heat transfer mechanism

    DOE Patents [OSTI]

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15T23:59:59.000Z

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  1. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  2. Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating

    E-Print Network [OSTI]

    Geb, David; Zhou, Feng; Catton, Ivan

    2012-01-01T23:59:59.000Z

    the Hydraulic Drag and Heat Transfer Coefficients in Porous5] Locke, G. L. , 1950, “Heat Transfer and Flow FrictionA. P. , 1993, “Heat Transfer and Hydraulic Resistance in

  3. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-12-03T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  4. Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel

    E-Print Network [OSTI]

    Aussillous, Pascale

    Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow

  5. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

    1994-11-29T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  6. Mechanical Engineering Laboratory of Heat and Mass Transfer

    E-Print Network [OSTI]

    Diggavi, Suhas

    the prediction methods. The local condensation heat transfer behavior of two new refrigerants(R236fa and R1234ze refrigerants. Effect of different parameters was investigated for present database. Koyama method was modified. Jung E. Park Comparing refrigerant performance, the higher heat transfer coefficients (about 15

  7. Measurement and analysis of gas turbine blade endwall heat transfer

    E-Print Network [OSTI]

    Lee, Joon Ho

    2001-01-01T23:59:59.000Z

    the aerodynamic flow and external heat transfer distribution around the airfoils and end-wall surfaces. A stationary 5 vane linear cascade is designed and developed to investigate gas turbine blade endwall heat transfer and flow. The test cascade is instrumented...

  8. Heat transfer in proteinwater interfaces Anders Lervik,ab

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in protein­water interfaces Anders Lervik,ab Fernando Bresme,*ac Signe Kjelstrup of the heat diffusion equation we compute the thermal conductivity and thermal diffusivity of the proteins by about 4 nm.4 It is expected that the energy transfer between these sites may involve the concerted

  9. Enhanced radiative heat transfer between nanostructured gold plates

    E-Print Network [OSTI]

    R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

    2012-03-07T23:59:59.000Z

    We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

  10. An upgraded heat transfer fluid eliminates odors and leaks

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    At Morton, persistent leakage of an aromatics-based heat transfer fluid left its mark--a black, oxidized residue at flange and valve locations. By switching to a high-purity fluid from a paraffinic hydrocarbon base stock, the firm eliminated odors and sticky residue, and improved heat transfer. After four years of operation with the paraffinic heat transfer fluid, Morton continues to have no odor problems and virtually no flange or packing leakage. As an added bonus, the heat transfer coefficient of the new fluid allows Morton to operate the systems 10--15 F cooler than when the company used the traditional, aromatic fluid. This has cut fuel use and reduced the potential for thermal damage to the heat transfer fluid, process fluid and process equipment.

  11. Heat transfer between elastic solids with randomly rough surfaces

    E-Print Network [OSTI]

    B. N. J. Persson; B. Lorenz; A. I. Volokitin

    2009-08-27T23:59:59.000Z

    We study the heat transfer between elastic solids with randomly rough surfaces. We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the noncontact regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

  12. Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime

    E-Print Network [OSTI]

    Lee, Jeongik

    2007-01-01T23:59:59.000Z

    Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

  13. Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime

    E-Print Network [OSTI]

    Lee, Jeongik

    Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

  14. Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel 

    E-Print Network [OSTI]

    Su, J.; Li, J.

    2006-01-01T23:59:59.000Z

    With the development of science and technology, various heating and cooling equipment have a development trend of micromation. Micro-fabrication processes make it possible to conduct research on condensation heat transfer ...

  15. Heat transfer and film cooling with steam injection 

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01T23:59:59.000Z

    HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major... Subject: Mechanical Engineering HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Approved as to style and content by: (Chairm of Committee) (Member) (Memb e r) (Me r (Head Departme ) May 1982 ABSTRACT Heat...

  16. Enhanced two phase flow in heat transfer systems

    DOE Patents [OSTI]

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03T23:59:59.000Z

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  17. Natural convection heat transfer from two horizontal cylinders

    SciTech Connect (OSTI)

    Reymond, Olivier; Murray, Darina B. [Department of Mechanical and Manufacturing Engineering, Trinity College Dublin (Ireland); O'Donovan, Tadhg S. [School of Engineering and Physical Sciences, Heriot-Watt University, Nasmyth Building, Edinburgh EH14 4AS (United Kingdom)

    2008-09-15T23:59:59.000Z

    Natural convection heat transfer from a single horizontal cylinder and a pair of vertically aligned horizontal cylinders is investigated. Surface heat transfer distributions around the circumference of the cylinders are presented for Rayleigh numbers of 2 x 10{sup 6}, 4 x 10{sup 6} and 6 x 10{sup 6} and a range of cylinder spacings of 1.5, 2 and 3 diameters. With a cylinder pairing the lower cylinder is unaffected by the presence of the second cylinder; the same is true of the upper cylinder if the lower one is not heated. However, when both cylinders are heated it has been found that a plume rising from the heated lower cylinder interacts with the upper cylinder and significantly affects the surface heat transfer distribution. Spectral analysis of surface heat transfer signals has established the influence of the plume oscillations on the heat transfer. Thus, when the plume from the lower cylinder oscillates out of phase with the flow around the upper cylinder it increases the mixing and results in enhanced heat transfer. (author)

  18. Dual circuit embossed sheet heat transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1984-02-21T23:59:59.000Z

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  19. Study on the heat transfer of heat exchangers for the Stirling Engine

    SciTech Connect (OSTI)

    Kanzaka, M. (Nagasaki Research and Development Center (JP)); Iwabuchi, M. (Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd. (JP))

    1991-01-01T23:59:59.000Z

    This paper reports that heat-transfer characteristics in heated tubes under periodically reversing flow conditions have been investigated experimentally using a test apparatus that simulates the heat exchangers for the actual Sterling engine. It was shown that the heat-transfer characteristics under these conditions were greatly affected by the piston phase-angle difference that generates the reversing flow of the working gas, and this phenomenon was proper to the heat transfer under the periodically reversing flow and was different from conventional heat transfer in steady flow. The experimental correlation considering the influence of the piston phase-angle difference for the heat-transfer coefficient has been induced by the use of the working gas velocity evaluated from the Schmidt cycle model which is one of the ideal Sterling cycles.

  20. The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes

    E-Print Network [OSTI]

    Shiralkar, B. S.

    1968-01-01T23:59:59.000Z

    At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...

  1. Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry 

    E-Print Network [OSTI]

    Gaskill, Travis

    2012-02-14T23:59:59.000Z

    The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a...

  2. Systematic investigation of the effects of hydrophilic porosity on boiling heat transfer and critical heat flux

    E-Print Network [OSTI]

    Tetreault-Friend, Melanie

    2014-01-01T23:59:59.000Z

    Predicting the conditions of critical heat flux (CHF) is of considerable importance for safety and economic reasons in heat transfer units, such as in nuclear power plants. It is greatly advantageous to increase this thermal ...

  3. Nano-engineering the boiling surface for optimal heat transfer rate and critical heat flux

    E-Print Network [OSTI]

    Phillips, Bren Andrew

    2011-01-01T23:59:59.000Z

    The effects on pool boiling characteristics such as critical heat flux and the heat transfer coefficient of different surface characteristics such as surface wettability, roughness, morphology, and porosity are not well ...

  4. Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry

    E-Print Network [OSTI]

    Gaskill, Travis

    2012-02-14T23:59:59.000Z

    The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a...

  5. Heat transfer near spacer grids in rod bundles

    SciTech Connect (OSTI)

    Yoder, G.L.

    1985-01-01T23:59:59.000Z

    Heat transfer data from several sources have been assembled which show the effect of spacer grids on local heat transfer within a rod bundle. Both single phase (air and steam) data and two phase (steam/water) data show heat transfer augmentation in the grid region. Heat transfer improvement immediately beyond the grid ranges from a few percent to over fifty percent in these experiments, depending on flow conditions. The data are examined using several nondimensional parameters which relate the above effects to known quantities. The relative effect of the grid on local heat transfer is altered by both the Reynolds number and blockage ratio. Twenty to thirty hydraulic diameters are required before the local effect of the grid dissipates. Locally, both the single phase and two phase data show the same trends. Comparison of the single and two phase data also shown some differences. Some film boiling data indicate that an altered heat transfer regime may exist near the grid. High rod heat transfer coefficients at the grid locations indicate either a rewet of the rods or at least a change from film boiling to transition boiling near the spacer. The comparison also indicates that the film boiling data is affected on a global as well as local basis. This is due to the effect of the grid on the liquid distribution.

  6. Experimental and numerical study of laminar forced convection heat transfer for a dimpled heat sink 

    E-Print Network [OSTI]

    Park, Do Seo

    2009-05-15T23:59:59.000Z

    EXPERIMENTAL AND NUMERICAL STUDY OF LAMINAR FORCED CONVECTION HEAT TRANSFER FOR A DIMPLED HEAT SINK A Thesis by DO SEO PARK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2007 Major Subject: Mechanical Engineering EXPERIMENTAL AND NUMERICAL STUDY OF LAMINAR FORCED CONVECTION HEAT TRANSFER FOR A DIMPLED HEAT SINK A Thesis by DO SEO PARK...

  7. A Small Artery Heat Transfer Model for Self-Heated Thermistor Measurements of Perfusion in the

    E-Print Network [OSTI]

    A Small Artery Heat Transfer Model for Self-Heated Thermistor Measurements of Perfusion model (SAM) for self-heated thermistor measurements of perfusion in the canine kidney is developed based clinical method to quantify perfusion for a majority of applications. Self-heated thermistor techniques

  8. Investigating Mould Heat Transfer in Thin Slab Casting with CON1D Begoa Santillana

    E-Print Network [OSTI]

    Thomas, Brian G.

    . Heat transfer in the thin slab casting mould is being investigated with the 1-D heat transfer model MODEL DESCRIPTION The heat transfer model, CON1D1 , models several aspects of the continuous casting

  9. Heat transfer model of large shipping containers 1Chemical Engineering Department -Carnegie Mellon University

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Heat transfer model of large shipping containers 1Chemical Engineering Department - Carnegie Mellon to the inside air 3. Heat transfer at the cargo on the pallets I. The heat transfer model Outline: II. Case

  10. Impingement cooling and heat transfer measurement using transient liquid crystal technique 

    E-Print Network [OSTI]

    Huang, Yizhe

    1996-01-01T23:59:59.000Z

    is used in this study to obtain the detailed heat transfer coefficient. Results show that a higher Reynolds number increases heat transfer over the entire impingement target surface. The flow exit orientation with crossflow affects the heat transfer...

  11. Heat transfer rates in fixed bed catalytic reactors

    E-Print Network [OSTI]

    Levelton, Bruce Harding

    1951-01-01T23:59:59.000Z

    HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX DB DNCLR YFNOAXa rRJRuSIX nSeR 1951i HssNIJFu FT SI TSBuR FXO LIXSRXS NRLIeeRXOROt HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX BSar DNCLR YFNOAXa r...RJRuSIX June 1951 HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS A Dissertation Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  12. Heat Transfer and Cooling Techniques at Low Temperature

    E-Print Network [OSTI]

    Baudouy, B

    2014-01-01T23:59:59.000Z

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  13. Heat Transfer Calculations for a Fixed CST Bed Column

    SciTech Connect (OSTI)

    Lee, S.Y.

    2001-03-28T23:59:59.000Z

    In support of the crystalline silicotitanate (CST) ion exchange project of High-Level Waste (HLW) Process Engineering, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the CST column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. The modeling and calculations were performed using a computational heat transfer approach.

  14. Modeling of Heat Transfer in Geothermal Heat Exchangers 

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  15. Research on Heat Resisting Character of Hollow Building Blocks in Energy Saving Wall

    E-Print Network [OSTI]

    Zhang, Y.; He, J.; Gao, S.

    2006-01-01T23:59:59.000Z

    By establishing a mathematical model with the finite difference method, the three-dimensional temperature fields of a new type of asymmetrical hollow building blocks in an energy saving wall are solved in this paper. The three forms of heat...

  16. Heat treatment optimization in the manufacture of Wilson Rockwell steel hardness test blocks

    E-Print Network [OSTI]

    Tan, Vincent Tandean

    2009-01-01T23:59:59.000Z

    The heat-treatment process in the manufacture of Wilson Rockwell steel hardness test blocks often produces parts which are inconsistent in the mean hardness and hardness uniformity. In this thesis, the sources of variation ...

  17. Research on Heat Resisting Character of Hollow Building Blocks in Energy Saving Wall 

    E-Print Network [OSTI]

    Zhang, Y.; He, J.; Gao, S.

    2006-01-01T23:59:59.000Z

    By establishing a mathematical model with the finite difference method, the three-dimensional temperature fields of a new type of asymmetrical hollow building blocks in an energy saving wall are solved in this paper. The three forms of heat...

  18. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10T23:59:59.000Z

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  19. Using Solid Particles as Heat Transfer Fluid for use in Concentrating...

    Broader source: Energy.gov (indexed) [DOE]

    Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power...

  20. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01T23:59:59.000Z

    of the room heat transfer model in the free open-sourcea layer-by-layer heat transfer model that computes infrared

  1. Small distance expansion for radiative heat transfer between curved objects

    E-Print Network [OSTI]

    Golyk, Vladyslav A.

    We develop a small distance expansion for the radiative heat transfer between gently curved objects, in terms of the ratio of distance to radius of curvature. A gradient expansion allows us to go beyond the lowest-order ...

  2. Enhancement of Pool Boiling Heat Transfer in Confined Space

    E-Print Network [OSTI]

    Hsu, Chia-Hsiang

    2014-05-05T23:59:59.000Z

    Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...

  3. Numerical Study of Flow and Heat Transfer in Rotating Microchannels

    E-Print Network [OSTI]

    Roy, Pratanu

    2014-10-07T23:59:59.000Z

    Investigation of fluid flow and heat transfer in rotating microchannels is important for centrifugal microfluidics, which has emerged as an advanced technique in biomedical applications and chemical separations. The centrifugal force...

  4. Influence of Infrared Radiation on Attic Heat Transfer

    E-Print Network [OSTI]

    Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

    1985-01-01T23:59:59.000Z

    An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat...

  5. 16 Heat Transfer and Air Flow in a Domestic Refrigerator

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    445 16 Heat Transfer and Air Flow in a Domestic Refrigerator Onrawee Laguerre UMR Génie Industriel...............................................447 16.2.1 Studies in Domestic Refrigerators...................................................................................... 451 16.3 Cold Production System in Domestic Refrigerators

  6. Wellbore Heat Transfer Model for Wax Deposition in Permafrost Region

    E-Print Network [OSTI]

    Cui, Xiaoting

    2012-05-31T23:59:59.000Z

    Producing waxy oil in arctic area may cause wax deposited on the well wall. Since wax deposition is strongly thermal related, accurate heat transfer model is necessary in predicting and preventing wax depostion. A mathematical model was derived...

  7. Non-intrusive characterization of heat transfer fluid aerosol formation

    E-Print Network [OSTI]

    Krishna, Kiran

    2001-01-01T23:59:59.000Z

    Heat transfer fluids are widely used in the chemical process industry and are available in a wide range of properties. These fluids are flammable above their flash points and can cause explosions. Though the possibility of aerosol explosions has...

  8. Survey and evaluation of techniques to augment convective heat transfer

    E-Print Network [OSTI]

    Bergles A. E.

    1965-01-01T23:59:59.000Z

    This report presents a survey and evaluation of the numerous techniques which have been shown to augment convective heat transfer. These techniques are: surface promoters, including roughness and treatment; displaced ...

  9. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces

    E-Print Network [OSTI]

    Attinger, Daniel

    Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces Amy Rachel in revised form 30 October 2012 Accepted 31 October 2012 Keywords: Superhydrophobic Superhydrophilic Biphilic- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics

  10. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  11. Heat transfer and oil displacement models for tar sands reservoirs

    SciTech Connect (OSTI)

    Ward, C.E.; Ward, G.D.

    1984-09-01T23:59:59.000Z

    A convective heat transfer model and one dimensional displacement model applicable to tar sands and heavy oils for use with a microcomputer are presented. The convective heat transfer model describes the temperature profiles in a thermal operation. The displacement model offers insight into the effect of process variables on the steam/oil or air/oil ratio of thermal operations. A method is presented for predicting the fuel burn in a fireflood.

  12. Enhanced heat transfer in partially-saturated hydrothermal systems

    SciTech Connect (OSTI)

    Bixler, N.E.; Carrigan, C.R.

    1986-01-01T23:59:59.000Z

    The role of capillarity is potentially important for determining heat transfer in hydrothermal regions. Capillarity allows mixing of phases in liquid/vapor systems and results in enhanced two-phase convection. Comparisons involving a numerical model with capillarity and analytical models without indicate that heat transfer can be enhanced by about an order of magnitude. Whether capillarity can be important for a particular hydrothermal region will depend on the nature of mineral precipitation as well as pore and fracture size distributions.

  13. Mpemba effect, Newton cooling law and heat transfer equation

    E-Print Network [OSTI]

    Vladan Pankovic; Darko V. Kapor

    2012-12-11T23:59:59.000Z

    In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely linearization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).

  14. Heat transfer enhancement resulting from induction electrohydrodynamic pumping

    E-Print Network [OSTI]

    Margo, Bryan David

    1992-01-01T23:59:59.000Z

    HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Mechanical Engineering HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Approved as to style and content by: Jamal Seyed- Yagoobi (Chair...

  15. Transient Heat Transfer in TCAP Coils

    SciTech Connect (OSTI)

    Steimke, J.L.

    1999-03-09T23:59:59.000Z

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly submerged in a bath of boiling water and the temperature transient was recorded. There sphere was then opened, the Pd/k was replaced with kieselguhr and the transient was repeated. The response was a factor of 1.4 faster for Pd/k than for kieselguhr, implying a thermal diffusivity approximately 40 percent higher than for kieselguhr. Another implication is that the transient tests with the coils would have proceeded faster if the coils had been filled with Pd/k rather than kieselguhr.

  16. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect (OSTI)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01T23:59:59.000Z

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  17. Proceedings of HT2005 2005 ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Aguilar, Guillermo

    Proceedings of HT2005 2005 ASME Summer Heat Transfer Conference July 17-22, 2005, San Francisco absorption and increasing the thickness of the protected region. A 2D finite volume numerical code based interface location density (kg m-3 ) 1 Copyright © 2005 by ASME Proceedings of HT2005 2005 ASME Summer Heat

  18. Heat transfer model of above and underground insulated piping systems

    SciTech Connect (OSTI)

    Kwon, K.C.

    1998-07-01T23:59:59.000Z

    A simplified heat transfer model of above and underground insulated piping systems was developed to perform iterative calculations for fluid temperatures along the entire pipe length. It is applicable to gas, liquid, fluid flow with no phase change. Spreadsheet computer programs of the model have been developed and used extensively to perform the above calculations for thermal resistance, heat loss and core fluid temperature.

  19. Heat transfer in the plate heat exchanger of an ammonia-synthesis column

    SciTech Connect (OSTI)

    Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

    1983-01-01T23:59:59.000Z

    The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

  20. INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER

    E-Print Network [OSTI]

    Kandlikar, Satish

    INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER Satish G. Kandlikar Department Rochester Institute of Technology Rochester, NY, USA Phone: (716) 475-6728; Fax: (716) 475-7710 E-mail: SGKEME@RIT.EDU ABSTRACT Pool boiling experiments are generally conducted with electrically heated

  1. Error Analysis of Heat Transfer for Finned-Tube Heat-Exchanger Text-Board 

    E-Print Network [OSTI]

    Chen, Y.; Zhang, J.

    2006-01-01T23:59:59.000Z

    In order to reduce the measurement error of heat transfer in water and air side for finned-tube heat-exchanger as little as possible, and design a heat-exchanger test-board measurement system economically, based on the principle of test-board system...

  2. Heat transfer to a silicon carbide/water nanofluid.

    SciTech Connect (OSTI)

    Yu, W.; France , D. M.; Smith, D. S.; Singh, D.; Timofeeva, E. V.; Routbort, J. L.; Univ. of Illinois at Chicago

    2009-07-01T23:59:59.000Z

    Heat transfer experiments were performed with a water-based nanofluid containing 170-nm silicon carbide particles at a 3.7% volume concentration and having potential commercial viability. Heat transfer coefficients for the nanofluid are presented for Reynolds numbers ranging from 3300 to 13,000 and are compared to the base fluid water on the bases of constant Reynolds number, constant velocity, and constant pumping power. Results were also compared to predictions from standard liquid correlations and a recently altered nanofluid correlation. The slip mechanisms of Brownian diffusion and thermophoresis postulated in the altered correlation were investigated in a series of heating and cooling experiments.

  3. Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers

    E-Print Network [OSTI]

    Thole, Karen A.

    Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers Abstract The dominant thermal resistance used to increase heat transfer by initiating new boundary layer growth and increasing surface area

  4. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    SciTech Connect (OSTI)

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01T23:59:59.000Z

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  5. Modeling of Heat Transfer in Geothermal Heat Exchangers

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    , University of Lund, Sweden, [7] Fang, Z., Diao, N., and Cui, P., Discontinuous operation of geothermal heat exchangers [J], Tsinghua Science and Technology. , 2002, 7 194?197. [8] Hellstrom, G., Ground heat storage -- Thermal analysis of duct storage... systems [D], Department of Mathem Sweden, 1991. [9] Mei, V. C. and Baxter, V. D., Performance of a ground-coupled heat pump with multiple dissimilar U-tu Transactions, 1986, 92 Part 2, 22-25. [10] Yavuzturk, C., Spitler, J. D. and Rees, S. J., A...

  6. Temperature and Heat Transfer Measurements Cengiz Camci

    E-Print Network [OSTI]

    Camci, Cengiz

    mainly because of thermal reasons. Satel- lite thermal management systems, hot sections of propulsion systems, combustors, aerodynamic heating of supersonic/ hypersonicvehiclesurfaces is not meaningful, since there are no agitated particles in empty space. A body in which "thermal agitation

  7. Pool boiling heat transfer characteristics of nanofluids

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

  8. Active heat transfer enhancement in integrated fan heat sinks

    E-Print Network [OSTI]

    Staats, Wayne Lawrence

    2012-01-01T23:59:59.000Z

    Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by ...

  9. Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel

    E-Print Network [OSTI]

    Su, J.; Li, J.

    2006-01-01T23:59:59.000Z

    on the reviewers on the present household air conditioners, the potential requirements for new heat transfer enhancement used for household air conditioners are discussed. Investigations on condensation and boiling of refrigerants in mini/micro channels have...

  10. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1998-07-21T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  11. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  12. ECI International Conference on Boiling Heat Transfer Florianpolis-SC-Brazil, 3-7 May 2009

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    . Recently the study of heat transfer in micro pin fin heat sinks has been extended to flow boiling by Koar and Peles (2006c), who studied boiling heat transfer in a hydrofoil-based micro pin fin heat sinkECI International Conference on Boiling Heat Transfer Florianópolis-SC-Brazil, 3-7 May 2009

  13. Forced convective heat transfer in channels with internal longitudinal fins

    E-Print Network [OSTI]

    Ong, Liang Eng

    1987-01-01T23:59:59.000Z

    and f in surface temperatures (g ? $b), and the local surface heat flux (q"/Q"). The relative amounts of heat transfer from the exposed channel wall, the surface of the fin along the fin axis, and the fin tip are also calculated individually... heat flux on the tip of the fin. 18 4. RESULTS AND DISCUSSION The results of the computational investigation are presented in this section. They consist of the d istr ibut ions of the d imens ionless temperature (4w ? gb), and the heat flux (q"/Q...

  14. Shape factors in conductive heat transfer

    E-Print Network [OSTI]

    Faulkner, Richard Campbell

    1954-01-01T23:59:59.000Z

    flow bg gonduotion 'between flat parallel plates with insulated edges and a uniform oxoes-seotional area for heat flow. )see Pig. IX) Kx. steady state, -- 0 Shen ? X :, . x a eg Sub st ' tut ills boundary cordi'tionel el (0) e e@ to + ((t...

  15. Heat transfer coefficients for atmospheric coolers

    E-Print Network [OSTI]

    Robinson, Robert McCollum

    1950-01-01T23:59:59.000Z

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 0 6 kppendixo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 110 li Heating System. . ~ ~ ~ ~ ~ . ~ . ? ~ ~ ~ ~ Page ~ . ~ 25 2. Cooling System. . . . . . . ~ ~ ~ ~ ~ 28 3. Outside F11m Coeffioient versus... per Minute. . . . 95 6i Outside Film Coeffioient versus Tube Row Depth; Shell Side Rata, 21 Gallons per Minuteo ~ ~ ~ ~ ~ ~ o ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ Ii ~ ~ o ~ ~ ~ ~ 96 VS Outside F1lm Coeffioient vers1s Tube Row Depth...

  16. Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping

    SciTech Connect (OSTI)

    HECHT, S.L.

    2000-02-15T23:59:59.000Z

    Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase.

  17. Giant radiation heat transfer through the micron gaps

    E-Print Network [OSTI]

    Nefedov, Igor

    2011-01-01T23:59:59.000Z

    Near-field heat transfer between two closely spaced radiating media can exceed in orders radiation through the interface of a single black body. This effect is caused by exponentially decaying (evanescent) waves which form the photon tunnel between two transparent boundaries. However, in the mid-infrared range it holds when the gap between two media is as small as few tens of nanometers. We propose a new paradigm of the radiation heat transfer which makes possible the strong photon tunneling for micron thick gaps. For it the air gap between two media should be modified, so that evanescent waves are transformed inside it into propagating ones. This modification is achievable using a metamaterial so that the direct thermal conductance through the metamaterial is practically absent and the photovoltaic conversion of the transferred heat is not altered by the metamaterial.

  18. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03T23:59:59.000Z

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  19. Heat and mass transfer analysis of a desiccant dehumidifier matrix

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1986-07-01T23:59:59.000Z

    This report documents the SERI Single-Blow Test Facility's design, fabrication, and testing for characterizing desiccant dehumidifiers for solar cooling applications. The first test article, a silica-gel parallel-plate dehumidifier with highly uniform passages, was designed and fabricated. Transient heat and mass transfer data and pressure drop data across the dehumidifier were obtained. Available heat and mass transfer models were extended to the parallel-place geometry, and the experimental data were compared with model predictions. Pressure drop measurements were also compared with model predictions of the fully developed laminar flow theory. The comparisons between the lumped-capacitance model and the experimental data were satisfactory. The pressure drop data compared satisfactorily with the theory (within 15%). A solid-side resistance model that is more detailed and does not assume symmetrical diffusion in particles was recommended for performance. This study has increased our understanding of the heat and mass transfer in silica gel parallel-plate dehumidifiers.

  20. Modelling of heat transfer and crystallation kinetics in thermoplastic pultrusion

    SciTech Connect (OSTI)

    Carlsson, A.; Astroem, B.T. [Royal Institute of Technology, Stockholm (Sweden)

    1996-12-31T23:59:59.000Z

    While pultrusion with thermoset resins has been widely analyses, there is a scarcity of knowledge about pultrusion with thermoplastic resins. The objective of the present study is to develop a realistic heat transfer model for the entire thermoplastic pultrusion process, from room temperature prepreg, through preheater and dies, to room temperature composite. The aim is to determine dominating heat transfer mechanisms and to be able to predict residual stresses and crystallinity, which depend on the thermal history of the composite. A complete heat transfer model including crystallization kinetics is presented. Results show reasonably good agreement with experimental data and the model thus provides a tool for process simulations with a variety of processing parameters.

  1. Heat transfer education : Keeping it relevant and vibrant.

    SciTech Connect (OSTI)

    Khounsary, A. M.

    1998-08-14T23:59:59.000Z

    The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat transfer course to incorporate illustrative and insightful industrial examples and case studies reducible to order-of-magnitude analyses; (4) a reinforcement of real-world problem-solving abilities in students by introducing them to examples that emphasize multidisciplinary issues in modern thermal management problems and finally (5) industrial collaboration that would provide the educator with meaningful thermal management case studies (and possible funding), the student with an appreciation of industrial practices, and the industrial sponsor with access to academia for assistance in problem solving. Also suggested is an effective regular review program to provide assessment, feedback, and suggestions for quality control to interested institutions on their teaching methodology and materials.

  2. Radiative heat transfer in 2D Dirac materials

    E-Print Network [OSTI]

    Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

    2015-02-02T23:59:59.000Z

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  3. Effect of turbulent heat transfer on continuous ingot solidification

    SciTech Connect (OSTI)

    Shyy, W.; Chen, M.H. (Univ. of Florida, Gainesville, FL (United States). Dept. of Aerospace Engineering); Pang, Y.; Wei, D.Y. (GE Aircraft Engines, Engineering Materials Technology Labs., Lynn, MA (United States)); Hunter, G.B. (GE Aircraft Engines, Engineering Materials Technology Labs., Cincinnati, OH (United States))

    1993-01-01T23:59:59.000Z

    For many continuous ingot casting processes, turbulent heat transfer in the molten pool plays a critical role which, along with buoyancy and surface tension, is responsible for the quality of the end products. Based on a modified low Reynolds number K-[epsilon] two-equation closure, accounting for the phase change and mushy zone formation, the effect of turbulent heat transfer on the solidification characteristics during titanium alloy ingot casting in an electron beam melting process is investigated. The overall heat transfer rate is enhanced by turbulent transport via two sources, one through the correlated velocity and temperature fluctuations present for both single- and multi-phase flows, and the other through the correlated velocity and release of latent heat fluctuations which are unique to the flows with phase change. The roles played by both mechanisms are identified and assessed. The present turbulence model predicts that although the mushy zone defined by the mean temperature field is generally of substantial thickness as a result of the convection effect, the actual instantaneous zone thickness varies substantially due to turbulence effect. This finding is in contrast to the traditionally held viewpoint, based on the conduction analysis, of a generally thin mushy zone. The impact of turbulent heat transfer on local dendrite formation and remelting is illustrated and the issues involved in model development highlighted.

  4. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect (OSTI)

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01T23:59:59.000Z

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  5. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, Thanh Nhon (Flossmoor, IL)

    1999-01-01T23:59:59.000Z

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  6. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, T.N.

    1999-08-24T23:59:59.000Z

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  7. A simplistic model of cyclic heat transfer phenomena in closed spaces

    SciTech Connect (OSTI)

    Lee, K.

    1983-08-01T23:59:59.000Z

    Cyclic heat transfer inside closed spaces is investigated analytically using a simple heat transfer model. The model consists of a gas layer exchanging heat with two bounding parallel walls that pulsate against each other in the transverse direction. Correlations for the magnitude and the phase lag of the heat transfer are obtained. Also, an expression for the power loss due to the cyclic heat transfer is presented. It is shown that the loss approaches zero as the heat transfer process approaches either isothermal or adiabatic conditions. The power loss is shown to be a strong function of the phase angle between the bulk gas temperature and the heat transfer.

  8. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-01-01T23:59:59.000Z

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  9. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-11-01T23:59:59.000Z

    Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.

  10. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOE Patents [OSTI]

    Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)

    2002-01-01T23:59:59.000Z

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  11. Heat transfer through a water spray curtain under the effect of a strong radiative source

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

  12. Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate Heat Exchanger Sheila C ........................................................... 8 3. Average relative difference (%) in calculated heat transfer rates for refrigerants and HTF

  13. Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur

  14. Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n

    E-Print Network [OSTI]

    Jacobsen, Steven D.

    Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n , Craig R contribute significantly to heat transfer in the mantle and demonstrate the importance of radiative heat, radiative heat transfer was considered relatively unimportant in the mantle. Earlier experimental work

  15. EFFECT OF REACTOR HEAT TRANSFER LIMITATIONS ON CO PREFERENTIAL OXIDATION

    E-Print Network [OSTI]

    Besser, Ronald S.

    and conventional packed-bed lab reactors (m-PBR's). Strong evidence has suggested that the reverse water-gas transport limitations of conventional lab reactors [3,4,5,6]: the fast surface chemistry of the exothermic1 EFFECT OF REACTOR HEAT TRANSFER LIMITATIONS ON CO PREFERENTIAL OXIDATION X. Ouyang, R.S. Besser

  16. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    SciTech Connect (OSTI)

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17T23:59:59.000Z

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  17. RECENT ADVANCES IN HEAT TRANSFER TO HELIUM 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    509 RECENT ADVANCES IN HEAT TRANSFER TO HELIUM 1 C. JOHANNES Service de Recherches Appliquées, L'hélium hypercritique. Abstract. - Conditions of thermal exchange in helium 1 are reviewed. Pool boiling thermosi- phon are given. Use of hypercritical helium. REVUE DE PHYSIQUE APPLIQU�E TOME 6, D�CEMBRE 1971, PAGE Introduction

  18. Heat transfer in inertial confinement fusion reactor systems

    SciTech Connect (OSTI)

    Hovingh, J.

    1980-04-23T23:59:59.000Z

    The short time and deposition distance for the energy from inertial fusion products results in local peak power densities on the order of 10/sup 18/ watts/m/sup 3/. This paper presents an overview of the various inertial fusion reactor designs which attempt to reduce these peak power intensities and describes the heat transfer considerations for each design.

  19. FINITE ELEMENT METHOD IN FLUID MECHANICS & HEAT TRANSFER

    E-Print Network [OSTI]

    Camci, Cengiz

    completed this course should be able to perform quick analysis of small problems using the finite element of Fluid Mechanics and Heat Transfer An Introduction to Finite Element Analysis Using "Galerkin Weak of Euler's Equation in Finite Element Analysis Generalized Form of Euler's Equation in Three Dimensional

  20. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

    2013-08-14T23:59:59.000Z

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  1. MHD Effects on Heat Transfer in a Molten Salt Blanket

    SciTech Connect (OSTI)

    Smolentsev, Sergey; Miraghaie, Reza; Abdou, Mohamed [University of California (United States)

    2005-04-15T23:59:59.000Z

    Heat transfer in closed channel flows of molten salts (MS)s, such as FLiBe or FLiNaBe, has been considered under specific reactor conditions. MHD effects have been accessed for two blanket concepts: self-cooled MS blanket, and dual-coolant MS blanket. The effect of heat transfer degradation due to turbulence reduction by a magnetic field in the First Wall channels of the self-cooled blanket was analyzed with the K-{epsilon} model of turbulence. In the dual-coolant blanket, the MS flow is laminar. A 2-D MHD code was used to calculate the laminar velocity profile first. Then, the temperature field was calculated using a 3-D temperature code. Reasonable interface temperatures below the material limit of 550 deg. C, and low heat escape from the breeder zone have been demonstrated. Model limitations and the ways of their improvement are also discussed.

  2. Mass and heat transfer model of Tubular Solar Still

    SciTech Connect (OSTI)

    Ahsan, Amimul [University Putra Malaysia, Dept. Civil Engineering, Faculty of Engineering, 43400 UPM Serdang, Selangor (Malaysia); Fukuhara, Teruyuki [University of Fukui, Graduate School of Engineering, 3-9-1 Bunkyo, Fukui 910-8507 (Japan)

    2010-07-15T23:59:59.000Z

    In this paper, a new mass and heat transfer model of a Tubular Solar Still (TSS) was proposed incorporating various mass and heat transfer coefficients taking account of the humid air properties inside the still. The heat balance of the humid air and the mass balance of the water vapor in the humid air were formulized for the first time. As a result, the proposed model enabled to calculate the diurnal variations of the temperature, water vapor density and relative humidity of the humid air, and to predict the hourly condensation flux besides the temperatures of the water, cover and trough, and the hourly evaporation flux. The validity of the proposed model was verified using the field experimental results carried out in Fukui, Japan and Muscat, Oman in 2008. The diurnal variations of the calculated temperatures and water vapor densities had a good agreement with the observed ones. Furthermore, the proposed model can predict the daily and hourly production flux precisely. (author)

  3. Near-field heat transfer between gold nanoparticle arrays

    SciTech Connect (OSTI)

    Phan, Anh D., E-mail: anhphan@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000 (Viet Nam); Phan, The-Long, E-mail: ptlong2512@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2013-12-07T23:59:59.000Z

    The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.

  4. Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces

    E-Print Network [OSTI]

    Betz, Amy Rachel; Kim, Chang-Jin 'CJ'; Attinger, Daniel

    2012-01-01T23:59:59.000Z

    With recent advances in micro- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics of fluids on these surfaces have been well characterized. However, few investigations have been made into the potential of these surfaces to control and enhance other transport phenomena. In this article, we characterize pool boiling on surfaces with wettabilities varied from superhydrophobic to superhydrophilic, and provide nucleation measurements. The most interesting result of our measurements is that the largest heat transfer coefficients are reached not on surfaces with spatially uniform wettability, but on biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. We develop an analytical model that describes how biphilic surfaces effectively manage the vapor and liquid transport, delaying critical heat flux and maximizing the heat transfer coefficient. Finally, we manufacture and test the first superbiphilic surfaces (juxtaposing superhydrophobic ...

  5. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22T23:59:59.000Z

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  6. Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues

    E-Print Network [OSTI]

    Zhang, Yuwen

    transfer Non-equilibrium Dual-phase lag a b s t r a c t Based on a nonequilibrium heat transfer model

  7. Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors

    SciTech Connect (OSTI)

    WRIGHT,STEVEN A.; HOUTS,MICHAEL

    2000-11-22T23:59:59.000Z

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

  8. Heat Transfer Analysis for a Fixed CST Column

    SciTech Connect (OSTI)

    Lee, S.Y.

    2004-02-19T23:59:59.000Z

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant impact on maximum and wall temperatures of the column. In addition, the results computed by the present model were verified by the theoretical results. The analysis results will provide quantitative information associated with the process heat control and management of the CST base design. For example, transient responses of the CST system under a loss-of-flow accident condition will provide safety design information for an emergency cooling system of the column.

  9. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  10. FLOW AND HEAT TRANSFER IN MICROFLUIDIC DEVICES WITH APPLICATION TO OPTOTHERMAL

    E-Print Network [OSTI]

    Bahrami, Majid

    FLOW AND HEAT TRANSFER IN MICROFLUIDIC DEVICES WITH APPLICATION TO OPTOTHERMAL ANALYTE transfer in microfluidic devices with applica- tion to optothermal analyte preconcentration and manipula the local fluid temperature in microfluidics. Thermal characteristics of the heating system have been

  11. Jet impingement heat transfer in two-pass rotating rectangular channels

    E-Print Network [OSTI]

    Zhang, Yuming

    1996-01-01T23:59:59.000Z

    The combined effects of rotation and jet impingement on local heat transfer in a two-pass rotating rectangular channel is studied. The results of an experimental investigation on the surface heat transfer coefficients under a perforated plate...

  12. Impingement cooling and heat transfer measurement using transient liquid crystal technique

    E-Print Network [OSTI]

    Huang, Yizhe

    1996-01-01T23:59:59.000Z

    A heat transfer study on jet impingement cooling is presented. The study focuses on the effect of impingement jet flow rate, jet angle, and flow exit direction on various target surface heat transfer distributions. A two-channel test section...

  13. A visualization comparison of convective flow boiling heat transfer augmentation devices

    E-Print Network [OSTI]

    Lundy, Brian Franklin

    1998-01-01T23:59:59.000Z

    The qualitative effects of inset-table heat transfer phics. augmentation devices on vertical in-tube convective flow boiling flow regimes, transition mechanisms, and heat transfer are presented in this study. Three twisted tapes with twist ratios...

  14. Heat transfer during film condensation of potassium vapor on a horizontal plate

    E-Print Network [OSTI]

    Meyrial, Paul M.

    1968-01-01T23:59:59.000Z

    The object of the investigation is to analyze the following two features of heat transfer during condensation of potassium vapor: a. Heat transfer during film condensation of a pure saturated potassium vapor on a horizontal ...

  15. Remote administration and user experience evaluation of the iLab Heat Transfer Project site

    E-Print Network [OSTI]

    Graham, Rodney K

    2006-01-01T23:59:59.000Z

    The iLab Heat Transfer Project provides a means for students to remotely execute, via a web interface, experiments related to the topic of heat transfer. The website associated with this project provides instructors with ...

  16. Modeling of fuel-to-steel heat transfer in core disruptive accidents

    E-Print Network [OSTI]

    Smith, Russell Charles

    1980-01-01T23:59:59.000Z

    A mathematical model for direct-contact boiling heat transfer between immiscible fluids was developed and tested experimentally. The model describes heat transfer from a hot fluid bath to an ensemble of droplets of a cooler ...

  17. Measurements of Heat Transfer Coefficients to Cylinders in Shallow Bubble Columns

    E-Print Network [OSTI]

    Tow, Emily W.

    High heat transfer coefficients and large interfacial areas make bubble columns ideal for dehumidification. However, the effect of geometry on the heat transfer coefficients outside cooling coils in shallow bubble columns, ...

  18. air-side heat transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    space to satisfy the space cooling load (free cooling... Shami, U. F. 1996-01-01 12 HEAT TRANSFER ANALYSIS OF A PULSE DETONATION Engineering Websites Summary: HEAT TRANSFER...

  19. Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates

    E-Print Network [OSTI]

    Hery, Travis M

    2011-01-01T23:59:59.000Z

    Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...

  20. MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY

    E-Print Network [OSTI]

    describes the implementation of the room heat transfer model in the free open-source Modelica "Buildings

  1. A Numerical Study of a 3D Bioheat Transfer Problem with Different Spatial Heating \\Lambda

    E-Print Network [OSTI]

    Zhang, Jun

    , and thermal parameter estimation. 1 #12; 2 Heat Transfer Model Figure 1 reflects a typical cancer hyperthermia

  2. Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    the parallelization of the radiative heat transfer model introduced by Naraghi and Nunes of Manhattan College [8

  3. Heat transfer modeling of dry spent nuclear fuel storage facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-07-01T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geologic codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geologic repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  4. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-01-13T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  5. Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect

    E-Print Network [OSTI]

    Boyer, Edmond

    Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated has been developed based on periodic excitation by Joule effect and infrared thermography measurement. It has been applied to measure heat transfer coefficients of water flowing in a round tube

  6. Simulation of Static Flying Attitudes with Different Heat Transfer Models for a Flying-Height Control Slider with Thermal Protrusion

    E-Print Network [OSTI]

    Chen, Du; Bogy, David B.

    2010-01-01T23:59:59.000Z

    Bogy, D.B. : A heat transfer model for thermal ?uctuation inA phenomenological heat transfer model for the molecular gasA generalized heat transfer model for thin ?lm bearings at

  7. Convective heat transfer on leeward building walls in an urban environment: Measurements in an outdoor scale model

    E-Print Network [OSTI]

    Nottrott, A.; Onomura, S.; Inagaki, A.; Kanda, M.; Kleissl, J.

    2011-01-01T23:59:59.000Z

    Vortex structure and heat transfer in turbulent flow over asurface, Proc. 5 th Int. Heat Transfer Conf. 3 (1974) 129-a vertical plate, J. Heat Transfer 109(1) [13] K. Patel,

  8. Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal Thermography

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    62 TC02-007 Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal thermography (LCT) method was developed for surface temperature measurements on a horizontal 2000m macro-tube and 1000m micro-tube. In the single-phase heat transfer experiments, the fully-developed flow heat transfer

  9. Heat Transfer Engineering, 29(9):793804, 2008 Copyright C Taylor and Francis Group, LLC

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    for Laminar and Turbulent Flow Convection Heat Transfer in a Horizontal Tube Using Artificial Neural Network. INTRODUCTION Heat transfer inside horizontal tubes in the laminar, transi- tional, and turbulent flow regimes was used to develop empirical correlations for laminar and turbulent heat transfer in a horizontal tube

  10. Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey

    E-Print Network [OSTI]

    Camci, Cengiz

    for turbine aero heat transfer work performed under rotational conditions. A flow coefficient and a loading candidates to generate very realistic gas turbine heat transfer data, the initial investment made generate an accurately measurable amount of heat transfer from the gas side to turbine blades in a linear

  11. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

  12. HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION Vladimir V. Riabov* Rivier numbers Re0,R.3-7 Mass injection can be considered as an effective way of the reduction of heat transfer in the case of small Reynolds numbers. Moss12 found that mass injection dramatically reduces heat transfer

  13. Heat Transfer Engineering, 28(6):525540, 2007 Copyright C Taylor and Francis Group, LLC

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Heat Transfer Engineering, 28(6):525­540, 2007 Copyright C Taylor and Francis Group, LLC ISSN: 0145-7632 print / 1521-0537 online DOI: 10.1080/01457630701193906 Heat Transfer Measurements, Flow Pattern Maps, Stillwater, Oklahoma, USA Local heat transfer coefficients and flow parameters were measured for air

  14. FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER B was constructed at UCLA to study open channel turbulent flow and heat transfer of low-thermal and low supercritical flow regimes (Fr>1), in which the surface waves are amplified and heat transfer is enhanced due

  15. Heat Transfer Engineering, 27(5):2338, 2006 Copyright C Taylor and Francis Group, LLC

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Heat Transfer Engineering, 27(5):23­38, 2006 Copyright C Taylor and Francis Group, LLC ISSN: 0145-7632 print / 1521-0537 online DOI: 10.1080/01457630600559538 Transitional Heat Transfer in Plain Horizontal, Oklahoma, USA In this study, the heat transfer behavior in the transition region for plain horizontal tubes

  16. Flow Boiling Heat Transfer Coefficient In Minichannels Correlation and Trends Satish G. Kandlikar

    E-Print Network [OSTI]

    Kandlikar, Satish

    Flow Boiling Heat Transfer Coefficient In Minichannels ­ Correlation and Trends Satish G. Kandlikar York 14623, USA The flow boiling heat transfer in small diameter passages is being applied in many boiling heat transfer coefficient with the correlations developed for conventional channels. It is found

  17. Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8-12, 2007, Vancouver, British Columbia, CANADA HT2007-32219 VALIDATION OF A GENERAL HEAT TRANSFER, Stillwater, OK 74078, USA E-mail: ghajar@ceat.okstate.edu ABSTRACT A general heat transfer correlation

  18. Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based

    E-Print Network [OSTI]

    Le Roy, Robert J.

    Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based Continuous is dedicated to under- standing the fluid flow and heat transfer mechanisms occurring in continuous flow PCR are discussed in detail. The importance of each heat transfer mechanism for different situations is also

  19. Scaling of Heat Transfer Coefficients Along Louvered Fins A. C. Lyman1

    E-Print Network [OSTI]

    Thole, Karen A.

    1 Scaling of Heat Transfer Coefficients Along Louvered Fins A. C. Lyman1 , R. A. Stephan2 , and K 23681-2199 #12;2 Abstract Louvered fins provide a method for improving the heat transfer performance for evaluating the spatially-resolved louver heat transfer coefficients using various reference temperatures

  20. SINGLE-PHASE LIQUID HEAT TRANSFER IN PLAIN AND ENHANCED MICROCHANNELS Mark E. Steinke

    E-Print Network [OSTI]

    Kandlikar, Satish

    SINGLE-PHASE LIQUID HEAT TRANSFER IN PLAIN AND ENHANCED MICROCHANNELS Mark E. Steinke Systems upon the understanding of the fundamental heat transfer processes that occur in these systems. There have been great advancements in our understanding of the heat transfer and fluid flow mechanisms

  1. Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming

    E-Print Network [OSTI]

    Fröhlich, Peter

    Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming for Scientists and Engineers Assignment 6: Heat Transfer Peter H. Fr¨ohlich phf@cs.jhu.edu Joanne Selinski joanne to Programming for Scientists and Engineers is all about heat transfer and how to simulate it. There are three

  2. Heat transfer in soft nanoscale interfaces: the influence of interface curvature

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires

  3. A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer

    E-Print Network [OSTI]

    Bennett, Albert F.

    A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

  4. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth

    E-Print Network [OSTI]

    Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth C, in particular, on its variation with the wavelength of convection. The heat transfer strongly depends in Earth's mantle can significantly reduce the efficiency of heat transfer. The likely variations

  5. Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stphane Lefvre

    E-Print Network [OSTI]

    Boyer, Edmond

    Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stéphane Lefèvre Laboratoire d three heat transfer modes with experimental data and modeling. We conclude that the three modes in "International Journal of Heat and Mass Transfer 49, 1-2 (2006) 251-258" DOI : 10.1016/j.ijheatmasstransfer.2005

  6. FliHy experimental facilities for studying open channel turbulent flows and heat transfer

    E-Print Network [OSTI]

    Abdou, Mohamed

    FliHy experimental facilities for studying open channel turbulent flows and heat transfer B. Freeze) facility was constructed at UCLA to study open channel turbulent flow and heat transfer of low supercritical flow regimes (Fr /1), in which the surface waves are amplified and heat transfer is enhanced due

  7. Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also

  8. Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure Keywords: Supercritical pressure Aviation kerosene Convective heat transfer Numerical study a b s t r a c convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China

  9. Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov Department be considered as an effective way of the reduction of heat transfer to the surface in this area [1 the viscous layer is blown completely off the surface, and heat transfer is zero. The effect of injecting

  10. Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law

    E-Print Network [OSTI]

    Boyer, Edmond

    Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1

  11. Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a,

    E-Print Network [OSTI]

    Kandlikar, Satish

    Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a, , Chia September 2011 Keywords: Microtube Heat transfer Liquid Crystal Thermography a b s t r a c t Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been

  12. A FAST MULTILEVEL ALGORITHM FOR THE SOLUTION OF NONLINEAR SYSTEMS OF CONDUCTIVERADIATIVE HEAT TRANSFER EQUATIONS \\Lambda

    E-Print Network [OSTI]

    ­differential equations that model steady­state combined conductive­radiative heat transfer. This system of equations­Brakhage algorithm. Key words. conductive­radiative heat transfer, multilevel algorithm, compact fixed point problems integro­differential equations that model steady­state combined conductive­radiative heat transfer

  13. Nonaqueous purification of mixed nitrate heat transfer media

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1983-12-20T23:59:59.000Z

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  14. Heat transfer enhancement in a channel with porous baffles

    E-Print Network [OSTI]

    Ko, Kang-Hoon

    2005-02-17T23:59:59.000Z

    with staggered positioned porous baffles. A numerical procedure was implemented, in conjunction with a commercially available Navier-Stokes solver, to model the turbulent flow in porous media. The Brinkman-Forchheimer-Extended Darcy model was used for modeling... fluid flow through the porous baffles. Conventional, one- equation, and two-equation models were used for heat transfer modeling. The accuracy and characteristics of each model were investigated and discussed. The results were compared...

  15. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect (OSTI)

    Lee, S.

    2009-06-01T23:59:59.000Z

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  16. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect (OSTI)

    Zhang, Wei [ORNL

    2011-01-01T23:59:59.000Z

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  17. Molten salt as a heat transfer fluid for heating a subsurface formation

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2010-11-16T23:59:59.000Z

    A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

  18. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    SciTech Connect (OSTI)

    Triplett, C.E.

    1996-12-01T23:59:59.000Z

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  19. Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion

    E-Print Network [OSTI]

    Edwards, Bronwyn K

    2009-01-01T23:59:59.000Z

    An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer ...

  20. An early warning indicator for atmospheric blocking events using transfer operators

    E-Print Network [OSTI]

    Alexis Tantet; Fiona R. van der Burgt; Henk A. Dijkstra

    2015-03-14T23:59:59.000Z

    The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5-10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that, the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  1. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, Kwan H. (Naperville, IL); Ahluwalia, Rajesh K. (Burr Ridge, IL)

    1994-01-01T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  2. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  3. Barr and Showman: Heat Transfer in Europa's Icy Shell 405 Heat Transfer in Europa's Icy Shell

    E-Print Network [OSTI]

    Europa's ice shell controls the thermal evolution of its interior and provides a source of energy surface features with steady-state thermal convection is challeng- ing, even with tidal heating, because convects, can the ocean be thermodynamically stable? What role might compositional heterogeneity play

  4. Couette flow regimes with heat transfer in rarefied gas

    SciTech Connect (OSTI)

    Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

    2013-06-15T23:59:59.000Z

    Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

  5. Conductive and convective heat transfer in fluid flows between differentially heated and rotating cylinders

    E-Print Network [OSTI]

    Lopez, Jose M; Avila, Marc

    2015-01-01T23:59:59.000Z

    The flow of fluid confined between a heated rotating cylinder and a cooled stationary cylinder is a canonical experiment for the study of heat transfer in engineering. The theoretical treatment of this system is greatly simplified if the cylinders are assumed to be of infinite length or periodic in the axial direction, in which cases heat transfer occurs only through conduction as in a solid. We here investigate numerically heat transfer and the onset of turbulence in such flows by using both periodic and no-slip boundary conditions in the axial direction. We obtain a simple linear criterion that determines whether the infinite-cylinder assumption can be employed. The curvature of the cylinders enters this linear relationship through the slope and additive constant. For a given length-to-gap aspect ratio there is a critical Rayleigh number beyond which the laminar flow in the finite system is convective and so the behaviour is entirely different from the periodic case. The criterion does not depend on the Pra...

  6. TOPAZ3D. 3-D Finite Element Heat Transfer

    SciTech Connect (OSTI)

    Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

    1992-02-24T23:59:59.000Z

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  7. Flexible profile approach to the conjugate heat transfer problem

    E-Print Network [OSTI]

    M. -N. Sabry

    2008-01-07T23:59:59.000Z

    The flexible profile approach proposed earlier to create CTM (compact or reduced order thermal models) is extended to cover the area of conjugate heat transfer. The flexible profile approach is a methodology that allows building a highly boundary conditions independent CTM, with any desired degree of accuracy, that may adequately replace detailed 3D models for the whole spectrum of applications in which the modeled object may be used. The extension to conjugate problems radically solves the problem of interfacing two different domains. Each domain, fluid or solid, can be "compacted" independently creating two CTM that can be joined together to produce reliable results for any arbitrary set of external boundary conditions.

  8. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W. (Livermore, CA); Brosseau, Douglas A. (Albuquerque, NM)

    2009-09-15T23:59:59.000Z

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  9. Grid-independent Issue in Numerical Heat Transfer

    E-Print Network [OSTI]

    Yao Wei; Wang Jian; Liao Guangxuan

    2006-09-26T23:59:59.000Z

    Grid independent is associated with the accuracy or even rationality of numerical results. This paper takes two-dimensional steady heat transfer for example to reveal the effect of grid resolution on numerical results. The law of grid dependence is obtained and a simple mathematical formula is presented. The production acquired here can be used as the guidance in choosing grid density in numerical simulation and get exact grid independent value without using infinite fine grid. Through analyzing grid independent, we can find the minimum number of grid cells that is needed to get grid-independent results. Such strategy can save computational resource while ensure a rational computational result.

  10. Heat Transfer in GE Jet Engines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat Transfer in GE Jet Engines Click to

  11. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

    1992-04-01T23:59:59.000Z

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  12. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

    1992-04-01T23:59:59.000Z

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  13. NUMERICAL ANALYSIS OF VAPOR BUBBLE GROWTH AND WALL HEAT TRANSFER DURING FLOW BOILING OF WATER IN A MICROCHANNEL

    E-Print Network [OSTI]

    Kandlikar, Satish

    . (2004) developed three- zone flow boiling heat transfer model to describe evaporation of elongated

  14. 2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in

    E-Print Network [OSTI]

    Maruyama, Shigeo

    2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level

  15. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, OctoberDecember 2000

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, October­December 2000 Multidimensional are optical tomographyof tissue, remote sensing of oceansand atmospheres, laser material processing radiative heat transfer in participat- ing media in recent years. However, the analysis of radiative heat

  16. HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME

    E-Print Network [OSTI]

    Boyer, Edmond

    1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H and the sheet metal: This is ventilation by natural convection. The remaining conductive heat from the sheet or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers

  17. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S modeling of the turbulent flow in a rotor-stator cavity subjected to a superimposed throughflow with heat the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial

  18. Accepted Manuscript A wall heat transfer correlation for the baffled-rotary kilns with secondary air

    E-Print Network [OSTI]

    Boyer, Edmond

    Accepted Manuscript A wall heat transfer correlation for the baffled-rotary kilns with secondary Date: 22 January 2014 Please cite this article as: L.G. Lauredan, H. Florian, D. Jean, A wall heat;1 A wall heat transfer correlation for the baffled- rotary kilns with secondary air flow and recycled

  19. Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland

    E-Print Network [OSTI]

    Graaf, Martin de

    Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland M. de Graaf #12;Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland Martin de is used to calculate surface heat fluxes over glaciers. As determination of surface fluxes still

  20. Fluid flow and heat transfer modeling for castings

    SciTech Connect (OSTI)

    Domanus, H.M.; Liu, Y.Y.; Sha, W.T.

    1986-01-01T23:59:59.000Z

    Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs.

  1. Constructal multi-scale package of vertical channels with natural convection and maximal heat transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT AND FLUID FLOW STRUCTURES-scale structures in natural convection with the objective of maximizing the heat transfer density, or the heat transfer rate per unit of volume§ . The flow volume is filled with vertical equidistant heated blades

  2. Study of heat transfer in attics with a small scale simulator

    E-Print Network [OSTI]

    Katipamula, Srinivas

    1985-01-01T23:59:59.000Z

    University Chairman of Advisory Committee: W. D. Turner An experimental study concerned with different modes of heat. transfer in fibrous and cellulose insulating material is presented. A series of experiments was conducted using an attic simulator... to deter- mine the effects of ventilation on attic heat transfer. and the effect of infrared radiation on the thcrn&al conductivity of th& insulation sys- tem and on attic heat transfer. All the tests were perl'ormed at, steady state conditions...

  3. Heat and Mass Transfer manuscript No. (will be inserted by the editor)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat and Mass Transfer manuscript No. (will be inserted by the editor) On the modeling of aiding to the onset of recirculation cells in the entry re- gion while the heat transfer is slightly increased under acceleration [m s-2 ] GrH Grashof number based on H, GrH = g0TH3 /2 0 h heat transfer coefficient [W m-2 K-1

  4. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-27T23:59:59.000Z

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process heat from the tank during operation.

  5. International Conference on Computational Heat and Mass Transfer Paper Number 135

    E-Print Network [OSTI]

    Khandekar, Sameer

    of heat transfer enhancement in sodium heat exchangers used in the fast breeder nuclear reactor [6 and liquid metals (Sodium, Potassium and Mercury) are utilized in the simulation. The critical sizes

  6. Extensions and enhancements to the iLab heat transfer project site

    E-Print Network [OSTI]

    Saylor, David P. (David Patrick)

    2005-01-01T23:59:59.000Z

    The iLab Heat Transfer Project website started four years ago to enable web access to experiments related to movement of heat through transport processes. This thesis details improvements made to the site which extend and ...

  7. Micro- and Nanoscale Measurement Methods for Phase Change Heat Transfer on Planar and Structured Surfaces

    E-Print Network [OSTI]

    Buongiorno, Jacopo

    In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux ...

  8. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. Heat transfer through horizontal films of liquids evaporating under high vacuum

    E-Print Network [OSTI]

    Stiles, Graham Bill

    1961-01-01T23:59:59.000Z

    ). . . . . . . 17 6. 7 ~ 9. 10 ~ 12 ' 13 ' 14 ' Effect of Liquid Depth on the Heat Transfer Coefficient (Natural Convection') . . . . . . . . 27 Effect of Liquid Depth on the Heat Transfer Coefficient (Nucleate Boiling, 875 BTU/Hr. Ft... of boiling was first discussed by Nukiyama (22). Three main types exist. They are natural convection, nucleate boiling and fi. lm boiling (6, 17, 20). Natural convection occurs when the liquid heated at the heating surface is hotter than that above...

  10. Heat Transfer Research 44(1), 130 (2013) ENTROPY GENERATION ANALYSIS

    E-Print Network [OSTI]

    Zhang, Yuwen

    Heat Transfer Research 44(1), 1­30 (2013) ENTROPY GENERATION ANALYSIS FOR A PULSATING HEAT, m R gas constant of vapor, g gravity, m/s2 kJ/kgK h(hlsen, hlv) coefficient of convective heat Re, kg/m3 of left vapor plug, W p shear stress, N/m3 Qout,v1 condensation heat transfer rate Subscripts

  11. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    slabs. Moreover, the total heat input during furnace heatingperformed for the same heat input. The optical propertiesheating for the same total heat input. Similarly, Figure 7

  12. Near field radiative heat transfer between two nonlocal dielectrics

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01T23:59:59.000Z

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  13. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect (OSTI)

    Obot, N.T.; Esen, E.B.

    1992-06-01T23:59:59.000Z

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  14. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect (OSTI)

    Obot, N.T.; Esen, E.B.

    1992-06-01T23:59:59.000Z

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  15. Influences of electrical field on boiling-condensation heat transfer system

    SciTech Connect (OSTI)

    Yang Jiaxiang; Ding Lijian; Chi Xiaochun; Liu Ji [Harbin Inst. of Electrical Technology (China). Dept. of Electrical Materials Engineering; Yang He [Harbin Inst. of Tech. (China). Dept. of Thermal Energy Engineering

    1996-12-31T23:59:59.000Z

    In this paper, the influences of electrical field on boiling-condensation heat transfer system have been investigated using a cylinder heat transfer model. Freon-11 is selected as working fluid. The condensation heat transfer coefficient, the boiling heat flux and the saturation pressure are measured in this investigation. According to the experimental results, it is found that the electrical field can influence heat transfer system. The boiling heat transfer is enhanced by the applied voltage, and the saturate vapor of working fluid is condensed on the high voltage electrode directly when the applied voltage is higher than 6 kv. The experimental results have been discussed, and it is considered that the high electrical field strength change the thermal properties of working fluid.

  16. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01T23:59:59.000Z

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  17. Abstract--The use of structured porous media is a proposed technique to achieve higher heat transfer coefficients by

    E-Print Network [OSTI]

    Pulsifer, John

    transfer coefficients by increasing the specific surface area for heat transfer while aiming to maintain pressure drop for a given heat transfer performance. A comprehensive thermo-fluid model called MERLOT [1] was used to assess the use of porous heat transfer media for fusion plasma facing component applications

  18. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  19. Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the ZonalGEF Method

    E-Print Network [OSTI]

    Yuen, Walter W.

    Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal­GEF Method Walter to analyze radiative heat transfer in high porosity insulation materials which have a large scattering for LI900, a material used in the insulation tile for the space shuttle. Comparisons are presented

  20. Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    to a more complicated data set, forced and mixed convection developing laminar flow in a horizontal tube LAMINAR HEAT TRANSFER IN A HORIZONTAL TUBE USING ARTIFICIAL NEURAL NETWORK L. M. Tam (1) Department variables on our forced convective turbulent heat transfer data in a horizontal tube (Ghajar and Tam, 1994

  1. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 19, No. 1, JanuaryMarch 2005

    E-Print Network [OSTI]

    Al-Qahtani, Mohammad

    developed turbulent nonrotating tube flow Dh, D = hydraulic diameter, m h = heat transfer coefficient, W/m2 Program, Department of Civil Engineer- ing. Senior Member AIAA. Professor, Turbine Heat Transfer thermal efficiency, gas-turbine stages are being de- signed to operate at increasingly high inlet

  2. Experimental validation of large eddy simulations of flow and heat transfer in a stationary ribbed duct

    E-Print Network [OSTI]

    Thole, Karen A.

    Elsevier Inc. All rights reserved. Keywords: Duct flow; Ribbed channels; LES 1. Introduction In an effortExperimental validation of large eddy simulations of flow and heat transfer in a stationary ribbed Abstract Accurate prediction of ribbed duct flow and heat transfer is of importance to the gas turbine

  3. Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater

    E-Print Network [OSTI]

    Zheng, H.; Fan, X.; Li, A.

    2006-01-01T23:59:59.000Z

    . It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

  4. RADIATION HEAT TRANSFER IN TISSUE WELDING AND SOLDERING WITH ULTRAFAST LASERS

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    RADIATION HEAT TRANSFER IN TISSUE WELDING AND SOLDERING WITH ULTRAFAST LASERS Kyunghan Kim to incorporate transient radiation heat transfer in tissue welding and soldering with use of ultrafast lasers are performed between laser welding and laser soldering. The use of solder is found to substantially enhance

  5. Bibliography of US patents on augmentation of convective heat and mass transfer-II

    SciTech Connect (OSTI)

    Webb, R.L.; Bergles, A.E.; Junkhan, G.H.

    1983-12-01T23:59:59.000Z

    Patents are an important source of information on the potential commercialization of augmented heat transfer technology. This report presents a bibliography of US patents pertinent to that technology. The total number of patents cited is 454. They are presented in three separate lists: by patent number, alphabetically by first inventor, and by augmentation technique (with secondary arrangement according to mode of heat transfer).

  6. Effect of surface conditions on boiling heat transfer of refrigerants in shell-and-tube evaporators

    SciTech Connect (OSTI)

    Danilova, G.N.; Dyundin, V.A.; Borishanskaya, A.V.; Soloviyov, A.G.; Vol'nykh, Y.A.; Kozyrev, A.A.

    1990-01-01T23:59:59.000Z

    Experimental results are presented for the boiling heat transfer performance of R 22 and R 717 on surfaces with porous metallized coatings. A calculational-theoretical model is given for predicting the heat transfer of refrigerants boiling on a bundle of finned tubes.

  7. MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed-mail (Sergey Smolentsev): Sergey@fusion.ucla.edu Heat transfer in closed channel flows of molten salts (MS), a number of blanket design options with molten salt (FLiBe or FLiNaBe) as the tritium breeder/coolant have

  8. Molten salt as heat transfer fluid for a 500 m2 dish concentrator

    E-Print Network [OSTI]

    Molten salt as heat transfer fluid for a 500 m2 dish concentrator Nicolás del Pozo 1 , Rebecca Dunn salt based thermal storage system with the ANU SG4 500 m2 dish solar concentrator was performed. Specifically, the objective was to research the behaviour of molten salt as a heat transfer fluid for the SG4

  9. Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer applications are finally discussed. One concerns the modeling of a flat plate air collector and the second focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows

  10. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads 

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05T23:59:59.000Z

    cooling loads, it may lead to the laminar flow of the chilled water in the cooling coils. The main objective of this thesis is to explain the heat transfer performance of the cooling coils under low cooling loads. The water side and air side heat transfer...

  11. Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater 

    E-Print Network [OSTI]

    Zheng, H.; Fan, X.; Li, A.

    2006-01-01T23:59:59.000Z

    . It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

  12. Dehumidification heat transfer on copper surfaces Abhay Varghese Thomas, Nikhil Koratkar, Yoav Peles

    E-Print Network [OSTI]

    Peles, Yoav

    and Background When a cooled surface is placed in an air-steam mixture, liquid water droplets or film form Heat transfer Condensation Humid air a b s t r a c t Heat transfer during dehumidification on the surface if its temperature is sufficiently low. In this dehumidification process, the ambient air­steam

  13. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Bahrami, Majid

    1 Copyright © 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012 July. INTRODUCTION Passive cooling is a widely preferred method for electronic and power electronic devices since, #12;2 Copyright © 2012 by ASME is convective heat transfer coefficient and is thermal conductivity

  14. Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow MILIVOJE M of nanofluids in tube flow has been developed, instrumented and computerized. It has been calibrated using) nanofluids show peculiar results with substantial friction drag reduction and heat transfer enhancement

  15. Glass foams: formation, transport properties, and heat, mass, and radiation transfer

    E-Print Network [OSTI]

    Pilon, Laurent

    Glass foams: formation, transport properties, and heat, mass, and radiation transfer Andrei G depend, to a large extent, on foams formed on the surface of the molten glass and of the batch due models for thermophysical and transport properties and heat, mass, and radiation transfer in glass foams

  16. Experimental investigation of nucleate boiling heat transfer mechanisms for cylinders in water and FC-72

    SciTech Connect (OSTI)

    Ammerman, C.N.; You, S.M.; Hong, Y.S. [Univ. of Texas, Arlington, TX (United States). Dept. of Mechanical and Aerospace Engineering

    1995-12-31T23:59:59.000Z

    A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).

  17. Heat transfer in the trailing edge cooling channels of turbine blades

    E-Print Network [OSTI]

    Kumaran, T. K.

    1989-01-01T23:59:59.000Z

    Foundation and from the funded research contract (RF5810) through Dr. Han. NOMENCLATURE A area of heat transfer in the pin fin channel AI, area of heat transfer in the long ejection segments Az cross-sectional area, of trailing edge ejection holes A..., ?minimum flow cross-sectional area in the pin fin channel C'~ discharge coefficient Cp specific heat of air 1 diameter of trailing edge ejection holes D diameter of pins f overall friction factor h?heat transfer coefficient in the n th segment...

  18. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    SciTech Connect (OSTI)

    Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  19. A vectorized heat transfer model for solid reactor cores

    SciTech Connect (OSTI)

    Rider, W.J.; Cappiello, M.W.; Liles, D.R.

    1990-01-01T23:59:59.000Z

    The new generation of nuclear reactors includes designs that are significantly different from light water reactors. Among these new reactor designs is the Modular High-Temperature Gas-Cooled Reactor (MHTGR). In addition, nuclear thermal rockets share a number of similarities with terrestrial HTGRs and would be amenable to similar types of analyses. In these reactors, the heat transfer in the solid core mass is of primary interest in design and safety assessment. One significant safety feature of these reactors is the capability to withstand a loss of pressure and forced cooling in the primary system and still maintain peak fuel temperatures below the safe threshold for retaining the fission products. To accurately assess the performance of gas-cooled reactors during these types of transients, a Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions. Also, HERA has been used to analyze a depressurized loss of forced cooling transient in a HTGR with a very detailed three-dimensional input model. The results compare favorably with other means of analysis and provide further validation of the models and methods. 18 refs., 11 figs.

  20. Micro and nanostructured surfaces for enhanced phase change heat transfer

    E-Print Network [OSTI]

    Chu, Kuang-Han, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Two-phase microchannel heat sinks are of significant interest for thermal management applications, where the latent heat of vaporization offers an efficient method to dissipate large heat fluxes in a compact device. However, ...

  1. Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  2. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver

    SciTech Connect (OSTI)

    Forristall, R.

    2003-10-01T23:59:59.000Z

    This report describes the development, validation, and use of a heat transfer model implemented in Engineering Equation Solver. The model determines the performance of a parabolic trough solar collector's linear receiver, also called a heat collector element. All heat transfer and thermodynamic equations, optical properties, and parameters used in the model are discussed. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

  3. ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21-26 September 2008

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    circulation is dominant at high PeT number. A heat transfer model is proposed to analyze and predict the heat

  4. Heat transfer augmentation along the tube wall of a louvered fin heat exchanger using practical delta winglets

    E-Print Network [OSTI]

    Thole, Karen A.

    delta winglets Michael J. Lawson *, Karen A. Thole Mechanical and Nuclear Engineering Department the formation of streamwise vortices and increase heat transfer between a working fluid and the surface on which importance for fuel econ- omy. Advantages to decreasing heat exchanger size include weight savings, as well

  5. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    by a heating lamp emitting in the visible and near infraredwith heating in a furnace at 400 o C. The infrared lamp was

  6. Downflow heat transfer in a heated ribbed vertical annulus with a cosine power profile

    SciTech Connect (OSTI)

    Anderson, J.L.; Condie, K.G.; Larson, T.K.

    1991-10-01T23:59:59.000Z

    Experiments designed to investigate downflow heat transfer in a heated, ribbed annulus test section simulating one of the annular coolant channels of a Savannah River Plant production reactor Mark 22 fuel assembly have been conducted at the Idaho National Engineering Laboratory. The inner surface of the annulus was constructed of aluminum and was electrically heated to provide an axial cosine power profile and a flat azimuthal power shape. Data presented in this report are from the ECS-2c series, which was a follow on series to the ECS-2b series, conducted specifically to provide additional data on the effect of different powers at the same test conditions, for use in evaluation of possible power effects on the aluminum temperature measurements. Electrical powers at 90%, 100%, and 110% of the power required to result in the maximum aluminum temperature at fluid saturation temperature were used at each set of test conditions previously used in the ECS-2b series. The ECS-2b series was conducted in the same test rig as the previous ECS-2b series. Data and experimental description for the ECS-2b series is provided in a previous report. 18 refs., 25 figs., 3 tabs.

  7. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement

    SciTech Connect (OSTI)

    Nikbakht, Moladad, E-mail: mnik@znu.ac.ir [Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791 (Iran, Islamic Republic of)

    2014-09-07T23:59:59.000Z

    A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientation in many body systems.

  8. Dual-circuit embossed-sheet heat-transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1982-08-23T23:59:59.000Z

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  9. Vibration damping and heat transfer using material phase changes

    SciTech Connect (OSTI)

    Kloucek, Petr (Houston, TX); Reynolds, Daniel R. (Oakland, CA)

    2009-03-24T23:59:59.000Z

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  10. Condensation heat transfer in square, triangular, and semi-circular mini-channels Melanie Derby a

    E-Print Network [OSTI]

    Peles, Yoav

    , and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States b Department was the coolant. The heat transfer rate was obtained through a coolant-side energy balance. To obtain condensation. An energy balance on the fluid-to-fluid heat exchanger measured heat duty while sensors in two obstructed

  11. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-11-05T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

  12. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1983-01-01T23:59:59.000Z

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  13. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1982-01-01T23:59:59.000Z

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  14. FireStem2D A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires

    E-Print Network [OSTI]

    FireStem2D ­ A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires, et al. (2013) FireStem2D ­ A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury

  15. An experimental study of endwall heat transfer enhancement for flow past staggered non-conducting pin fin arrays 

    E-Print Network [OSTI]

    Achanta, Vamsee Satish

    2004-09-30T23:59:59.000Z

    In this work, we study the enhanced endwall heat transfer for flow past non conducting pin fin arrays. The aim is to resolve the controversy over the heat transfer that is taking place from the endwall and the pin ...

  16. Eurotherm Seminar N81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81-1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION

    E-Print Network [OSTI]

    Boyer, Edmond

    Eurotherm Seminar N°81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81- 1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION AND CONVECTION IN A HIGH for the packed bed. The comparison between the radiative heat transfer and the exchanges by conduction and forced

  17. Detailed heat transfer distributions in two-pass smooth and turbulated square channels with bleed holes

    SciTech Connect (OSTI)

    Ekkad, S.V.; Huang, Y.; Han, J.C. [Texas A and M Univ., College Station, TX (United States)

    1996-12-31T23:59:59.000Z

    Modern gas turbine blades have internal serpentine passage for providing effective cooling. Rib turbulators are added periodically on the cooling passage surface to enhance heat transfer. Some of the cooling air is ejected out through bleed (or film) holes for external blade film cooling. The presence of periodic rib turbulators and bleed holes creates strong axial and spanwise variations in the heat transfer distributions on the passage surface. Detailed heat transfer coefficient distributions are presented in this study for a two-pass square channel with a 180{degree} turn. One wall of the channel has periodically placed bleed holes. Four different configurations of 90{degree} parallel, 60{degree} parallel, 60{degree} V ribs, and 60{degree} inverted V ribs are studied in conjunction with the effect of bleed holes on the same wall. The surface is coated with a thin layer of thermochromic liquid crystals and a transient test is run to obtain the detailed heat transfer distributions. The 60{degree} parallel, 60{degree} V, and 60{degree} inverted ribbed channels produce similar levels of heat transfer enhancement in the first pass. However, the 60{degree} inverted V ribbed channel produces higher enhancement in the second pass. Regional averaged heat transfer results indicate that a test surface with bleed holes provides similar heat transfer enhancement as that for a test surface without bleed holes although 20--25% of the inlet mass flow exits through the bleed holes.

  18. A new predictive dynamic model describing the effect of1 the ambient temperature and the convective heat transfer2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Ratkowsky "square root" model and a simplified two-parameter20 heat transfer model regarding an infinite

  19. Heat Transfer Boundary Conditions in the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2008-05-01T23:59:59.000Z

    The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

  20. Roll Wave Effects on Annular Condensing Heat Transfer in Horizontal PCCS Condenser Tube

    SciTech Connect (OSTI)

    Masaya Kondo; Hideo Nakamura; Yoshinari Anoda [Japan Atomic Energy Research Institute, Tokai-mura 319-1195 (Japan); Sadanori Saishu; Hiroyuki Obata; Rumi Shimada [Japan Atomic Power Company (Japan); Shinichi Kawamura [Tokyo Electric Power Company, Incorporated, 1-3, Uchisaiwai-cho 1-chome, Chiyoda-ku, Tokyo, 1008560 (Japan)

    2002-07-01T23:59:59.000Z

    A horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. The flow conditions in the horizontal condenser tube were observed both visually and by local void fraction fluctuation. The observed flow regimes at a rated condition were annular flow at the tube inlet, and turned gradually into wavy flow and smooth stratified flow along the length of the tube. It was found further that frequency of the roll waves that appear on the liquid film in the annular flow is closely related to the measured local condensation heat transfer coefficient. Based on the flow observation, the roll wave frequency and measured condensation heat transfer coefficient, a model is proposed which predicts the condensation heat transfer coefficient particularly for annular flows around the tube inlet region. The proposed heat transfer model predicts well the influences of pressure, local gas-phase velocity and film thickness. (authors)

  1. Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement

    E-Print Network [OSTI]

    Soti, Atul Kumar; Sheridan, John

    2015-01-01T23:59:59.000Z

    Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...

  2. Grid-region heat transfer in a gas solid fluidized bed

    SciTech Connect (OSTI)

    Wang, R.C.

    1986-01-01T23:59:59.000Z

    The grid region heat transfer to a horizontal tube in a gas-solid fluidized bed was studied experimentally and theoretically. A preliminary experimental study was first conducted to investigate semi-quantitatively the heat transfer characteristics in the grid region as well as in the bubbling region of the gas-solid fluidized bed using a simple hot water circulation system. Experimental parameters included particle size, static bed height, superficial gas velocity, distributor open area, distributor hole sizes, distributor hole numbers, and vertical locations of the heating tube. An additional experimental study was then carried out to study quantitatively the heat transfer coefficient in each grid region phase, i.e., jet phase, emulsion phase and dead phase using an artificial jet and an electrically heated tube. The observed heat transfer coefficients for each phase were correlated as a function of experimental parameters. The observed results are also compared with results estimated from a heat transfer model, which is based on plausible heat transfer mechanisms in the grid region of a gas-solid fluidized bed.

  3. INDIAN SOCIETY FOR HEAT AND MASS TRANSFER (REGD.) Indian Institute of Technology Madras Campus, Chennai 600036 (INDIA)

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    INDIAN SOCIETY FOR HEAT AND MASS TRANSFER (REGD.) Indian Institute of Technology Madras Campus for Heat and Mass Transfer Department of Mechanical Engineering Indian Institute of Technology Madras Society for Heat and Mass Transfer (Regd.) I/We agree that I/We will be governed by Rules and Regulations

  4. Computational stochastic heat transfer with model uncertainties in a plasterboard submitted to fire load and experimental validation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    specially designed within the framework of this research. A computational heat transfer model is constructed. The developed mean model constitutes the basis of the computational stochastic heat transfer model that has been to the experimental ones. Keywords: computational heat transfer modeling, uncertainties, probabilistic modeling

  5. Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non intrusive method

    E-Print Network [OSTI]

    Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non the results of experimental and numerical studies concerning boiling heat transfer inside vertical in minichannels for several gravity levels (µg, 1g, 2g). To fully understand the high heat transfer potential

  6. International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics 8-10 April 2002, Kruger Park, South Africa

    E-Print Network [OSTI]

    Kandlikar, Satish

    HEFAT2002 1st International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics 8 topic in heat transfer. The power dissipation of the computer chips is rapidly increasing. The thermal management of these high power systems provides a complex challenge. Unfortunately, the heat transfer area

  7. Molecular Dynamics Simulation of Heat Transfer Issues of Nanotubes. > Yasuhiro Igarashi, Yuki Taniguchi, Yasushi Shibuta and Shigeo Maruyama

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Molecular Dynamics Simulation of Heat Transfer Issues of Nanotubes. ·> Yasuhiro Igarashi, Yuki 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Heat transfer between single-walled carbon nanotubes, which was 0.105 µm. In other words, when the length of SWNT is 0.105 µm, the radial heat transfer

  8. A phase-field method for 3D simulation of two-phase heat transfer , H. Babaee a

    E-Print Network [OSTI]

    Dong, Suchuan "Steven"

    A phase-field method for 3D simulation of two-phase heat transfer X. Zheng a , H. Babaee a , S s t r a c t We formulate new multi-phase convective heat transfer equations by combining the three for convergence in time/space including a conjugate heat transfer problem and also for a realistic tran- sient

  9. CORQUENCH: A model for gas sparging-enhanced, melt-water, film-boiling heat transfer

    SciTech Connect (OSTI)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1990-01-01T23:59:59.000Z

    In evaluation of severe-accident sequences for water-cooled nuclear reactors, molten core materials may be postulated to be released into the containment and accumulate on concrete. The heatup and decomposition of concrete is accompanied by the release of water vapor and carbon dioxide gases. Gases flowing through the melt upper surface can influence the rates of heat transfer to water overlying the melt. In particular, the gas flow through the interface can be envisioned to enhance the heat removal from the melt. A mechanistic model (CORQUENCH) has been developed to describe film-boiling heat transfer between a molten pool and an overlying coolant layer in the presence of sparging gas. The model favorably predicts the lead-Feron 11 data of Greene and Greene et al. for which the calculations indicate that area enhancement in the conduction heat transfer across the film is the predominant mechanism leading to augmentation in the heat flux as the gas velocity increases. Predictions for oxidic corium indicate a rapid increase in film-boiling heat flux as the gas velocity rises. The predominant mode of heat transfer for this case is radiation, and the increase in heat flux with gas velocity is primarily a result of interfacial area enhancement of the radiation component of the overall heat transfer coefficient. The CORQUENCH model has been incorporated into the MELTSPREAD-1 computer code{sup 6} for the analysis of transient spreading in containments.

  10. All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system

    SciTech Connect (OSTI)

    Li, Zhiyong; Chen, Chao; Luo, Hailiang; Zhang, Ye; Xue, Yaning [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing (China)

    2010-08-15T23:59:59.000Z

    The aim of this paper is to establish the heat transfer model of all-glass vacuum tube collector used in forced-circulation solar water heating system. In this model, the simplified heat transfer of collector is composed of the natural convection in single glass tube and forced flow in manifold header. Thus the heat balance equation of water in single tube and the heat balance equation of water in manifold header have been established. The flow equation is also built by analyzing the friction and buoyancy in tube. Through solved these equations the relationship between the collector average temperature, the outlet temperature and natural convection flow rate have been obtained. From this relationship and energy balance equation of collector, the collector outlet temperature can be calculated. The validated experiments of this model were carried out in winter of Beijing. (author)

  11. The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid

    SciTech Connect (OSTI)

    Nakaharai, H. [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-kouen 6-1, Kasuga, Fukuoka 816-8580 (Japan); Takeuchi, J.; Morley, N.B.; Abdou, M.A. [Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095-1597 (United States); Yokomine, T. [Faculty of Energy Engineering Science, Kyushu University, Kasuga-kouen 6-1, Kasuga, Fukuoka 816-8580 (Japan); Kunugi, T. [Department of Nuclear Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501 (Japan); Satake, S. [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2007-10-15T23:59:59.000Z

    The influence of a transverse magnetic field on the local and average heat transfer of an electrically conducting, turbulent fluid flow with high Prandtl number was studied experimentally. The mechanism of heat transfer modification due to magnetic field is considered with aid of available numerical simulation data for turbulent flow field. The influence of the transverse magnetic field on the heat transfer was to suppress the temperature fluctuation and to steepen the mean temperature gradient in near-wall region in the direction parallel to the magnetic field. The mean temperature gradient is not influenced compared to the temperature fluctuation in the direction vertical to the magnetic field. (author)

  12. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, 35, Beijing, 100190 (China); Wang, S. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, 35, Beijing, 100190 (China); University of Chinese Academy of Science, No. 19 YuQuan Road, Beijing, 100049 (China)

    2014-01-29T23:59:59.000Z

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  13. Heat transfer coefficients in two-dimensional Yukawa systems (numerical simulations)

    SciTech Connect (OSTI)

    Khrustalyov, Yu. V., E-mail: yuri.khrustalyov@gmail.com; Vaulina, O. S. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2013-05-15T23:59:59.000Z

    New data on heat transfer in two-dimensional Yukawa systems have been obtained. The results of a numerical study of the thermal conductivity for equilibrium systems with parameters close to the conditions of laboratory experiments in dusty plasma are presented. The Green-Kubo relations are used to calculate the heat transfer coefficients. The influence of dissipation (internal friction) on the heat transfer processes in nonideal systems is studied. New approximations are proposed for the thermal conductivity and diffusivity for nonideal dissipative systems. The results obtained are compared with the existing experimental and numerical data.

  14. Transition boiling heat transfer from a horizontal surface

    E-Print Network [OSTI]

    Berenson Paul Jerome

    1960-01-01T23:59:59.000Z

    An experiment, utilising a condensing fluid as the heat source, was performed to determine the heat flux vs. temperature difference curve for transition pool boiling from a horisontal surface. The boiling cure was determined ...

  15. Heat transfer from nanoparticles: a corresponding state analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    temperatures using laser heating of nanoparticles [8, 9, 10], even reaching the melting point of gold particles is relevant to experiments in which a fluid is locally heated using selective absorption of radiation by solid surfaces, lo- cal heating of fluids by selective absorption from nanoparti- cles, with possible biomedical

  16. Augmentation of condensation heat transfer with electrohydrodynamics on vertical enhanced tubes

    E-Print Network [OSTI]

    Motte, Edouard

    1994-01-01T23:59:59.000Z

    for various heat loads . 48 . 49 . 58 NOMENCLATURE cr D ha k Nu qual Re V area, m', or current, A specific heat at constant pressure, J/kgK diameter, m electric field strength, V/m gravity, (9. 81 m/s') heat transfer coefficient, W... fluorocarbon or a hydrocarbon, the temperature of heat addition from the primary fluid to the secondary working fluid tends to be lower, thereby increasing the amount of heat rejected. In many cases the waste heat can be rejected through a condensation...

  17. Dependency of Heat Transfer Rate on the Brinkman Number in Microchannels

    E-Print Network [OSTI]

    H. S. Park

    2008-01-07T23:59:59.000Z

    Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device but is not clearly understood yet. This work proposes a new correlation between heat transfer rate and Brinkman number which is nondimensional number of viscosity, flow velocity and temperature. It is expected that the equation proposed by this work can be useful to design microchannel cooling device.

  18. Heat and mass transfer in the gas tungsten and gas metal arc welding processes

    SciTech Connect (OSTI)

    Watkins, A.D; Smartt, H.B.; Einerson, C.J.; Watkins, J.A.

    1990-01-01T23:59:59.000Z

    The heat transferred from an electrode negative, argon gas tungsten arc to an anode was measured for a wide range of conditions suitable for mechanized welding. The results are given as (1) the arc efficiency and (2) the anode heat and current input distributions for various anode materials over a range of current and voltage. The nominal arc is Gaussian, {approximately}4 mm in diameter, with {approximately}75{percent}heat transfer efficiency. Variations from these values are discussed in terms of the electrical and thermal energy transport mechanisms. Heat transferred to the workpiece (cathode) during direct current, electrode positive gas metal arc welding (GMAW) was measured for various parameters applicable to machine welding. The results are presented as a function of electrode speed for changing voltages and contact tip to workpiece distances. The total heat transfer efficiency was nominally 85{percent} for a 0.89 mm diameter steel electrode using an argon-2{percent} oxygen shielding gas; the nominal heat transfer efficiency of the droplet component was 40{percent}. The average droplet temperatures ranged from 2400 to 3100 K, depending on the process parameters. A new method of measuring the heat transferred from the arc to the workpiece, using a boiling liquid nitrogen calorimeter, has been developed that gives rapid, accurate values. 20 refs., 8 figs., 2 tabs.

  19. Conclusions Observed enhancement in convection heat transfer coefficient in

    E-Print Network [OSTI]

    Walker, D. Greg

    in de-ionized water Commercial System Heater Insulation Water block · The water block replaces/min) di-water 1% nanofluid 0.5% nanofluid Results: Calculated Thermal Conductivity 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0 0.5 1 1.5 2 thermalconductivity(W/mK) volume loading (%) calculated di-water

  20. Investigation of boiling heat transfer at a surface with a system of cylindrical cavities under conditions of free motion

    SciTech Connect (OSTI)

    Danilova, G.N.; Reznikov, V.I.

    1988-01-01T23:59:59.000Z

    The authors propose a mathematical model for the intensification of boiling heat transfer and the subsequent increase in thermal efficiency of the cylindrical heat transfer surfaces in an evaporative cooling system. The boiling curves for water, ethanol, and freon 113 are calculated for a surface with artificial nucleation sites. The model incorporates such coolant properties as surface tension, specific heat, and vaporization heat.

  1. Heat transfer from combustion gases to a single row of closely spaced tubes in a swirl crossflow Stirling engine heater

    SciTech Connect (OSTI)

    Bankston, C.P.; Back, L.H.

    1982-02-01T23:59:59.000Z

    This paper describes an experimental program to determine the heat-transfer characteristics of a combustor and heat-exchange system in a hybrid solar receiver which utilizes a Stirling engine. The system consists of a swirl conbustor with a crossflow heat exchanger composed of a single row of 48 closely spaced curved tubes. In the present study, heat-transfer characteristics of the combustor/heat-exchanger system without a Stirling engine have been studied over a range of operating conditions and output levels using water as the working fluid. Non-dimensional heat-transfer coefficients based on total heat transfer have been obtained and are compared with available literature data. The results show significantly enhanced heat transfer for the present geometry and test conditions. Also, heat transfer along the length of the tubes is found to vary, the effect depending upon test condition.

  2. Convective heat-transfer predictions and experiments in an IC engine

    SciTech Connect (OSTI)

    Yang, J.

    1988-01-01T23:59:59.000Z

    Knowledge of heat transfer in engines is critical to engine efficiency, hydrocarbon and particulate emissions, engine-component thermal stress analysis, as well as engine cycle simulation accuracy. However, the relationship between pressure, heat-release rate, turbulent flow, and the heat transfer is not known. Previous engine heat-transfer models, including the law-of-the-wall used for multi-dimensional calculations, are based on a steady-state incompressible flow which is not the case in engines. A new heat-transfer model was developed which is based on an approximate solution of the linearized and normalized one-dimensional energy equation. An empirical turbulent viscosity relation has been used to include the effects of turbulence. The response of this equation to a unit step function was acquired by multi-parameter fit to the numerical solution. The effects of initial thermal boundary layer formed before compression were also considered. The proposed heat-transfer model was extended to include the effects of combustion. Thus, the relationship between pressure variation, spatially-resolved heat-release rate, local flow condition, initial thermal boundary layer, and the surface heat flux and temperature profile was developed.

  3. Critical thickness of an optimum extended surface characterized by uniform heat transfer coefficient

    E-Print Network [OSTI]

    Leontiou, Theodoros

    2015-01-01T23:59:59.000Z

    We consider the heat transfer problem associated with a periodic array of extended surfaces (fins) subjected to convection heat transfer with a uniform heat transfer coefficient. Our analysis differs from the classical approach as (i) we consider two-dimensional heat conduction and (ii) the base of the fin is included in the heat transfer process. The problem is modeled as an arbitrary two-dimensional channel whose upper surface is flat and isothermal, while the lower surface has a periodic array of extensions/fins which are subjected to heat convection with a uniform heat transfer coefficient. Using the generalized Schwarz-Christoffel transformation the domain is mapped onto a straight channel where the heat conduction problem is solved using the boundary element method. The boundary element solution is subsequently used to pose a shape optimization problem, i.e. an inverse problem, where the objective function is the normalized Shape Factor and the variables of the optimization are the parameters of the Sch...

  4. Passive heat-transfer means for nuclear reactors. [LMFBR

    DOE Patents [OSTI]

    Burelbach, J.P.

    1982-06-10T23:59:59.000Z

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  5. Heat transfer in sunspot penumbrae. Origin of dark-cored penumbral filaments

    E-Print Network [OSTI]

    B. Ruiz Cobo; L. R. Bellot Rubio

    2008-10-07T23:59:59.000Z

    Context: Observations at 0.1" have revealed the existence of dark cores in the bright filaments of sunspot penumbrae. Expectations are high that such dark-cored filaments are the basic building blocks of the penumbra, but their nature remains unknown. Aims: We investigate the origin of dark cores in penumbral filaments and the surplus brightness of the penumbra. To that end we use an uncombed penumbral model. Methods: The 2D stationary heat transfer equation is solved in a stratified atmosphere consisting of nearly horizontal magnetic flux tubes embedded in a stronger and more vertical field. The tubes carry an Evershed flow of hot plasma. Results: This model produces bright filaments with dark cores as a consequence of the higher density of the plasma inside the tubes, which shifts the surface of optical depth unity toward higher (cooler) layers. Our calculations suggest that the surplus brightness of the penumbra is a natural consequence of the Evershed flow, and that magnetic flux tubes about 250 km in diameter can explain the morphology of sunspot penumbrae.

  6. ASME 2008 Summer Heat transfer Conference August 10-14, 2008, Jacksonville, FL., USA

    E-Print Network [OSTI]

    Bahrami, Majid

    ASME 2008 Summer Heat transfer Conference August 10-14, 2008, Jacksonville, FL., USA HT2008, University of Victoria Victoria, BC , V8W 2Y2, Canada ABSTRACT Accurate information on the temperature eld

  7. Orthogonal Decomposition Methods for Turbulent Heat Transfer Analysis with Application to Gas Turbines

    E-Print Network [OSTI]

    Schwaenen, Markus

    2012-07-16T23:59:59.000Z

    . . . . . . . . . . . . . . . . . 46 C. Computational procedure . . . . . . . . . . . . . . . . . . . 48 1. Solver settings and grid for URANS study . . . . . . . 48 2. LES study . . . . . . . . . . . . . . . . . . . . . . . . 52 D. Results... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1. Orthogonal decomposition URANS . . . . . . . . . . . 59 2. Orthogonal decomposition LES . . . . . . . . . . . . . 62 E. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 V OPTIMIZING TURBULENT HEAT TRANSFER USING...

  8. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01T23:59:59.000Z

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  9. Quasiballistic heat transfer studied using the frequency-dependent Boltzmann transport equation

    E-Print Network [OSTI]

    Chen, Gang

    Quasiballistic heat transfer occurs when there is a temperature gradient over length scales comparable to phonon mean free paths (MFPs). This regime has been of interest recently because observation of quasiballistic ...

  10. Mechanism and behavior of nucleate boiling heat transfer to the alkalai liquid metals

    E-Print Network [OSTI]

    Deane, Charles William

    1969-01-01T23:59:59.000Z

    A model of boiling heat transfer to the alkali liquid metals is postulated from an examination of the events and phases of the nucleate boiling cycle. The model includes the important effect of microlayer evaporation which ...

  11. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    E-Print Network [OSTI]

    Xiao, Rong

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties ...

  12. Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer

    E-Print Network [OSTI]

    Xiao, Rong, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

  13. Local heat transfer distribution in a triangular channel with smooth walls and staggered ejection holes

    E-Print Network [OSTI]

    Moon, Sung-Won

    1999-01-01T23:59:59.000Z

    Transient liquid crystal experiments have been conducted to determine the distribution of the local heat transfer coefficient in a triangular channel with smooth wails and ejection holes along one or two of the wails. The end of the test channel...

  14. Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Given the schematic diagram of TDHT system, introducing the definition of equivalent fouling roughness height, and using the Niklaus...

  15. 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    in order to avoid the effect of interaction of channels in multi-microchannels. Finally, a heat transfer model based on empirical correlations should be established for engineering applications. 2

  16. Heat and mass transfer in bubble column dehumidifiers for HDH desalination

    E-Print Network [OSTI]

    Tow, Emily W

    2014-01-01T23:59:59.000Z

    Heat and mass transfer processes governing the performance of bubble dehumidifier trays are studied in order to develop a predictive model and design rules for efficient and economical design of bubble column dehumidifiers ...

  17. The influence of return bends on the downstream pressure drop and condensation heat transfer in tubes

    E-Print Network [OSTI]

    Traviss, Donald P.

    1971-01-01T23:59:59.000Z

    The influence of return bends on the downstream pressure drop and heat transfer coefficient of condensing refrigerant R-12 was studied experimentally. Flow patterns in glass return bends of 1/2 to 1 in. radius and 0.315 ...

  18. Forced-convection surface-boiling heat transfer and burnout in tubes of small diameters

    E-Print Network [OSTI]

    Bergles A. E.

    1962-01-01T23:59:59.000Z

    A basic heat-transfer apparatus was designed and constructed for the study of forced-convection boiling in small channels. The various regions of forced-convection surface boiling were studied experimentally and analytically. ...

  19. Convective Heat Transfer Enhancement in Nanofluids: Real Anomaly or Analysis Artifact?

    E-Print Network [OSTI]

    Prabhat, Naveen

    The nanofluid literature contains many claims of anomalous convective heat transfer enhancement in both turbulent and laminar flow. To put such claims to the test, we have performed a critical detailed analysis of the ...

  20. Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel using Temperature Nanosensors

    E-Print Network [OSTI]

    Yu, Jiwon 1982-

    2012-12-03T23:59:59.000Z

    Experiments were performed to study forced convective heat transfer of de-ionized water (DI water) and aqueous nanofluids flowing in a microchannel. An array of temperature nanosensors, called “Thin Film Thermocouples (TFT)”, was utilized...

  1. Numerical and analytical modeling of heat transfer between fluid and fractured rocks

    E-Print Network [OSTI]

    Li, Wei, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

  2. New tube bundle heat transfer correlations and flow regime maps for a Once Through Steam Generator

    E-Print Network [OSTI]

    Blanchat, Thomas Kevin

    1988-01-01T23:59:59.000Z

    completed which allow the user to input the pitch and tube o. d. for the system. Predicted RELAP5/MOD2 heat transfer coefficients from correlations have been reviewed for single phase liquid convection, subcooled, and saturated nu- cleate boiling... of the OTSG model to determine the "model efFects" prior to changing any thermal ? hydraulic correlations. These studies inves- tigated the effects of hydraulic diameter, tube bundle surface heat transfer area, snd inlet feedwater subcooling, in addition...

  3. Pressure drop and heat transfer distributions in three-pass rectangular channels with rib turbulators

    E-Print Network [OSTI]

    Zhang, Peng

    1988-01-01T23:59:59.000Z

    PRESSURE DROP AND HEAT TRANSFER DISTRIBUTIONS IN THREE-PASS RECTANGULAR CHANNELS WITH RIB TURBULATORS A THESIS by PENG ZHANG Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1988 Major Subject: Mechanical Engineering PRESSURE DROP AND HEAT TRANSFER DISTRIBUTIONS IN THREE-PASS RECTANGULAR CHANNELS WITH RIB TURBULATORS A THESIS by PENG ZHANG Approved as to style and content by: J. C. Han...

  4. Turbulent heat transfer and friction in a square channel with discrete rib turbulators

    E-Print Network [OSTI]

    McMillin, Robert Dale

    1989-01-01T23:59:59.000Z

    TURBULENT HEAT TRANSFER AND FRICTION IN A SQUARE CHANNEL WITH DISCRETE RIB TURBULATORS A Thesis by ROBERT DALE iXIGMILLIN Subniitted to the Office of Graduate Studies of Texas AK. M L niversrty in partial fulfillment of the requirements... for the degree of MASTER OF SGIE IGE Deceinber 1989 Major Subject' Mechanical Engineering TURBULENT HEAT TRANSFER AND FRICTION IN A SQUARE CHANNEL WITH DISCRETE RIB TURBULATORS A Thesrs by ROBERT DALE MCMILLI'V Approverl as to style and content...

  5. A PC simulation of heat transfer and temperature distribution in a circulating wellbore

    E-Print Network [OSTI]

    Pierce, Robert Duane

    1987-01-01T23:59:59.000Z

    for Varying Drill Pipe 59 Outer Diameter TABLE 4 - Well Data Summary For Varying Mud Flow Rate TABLE 5 ? Mell Data Summary For Varying Heat Transfer 60 62 Coefficient (Pipe) 65 TABLE 6 ? Well Data Summary For Varying Heat Transfer Coefficient (Annulus.... 2 - Introductory menu of program Fig. 3 - Program master menu Fig. 4 ? Change/view parameters menu Fig. 5 ? Drilling fluid parameters menu Fig. 6 ? Drill pipe parameters menu Fig. 7 ? Mellbore/formation parameters menu Fig. 8 - Casing...

  6. Numerical analysis of turbulent heat transfer in a nuclear reactor coolant channel

    E-Print Network [OSTI]

    Garrard, Clarence William

    1965-01-01T23:59:59.000Z

    NUMERICAL ANALYSIS OF TURBULENT HEAT TRANSFER IN A NUCLEAR REACTOR COOLANT CHANNEL A Thesis Clarence William Garrard, Jr. Submitted to the Graduate College of the Texas A&M University in partial fulfillment of' the requirements for the degree... of' MASTER OF SC1ENCE May, 1965 Ma)or Subject Nuclear Engineering NUMERICAL ANALYSIS OF TURBULENT HEAT TRANSFER 1N A NUCLEAR REACTOR COOLANT CHANNEL A Thesis By Clarence William Garrard, Jr. Approved as to style and content by; Head...

  7. A PC simulation of heat transfer and temperature distribution in a circulating wellbore 

    E-Print Network [OSTI]

    Pierce, Robert Duane

    1987-01-01T23:59:59.000Z

    for Varying Drill Pipe 59 Outer Diameter TABLE 4 - Well Data Summary For Varying Mud Flow Rate TABLE 5 ? Mell Data Summary For Varying Heat Transfer 60 62 Coefficient (Pipe) 65 TABLE 6 ? Well Data Summary For Varying Heat Transfer Coefficient (Annulus.... 2 - Introductory menu of program Fig. 3 - Program master menu Fig. 4 ? Change/view parameters menu Fig. 5 ? Drilling fluid parameters menu Fig. 6 ? Drill pipe parameters menu Fig. 7 ? Mellbore/formation parameters menu Fig. 8 - Casing...

  8. Local heat transfer and pressure drop measurements in a wavy channel with and without flow disturbers

    SciTech Connect (OSTI)

    Dini, S.; Kmelius, D. [Western New England College, Springfield, MA (United States); Saniei, N. [Southern Illinois Univ., Edwardsville, IL (United States)

    1995-09-01T23:59:59.000Z

    Experiments have been performed to measure local heat transfer coefficients and pressure drop in a wavy channel for Reynolds numbers of 2,900 and 7,000. Additionally, the effect of flow disturbers mounted on the first two peaks on one surface was investigated. The transient method and liquid crystals were used for the local heat transfer measurements. Initial experimental results indicate that addition of ribs into the passage stimulates flow instabilities which enhance the heat transfer performance with moderate effect on pressure drop. Measurements were conducted on a 6 in x 3/8 in x 12 in wavy channel with a wave length of one inch. The highest local heat transfer was detected on the second, followed by the third and fourth peaks at Re = 7000; wheras for Re = 2900 the highest heat transfer was along the next peak detected immediately after the disturbers. The experimental results observed in this study suggest that ribbed passages would yield higher heat transfer with moderate change in pressure drop compared with non-ribbed channels.

  9. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters. Final report

    SciTech Connect (OSTI)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-09-01T23:59:59.000Z

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  10. ON CONVECTIVE HEAT TRANSFER IN BUILDING ENERGY ANALYSIS

    E-Print Network [OSTI]

    Gadgil, Ashok Jagannath

    2013-01-01T23:59:59.000Z

    Tien; Int. J. Heat Mass Trans Balcomb 1 s Weber and Wray; ininsulation-filled wall. Balcomb's group at LASL has carried

  11. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Transfer in a Horizontal Internally Micro-Fin Tube with Three Different Inlet Configurations Hou Kuan Tam regions. INTRODUCTION Single-phase liquid flow in internally enhanced tubes is becoming more important. Basically, such kind of tube is widely used in high flow rate applications because the heat transfer

  12. Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts

    E-Print Network [OSTI]

    Tennessee, University of

    02FCC-140 Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts Kalyana transfer in modeling the performance of diesel oxidation catalysts. Many modeling studies have assumed experimental measurements of CO and hydrocarbon oxidation in diesel exhaust re- veal that actual mass

  13. Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium P.G. JONSSON, T.W. EAGAR transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major dif properties. Various findings from the study include that an arc cannot be stru~k in a pure helium atmosphere

  14. An experimental, theoretical and numerical investigation of corona wind heat transfer enhancement

    E-Print Network [OSTI]

    Owsenek, Brian Leonard

    1993-01-01T23:59:59.000Z

    Corona wind heat transfer enhancement is a non-mechanical means of augmenting transfer coefficients in free and low-velocity convection flow fields. Ions formed near the surface of a high-voltage electrode are forced along the electric field lines...

  15. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes

    E-Print Network [OSTI]

    Zhao, Tianshou

    dioxide in heated horizontal and vertical miniature tubes are reported in this paper. Stainless steel horizontal and upward flow was enhanced. The experimental results further indicate that in all the flow transfer to supercritical carbon dioxide in both horizontal and vertical miniature heated tubes. Ó 2002

  16. Jet impingement heat transfer in two-pass rotating rectangular channels 

    E-Print Network [OSTI]

    Zhang, Yuming

    1996-01-01T23:59:59.000Z

    compared with previously reported correlations. The pressure distributions show that the major effect on heat transfer is the jet impingement in the beginning of the channel and the cross flow at the end of the channel. The results also show that heat...

  17. Numerical Modelling of Combined Heat Transfers in a Double Skin Faade -Full Scale Laboratory

    E-Print Network [OSTI]

    , thermal comfort, visual comfort or energy gain [1]. In the current context of global warming, depletion heat transfers are also taken into account to obtain a global coupling between the different phenomena on two levels: during the winter period, the solar energy is used to heat the air in the façade [2], and

  18. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    pressure drop is desired in the designing of the direct expansion ground source heat pumps systems1 Copyright © 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012 July the gas and liquid phase and the influence of gravity potential. The hydrostatic component can

  19. Heat Transfer Applications for the Stimulated Reservoir Volume 

    E-Print Network [OSTI]

    Thoram, Srikanth

    2011-10-21T23:59:59.000Z

    from oil shale. Thermal decomposition of kerogen to oil and gas requires heating the oil shale to 700 degrees F. High quality saturated steam generated using a small scale nuclear plant was used for heating the formation to the necessary temperature...

  20. Author's personal copy Radiative heat transfer in enhanced hydrogen

    E-Print Network [OSTI]

    Pilon, Laurent

    the physical mechanisms responsible for experimental observations that led to the definition of ``photo tube and heated in a furnace or by an incandescent lamp. It was observed that hydrogen release from the glass sample was faster and stronger when heated by an incandescent lamp than within a furnace. Here

  1. Heat transfer in porous media with fluid phase changes

    SciTech Connect (OSTI)

    Su, H.J.

    1981-06-01T23:59:59.000Z

    A one-dimensional experimental apparatus was built to study the heat pipe phenomenon. Basically, it consists of a 25 cm long, 2.5 cm I.D. Lexane tube packed with Ottawa sand. The two ends of the tube were subjected to different tempratures, i.e., one above the boiling temperature and the other below. The tube was well insulated so that a uniform one-dimensional heat flux could pass through the sand pack. Presence of the heat pipe phenomenon was confirmed by the temperature and saturation profiles of the sand pack at the final steady state condition. A one-dimensional steady state theory to describe the experiment has been developed which shows the functional dependence of the heat pipe phenomenon on liquid saturation gradient, capillary pressure, permeability, fluid viscosity, latent heat, heat flux and gravity. Influence of the heat pipe phenomenon on wellbore heat losses was studied by use of a two-phase two-dimensional cylindrical coordinate computer model.

  2. Heat Transfer Applications for the Stimulated Reservoir Volume

    E-Print Network [OSTI]

    Thoram, Srikanth

    2011-10-21T23:59:59.000Z

    from oil shale. Thermal decomposition of kerogen to oil and gas requires heating the oil shale to 700 degrees F. High quality saturated steam generated using a small scale nuclear plant was used for heating the formation to the necessary temperature...

  3. Radiative component and combined heat transfer in the thermal calculation of finned tube banks

    SciTech Connect (OSTI)

    Stehlik, P. [Technical Univ. of Brno (Czech Republic). Dept. of Process Engineering] [Technical Univ. of Brno (Czech Republic). Dept. of Process Engineering

    1999-01-01T23:59:59.000Z

    For more exact calculation of combined heat transfer in the case of finned tube banks (e.g., in the convective section of a furnace), the radiative heat transfer cannot be neglected. A new method for relatively simple calculation of total heat flux (convection + radiation + conduction in fins) is fully compatible with that for bare tube banks/bundles developed earlier. It is based on the method of radiative coefficients. However, the resulting value of heat flux must be corrected due to fin thickness and especially due to the fin radiative influence. For this purpose the so-called multiplicator of heat flux was introduced. The applicability of this methods has been demonstrated on a tubular fired heater convective section. A developed computer program based on the method has also been used for an analysis of the influence of selected parameters to show the share of radiation on the total heat flux.

  4. Resonant behavior in heat transfer across weak molecular interfaces

    SciTech Connect (OSTI)

    Sklan, Sophia R. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Alex Greaney, P. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvalis, Oregon 97331 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-21T23:59:59.000Z

    Molecular dynamics (MD) simulations are used to study, in detail, the transfer of thermal (vibrational) energy between objects with discrete vibrational spectra to those with a semi-continuum of spectra. The transfer of energy is stochastic and strongly dependent on the instantaneous separation between the bodies. The insight from the MD simulations can be captured with a simple classical model that agrees well with quantum models. This model can be used to optimize systems for efficient frequency selective energy transfer, which can be used in designing a chemical sensor through nanomechanical resonance spectroscopy.

  5. Stress and Heat Transfer Analyses for Different Channel Arrangements of PCHE

    SciTech Connect (OSTI)

    Jong B. Lim; Robert G. Shrake; Eung S. Kim; Chang H. Oh

    2008-11-01T23:59:59.000Z

    Stress and heat transfer analyses are being performed on the different channel arrangements of Printed Circuit Heat Exchanger (PCHE) proposed for application of VHTRs using ABAQUS [ABAQUS, 2007] and COMSOL [COMSOL, 2007], respectively. The work is being done to determine the configuration that would result in minimum stress for the same heat performance. This paper discusses the effects of shifting the coolant channels in every other row to reduce stress.

  6. Temperature profile and heat transfer model for a chemical wastewater treatment plant

    SciTech Connect (OSTI)

    Brown, E.V. (CH2M HILL, Atlanta, GA (United States)); Enzminger, J.D. (CH2M HILL, Parsippany, NJ (United States))

    1991-08-01T23:59:59.000Z

    This paper presents a heat transfer model for equalization, activated sludge, and trickling filter unit processes than can be used to assess the effect of operating temperature on unit process selection, materials of construction selection, and heat retention and cooling requirements. In developing this model, the individual variables that affect the operating temperature of biological systems were first identified. Mathematical relationships were then developed to describe system behavior, based on conservation laws and rate equations. The heat transfer models were then used to developed a temperature profile of the two alternative WWTP configurations.

  7. Bibliography on augmentation of convective heat and mass transfer-II

    SciTech Connect (OSTI)

    Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.

    1983-12-01T23:59:59.000Z

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.

  8. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect (OSTI)

    Mirmoosa, M. S., E-mail: mohammad.mirmoosa@aalto.fi; Nefedov, I. S., E-mail: igor.nefedov@aalto.fi; Simovski, C. R., E-mail: konstantin.simovski@aalto.fi [Department of Radio Science and Engineering, School of Electrical Engineering, Aalto University, P. O. Box 13000, 00076 Aalto (Finland); Rüting, F., E-mail: felix.ruting@uam.es [Departamento de Física Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, E-28049 (Spain)

    2014-06-21T23:59:59.000Z

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  9. Enhanced surfaces lead to increased heat transfer and power density.

    E-Print Network [OSTI]

    electric vehicles (HEVs) and electric vehicles (EVs) to con- vert DC battery power into a form that can IHTC-14, Washington, DC, USA. Moreno, G., 2010,"Characterization and Development of Advanced Heat

  10. Heat Transfer to the Structure during the Fire 

    E-Print Network [OSTI]

    Jowsey, Allan; Torero, Jose L; Lane, Barbara

    2007-11-14T23:59:59.000Z

    The post-flashover Fire Test One of a furnished room in Dalmarnock provides a wealth of information including measurements in both the gas phase and on compartment boundaries (Chapter 3). Total heat fluxes at a number ...

  11. Influence of Infrared Radiation on Attic Heat Transfer 

    E-Print Network [OSTI]

    Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

    1985-01-01T23:59:59.000Z

    roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model...

  12. Separate effects of surface roughness, wettability and porosity on boiling heat transfer and critical heat flux and optimization of boiling surfaces

    E-Print Network [OSTI]

    O'Hanley, Harrison Fagan

    2012-01-01T23:59:59.000Z

    The separate effects of surface wettability, porosity, and roughness on critical heat flux (CHF) and heat transfer coefficient (HTC) were examined using carefully-engineered surfaces. All test surfaces were prepared on ...

  13. Nanoscale modification of key surface parameters to augment pool boiling heat transfer and critical heat flux in water and dielectric fluids

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2009-01-01T23:59:59.000Z

    Surface effects on pool boiling heat transfer and the critical heat flux are well documented but poorly understood. This study investigates the pool boiling characteristics of various fluids, and demonstrates that surface ...

  14. Heat Transfer -1 You are given the following information for a fluid with thermal conductivity of k = 0.0284 W/m-K that

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 1 You are given the following information for a fluid with thermal conductivity the flow is laminar near the wall. a) (30 points) Determine the corresponding heat transfer coefficient the heat transfer coefficient as a function of x. c) (25 points) Determine the average heat transfer

  15. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  16. 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-39 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined. Assumptions The heat pump operates steadily. Analysis Combining.5¸ ¹ · ¨ © § ¸ ¸ ¹ · ¨ ¨ © § 1.6 1 1)K300( COP 1 1 maxHP, HL TT Based upon the definition of the heat pump coefficient

  17. Proceedings of the 15th International Heat Transfer Conference, IHTC-15 August 10-15, 2014, Kyoto, Japan

    E-Print Network [OSTI]

    pressure drop and reduced heat transfer to the reaction zone. KEY WORDS: Solar energy, Carbon emission combustion as the process heat for calcination. Shimizu et al. performed a thermodynamic analysis on a pairProceedings of the 15th International Heat Transfer Conference, IHTC-15 August 10-15, 2014, Kyoto

  18. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements.

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.; Choi, S. U.S.; Energy Systems; Univ. of Illinois at Chicago; Korea Inst. of Energy Research

    2008-05-01T23:59:59.000Z

    This study provides a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications. Nanofluid technology is a relatively new field, and as such, the supporting studies are not extensive. Specifically, experimental results were reviewed in this study regarding the enhancement of the thermal conductivity and convective heat transfer of nanofluids relative to conventional heat transfer fluids, and assessments were made as to the state-of-the-art of verified parametric trends and magnitudes. Pertinent parameters of particle volume concentration, particle material, particle size, particle shape, base fluid material, temperature, additive, and acidity were considered individually, and experimental results from multiple research groups were used together when assessing results. To this end, published research results from many studies were recast using a common parameter to facilitate comparisons of data among research groups and to identify thermal property and heat transfer trends. The current state of knowledge is presented as well as areas where the data are presently inconclusive or conflicting. Heat transfer enhancement for available nanofluids is shown to be in the 15-40% range, with a few situations resulting in orders of magnitude enhancement.

  19. Electron Transfer within Self-Assembling Cyclic Tetramers Using Chlorophyll-Based Donor?Acceptor Building Blocks

    SciTech Connect (OSTI)

    Gunderson, Victoria L.; Smeigh, Amanda L.; Kim, Chul Hoon; Co, Dick T.; Wasielewski, Michael R. (NWU)

    2012-05-09T23:59:59.000Z

    The synthesis and photoinduced charge transfer properties of a series of Chl-based donor-acceptor triad building blocks that self-assemble into cyclic tetramers are reported. Chlorophyll a was converted into zinc methyl 3-ethylpyrochlorophyllide a (Chl) and then further modified at its 20-position to covalently attach a pyromellitimide (PI) acceptor bearing a pyridine ligand and one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) secondary electron acceptors to give Chl-PI-NDI and Chl-PI-NDI2. The pyridine ligand within each ambident triad enables intermolecular Chl metal-ligand coordination in dry toluene, which results in the formation of cyclic tetramers in solution, as determined using small- and wide-angle X-ray scattering at a synchrotron source. Femtosecond and nanosecond transient absorption spectroscopy of the monomers in toluene-1% pyridine and the cyclic tetramers in toluene shows that the selective photoexcitation of Chl results in intramolecular electron transfer from 1*Chl to PI to form Chl+{lg_bullet}-PI-{lg_bullet}-NDI and Chl+{lg_bullet}-PI-{lg_bullet}-NDI2. This initial charge separation is followed by a rapid charge shift from PI-{lg_bullet} to NDI and subsequent charge recombination of Chl+{lg_bullet}-PI-NDI-{lg_bullet} and Chl+{lg_bullet}-PI-(NDI)NDI-{lg_bullet} on a 5-30 ns time scale. Charge recombination in the Chl-PI-NDI2 cyclic tetramer ({tau}CR = 30 {+-} 1 ns in toluene) is slower by a factor of 3 relative to the monomeric building blocks ({tau}CR = 10 {+-} 1 ns in toluene-1% pyridine). This indicates that the self-assembly of these building blocks into the cyclic tetramers alters their structures in a way that lengthens their charge separation lifetimes, which is an advantageous strategy for artificial photosynthetic systems.

  20. Investigation of combined heat and mass transfer from a wet heat exchanger. Part 2. Experimental results and operational characteristics of heat exchangers in dry/wet operations

    SciTech Connect (OSTI)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-04-01T23:59:59.000Z

    This second part of a two-part paper summarizes the experimental evaluation of a plate finned heat exchanger both with and without the surface wetted by a flowing film of water. The results indicate an increase in heat transfer during wet operation of two to five times over that of dry operation for the same meteorological conditions. The deluge model is shown to accurately predict the wet performance using an experimentally determined deluge film coefficient and the dry performance characteristics.

  1. The Advantages of Sealless Pumps in Heat Transfer Fluid Services 

    E-Print Network [OSTI]

    Smith, M. D.

    1999-01-01T23:59:59.000Z

    in undesirable ways. Sealless pumps are well suited to HTF applications, eliminating many of the issues which challenge mechanical seals. In addition, one type of sealless pump, the canned motor pump, raises the thermal efficiency of HTF systems. Waste heat from...

  2. TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION

    SciTech Connect (OSTI)

    Lee, S.

    2013-06-27T23:59:59.000Z

    The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP?s for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.

  3. Proceedings of NHTC'00 34th National Heat Transfer Conference

    E-Print Network [OSTI]

    Wang, Chao-Yang

    the stack to remove the excess heat (around 4% of the available electrical power). Theoretical calculations to the stack for reacting (around 16% of the available electrical power) and pumping coolant water through of the coolant relative to the anode flow direction are assessed in the context of the thermal management of PEM

  4. Enhancement of Pool Boiling Heat Transfer in Confined Space 

    E-Print Network [OSTI]

    Hsu, Chia-Hsiang

    2014-05-05T23:59:59.000Z

    on pool boiling. In the study, confinement was achieved by placing a flat plate over heated surface. The flat plate has a hole in the middle, and there is a gap between the flat plate and the heater. The diameters of hole are 2 mm, 3 mm, and 4 mm; the gap...

  5. Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Lai, C.H.; Bodvarsson, G.S.; Truesdell, A.H. (Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.)

    1994-02-01T23:59:59.000Z

    Phase distribution as well as mass flow and heat transfer behavior in two-phase geothermal systems have been studied by numerical modeling. A two-dimensional porous-slab model was used with a non-uniform heat flux boundary conditions at the bottom. Steady-state solutions are obtained for the phase distribution and heat transfer behavior for cases with different mass of fluid (gas saturation) in place, permeabilities, and capillary pressures. The results obtained show very efficient heat transfer in the vapor-dominated zone due to the development of heat pipes and near-uniform saturations. The phase distribution below the vapor-dominated zone depends on permeability. For relatively high-permeability systems, single-phase liquid zones prevail, with convection providing the energy throughput. For lower permeability systems, a two-phase liquid-dominated zone develops, because single-phase liquid convection is not sufficient to dissipate heat released from the source. These results are consistent with observations from the field, where most high-temperature liquid-dominated two-phase systems have relatively low permeabilities e.g. Krafla, Iceland; Kenya; Baca, New Mexico. The numerical results obtained also show that for high heat flow a high-temperature single-phase vapor zone can develop below a typical (240 C) vapor-dominated zone, as has recently been found at the Geysers, California, and Larderello, Italy.

  6. A convective-radiative heat transfer model for gas core reactors

    SciTech Connect (OSTI)

    Chen, G.; Anghaie, S. [Univ. of Florida, Gainesville, FL (United States)

    1995-12-31T23:59:59.000Z

    A convective-radiative heat transfer model is developed and used to predict the temperature distribution in gaseous fuel nuclear reactor cores. The axisymmetric, thin layer Navier-Stokes equations with diffusive radiation source term are the basis for this modeling approach. An algebraic turbulence model is used to calculate the eddy viscosity. The Rosseland diffusion approximation is used to model the radiative heat transfer. A hybrid implicit-explicit numerical scheme with Gauss-Seidel iterative process and a highly stretched grid system near wall is employed to solve the governing equations. Several cases with different internal heat generation rates are modeled and analyzed. Results of the temperature distribution, wall heat flux and the associated Nusselt number are presented. The influence of the internal heat generation rate and the wall temperature on the radiative and convective wall heat fluxes are discussed. At gas and wall temperatures close to 3,500 K and 1,600 K, respectively, the radiative and convective heat transfer rates have similar values.

  7. Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace

    SciTech Connect (OSTI)

    Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.

    2000-08-02T23:59:59.000Z

    A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.

  8. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect (OSTI)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01T23:59:59.000Z

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  9. EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF IONIC LIQUID IN A RECTANGULAR ENCLOSURE HEATED FROM BELOW

    SciTech Connect (OSTI)

    Fox, E.; Visser, A.; Bridges, N.

    2011-07-18T23:59:59.000Z

    This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.

  10. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11T23:59:59.000Z

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  11. Comments on article 'symmetric heat and mass transfer in a rotating spherical layer,' JETP 94 (3), 459 (2002)

    SciTech Connect (OSTI)

    Alexandrov, D. V., E-mail: Dmitri.Alexandrov@usu.ru; Malygin, A. P. [Ural Federal University (Russian Federation)

    2012-02-15T23:59:59.000Z

    Analytic solutions to the heat and mass transfer equations, which were obtained in [1], are corrected. It is shown that the dependence of the growth rate of the Earth's inner core on heat flux changes in this case.

  12. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  13. IntroductiontoProcessEngineering(PTG) 5. Heat transfer

    E-Print Network [OSTI]

    Zevenhoven, Ron

    ) · Heat conductance as Gheat =1/Rheat = Q/T (unit: W/K or W/°C) · For a plane material with thickness L (m) and conductivity (W/mK): Gheat = ·A/L Rheat = L/(·A) . . . #5/6 IntroductiontoProcessEngineering(PTG) VST rz13 10). If is a constant: with thermal conductivity , unit: W/(mK) (sv: termisk konduktivitet eller värmeledningsförmåga

  14. Heat transfer through a thin film on a horizontal plate at high vacuum

    E-Print Network [OSTI]

    Moore, Calvin Edward

    1959-01-01T23:59:59.000Z

    on the theory for the operation of this type of fractionator, but no heat transfer data can be found for engineering design purposes. The data that are available were taken at pressures many times greater than the 1 mm. of mercury operating pressure now... being used. It is hoped that this study of heat transfer coefficients for boiling liquids below 5 mm. of mercury will furnish in? formation of value in this field of high vacuum. The effect of film thickness and types of boilin that were encountered...

  15. THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.

    2013-04-15T23:59:59.000Z

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  16. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-06-23T23:59:59.000Z

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  17. Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer

    E-Print Network [OSTI]

    Meador, Charles Michael

    2011-02-22T23:59:59.000Z

    MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate...

  18. The effect of the number of wavebands used in spectral radiation heat transfer calculations

    SciTech Connect (OSTI)

    Chang, S. L.; Golchert, B.; Petrick, M.

    2000-05-09T23:59:59.000Z

    A spectral radiation heat transfer model that conserves emitted and absorbed energy has been developed and used to model the combustion space of an industrial glass furnace. This comprehensive radiation heat transfer model coupled with a computational fluid dynamics (CFD) code was used to investigate the effect of spectral dependencies on the computed results. The results of this work clearly indicate the need for a spectral approach as opposed to a gray body approach since the gray body approach (one waveband) severely underestimates the energy emitted via radiation.

  19. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  20. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  1. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  2. Nonlocal study of the near field radiative heat transfer between two n-doped semiconductors

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01T23:59:59.000Z

    We study in this work the near-field radiative heat transfer between two semi-infinite parallel planes of highly n-doped semiconductors. Using a nonlocal model of the dielectric permittivity, usually used for the case of metallic planes, we show that the radiative heat transfer coefficientsaturates as the separation distance is reduced for high doping concentration. These results replace the 1/d${}^2$ infinite divergence obtained in the local model case. Different features of the obtained results are shown to relate physically to the parameters of the materials, mainly the doping concentration and the plasmon frequency.

  3. Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid

    SciTech Connect (OSTI)

    Zhao, Nannan; Fu, Benwei [Institute of Marine Engineering and Thermal Science, College of Marine Engineering, Dalian Maritime University, Dalian 116026 (China); Key Laboratory of Marine, Mechanical and Manufacturing Engineering of the Ministry of Transport, Dalian 116026 (China); Ma, H. B., E-mail: mah@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States)

    2014-06-30T23:59:59.000Z

    Ultrasonic sound effect on bubble nucleation, oscillating motion activated by bubble formation, and its heat transfer enhancement of nanofluid was experimentally investigated. Nanofluid consists of distilled water and dysprosium (III) oxide (Dy{sub 2}O{sub 3}) nanoparticles with an average size of 98?nm and a mass ratio of 0.5%. Visualization results demonstrate that when the nanoparticles are added in the fluid influenced by the ultrasonic sound, bubble nucleation can be significantly enhanced. The oscillating motion initiated by the bubble formation of nanofluid under the influence of ultrasonic sound can significantly enhance heat transfer of nanofluid in an interconnected capillary loop.

  4. A new correlation of the convective heat transfer coefficient between an air flow and a phase change material plate

    E-Print Network [OSTI]

    of phase change material (PCM). This correlation was built for the simulation of heat storage units: Convective heat transfer coefficient, correlation, phase change material, heat storage system, transient is the use of phase change materials (PCM). The latent heat which is needed for the material melting

  5. The transfer of heat and mass to a vertical plate under frosting conditions

    E-Print Network [OSTI]

    Poth, Louis Joseph

    1960-01-01T23:59:59.000Z

    THE TRAESFPIR OF HEAT . 'ND NASH 10 A VERTICAL PLATE UNDER FROSTING CONDITIONS A Thesis Louis Joseph Poth, Jr. Submitted to the Graduate School of the Agricultural and Nechanioal College of Texas in partial fulfili ment of the requirements... of the Husselt-Grashof correlation for heat transfer. coefficient of saturation temper ture and concen- tration gradient correlation, for small temper- ature difference. ooefficient of frost specific gravity-thermal oonductivity correlation. coefficient...

  6. Standard Test Method for Measuring Heat Transfer Rate Using a Thin-Skin Calorimeter

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01T23:59:59.000Z

    1.1 This test method covers the design and use of a thin metallic calorimeter for measuring heat transfer rate (also called heat flux). Thermocouples are attached to the unexposed surface of the calorimeter. A one-dimensional heat flow analysis is used for calculating the heat transfer rate from the temperature measurements. Applications include aerodynamic heating, laser and radiation power measurements, and fire safety testing. 1.2 Advantages 1.2.1 Simplicity of ConstructionThe calorimeter may be constructed from a number of materials. The size and shape can often be made to match the actual application. Thermocouples may be attached to the metal by spot, electron beam, or laser welding. 1.2.2 Heat transfer rate distributions may be obtained if metals with low thermal conductivity, such as some stainless steels, are used. 1.2.3 The calorimeters can be fabricated with smooth surfaces, without insulators or plugs and the attendant temperature discontinuities, to provide more realistic flow conditions for ...

  7. The Advantages of Sealless Pumps in Heat Transfer Fluid Services

    E-Print Network [OSTI]

    Smith, M. D.

    " ring around the outer magnet ring. Containment shell damage, from the inside, can occur due to problems with the process lubricated sleeve bearings but there is much more warning. Vibration and noise provide a warning, over a much longer period... of the issues which challenge mechanical seals. In addition, one type of sealless pump, the canned motor pump, raises the thermal efficiency of HTF systems. Waste heat from the drive motors of m'ost pumps is dissipated to the air. A shaft driven fan wastes...

  8. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers toHeat Pumps

  9. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    SciTech Connect (OSTI)

    Carlson, M. [Univ. of Wisconsin - Madison, 839 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States); Kruizenga, A. [Sandia National Laboratory (United States); Anderson, M.; Corradini, M. [Univ. of Wisconsin - Madison, 839 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2012-07-01T23:59:59.000Z

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  10. A comparative study on a non-linear turbulent heat transfer model for separating and reattaching flows

    SciTech Connect (OSTI)

    Jia, S.; Chung, B.T.F. [Univ. of Akron, OH (United States). Dept. of Mechanical Engineering

    1996-12-31T23:59:59.000Z

    Based on a previously proposed non-linear turbulence model, a turbulent heat transfer model is formulated in the present study using the concept of Generalized Gradient Diffusion (GGD) hypothesis. Under this hypothesis, an anisotropic thermal diffusivity can be obtained through the proposed non-linear turbulent model which is applied to the turbulent flow and heat transfer in a sudden expansion pipe with a constant heat flux through the pipe wall. The numerical results are compared with the available experimental data for both turbulent and thermal quantities, with an emphasis on the non-linear heat transfer predictions. The improved results are obtained for the bulk temperature distribution showing that the present non-linear heat transfer model is capable of predicting the anisotropic turbulent heat transfer for the pipe expansion flow. Some limits of the proposed model are also identified and discussed.

  11. On the correlation of buoyancy-influenced turbulent convective heat transfer to fluids at supercritical pressure

    SciTech Connect (OSTI)

    Jackson, J. D. [Univ. of Manchester, Manchester (United Kingdom); Jiang, P. X.; Liu, B. [Tsinghua Univ., Thermal Engineering Dept., Beijing (China)

    2012-07-01T23:59:59.000Z

    This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experiments using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)

  12. TEMP: A finite line heat transfer code for geologic repositories for nuclear waste

    SciTech Connect (OSTI)

    Wurm, K.J.; Bloom, S.G.; Atterbury, W.G.; Hetteberg, J.R.

    1987-10-01T23:59:59.000Z

    TEMP is a FORTRAN computer code for calculating temperatures in a geologic repository for nuclear waste. It will calculate the incremental temperature contributed by a single heat source, by an infinite array of heat sources, or by heat sources geometrically arranged in a finite array. In the finite array geometry, different types of heat sources can be placed in different regions at different times to more closely approximate the emplacement of waste in a repository. TEMP uses a semi-analytical technique for solving the equation for a heat producing finite length line source in an infinite and isotropic medium. Temperature contributions from individual heat sources are superimposed to determine the temperature at a specific location and time in a repository of multiple heat sources. Thermal conductivity of the geologic medium can be a function of temperature, and, when it is, an approximation is made for the temperature dependence of thermal diffusivity. This report derives the equations solved by TEMP and documents its accuracy by comparing its results to known analytical solutions and to the finite-difference and finite-element heat transfer codes HEATING5, HEATING6, THAC-SIP-3D, SPECTROM-41, and STEALTH-2D. The temperature results from TEMP are shown to be very accurate when compared to the analytical solutions and to the results from the finite-difference and finite-element codes. 8 refs., 97 figs., 39 tabs.

  13. Heat Transfer Characteristics of Mark 15 Slugs for Different Bonding Conditions

    SciTech Connect (OSTI)

    McAllister, J.E. Jr.

    2001-08-13T23:59:59.000Z

    A numerical heat transfer model based on the HEATING53 conduction code was developed to analyze poor bonding around the endcap of the outer Mark 15 slug. An analytical model could not be developed because of non-uniform heat generation in the core and the arrangement of the various materials in the cylindrical geometry. Results for air gaps are also included; however, they are not considered reasonable poor bond cases because the 300 area inspection tests can detect slugs with air gaps. This reports discusses the test results.

  14. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks

    E-Print Network [OSTI]

    Zhang, Yuwen

    impingement with nanoencapsulated phase change materials (NEP- CM) slurry as coolant. In this study such as a mixture of nano-encapsulated phase change material to dissipate the heat from the heat sourceThree dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change

  15. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01T23:59:59.000Z

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  16. Models for Metal Hydride Particle Shape, Packing, and Heat Transfer

    E-Print Network [OSTI]

    Kyle C. Smith; Timothy S. Fisher

    2012-05-04T23:59:59.000Z

    A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.

  17. Airfoil Heat Transfer Characteristics in Syngas and Hydrogen Turbines

    SciTech Connect (OSTI)

    Mazzotta, D.W. (Univ. of Pittsburgh); Chyu, M.K. (Univ. of Pittsburgh); Alvin, M.A.

    2007-05-01T23:59:59.000Z

    Hydrogen or coal-derivative syngas turbines promise increased efficiency with exceptionally low NOx emissions compared to the natural gas based turbines. To reach this goal, turbine inlet temperature (TIT) will need to be elevated to a level exceeding 1700°C [1, 2]. The thermal load induced by such a temperature increase alone will lead to immense challenges in maintaining material integrity of turbine components. In addition, as working fluid in the gas path will primarily be steam, possibly mixed with carbon oxides, the aero-thermal characteristic in a hydrogen turbine is expected to be far different from that of air/nitrogen enriched gas stream in a gas turbine. For instance, steam has distinctly higher density and specific heat in comparison to a mixture of air and combustion gases as they are expanded in a conventional gas turbine. Even if the temperature limits remain about the same, the expansion in a hydrogen turbine will have to proceed with a greater enthalpy drop and therefore requires a larger number of stages. This also implies that the flow areas may need to be expanded and blade span to be enlarged. Meanwhile, a greater number of stages and hot surfaces need to be protected. This also suggests that current cooling technology available for modern day gas turbines has to be significantly improved. The ultimate goal of the present study is to systematically investigate critical issues concerning cooling technology as it is applicable to oxy-fuel and hydrogen turbine systems, and the main scope is to develop viable means to estimate the thermal load on the turbine “gas side”, that is eventually to be removed from the “coolant side”, and to comparatively quantify the implication of external heat load and potential thermal barrier coating (TBC) degradation on the component durability and lifing. The analysis is based on two well-tested commercial codes, FLUENT and ANSYS.

  18. Surface heating effect on local heat transfer in a rotating two-pass square channel with 60 deg angled rib turbulators

    SciTech Connect (OSTI)

    Zhang, Y.M.; Han, J.C.; Parsons, J.A. [Texas A and M Univ., College Station, TX (United States); Lee, C.P. [General Electric Co., Cincinnati, OH (United States)

    1995-04-01T23:59:59.000Z

    The influence of uneven wall temperature on the local heat transfer coefficient in a rotating, two-pass, square channel with 60 deg ribs on the leading and trailing walls was investigated for Reynolds number from 2,500 to 25,000 and rotation numbers from 0 to 0.352. Each pass, composed of six isolated copper sections, had a length-to-hydraulic diameter ratio of 12. The mean rotating radius-to-hydraulic diameter ratio was 30. Three thermal boundary condition cases were studied: (A) all four walls at the same temperature, (B) all four walls at the same heat flux, and (C) trailing wall hotter than leading with side walls unheated and insulated. Results indicate that rotating ribbed wall heat transfer coefficients increase by a factor of 2 to 3 over the rotating smooth wall data and at reduced coefficient variation from inlet to exit. As rotation number (or buoyancy parameter) increases, the first pass (outflow) trailing heat transfer coefficients increase and the first pass leading heat transfer coefficients decrease, whereas the reverse is true for the second pass (inflow). The direction of the Coriolis force reverse from the outflow trailing wall to the inflow leading wall. Differences between the first pass leading and trailing heat transfer coefficients increase with rotation number. A similar behavior is seen for the second pass leading and trailing heat transfer coefficients, but the differences are reduced due to buoyancy changing from aiding to opposing the inertia force. The results suggest that uneven wall temperature has a significant impact on the local heat transfer coefficients. The heat transfer coefficients on the first pass leading wall for cases B and C are up to 70--100% higher than that for case A, while the heat transfer coefficients on the second pass trailing wall for cases B and C are up to 20--50% higher.

  19. Development and assessment of a coupled strategy for conjugate heat transfer with Large Eddy Simulation.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the temperature and pressure levels reached in the combustor, and therefore the engine efficiency. Numerical simulations of the thermal interaction between fluid flows and solids offer new design paths to diminish converge to steady thermal states. There are two basic approaches to solve Conjugate Heat Transfer (CHT

  20. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  1. A numerical study of heat and momentum transfer over a bank of flat tubes 

    E-Print Network [OSTI]

    Bahaidarah, Haitham M. S.

    2005-11-01T23:59:59.000Z

    ), Prandtl number (Pr), length ratio (L/Da), and height ratio (H/Da), on the pressure drop and heat transfer were studied. A finite volume based FORTRAN code was developed to solve the governing equations. The scalar and velocity variables were stored...

  2. Elevated freestream turbulence effects on heat transfer for a gas turbine vane

    E-Print Network [OSTI]

    Thole, Karen A.

    turbine airfoil, particularly for the first stage nozzle guide vane. For this study, augmentations. To incorporate all of the variables affecting boundary layer development on gas turbine airfoils, studies needElevated freestream turbulence effects on heat transfer for a gas turbine vane K.A. Thole a,*, R

  3. Heat transfer from multiple row arrays of low aspect ratio pin fins Seth A. Lawson a,

    E-Print Network [OSTI]

    Thole, Karen A.

    internal and external cooling techniques. One method for cooling is routing air from the compressor through pressure drop Gas turbine Internal cooling a b s t r a c t Pin fin arrays are used in many applications intricate cooling channels embedded in turbine air- foils. Heat transfer from the blade to the coolant air

  4. Heat Transfer Engineering, 30(9):751761, 2009 Copyright C Taylor and Francis Group, LLC

    E-Print Network [OSTI]

    Khandekar, Sameer

    . The working fluid employed was distilled, deionized, and degassed water. A three-dimensional (3D-7632 print / 1521-0537 online DOI: 10.1080/01457630802678573 Simultaneously Developing Flows Under Conjugated The need for economically viable, energy-efficient, compact heat transfer systems is increasing day by day

  5. Heat transfer augmentation in a rectangular channel with slit rib-turbulators on two opposite walls

    SciTech Connect (OSTI)

    Hwang, J.J. [Chung-Hua Polytechnic Inst., Hsinchu (Taiwan, Province of China). Dept. of Mechanical Engineering; Liou, T.M. [National Tsing-Hua Univ., Hsinchu (Taiwan, Province of China). Dept. of Power Mechanical Engineering

    1997-07-01T23:59:59.000Z

    The effect of slit ribs on heat transfer and friction in a rectangular channel is investigated experimentally. The slit ribs are arranged in-line on two opposite walls of the channel. Three rib open-area ratios ({beta} = 24, 37, and 46%), three rib pitch-to-height ratios (Pi/H = 10, 20, and 30), and two rib height-to-channel hydraulic diameter ratios (H/De = 0.081, and 0.162) are examined. The Reynolds number ranges from 10,000 to 50,000. Laser holographic interferometry is employed to measure the local heat transfer coefficients of the ribbed wall quantitatively, and observe the flow over the ribbed wall qualitatively. The results show that the slit rib has an advantage of avoiding hot spots. In addition, the heat transfer performance of the slit-ribbed channel is much better than that of the solid-ribbed channel. Semi-empirical correlations for friction and heat transfer are developed to account for rib spacings and open-area ratios. These correlations may be used in the design of turbine blade cooling passages.

  6. A Study of Heat Transfer in a Composite Wall Collector System with Porous Absorber 

    E-Print Network [OSTI]

    Chen, W.

    2006-01-01T23:59:59.000Z

    In this paper, heat transfer and flow in a composite solar wall with porous absorber has been studied. The unsteady numerical simulation is employed to analyze the performance of the flow and temperature field in the composite solar wall. The excess...

  7. Heat transfer and film-cooling for the endwall of a first stage turbine vane

    E-Print Network [OSTI]

    Thole, Karen A.

    as the pressure side horseshoe vortex, develops as the flow is turned by the turbine vane or rotor bladeHeat transfer and film-cooling for the endwall of a first stage turbine vane Karen A. Thole of the airfoils. One means of preventing degradation in the turbine is to film-cool components whereby coolant

  8. A Study of Heat Transfer in a Composite Wall Collector System with Porous Absorber

    E-Print Network [OSTI]

    Chen, W.

    2006-01-01T23:59:59.000Z

    In this paper, heat transfer and flow in a composite solar wall with porous absorber has been studied. The unsteady numerical simulation is employed to analyze the performance of the flow and temperature field in the composite solar wall. The excess...

  9. Numerical study of flow and heat transfer in 3D serpentine channels using colocated grids

    E-Print Network [OSTI]

    Chintada, Sailesh Raju

    1998-01-01T23:59:59.000Z

    the walls is held constant at a value of 40. 0 W/ms. The specification of this value is arbitrary and it does not change the Nusselt number (Nu), though the temperature field is dependent on it. However, in case of PDF heat transfer, the solution...

  10. COUPLING OF DARCY-FORCHHEIMER AND COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH HEAT TRANSFER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    COUPLING OF DARCY-FORCHHEIMER AND COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH HEAT TRANSFER M. AMARA are respectively described by the Darcy-Forchheimer and the compressible Navier-Stokes equations, together coordinates and consisting of the Darcy- Forchheimer equation coupled with an exhaustive energy balance, has

  11. Study of the Effects of Surface Morphology and Droplet Growth Dynamics on Condensation Heat Transfer

    E-Print Network [OSTI]

    Yao, Chun-Wei

    2014-04-23T23:59:59.000Z

    system 2 on Sample 3 (50??m micropillar spacing hybrid surface) ............................................................................................... 66 Figure 24. Environmental scanning electron microscopy (ESEM) time- sequence images... tension gradients to promote and induce a droplet removal mechanism. They concluded that their gradient surface exhibited a higher heat transfer coefficient than a hydrophobic silane based surface. More recently, environmental scanning electron...

  12. ANALYSIS O F HEAT TRANSFER AND ENERGY RECOVERY I N FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-31 ANALYSIS O F HEAT TRANSFER AND ENERGY RECOVERY I N FRACTURED GEOTHERMAL RESERVOIRS by R . . . . . . . . . . . . . . . . . . . . . 64 iii #12;3.6 Energy Balance of a Fractured Geothermal Reservoir . . . 3.6.1 Reservoir Rock Energy of Experimental Apparatus . . . . . . . . . 6 2.1.1 The Reservoir . . . . . . . . . . . . . . . . . . 6 2

  13. HTDVol.335, Proceedings of hte ASME Heat Transfer Division THERMOACOUSTIC WAVE PROPAGATION MODELING USING

    E-Print Network [OSTI]

    Vasilyev, Oleg V.

    HTD­Vol.335, Proceedings of hte ASME Heat Transfer Division Volume 4 ASME 1996 THERMOACOUSTIC WAVE ABSTRACT Thermoacoustic wave propagation in a two­dimensional rectan­ gular cavity is studied numerically. The thermoacoustic waves are generated by raising the temperature locally at the walls. The waves, which decay

  14. Residential Slab-On-Grade Heat Transfer in Hot Humid Climates

    E-Print Network [OSTI]

    Clark, E.; Ascolese, M.; Collins, W.

    1989-01-01T23:59:59.000Z

    resistances, thermostat setting and soil properties. Factors affecting Tm are discussed. For a typical carpeted residence in the hottest U.S. climates, the cooling load due to the slab is about 5 million Btu per cooling season. In some climates heat transfer...

  15. ME 544 Advanced Heat Transfer Spring 2013 Time: 2pm-3pm MWF

    E-Print Network [OSTI]

    are demonstrated for a variety of engineering problems. Since most engineering devices have thermal energy and engineering applications of heat transfer including conduction, convection, and radiation. Course Learning Objectives: In this course, students will learn how to 1. Model engineering problems that have conduction

  16. Proceedings of HT 2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Walker, D. Greg

    Proceedings of HT 2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8­12, 2007, Vancouver, British Columbia, Canada HT2007-1520 MOLECULAR DYNAMICS SIMULATION OF THERMAL Engineering Vanderbilt University Nashville, TN USA, 37235 ABSTRACT The effectiveness of a thermoelectric

  17. Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8-BALLISTIC PHONON TRANSPORT IN A CARBON NANOTUBE Junichiro Shiomi Department of Mechanical Engineering Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan ABSTRACT We report a non

  18. On exact and perturbation solutions to nonlinear equations for heat transfer models

    E-Print Network [OSTI]

    Francisco M. Fernández

    2009-11-03T23:59:59.000Z

    We analyze some exact and approximate solutions to nonlinear equations for heat transfer models. We prove that recent results derived from a method based on Lie algebras are either trivial or wrong. We test a simple analytical expression based on the hypervirial theorem and also discuss earlier perturbation results.

  19. ASME Journal of Heat Transfer Vol. 121(3), pp.646-652, 1999

    E-Print Network [OSTI]

    Zhao, Tianshou

    1 ASME Journal of Heat Transfer Vol. 121(3), pp.646-652, 1999 Variations of Buoyancy-Induced Mass Assistant Professor, Assoc. Mem. ASME Q. Liao* Research Associate P. Cheng Professor, Fellow ASME Department-8647; Fax: (852) 2358-1543. * Permanent Address: Dept. of Thermal Power Engineering, Chongqing University

  20. Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components.

    E-Print Network [OSTI]

    Nicoud, Franck

    Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components. Florent Duchaine constraint for GT (gas turbines). Most existing CHT tools are developped for chained, steady phenomena. A film-cooled turbine vane is then studied. Thermal conduction in the blade implies lower wall