Sample records for blm wyoming state

  1. BLM Wyoming State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM SierraBLM West

  2. Wyoming Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is...

  3. BLM Utah State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM Sierra FrontBLM

  4. BLM Alaska State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources JumpPáginasLeasingBLM Alaska

  5. BLM California State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field Office Jump to:BLM

  6. BLM Montana State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLM HumboldtMontana

  7. BLM Nevada State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLMBLM Nevada State

  8. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyoming Office

  9. BLM New Mexico State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | OpenBLM New

  10. Ammonia emission inventory for the state of Wyoming

    SciTech Connect (OSTI)

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17T23:59:59.000Z

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal resolution. Published studies indicate higher emission rates from soils and animal wastes at higher temperatures, and temporal variation in fertilizer application. A recent inverse modeling study indicates temporal variation in regional NH{sub 3} emissions. Monthly allocation factors were derived to estimate monthly emissions from soils, livestock and wild animal waste based on annual emission estimates. Monthly resolution of NH{sub 3} emissions from fertilizers is based on fertilizer sales to farmers. Statewide NH{sub 3} emissions are highest in the late spring and early summer months.

  11. Wyoming State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  12. Wyoming Office of State Lands and Investments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyoming Office of

  13. Wyoming State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyoming

  14. Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  15. EIS-0450: TransWest Express 600 kV Direct Current Transmission Project in Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, being prepared jointly by DOE’s Western Area Power Administration and the Department of the Interior’s Bureau of Land Management (Wyoming State Office), evaluates the environmental impacts of granting a right-of-way for the TransWest Express 600-kilovolt Direct Current Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project. Additional information is available at http://www.blm.gov/wy/st/en/info/NEPA/documents/hdd/transwest.html.

  16. Wyoming's Budget: From Champagne to Soda Pop

    E-Print Network [OSTI]

    Schuhmann, Robert A; Skopek, Tracy A

    2011-01-01T23:59:59.000Z

    and Skopek: Wyoming’s Budget: From Champagne to Soda Popconstruction money from budget cuts,” Casper Star-Tribune.proposes leaner state budget. ” Associated Press. Neary,

  17. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect (OSTI)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26T23:59:59.000Z

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyomingâ??s diverse energy resources. WERIC was established in 2006 by the University of Wyomingâ??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

  18. Administrator's Perceptions on Growing Populations of Students who are English Language Learners in the State of Wyoming

    E-Print Network [OSTI]

    Shannon, Keri Leigh

    2014-01-31T23:59:59.000Z

    the perspectives of district leadership regarding the growing population of ELs in the state. The purpose of the study was to understand what district leaders in the State of Wyoming are doing in terms of this growing population. The study focused on four areas...

  19. BLM - Final Programmatic Environmental Impact Statement for Geothermal...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- OtherOther: BLM - Final Programmatic Environmental Impact Statement for Geothermal Leasing in the Western United StatesLegal Abstract...

  20. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  1. BLM | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM SierraBLM WestBLM

  2. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect (OSTI)

    Foley, D.; Dorscher, M.

    1982-11-01T23:59:59.000Z

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  3. BLM | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM SierraBLM WestBLMBLM

  4. EIS-0403: DOE and BLM Notice of Availability of the Final Programmatic...

    Broader source: Energy.gov (indexed) [DOE]

    Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (AZ, CA, CO, NV, NM, and UT) The Bureau of Land Management (BLM) and the...

  5. EIS-0403-S1: DOE and BLM Notice of Availability of the Supplement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE and BLM Notice of Availability of the Supplement to the Draft Programmatic Environmental Impact Statement Solar Energy Development in Six Southwestern States The...

  6. EIS-0403: DOE and BLM Notice of Availability of the Draft Programmatic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Statement EIS-0403: DOE and BLM Notice of Availability of the Draft Programmatic Environmental Impact Statement Solar Energy Development in Six Southwestern States The...

  7. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01T23:59:59.000Z

    the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast 2009). Natural gas makes

  8. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01T23:59:59.000Z

    J. (2011b) “Wyoming Clean Coal Efforts Advance,” Casperadministra- tion pushes for clean-coal and carbon capture

  9. Wyoming Department of State Parks and Cultural Resources and Division of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State Parks and Historic Sites -

  10. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15T23:59:59.000Z

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  11. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  12. Laramie, Wyoming December, 1999

    E-Print Network [OSTI]

    Laughlin, Robert B.

    - Industrial Minerals and Uranium W. Dan Hausel, Senior Economic Geologist - Metals and Precious Stones Robert Wyoming. This rig is exploring for coalbed methane in coals of the Almond Formation, Mesaverde Group update................................................................................ 3 Exploration

  13. Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  14. BLM Ukiah Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM Sierra FrontBLM Ukiah

  15. BLM-JCI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM SierraBLM

  16. Wyoming Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming3.40 4.30

  17. BLM Arizona State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources

  18. BLM Colorado State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field Office Jump

  19. BLM Eastern States Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field Office JumpEastern

  20. BLM Oregon State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLMBLM NevadaOregon

  1. BLM Idaho State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: navigation, search OpenEI

  2. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01T23:59:59.000Z

    pushing down prices. Gas well drilling in the state wasefficiencies in the well drilling process, production

  3. Recovery Act State Memos Wyoming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The project is transitioning from preliminary characterization to commercial development of two carbon dioxide storage sites (the Rock Springs Uplift and the Moxa...

  4. BLM National Training Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLM

  5. BLM Stillwater Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM Sierra Front

  6. BLM Washington Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM Sierra

  7. Category:BLM Lease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump Lease. Add.png Add a new BLM

  8. BLM Elko District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLM Carson City

  9. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program...

  10. BLM and Forest Service Consider Large-Scale Geothermal Leasing...

    Energy Savers [EERE]

    and Forest Service Consider Large-Scale Geothermal Leasing BLM and Forest Service Consider Large-Scale Geothermal Leasing June 18, 2008 - 4:29pm Addthis In an effort to encourage...

  11. Role of site characteristics in coal gasification. [Hanna, Wyoming

    SciTech Connect (OSTI)

    Bader, B.E.; Glass, R.E.

    1981-12-01T23:59:59.000Z

    Field test data for a series of four underground coal gasification tests (UCG) at a site near Hanna, Wyoming are presented. Results of these field tests were combined with modeling efforts to identify site selective parameters broadly identified as the flow and mechanical properties of a coal seam that can help determine the degree to which any UCG test would be successful. Specifically, the characteristics shown to be important are concluded to be: (1) permeability structure and mobile water, which play a crucial role in determining air flow paths; (2) high permeability zones at midstream and above to act as the primary air flow path; (3) spacing of injection and production wells can be varied to enhance the chance of keeping the air flow paths low in the coal seam; (4) completion of the process wells in a manner that minimizes neighboring permeability inhibits the chance of override; (5) the orthotropic permeability of coal improve UCG results; (6) thermochemical properties of coal are important with respect to the manner of combustion front propogation; and (7) heating will result in stress dependent anisotropic strength characteristics of the coal. Other properties characteristic of a given coal, petrographic constitutents of a coal, chemistry of combustion and the in situ stress distribution are also pointed out as significant factors to be considered in the most efficient use of UCG technique. 14 references, (BLM)

  12. Recovery Act State Summaries | Department of Energy

    Energy Savers [EERE]

    Act State Memo Virgin Islands Recovery Act State Memo Washington Recovery Act State Memo West Virginia Recovery Act State Memo Wisconsin Recovery Act State Memo Wyoming Recovery...

  13. EIS-0450: TransWest Express Transmission Project in Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  14. EIS-0450: BLM and WAPA Notice of Availability of a Final Environmental...

    Office of Environmental Management (EM)

    50: BLM and WAPA Notice of Availability of a Final Environmental Impact Statement EIS-0450: BLM and WAPA Notice of Availability of a Final Environmental Impact Statement TransWest...

  15. Wyoming's Budget: From Champagne to Soda Pop

    E-Print Network [OSTI]

    Schuhmann, Robert A; Skopek, Tracy A

    2011-01-01T23:59:59.000Z

    the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast, 7/4/09). Natural gas

  16. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  17. BLM West Desert District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM SierraBLM West Desert

  18. BLM Idaho Falls District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLM Carson CityBLM

  19. Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming (Million

  20. Alternative Fuels Data Center: Wyoming Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Wyoming, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  1. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    irrigation systems range from 45% to 60%, while sprinkler, and user oriented bulletins. Results are also available through the Wyoming Water Resources Data Systems library. Research Program #12;Hydrologic Impacts of Improved Irrigation Efficiencies and Land Use Changes

  2. EIS-0403: BLM Notice of Availability of Maps and Additional Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BLM Notice of Availability of Maps and Additional Public Scoping from the Programmatic Environmental Impact Statement (Second Scoping Period) Solar Energy Development in Six...

  3. wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances by Climate6,1996 http://www.eia.doe.govEffects

  4. Assessment of Impacts from Adopting the 2006 International Energy Conservation Code for Residential Buildings in Wyoming

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2007-10-01T23:59:59.000Z

    The state of Wyoming currently does not have a statewide building energy efficiency code for residential buildings. The U.S. Department of Energy has requested Pacific Northwest National Laboratory (PNNL) to estimate the energy savings, economic impacts, and pollution reduction from adopting the 2006 International Energy Conservation Code (IECC). This report addresses the impacts for low-rise residential buildings only.

  5. DOE - Office of Legacy Management -- Wyoming

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona ArizonaWyoming Wyoming wy_map Riverton Site

  6. Wyoming Infrastructure Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyoming DepartmentWyoming

  7. File:Blm lup handbook.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BVEnergy3(2009).pdf JumpLab.pdf Jump to:Blm lup

  8. File:BLM MOU Geothermal.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463 Ă—Apschem.pdf JumpArchaeologyBLM

  9. BLM Approves Salt Wells Geothermal Energy Projects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources JumpPáginasLeasingBLM

  10. BLM Humboldt River Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLM Humboldt River

  11. BLM Las Cruces District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLM Humboldt

  12. BLM Sierra Front Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM Sierra Front Field

  13. BLM Battle Mountain District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillasInformation Bird SpeciesBLM

  14. BLM Notice of Completion of Geothermal Resource Exploration Operations |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | OpenBLM

  15. BLM Carson City District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLM Carson City

  16. BLM Twin Falls District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLM Carson

  17. State Geological Survey Contributions to the National Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Washington State Department of Natural Resources Wisconsin Geological and Natural History Survey West Virginia Geological and Economic Survey Wyoming State Geological Survey...

  18. BLM - State Protocol Agreement with Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas

  19. National Park Service- Yellowstone National Park, Wyoming

    Broader source: Energy.gov [DOE]

    Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

  20. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    , 2001). CBM extraction involves pumping methane and ground water out of coal seams. The gas and water://wwweng.uwyo.edu/civil/research/water/epmodeler.html. University of Wyoming, Laramie. 4. Wilkerson, G. V., 2002. A GIS model for evaluating the impacts of coal bed of America, Boulder, CO. #12;Problem and Research Objectives: Coal bed methane (CBM) development

  1. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    Wyoming Water Resources Center Annual Technical Report FY 1999 Introduction Research Program In the west, water is critical to survival. Data and information concerning this resource are very valuable by the Water Research Program. Basic Project Information Category Data Title Water Resources Data System Water

  2. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming

    SciTech Connect (OSTI)

    Matthews, M.L. (USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Sullivan, M. (Wyoming State Government, Cheyenne, WY (United States))

    1990-04-01T23:59:59.000Z

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

  3. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    SciTech Connect (OSTI)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01T23:59:59.000Z

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  4. Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Wyoming Regions Wyoming Regional Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School...

  5. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of contaminants at the Riverton, Wyoming, Processing Site. The Riverton site, a Uranium Mill Tailings Radiation Control Act Title I site, located on the Wind River Indian...

  6. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  7. BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power...

    Energy Savers [EERE]

    Finalizes Plans to Open 190 Million Acres to Geothermal Power BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power January 7, 2009 - 12:42pm Addthis Photo of a...

  8. IntroductionIntroduction The Ashland BLM Field Office has actively pursued fuel reduction since 1996. Treatment

    E-Print Network [OSTI]

    Muir, Patricia

    IntroductionIntroduction The Ashland BLM Field Office has actively pursued fuel reduction since hazardous fuels in the wildland urban interface (WUI). The Ashland Field Office has completed 12 landscape

  9. EIS-0441: BLM Notice of Intent to Prepare an Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Intent to Prepare an Environmental Impact Statement (Second Scoping) Mohave County Wind Farm EIS-0441-BLMNOI2-2010.pdf More Documents & Publications EIA-0441: BLM Notice of...

  10. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  11. Chemical analyses of selected thermal springs and wells in Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.

    1984-06-01T23:59:59.000Z

    Basic chemical data for 27 selected thermal well and springs in Wyoming are presented. The samples were gathered from 1979 through 1982 in an effort to define geothermal resources in Wyoming. The basic data for the 27 analyzed samples generally include location, temperature, flow, date analyzed, and a description of what the sample is from. The chemical analyses for the sample are listed.

  12. Process-scale modeling of elevated wintertime ozone in Wyoming.

    SciTech Connect (OSTI)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31T23:59:59.000Z

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  13. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  14. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30T23:59:59.000Z

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  15. Categorical Exclusion Determinations: Wyoming | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas CategoricalAdministration-Upper Great PlainsWyoming

  16. Energy Incentive Programs, Wyoming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs, Texas UpdatedWyoming Energy

  17. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin:WorldWorldIowa:Wuxi,WyomingWind

  18. Hoback, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: EnergySpain) JumpHoback, Wyoming: Energy

  19. Meeteetse, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse, Wyoming: Energy Resources Jump to:

  20. Midwest, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware:Midwest, Wyoming: Energy Resources

  1. Mills, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town,Millinocket, Maine: EnergyTexas:Wyoming:

  2. Alta, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,Energy Information JumpCoreAltAir FuelsWyoming:

  3. Wilson, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's picture SubmittedWielandJump to:Wilson, Wyoming:

  4. Wyoming Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxi GuofeiWuyishanWyoming

  5. Wyoming Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyoming Department of

  6. Wyoming Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyoming

  7. Ralston, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name: Raghuraji AgroRajaramWyoming: Energy

  8. Frannie, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show Map LoadingIllinois:Frannie, Wyoming: Energy

  9. Garland, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGangNebraska:Maine: EnergyWyoming:

  10. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

  11. Wyoming Water Resources Research Centter Annual Technical Report

    E-Print Network [OSTI]

    Systems, Irrigation Systems, Water Use Efficiency Lead Institute: University of Wyoming Principle objectives: Star Valley is an irrigated agricultural area where irrigation systems were converted from levels are being investigated for periods before and after irrigation system changeover. Although

  12. Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming

    E-Print Network [OSTI]

    Hennier, Jeffrey Hugh

    1984-01-01T23:59:59.000Z

    STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1984 Major Subject: Geology STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Approved as to style and content by: o n . pan (Chairman of Committee) Ear R. os sn (Member...

  13. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30T23:59:59.000Z

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  14. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  15. Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming

    SciTech Connect (OSTI)

    Duffy, R.J. [Colorado State University, Fort Collins, CO (United States)

    2005-03-31T23:59:59.000Z

    The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

  16. Environmental assessment of remedial action at the Spook uranium mill tailings site, Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    This document assesses a joint remedial action proposed by the US Department of Energy Uranium Mill Tailings Remedial Action Project and the State of Wyoming Abandoned Mine Lands Program. The proposed action would consist of stabilizing uranium mill tailings and other associated contaminated materials within an inactive open pit mine on the site; backfilling the open pit with overburden materials that would act as a radon barrier and cover; and recontouring and seeding all disturbed areas to premining conditions. The impacts of no action at this site are addressed as the alternative to the proposed action. 74 refs., 12 figs., 19 tabs.

  17. The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

    2011-09-01T23:59:59.000Z

    A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

  18. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2005-07-01T23:59:59.000Z

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  19. The Hanna, Wyoming, underground coal gasification field test series

    SciTech Connect (OSTI)

    Bartke, T.C.; Gunn, R.D.

    1983-01-01T23:59:59.000Z

    Six field tests of in-situ coal gasification have been conducted by the Department of Energy's Laramie Energy Technology Center Near Hanna, Wyoming with typical gasification rates of 100 tons of coal per day for continuous operation of about 30 days. This paper presents an overview of the Hanna field tests.

  20. COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING

    E-Print Network [OSTI]

    Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  1. COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  2. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  3. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming. Volume 1, Text, Appendices A, B, C, D, and E: Final report

    SciTech Connect (OSTI)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Sullivan, M. [Wyoming State Government, Cheyenne, WY (United States)

    1990-04-01T23:59:59.000Z

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

  4. BLM - Approved Resource Management Plan Amendments/Record of...

    Open Energy Info (EERE)

    Approved Resource Management Plan AmendmentsRecord of Decision for Solar Energy Development in Six Southwestern States Jump to: navigation, search OpenEI Reference LibraryAdd to...

  5. Economic Development from New Generation and Transmission in Wyoming and Colorado

    SciTech Connect (OSTI)

    Keyser, D.; Lantz, E.

    2013-03-01T23:59:59.000Z

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  6. Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  7. Wyoming's Budget: From Champagne to Soda Pop

    E-Print Network [OSTI]

    Schuhmann, Robert A; Skopek, Tracy A

    2011-01-01T23:59:59.000Z

    pushing down prices. Gas well drilling in the state wasefficiencies in the well drilling process, production

  8. DOI-BLM-NV-W010-2009-0018-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump to:19-CX JumpDOI-BLM-NV-W010-2009-0018-CX

  9. DOI-BLM-NV-W010-2011-0100-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources DOE0083-CXDOI-BLM-NV-W010-2011-0100-CX

  10. Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming 

    E-Print Network [OSTI]

    Hennier, Jeffrey Hugh

    1984-01-01T23:59:59.000Z

    in the Phosphoria Formation at the northwest plunge of Sheep Mountain. 38 10 Pi diagram plot of bedding attitudes in the Mowry Shale at the extreme northwest plunge of Sheep Mountain . 40 A. Photograph of flatirons formed in weathered Phosphoria beds along... sedimentalogical transition zone or hinge line extended from Mexico through the western U. S. to Canada, separating the deeply subsiding Cordilleran geosynclinal trough to the west in Idaho and Utah from stable cratonic shelf to the east in Wyoming (Thomas...

  11. Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming

    E-Print Network [OSTI]

    Silver, Wendy Ilene

    1979-01-01T23:59:59.000Z

    provide a potential source of information about the configuration of the sedimentary rock / Precambrian basement interface as well as the geometry of the overlying younger rocks. GRAVITY DA. A Regional Gravity The regional gravity field of Wyoming..., Jurassic and Lower Cretaceous units. It may therefore be concluded that the uplifts of the Precambrian basement were fomed after the deposition of those overly1ng sedimentary rocks. ACKNOWLEDGEMEWTS I w1sh to thank Dr, R. R. Berg, chairman of my...

  12. Wyoming State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters |-- 9:00 AM OpeningWorld's Largest LaserJames

  13. Wyoming Department of State Parks and Cultural Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxi

  14. Analysis of fast losses in the LHC with the BLM system

    E-Print Network [OSTI]

    Nebot, E; Holzer, E; Dehning, B; Nordt, A; Sapinski, M; Emery, J; Zamantzas, C; Effinger, E; Marsili, A; Wenninger, J; Baer, T; Schmidt, R; Yang, Z; Zimmerman, F; Fuster, N

    2011-01-01T23:59:59.000Z

    About 3600 Ionization Chambers are located around the LHC ring to detect beam losses that could damage the equipment or quench superconducting magnets. The Beam Loss Monitors (BLMs) integrate the losses in 12 different time intervals (from 40 us to 83.8 s) allowing for different abort thresholds depending on the duration of the loss and the beam energy. The signals are also recorded in a database at 1 Hz for offline analysis. During the 2010 run, a limiting factor in the machine availability were sudden losses appearing around the ring on the ms time scale and detected exclusively by the BLM system. It is believed that such losses originate from dust particles falling into the beam, or being attracted by its strong electromagnetic field. This document describes some of the properties of these ”Unidentified Falling Objects” (UFOs) putting special emphasis on their dependence on beam parameters (energy, intensity, etc). The subsequent modification of the BLM beam abort thresholds for the 2011 run that were ...

  15. Wyoming's Appliance Rebate Program Surges Ahead | Department...

    Energy Savers [EERE]

    Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from 50 to 250. The program still has 40 percent...

  16. Lincoln County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming: Energy Resources Jump to:

  17. Washakie County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthallFacilityVermont:Washakie County, Wyoming:

  18. Sheridan County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncle Solar EnergyNebraska: EnergyWyoming:

  19. Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming Dry

  20. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming

  1. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million Cubic Feet) Wyoming

  2. Wyoming Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin:WorldWorldIowa:Wuxi,Wyoming

  3. Wyoming/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New Pages RecentWyoming/Wind

  4. Hot Springs County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources Jump to:

  5. Wyoming County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York: EnergyWynnedale,Wyoming County, New

  6. Wyoming County, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York: EnergyWynnedale,Wyoming County,

  7. Wyoming County, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York: EnergyWynnedale,Wyoming

  8. Wyoming Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming

  9. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming3.40

  10. Guide to Permitting Electric Transmission Lines in Wyoming | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy InformationGettop ScienceInformation Wyoming Jump

  11. Teton County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbe niceOpenWyoming: Energy Resources

  12. Crook County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp HoldingsCrofutt'sWyoming: Energy Resources Jump

  13. Wyoming Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShadesVirginiaWyoming Regions National

  14. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities Co (Wyoming)

  15. Wyoming Game and Fish Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyoming Department

  16. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecentButte, Wyoming:

  17. Fremont County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show MapFredericksburgIdaho: EnergyWyoming:

  18. Structural geology of the northern termination of the Crawford Thrust, western Wyoming

    E-Print Network [OSTI]

    Evans, James Paul

    1983-01-01T23:59:59.000Z

    Comparison with Previous Work CONCLUSIONS. REFERENCES CITED. VITA, 106 107 116 177 136 139 144 1X LIST OF FIGUPES F IGUPE PAGE Generalized map of the Utah-Wyoming-Idaho Th!ust Belt, showing study area location.... . . . . . . . . , . . . . . . . Strati graphi c column for the Utah-Wyom; ng- Idaho !hrust Belt Examples of Listric Normal faults From Wyoming. . 14 Cross sections A-A' through C-C' tron Brown and Spang ('l9/8) 21 Cross sections D-D' through ! -F' from Brown and Spang (1978) 22...

  19. EIS-0403: Solar Energy Development in Six Southwestern States

    Broader source: Energy.gov [DOE]

    The BLM and DOE have jointly prepared this PEIS to evaluate actions that the agencies are considering taking to further facilitate utility-scale solar energy development in six southwestern states. For the BLM, this includes the evaluation of a new Solar Energy Program applicable to solar development on BLM-administered lands. For DOE, it includes the evaluation of developing new guidance to further facilitate utility-scale solar energy development and maximize the mitigation of associated potential environmental impacts. This Solar PEIS evaluates the potential environmental, social, and economic effects of the agencies’ proposed actions and alternatives. For additional information, please visit the Solar PEIS website at http://solareis.anl.gov.

  20. Wyoming Public Service Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State Parks and Historic

  1. Wyoming, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State Parks and HistoricRules

  2. Wyoming, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State Parks and

  3. Wyoming/Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State Parks

  4. Thermal and Structural Constraints on the Tectonic Evolution of the Idaho-Wyoming-Utah Thrust Belt

    E-Print Network [OSTI]

    Chapman, Shay Michael

    2013-08-09T23:59:59.000Z

    The timing of motion on thrust faults in the Idaho-Wyoming-Utah (IWU) thrust belt comes from synorogenic sediments, apatite thermochronology and direct dating of fault rocks coupled with good geometrical constraints of the subsurface structure...

  5. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  6. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  7. Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2011-05-23T23:59:59.000Z

    This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

  8. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P. [University of Wyoming; Sims, Kenneth W.W. [University of Wyoming; Pluda, Allison R.

    2014-03-01T23:59:59.000Z

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  9. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2011-03-01T23:59:59.000Z

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  10. Regional geology of eastern Idaho and western Wyoming

    SciTech Connect (OSTI)

    Link, P.K.; Kuntz, M.A.; Platt, L.B. (eds.)

    1993-01-01T23:59:59.000Z

    The first section, Regional Synthesis, consists of a single 53-page chapter entitled The track of the Yellowstone hot spot: Volcanism faulting, and uplift.'' The authors' approach is to interpret major features or regional geology as resulting in large part from the last 16 Ma of southwesterly migration by the North American plate over a stationary thermal plume in the mantle. Evidence that may relate to the Yellowstone hot spot model is presented under headings dealing with volcanic track of the hot spot, neotectonic faulting associated with the hot spot, and regional topographic anomalies which may have resulted from hot spot-induced uplift or subsidence. The second section of the book deals with the Idaho-Wyoming thrust belt. Each chapter is a separate article by different authors, so coverage is of selected topics in the Idaho-Wyoming thrust belt rather than a comprehensive overview. Extensional tectonics is the topic of the book's third section. Field investigations of two major structures, the Grand Valley fault and the Teton normal fault, are presented in chapters eight and nine, respectively. Chapter ten focuses on surficial gravity slide sheets that are well-exposed in the area, with particular emphasis on their structural features and mechanisms of emplacement. The final 90 pages of the book make up a four-chapter section that deals with the eastern Snake River plain (ESRP). Topical coverage is quite varied, ranging from details of Quaternary stratigraphy at one site to an overview of the eastern Snake River plain basaltic volcanism and an investigation of ignimbrites of the Heise volcanic field.

  11. Federal Gov Monthly state fuel tax examples

    E-Print Network [OSTI]

    NewYork Washington Florida Georgia Wyoming Arkansas Louisiana Texas NewMexico Oklahoma Alaska Freeway Texas New Mexico Oklahoma CentsperGallon How does Texas compare to other states? State Fuel Tax Rates.75 Texas Registration Fee Motor Fuel Lubricants Tax $43,275,000 Motor Vehicle Certificates of Title Fees

  12. BLM-NV-WN-ES-08-01-1310, NV-020-08-01 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLM

  13. North Fork well, Shoshone National Forest, Park County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1985-03-01T23:59:59.000Z

    Drilling of a 5000-foot exploratory gas and oil well by Marathon Oil Company is proposed for Section 34, T52N, R106W, near Pagoda Creek in the Shoshone National Forest, Park County, Wyoming. An area 75 feet by 80 feet would be cleared of all vegetation and graded nearly flat for the drill pad and reserve pit. The drilling rig, pipe rack, generator, tool house, living facilities, drilling mud pump, pit, and supply platform all would be built on the drill pad. A blooie hole would contain cuttings and dust from the air drilling. Support facilities would include a helicopter staging area along Clocktower Creek approximately one mile south of the Yellowstone Highway and a 2550-foot temporary water pipeline from Pagoda Creek to the well site. Personnel, equipment, and supplies would be trucked to the helicopter staging area and shuttled to the proposed location by helicopters. Lease stipulations prohibit drilling before September 8; therefore, the starting date would be the late fall of the respective year and would have to be completed by the following January 1. Approval of the exploratory well would not include approval of production facilities.

  14. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    SciTech Connect (OSTI)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01T23:59:59.000Z

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  15. Renewable energy atlas of the United States.

    SciTech Connect (OSTI)

    Kuiper, J.A.; Hlava, K.Greenwood, H.; Carr, A. (Environmental Science Division)

    2012-05-01T23:59:59.000Z

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. It is designed for the U.S. Department of Agriculture Forest Service (USFS) and other federal land management agencies to evaluate existing and proposed renewable energy projects. Much of the content of the Atlas was compiled at Argonne National Laboratory (Argonne) to support recent and current energy-related Environmental Impact Statements and studies, including the following projects: (1) West-wide Energy Corridor Programmatic Environmental Impact Statement (PEIS) (BLM 2008); (2) Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2010); (3) Supplement to the Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2011); (4) Upper Great Plains Wind Energy PEIS (WAPA/USFWS 2012, in progress); and (5) Energy Transport Corridors: The Potential Role of Federal Lands in States Identified by the Energy Policy Act of 2005, Section 368(b) (in progress). This report explains how to add the Atlas to your computer and install the associated software; describes each of the components of the Atlas; lists the Geographic Information System (GIS) database content and sources; and provides a brief introduction to the major renewable energy technologies.

  16. Suppression of dominant topographic overprints in gravity data by adaptive filtering: southern Wyoming Province

    E-Print Network [OSTI]

    Black, Ross A.

    1992-09-10T23:59:59.000Z

    . Surv. Prof. Pap. 793, 39 pp., 1973. Black, R. A., S. B. Smithson, and R. L. Kirlin, Adaptive filtering of gravity and topography data, western U.S. (abstract), Eos Trans./AGU, 68, 280, 1987. Clarke, G. K. C., Linear filters to suppress terrain... and uranium potential of Precambrian conglomerates in SE Wyoming: rep. DJBX-139-81, 551 pp., Bendix Field Engineering Corp., 1981. Klein, T. L., The geology and geochemistry of the sulphide deposits of the Seminoe District, Carbon Co. Wyoming, Ph...

  17. Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.R.; Rawn-Schatzinger, V.

    1993-12-01T23:59:59.000Z

    The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

  18. DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    2005-01-01T23:59:59.000Z

    Mountains to the west had begun to thaw. Icy water and coal dust merged into a thick, dirty slurry and oozed1 DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html [Johnson, 2005] Steven Johnson bottleneck in shipments from the nation's most important vein of low-sulfur coal has cut into coal supplies

  19. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    SciTech Connect (OSTI)

    Burggraf, G.B.

    1980-08-01T23:59:59.000Z

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  20. FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS

    E-Print Network [OSTI]

    Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  1. EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

  2. DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

  3. State geothermal commercialization programs in seven Rocky Mountain States. Semi-annual progress report, January-June 1980

    SciTech Connect (OSTI)

    Tuttle, J.; Coe, B.A.; Gertsch, W.D.; Meyer, R.T.

    1980-12-01T23:59:59.000Z

    The following are included: a summary of the state projects, a summary of findings, public outreach, and a description of the major conclusions and recommendations. The commercialization activities carried out by the state teams are described for Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  4. Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

  5. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

  6. Title Five-Party Cooperative Agreement fy&AF, USDOI, BLM, State of Nevada & DOE/NV)

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 Hour ofGeologic mapFive-Party

  7. Applying the Alaska model in a Resource-Poor State: The Example of Vermont

    E-Print Network [OSTI]

    Vermont, University of

    (Chile), diamonds (Botswana), or even phosphates (Kiribati). In the United States, the state of New Mexico has three SWFs, the Land Grant Permanent Fund (mineral resources and surface land), Severance Tax Permanent Fund (minerals), and Tobacco Settlement Permanent Fund. Wyoming has a fund from coal, oil, natural

  8. The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado

    SciTech Connect (OSTI)

    Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S. [Univ. of Texas, Austin, TX (United States)

    1997-01-01T23:59:59.000Z

    Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

  9. Rocky Mountain 1: Underground coal gasification test, Hanna, Wyoming. Volume 1. Operations. Summary report

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The Rocky Mountain 1 underground coal gasification (UCG) test was conducted near Hanna, Wyoming during the period January 1986 through March 1988. The report focuses on operations phases that included site selection, facility design, facility construction, well drilling, gasification and environmental monitoring. Two technologies were evaluated as separate modules: the Extended Linked Well (ELW) and the Controlled Retracting Injection Point (CRIP) processes. The test results, along with a discussion of the key test parameters and conclusions of the gasification phase, are provided. A bibliography and schematics are included.

  10. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    SciTech Connect (OSTI)

    none,

    1987-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  11. Emplacement of the Moxa Arch and interaction with the Western Overthrust Belt, Wyoming

    E-Print Network [OSTI]

    Kraig, David Harry

    1986-01-01T23:59:59.000Z

    of MASTER OF SCIENCE May 1986 Major Subject: Geology EMPLACEMENT OF THE MOXA ARCH AND INTERACTION WITH THE WESTERN OVERTHRUST BELT, WYOMING A Thesis by DAVID HARRY KRAIG Approved as to style and content by: David V. Wiltschko (Chairman of Committee... College B. S. The University of New Mexico Chairman of Advisory Committee: Dr. David V. Wiltschko The northern segment of the Moxa Arch is modeled as uplifted along a low-angle thrust (Moxa thrust, MT). The west-verging MT cuts up section from...

  12. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plantand Wyoming Natural Gas

  13. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L. (comp.)

    1980-08-01T23:59:59.000Z

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  14. The Department of Chemical Engineering and Materials Science Michigan State University

    E-Print Network [OSTI]

    by carboxylate multi-wall carbon nanotubes, across giga-ohm nanopore pBLM, were measured. The chronoamperometricBLM, including enhanced stability and ion reservoir. Another advantage associated with tethered BLM polypropargyl glycolide nanoparticles (PGL) were characterized using high insulating tethered BLM. Electrical

  15. EIA-0441: BLM Notice of Intent to Prepare an Environmental Impact Statement

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final Environmental Assessment EA-1972:EERE EnergyStar StateAboutEIA Cases EIA Cases RSS|

  16. HumanWildlife Interactions 8(2):284290, Fall 2014 Oil and gas impacts on Wyoming's sage-

    E-Print Network [OSTI]

    Human­Wildlife Interactions 8(2):284­290, Fall 2014 Oil and gas impacts on Wyoming's sage- grouse: Historical impacts from oil and gas development to greater sage-grouse (Centrocercus urophasianus) habitat been extrapolated to estimate future oil and gas impacts in the U. S. Fish and Wildlife Service (2010

  17. Geologic map of the Preston 1/sup 0/ x 2/sup 0/ quadrangle, southeastern Idaho and western Wyoming

    SciTech Connect (OSTI)

    Oriel, S.S.; Platt, L.B.

    1980-01-01T23:59:59.000Z

    A geologic map of the Preston quadrangle in southeastern Idaho and western Wyoming is presented. The map is on a 1:250,000, and the geology of the area was compiled in 1970 and 1971. Geologic structures and formations are shown. (JMT)

  18. Wyoming Game and Fish Department Geospatial Data | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State Parks and Historic Sites -Game

  19. Wyoming Interagency Spatial Database & Online Management | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State Parks and Historic Sites

  20. Wyoming Rules of Civil Procedure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State Parks and HistoricRules of

  1. Yampa Valley Electric Assn Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:StateXiningYamagawaYamhill,

  2. Investigation of tar sand and heavy oil deposits of Wyoming for underground coal gasification applications

    SciTech Connect (OSTI)

    Trudell, L.G.

    1985-02-01T23:59:59.000Z

    A literature review was conducted to identify and evaluate tar sand and heavy oil deposits of Wyoming which are potentially suitable for in situ processing with process heat or combustible gas from underground coal gasification (UCG). The investigation was undertaken as part of a project to develop novel concepts for expanding the role of UCG in maximizing energy recovery from coal deposits. Preliminary evaluations indicate six surface deposits and three shallow heavy oil fields are within 5 miles of coal deposits, the maximum distance judged to be feasible for UCG applications. A tar sand or heavy oil deposit in the northeast Washakie Basin is less than 250 feet above a zone of four coal seams suitable for UCG, and another deposit near Riverton appears to be interbedded with coal. Three shallow light oil fields found to be within 5 miles of coal may be amenable to application of UCG technology for enhanced oil recovery. Sufficient data are not available for estimating the size of Wyoming's tar sand and heavy oil resource which is suitable for UCG development. Additional investigations are recommended to more fully characterize promising deposits and to assess the potential resource for UCG applications. 54 refs., 10 figs., 2 tabs.

  3. Sandstone-carbonate cycles in Tensleep Formation, eastern Bighorn basin and western Powder River basin, Wyoming

    SciTech Connect (OSTI)

    Rittersbacher, D.J.; Wheeler, D.M.; Horne, J.C.

    1986-08-01T23:59:59.000Z

    Outcrop and core study of the Tensleep Formation in the eastern Bighorn basin and western Powder River basin has revealed cyclic deposits of eolian sandstone and marine carbonate. These cycles, several meters to tens of meters thick, represent the rise and fall of sea level on the Wyoming shelf during Pennsylvanian and Early Permian time. Falling sea level was marked by development of a sharp scour surface at the base of each cycle and progradation of eolian dunes over an exposed, shallow carbonate shelf. Subsequent sea level rise resulted in the reworking of eolian sand through wave activity and burrowing organisms. Subtidal carbonates overlies the reworked eolian sands and are sandy at the base, grading upward into fossiliferous dolomite mudstones to wackestones. The sharp scour surface, normally present directly on the subtidal carbonates, indicates that erosion eliminated any regressive marine deposits by deflation to the ground-water table during shoreline progradation or by deflation related to abrupt drop in sea level. Relative sea level changes on the low-relief Wyoming shelf affected large areas during Tensleep deposition. This resulted in widespread sandstone-carbonate cycles that provide the basis for regional correlations of the Tensleep Formation throughout the eastern Bighorn basin and western Powder River basin.

  4. Basic data for thermal springs and wells as recorded in GEOTHERM: Wyoming

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-05-01T23:59:59.000Z

    GEOTHERM sample file contains 356 records for Wyoming. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Wyoming. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

  5. Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

    1986-09-01T23:59:59.000Z

    Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

  6. Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming

    SciTech Connect (OSTI)

    Stephens, D.R.

    1981-10-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

  7. Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.; Youngberg, A.D.

    1984-01-01T23:59:59.000Z

    The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

  8. A survey of elementary school physical education requirements in the state of Wyoming

    E-Print Network [OSTI]

    Balestrieri, Jay Alan

    1989-01-01T23:59:59.000Z

    . The Vanes Project (Martens, 1982; Carlson, 1987; Shepherd, LaBarre, Voile, Jequien, LaUalle, ik Rajie, 1982) begun in 1951 in Vanes, France, established a new basis for increasing the number of physical education periods in schools. The "1/3 time... studies . One of the considerations of the Vanes Project (Martens, 1982; Carlson, 1987; Shepherd et al. , 1982) included lengthening the repeti- tive periods. The Vanes Project pointed out that repetitive, lengthy (1 to 2 hour) physical education...

  9. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  10. Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site

    SciTech Connect (OSTI)

    Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

    1983-01-01T23:59:59.000Z

    In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

  11. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect (OSTI)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01T23:59:59.000Z

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  12. Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.

    1981-06-01T23:59:59.000Z

    Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

  13. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    NONE

    2007-06-15T23:59:59.000Z

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  14. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Richard E. Jackson; K.J. Reddy [University of Wyoming, Laramie, WY (United States). Department of Renewable Resources

    2007-09-15T23:59:59.000Z

    Coal bed natural gas (CBNG) produced water is usually disposed into nearby constructed disposal ponds. Geochemistry of produced water, particularly trace elements interacting with a semiarid environment, is not clearly understood. The objective of this study was to collect produced water samples at outfalls and corresponding disposal ponds and monitor pH, iron (Fe), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), zinc (Zn), arsenic (As), boron (B), selenium (Se), molybdenum (Mo), cadmium (Cd), and barium (Ba). Outfalls and corresponding disposal ponds were sampled from five different watersheds including Cheyenne River (CHR), Belle Fourche River (BFR), Little Powder River (LPR), Powder River (PR), and Tongue River (TR) within the Powder River Basin (PRB), Wyoming from 2003 to 2005. Paired tests were conducted between CBNG outfalls and corresponding disposal ponds for each watershed. Results suggest that produced water from CBNG outfalls is chemically different from the produced water from corresponding disposal ponds. Most trace metal concentrations in the produced water increased from outfall to disposal pond except for Ba. In disposal ponds, Ba, As, and B concentrations increased from 2003 to 2005. Geochemical modeling predicted precipitation and dissolution reactions as controlling processes for Al, Cu, and Ba concentrations in CBNG produced water. Adsorption and desorption reactions appear to control As, Mo, and B concentrations in CBNG water in disposal ponds. Overall, results of this study will be important to determine beneficial uses (e.g., irrigation, livestock/wildlife water, and aquatic life) for CBNG produced water in the PRB, Wyoming. 18 refs., 4 figs., 3 tabs.

  15. Oil springs and flat top anticlines, Carbon County Wyoming: An unusual fold pair

    SciTech Connect (OSTI)

    Blackstone, D.L. Jr. (Univ. of Wyoming, Laramie, WY (United States))

    1994-04-01T23:59:59.000Z

    Oil Springs Anticline, northwest of Medicine Bow, Wyoming, and located at the northeast corner of the Hanna Basin, lies near the junction of the Freezeout Hills Anticline, the Shirley thrust fault and the Flat Top Anticline. The surface fold as defined by the outcrop of the Wall Creek Sandstone Member of the Frontier Formation is disharmonic to deeper structure at the level of the Jurassic Sundance Formation. The fold is wedged between two major folds and is the result of a space problem between larger structural elements. The controlling Flat Top Anticline is an excellent example of a fold controlled by a well constrained fault in the Precambrian crystalline basement. The basement is bowed upward and outward to the northwest in the hanging wall of the Flat Top Anticline. The purpose of this paper is to describe the geologic structure of the Oil Springs and Flat Top anticlines and their relationship to the Freezeout Hills and the Hanna Basin. Commercial production of petroleum and natural gas occurs on the west flank of the Laramie-Cooper Lake Basin as far north as the northeast corner of the Hanna Basin. Stone reviewed the producing formations in the Laramie and eastern Hanna basins and noted that 11 commercial accumulations of petroleum and natural gas are directly related to anticlinal structures. Production derived from the Permian-Pennsylvanian Tensleep Sandstone in this region has a special geologic framework. Fields that produce from the Tensleep Sandstone are well defined anticlines bounded by faults or fault systems, a situation also reported by Biggs and Espach, Blackstone and in the Wyoming Geological Association Symposium. The Tensleep Sandstone reservoirs in these faulted anticlines are in juxtaposition to potential source rocks of either Jurassic or Cretaceous age in the footwalls of the faults. 17 refs., 9 figs., 1 tab.

  16. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  17. Rocky mountain 1: Underground coal-gasification test, Hanna, Wyoming. Summary report, Volume 1. Appendix. Final report

    SciTech Connect (OSTI)

    Vardaman, M.H.

    1989-02-01T23:59:59.000Z

    The Rocky Mountain 1 underground coal gasification test was conducted near Hanna, Wyoming during the period January 1986 through March 1988. These appendixes include information supporting Volume I as well as complete data for certain aspects of the gasification phase. These aspects include daily operations reports, raw and corrected process data, thermocouple and Time Domain Reflectometer results, and monitoring well pressure and level data obtained during the gasification phase. Piping and instrumentation diagrams and supplemental informations on the data acquisition system are included.

  18. Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana

    E-Print Network [OSTI]

    Hennings, Peter Hill

    1986-01-01T23:59:59.000Z

    , Northeastern Bighorn Mountains, Wyoming and Montana. (August 1986) Peter Hill Hennings, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. John H. Spang Field mapping on scales of 1:6, 000 and 1: 12, 000 indicate that the basement involved... in the Field Area Methodology DATA. PAGE I 3 7 10 12 17 25 25 28 Field Map. Interpretive Data: Cross Sections Dry Fork Ridge Anticline. Faole Point Anticline and the Mountain Flank. . Basement Geometry. Fracture Analysis...

  19. Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980

    SciTech Connect (OSTI)

    Raber, E.; Stone, R.

    1980-05-01T23:59:59.000Z

    This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

  20. Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

  1. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981

    SciTech Connect (OSTI)

    Lunis, B.C.; Toth, W.J. (comps.)

    1982-05-01T23:59:59.000Z

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

  2. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    SciTech Connect (OSTI)

    None

    1982-01-01T23:59:59.000Z

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  3. Results of the groundwater restoration project, Hanna Underground Coal Gasification Test Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Oliver, R.L.

    1988-01-01T23:59:59.000Z

    Underground coal gasification (UCG) experiments conducted during the 1970s at the Department of Energy (DOE) site near Hanna, Wyoming, formed six underground cavities in the Hanna No. 1 coal seam, an aquifer of low permeability. When the first Hanna UCG experiment began in March 1973, researchers had little information about what effects the geologic or hydrologic characteristics of the area might have on the UCG process; likewise, the effects of UCG on the environment were unknown. Since the UCG experiments were completed, dilute concentrations of pyrolysis products and leachates have been detected in groundwater monitoring wells in and near some of the six cavities. Three primary UCG indicator constituents have been measured at elevated concentrations: phenols, TDS, and sulfate. The Hanna III cavity water exceeded the DOE target level for TDS and sulfate, and the Hanna I cavity water exceeded the DOE target level for phenols. The indicated phenols contamination, however, was in groundwater sampled from a well which was previously used as a production well during the experiment. Water pumped during the restoration project and a new well located approximately 10 ft from the old production well was sampled and no elevated phenols concentration was detected. Therefore, the restoration performed on the Hanna I cavity water was not necessary. The restoration was performed, however, because these indications were not available until during the restoration. Locally, various other constituents exceed DOE target levels, but concentrations are very near target levels and are well within livestock use limits. 2 refs., 7 figs., 5 tabs.

  4. Role of hydrogeology in Rocky Mountain 1 underground coal gasification test, Hanna basin, Wyoming

    SciTech Connect (OSTI)

    Daly, D.J.; Schmit, C.R.; Beaver, F.W.; Evans, J.M. (North Dakota Mining and Mineral Resources Research Institute, Grand Forks (USA))

    1989-09-01T23:59:59.000Z

    Experience has shown that the designs and implementation of Underground Coal Gasification (UCG) operations that are technically sound and environmentally safe require a thorough understanding of the hydrogeology of the UCG site, complemented by an understanding of the potential interactions between the elements of the hydrogeologic system and UCG process. This is significant because UCG is conducted in the saturated zone, consumes large volumes of ground water, and has the potential to adversely affect ground water quality and flow. The textural, mineralogical, chemical, and structural character of the geologic materials constituting the UCG reactor, as well as the occurrence, flow, and quality of fluids moving through that three-dimensional matrix of geologic materials, must be understood. The US Department of Energy and an industry consortium led by the Gas Research Institute recently conducted the Rocky Mountain 1 Test in the Hanna basin of Wyoming. For this test, the hydrogeologic aspects of the site were characterized to an extent unprecedented in UCG testing. This information was then used to develop and evaluate operating strategies intended to prevent or minimize contamination. Such strategies included gasifying at less than hydrostatic pressure to enhance ground water flow toward the gasification modules and to restrict contamination to the module area. Hydrogeologic information also allowed a more complete evaluation of process-setting interactions. For example, a substantial and widespread drop in elevation heat noted for the ground water in the target coal emphasized the importance of an adequate water supply for UCG, particularly in a long-term commercial operation.

  5. High resolution seismic survey of the Hanna, Wyoming underground coal gasification area

    SciTech Connect (OSTI)

    Not Available

    1983-08-01T23:59:59.000Z

    In June 1983 a high resolution seismic survey was conducted at the Department of Energy, Laramie Energy Technology Center's underground coal gasification test site near Hanna, Wyoming. The objectives of the survey were to locate and characterize underground burn zones and to identify shallow geologic faults at the test site. Seismic data acquisition and processing parameters were based upon prior work in the area, and were specifically designed to emphasize reflections at the shallow, 61 to 91 meter (200 to 300 ft) depths of interest. Data were obtained on two north-south lines along the test site boundary in addition to a three-dimensional grid over the Hanna IV experiment area. Processing included time varying filters, deconvolution, trace composition, and three-dimensional areal stacking of the data in order to identify burn zone anomalies. Anomalies were discernable resulting from the rubble-collapse void above the burn zones in the vicinity of the injection wells at the Hanna IV experiment area. The fault studies disclosed faults at the Hanna IV experiment area which may be responsible for the unexpected problems experienced in the early in-site gasification tests. For the test site the fault system was found to be a generally arcuate east-west trending graben complex with numerous antithetic faults. 15 references, 33 figures, 6 tables.

  6. Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.

  7. Hanna, Wyoming underground coal gasification data base. Volume 5. Hanna III field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna III was conducted during the spring and summer of 1977. The test involved only two process wells but also had twelve water monitoring wells, eight in the Hanna No. 1 coal seam and four in an aquifer above the coal seam. The test was designed to obtain information regarding the effects of the process on groundwater within the target seam and the overlying aquifer. The site for Hanna III had a low productivity aquifer above the Hanna No. 1 seam. The wells within the seam and the overlying aquifer were placed in such a manner that maximum information on groundwater flow and quality could be obtained. This report covers: (1) site selection and characterization; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 4 refs., 11 figs., 5 tabs.

  8. Hanna, Wyoming underground coal gasification data base. Volume 2. The Hanna I field test

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Based on the recommendations of A.D. Little, Inc. in a 1971 report prepared for the US Bureau of Mines, the Hanna I test represented the first field test in reestablishing a field program by the US Bureau of Mines. The test was directed toward comparing results from a thick subbitiminous coal seam with those obtained during the field test series conducted at Gorgas, AL, in the 1940's and 1950's. Hanna I was conducted from March 1973 through February 1974. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 9 refs., 10 figs., 4 tabs.

  9. Testing some models of foreland deformation at the Thermopolis anticline, southern Bighorn Basin, Wyoming

    SciTech Connect (OSTI)

    Paylor, E.D.; Lang, H.R.; Conel, J.E.; Adams, S.L. (California Institute of Technology, Pasadena (USA)); Muncy, H.L. (Tenneco Oil Exploration and Production, Englewood, CO (USA))

    1989-01-01T23:59:59.000Z

    The Thermopolis anticline is a typical structure in the Rocky Mountain foreland, southern Bighorn Basin, Wyoming. Photogeologic interpretation of Landsat Thematic Mapper data, in combination with the evaluation of topographic, bore hole, seismic reflection, and field data were used to analyze structure and constrain tectonic models. The anticline is near-concentric, asymmetric with a southwest sense of vergence, and plunges to the northwest. The steeply dipping to overturned southwest limb of the fold is cut at the surface by several thrust faults dipping northeast. Approximately 25% of the stratigraphic section on the southwest limb is missing due to faulting. Two east to northeast-striking, basement-controlled compartmental faults segment the anticline into three blocks that apparently deformed simultaneously but probably independently from one another. Slickensides indicate a dominant southwest tectonic transport direction. Additionally, subtle northeast-trending folds are superposed on the dominant northwest structural trend. Structural patterns at Thermopolis anticline can be explained using models that propose a single phase of northeast Laramide compression, combined with shear-zone deformation.

  10. Status Report: USGS coal assessment of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    James A. Luppens; Timothy J. Rohrbacher; Jon E. Haacke; David C. Scott; Lee M. Osmonson [USGS, Reston, VA (United States)

    2006-07-01T23:59:59.000Z

    This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized. 7 refs.

  11. Paleotectonic controls on reservoir distribution in Phosphoria formation and related strata, Bighorn basin, Wyoming

    SciTech Connect (OSTI)

    Dean, J.S.; Inden, R.F.; Sturm, S.D.

    1986-08-01T23:59:59.000Z

    Porosity development and reservoir distribution in the Permian rocks of the Bighorn basin were strongly controlled by the first- and second-order paleotectonic elements active in the Wyoming shelf. First-order elements, including the Greybull arch, Bighorn high, and an extension of the Yellowstone high, defined the basin geometry and regional paleogeography, influenced the distribution of clastic vs. carbonate lithofacies, and controlled the areal extent and degree of porosity enhancing dolomitization. Second-order tectonic features, related to drape and/or movement along syndepositional basement fault systems, also influenced patterns of Permian sedimentation by providing localized sites of differential subsidence and subtle but persistent paleobathymetric relief. Among the most significant exploration targets in the basin are the trends of peritidal and restricted marine reservoirs in the Franson and Ervay Members. Porous dolomites in these facies developed within and adjacent to two separate shoaling trends. Contrary to popular belief, these trends do not represent true carbonate shorelines. Rather, they define a fairway of discontinuous island-peninsula complexes bounded on the west by more open-marine carbonates and on the east by a broad, restricted lagoon or salina filled with subaqueous evaporites and siliciclastics. The trends of the peritidal facies are centered over underlying tectonic elements. The relatively unexplored fairway in the Franson Member is centered over a northwest-trending extension of the Yellowstone high. Equivalent facies in the Ervay are offset to the east, paralleling the faulted western margin of the ancestral Bighorn high.

  12. Site observational work plan for the UMTRA Project site at Spook, Wyoming

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS).

  13. Supplement to the UMTRA Project water sampling and analysis plan, Riverton, Wyoming

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

  14. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01T23:59:59.000Z

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  15. Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming

    SciTech Connect (OSTI)

    Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

    1996-08-01T23:59:59.000Z

    Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

  16. Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming

    SciTech Connect (OSTI)

    Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

    1983-12-01T23:59:59.000Z

    During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

  17. Implications of ground-water measurements at the Hoe Creek UCG site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.; Raber, E.; Ganow, H.C.; Stone, R.

    1980-01-01T23:59:59.000Z

    Underground coal gasification (UCG) promises to become an important source of synthetic fuels. In an effort to provide timely information concerning the environmental implications of the UCG process, we are conducting investigations in conjunction with the UCG experiments carried out in northeastern Wyoming by the Lawrence Livermore National Laboratory. Our ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. Cavity roof collapse and aquifer interconnection were also investigated, using surface and subsurface geotechnical instruments, post-burn coring, and hydraulic head measurements. We have found that a broad range of residual gasification products are introduced into the ground-water system. Fortunately, the concentrations of many of these contaminants are substantially reduced by sorption on the surrounding coal. However, some of these materials seem likely to remain in the local groundwater, at low concentrations, for several years. We have attempted to interpret our results in terms of concepts that will assist in the development of effective and practicable control technologies.

  18. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect (OSTI)

    None

    1982-01-01T23:59:59.000Z

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  19. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    SciTech Connect (OSTI)

    Lunis, B. C.; Toth, W. J. [comps.

    1981-10-01T23:59:59.000Z

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  20. Sampling and analyses report for December 1992 semiannual postburn sampling at the RMI UCG Site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1993-03-01T23:59:59.000Z

    During December 1992, groundwater was sampled at the site of the November 1987--February 1988 Rocky Mountain 1 underground coal gasification test near Hanna, Wyoming. The groundwater in near baseline condition. Data from the field measurements and analyzes of samples are presented. Benzene concentrations in the groundwater are below analytical detection limits (<0.01 mg/L) for all wells, except concentrations of 0.016 mg/L and 0.013 mg/L in coal seam wells EMW-3 and EMW-1, respectively.

  1. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01T23:59:59.000Z

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  2. Geological evaluation of the proposed Rocky Mountain 1 underground coal gasification test site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.

    1987-02-01T23:59:59.000Z

    To characterize the proposed Rocky Mountain 1 underground coal gasification test site near Hanna, Wyoming, 30 drill and/or core holes were completed and downhole geophysically logged during the summer of 1986. Core testing was conducted to identify coal quality and predict behavior during gasification. Data were then interpreted to provide information on process parameters and restoration to be used by process and environmental engineers. The coal seam at the Rocky Mountain 1 site dips to the northeast at 7/sup 0/ and shows only minor folding of strata. A fault with 30 feet of stratigraphic displacement is located approximately 300 feet northeast of the northern boundary of the proposed burn area. From core and outcrop observations, tectonic fracturing is predicted to be minor, although local areas of fracturing may exist. Overburden stratigraphy consists of interbedded sandstone, siltstone, and shale with minor coal. The Hanna No. 1 coal (target of the experiments) is approximately 30 feet thick. It contains an upper bench approximately 3 to 4 feet thick of lower quality (higher ash, lower Btu), a central bench about 20 feet thick of higher quality (lower ash, higher Btu), and a lower bench approximately 3 to 4 feet thick also of lower quality. The benches are separated by shaley zones approximately 1 to 2 feet thick, which are correlative across the site. Another shaley zone exists near the base of the central bench. The coal varies vertically and somewhat laterally across the site but averages at a high volatile C bituminous rank. Average-as-received proximate analysis values for the coal are 8.8 wt % moisture, 27.3 wt % ash, 32.0 wt % volatile matter, 31.9 wt % fixed carbon, and approximately 8600 Btu/lb heating value. Average-as-received sulfur content is 0.7 wt %. Site characteristics are very amenable to underground coal gasification, and no hindrances to the test due to geologic conditions are expected. 9 refs., 21 figs., 6 tabs.

  3. Site observational work plan for the UMTRA Project site at Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the application of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.

  4. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09T23:59:59.000Z

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  5. Phase II - final report study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3, Wyoming

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Appraiser under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase II Final Report for that study.

  6. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-08-01T23:59:59.000Z

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits.

  7. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  8. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect (OSTI)

    Chatelain, E.E. [Valdosta State Univ., GA (United States)

    1997-09-01T23:59:59.000Z

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  9. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18T23:59:59.000Z

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  10. Surface detection of retort gases from an underground coal gasification reactor in steeply dipping beds near Rawlins, Wyoming

    SciTech Connect (OSTI)

    Jones, V.T.; Thune, H.W.

    1982-01-01T23:59:59.000Z

    A near-surface soil-gas geochemical survey was executed at the North Knobs, Wyoming, GR and DC-DOE underground coal gasification (UCG) facility in 1981. The soil-gas detection method offers a new technique for locating potential gas leakage areas before any significant migration avenues can develop. The survey demonstrates that residual gases from the phase 1 burn are still present in the near surface, and product gases generated during the phase II burn clearly were evident. Casing leakage explains most anomalies located in the rock sequence stratigraphically below the coal. It is concluded that a properly designed and operated UCG facility would not experience adverse product gas leakage and would pose no hazard.

  11. Glacial ice composition: A potential long-term record of the chemistry of atmospheric deposition, Wind River Range, Wyoming

    SciTech Connect (OSTI)

    Naftz, D.L. (Geological Survey, Cheyenne, WY (United States)); Rice, J.A. (South Dakota State Univ., Brookings (United States)); Ranville, J.R. (Geological Survey, Denver, CO (United States))

    1991-06-01T23:59:59.000Z

    During a reconnaissance study, ice samples were collected from Knife Point glacier to determine if glaciers in the Wind River Range Could provide a long-term record of the chemical composition of wet deposition. Eight annual ice layers comprising the years 1980-1987 were identified. The concentration of calcium, chloride, and sulfate in the annual-weighted wet deposition samples collected at the National Atmospheric deposition Program (NADP) station near Pinedale, Wyoming, showed a significant, positive correlation to the concentration of the same major ions in composite samples from the annual ice layers. results of the study imply that continuous ice cores reaching to the deeper parts of glaciers in the Wind River Range could provide long-term records of the chemical composition of wet deposition.

  12. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2004-01-01T23:59:59.000Z

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

  13. Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

  14. Administrator's Perceptions on Growing Populations of Students who are English Language Learners in the State of Wyoming 

    E-Print Network [OSTI]

    Shannon, Keri Leigh

    2014-01-31T23:59:59.000Z

    For centuries, America has been the place for people from all countries to come and seek their dreams. Our nation continues to welcome all, offering cultural and linguistic diversity to the areas where they settle, which ...

  15. Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah

    E-Print Network [OSTI]

    Lippert, Peter Gregory

    2014-05-31T23:59:59.000Z

    ! ! Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah By Peter Gregory Lippert Submitted to the graduate degree program in Geology and the Graduate Faculty... i Acceptance Page ii Abstract iii-iv Table of contents v-viii List of figures and tables ix-x Chapter 1. Introduction 11-16 Chapter 2. Geologic History...

  16. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Wyoming Profile State Profile and Energy Estimates Change StateTerritory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado...

  17. Development of Energy Balances for the State of California

    E-Print Network [OSTI]

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-01-01T23:59:59.000Z

    of imported coal from Colorado, Kentucky, New Mexico, Utah,New Mexico Utah West Virginia Wyoming Kentucky Total Source: Coal

  18. Microclimatic Performance of a Free-Air Warming and CO2 Enrichment Experiment in Windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06T23:59:59.000Z

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more »but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  19. Godiva Rim Member: A new stratigraphic unit of the Green River Formation in southwest Wyoming and northwest Colorado. Geology of the Eocene Wasatch, Green River, and Bridger (Washakie) Formations, Greater Green River Basin, Wyoming, Utah, and Colorado. Professional paper

    SciTech Connect (OSTI)

    Roehler, H.W.

    1991-01-01T23:59:59.000Z

    The report names and describes the Godiva Rim Member of the Green River Formation in the eastern part of the Washakie basin in southwest Wyoming and the central part of the Sand Wash basin in northwest Colorado. The Godiva Rim Member comprises lithofacies of mixed mudflat and lacustrine origin situated between the overlying lacustrine Laney Member of the Green River Formation and the underlying fluvial Cathedral Bluffs Tongue of the Wasatch Formation. The Godiva Rim Member is laterally equivalent to and grades westward into the LaClede Bed of the Laney Member. The Godiva Rim Member of the Green River Formation was deposited along the southeast margins of Lake Gosiute and is correlated to similar lithologic units that were deposited along the northeast margins of Lake Uinta in the Parachute Creek Member of the Green River Formation. The stratigraphic data presented provide significant evidence that the two lakes were periodically connected around the east end of the Uinta Mountains during the middle Eocene.

  20. Hanna, Wyoming underground coal gasification data base. Volume 4. Hanna II, Phases II and III field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phases II and III, were conducted during the winter of 1975 and the summer of 1976. The two phases refer to linking and gasification operations conducted between two adjacent well pairs as shown in Figure 1 with Phase II denoting operations between Wells 5 and 6 and Phase III operations between Wells 7 and 8. All of the other wells shown were instrumentation wells. Wells 7 and 8 were linked in November and December 1975. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 16 refs., 21 figs., 17 tabs.

  1. Hanna, Wyoming underground coal gasification data base. Volume 6. Hanna IVA and IVB field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. The reports in this series include: The Hanna IV test was designed as the first underground coal gasification test using commercial well spacings of 100 and 150 feet between well pairs in a linear 3-well pattern. The test was initiated in late 1977 and completed in late 1979. This long duration was due to unfavorable geologic conditions (faulting) which could not be successfully overcome resulting in the test being split into Hanna IVA and Hanna IVB with about one year between the conduct of each. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 5 refs., 19 figs., 13 tabs.

  2. Effects of in-situ oil-shale retorting on water quality near Rock Springs, Wyoming, Volume 1

    SciTech Connect (OSTI)

    Lindner-Lunsford, J.B.; Eddy, C.A.; Plafcan, M.; Lowham, H.W.

    1990-12-01T23:59:59.000Z

    Experimental in-situ retorting techniques (methods of extracting shale oil without mining) were used from 1969 to 1979 by the Department of Energy's (DOE) Laramie Energy Technology Center (LETC) at a test area near Rock Springs in southwestern Wyoming. The retorting experiments at site 9 have produced elevated concentrations of some contaminants in the ground water. During 1988 and 1989, the US Geological Survey, in cooperation with the US Department of Energy, conducted a site characterization study to evaluate the chemical contamination of ground water at the site. Water samples from 34 wells were analyzed; more than 70 identifiable organic compounds were detected using a combination of gas chromatography and mass spectrometry analytical methods. This report provides information that can be used to evaluate possible remedial action for the site. Remediation techniques that may be applicable include those techniques based on removing the contaminants from the aquifer and those based on immobilizing the contaminants. Before a technique is selected, the risks associated with the remedial action (including the no-action alternative) need to be assessed, and the criteria to be used for decisions regarding aquifer restoration need to be defined. 31 refs., 23 figs., 9 tabs.

  3. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Lipinski, B.A.; Sams, J.I.; Smith, B.D. (USGS, Denver, CO); Harbert, W.P.

    2008-05-01T23:59:59.000Z

    Production of methane from thick, extensive coal beds in the Powder River Basin ofWyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam’s inversion algorithms to determine the aquifer bulk conductivity, which was then correlated to water salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  5. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  6. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01T23:59:59.000Z

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  7. Competitive effects of introduced annual weeds on some native and reclamation species in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Allen, E.B.; Knight, D.H.

    1980-01-01T23:59:59.000Z

    Four experiments were conducted to examine the competitive effects of introduced annual weeds on certain native and reclamation species. The first experiment was initiated by discing three sites in the Powder River Basin, Wyoming, at three distances from introduced weed seed sources. Introduced weed colonization was greatest when a seed source was located nearby. Higher weed cover resulted in reductions of percent cover, density, and richness of the native species. The second experiment was conducted in the greenhouse and was designed to determine if there are changes in response of S. kali and the native grasses Agropyron smithii and Bouteloua gracilis to competition and water regime. Both grass species had lower biomass and higher stomatal resistance when growing in mixed culture with S. kali than in pure culture in the dry regime, but there were no significant differences in the wet regime. In general, the difference in plant response between mixed and pure cultures was more pronounced in the dry than in the wet regime. The third study was a greenhouse experiment on germination and competition of S. kali (a C/sub 4/ species) with native species Lepidium densiflorum (C/sub 3/), Chenopodium pratericola (C/sub 3/), A. smithii (C/sub 3/), and B. gracilis (C/sub 4/) under May, June, and July temperature regimes. Salsola kali germinated equally well in all three regimes, but the other C/sub 4/ species had highest germination in the July regime and the C/sub 3/ species in the May and June regimes. The fourth study was designed to examine the effect of weed colonization on the success of mine reclamation. Little effect was observed, but colonization by introduced annuals was very low. (ERB)

  8. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    SciTech Connect (OSTI)

    Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

    1997-08-01T23:59:59.000Z

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  9. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

    2011-01-01T23:59:59.000Z

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

  10. Upper Cretaceous Ferron-Frontier clastic wedge, Utah and Wyoming - interplay between sea level, sediment supply, and subsidence

    SciTech Connect (OSTI)

    Ryer, T.A.

    1986-08-01T23:59:59.000Z

    The Ferron-Frontier clastic wedge is among the most widespread in the Cretaceous System of North America. Some writers have emphasized the role of eustatic sea level in forming this clastic wedge; others have emphasized tectonics and variations in sediment supply. The evidence indicates that both were important, but to varying degrees and at different times. The Greenhorn regression was rapid, spanning only the middle part of Turonian time. It was caused primarily by lowering of sea level. Vast tracts of the sea floor that had previously been below wave base shoaled and became areas of accumulation of sandy and/or bioclastic-rich sediments. Sea level began to rise during late Turonian time. Subwave-base conditions returned to much of the sea floor, and the shoreline transgressed westward. It was during the Niobrara trangression that uplift in the Sevier orogenic belt and within the western part of the foreland basin caused a large volume of sediment to be carried eastward through the Ferron-Frontier river systems. In southwestern Wyoming, the influx of sediment slowed the transgression and resulted in stacking of shoreline sandstone units. The influx of sediment in central Utah was even greater - so much so that the shoreline once again prograded seaward. Late Turonian time marked the peak regression of the shoreline in that area. The tectonically induced influx of sediment appears to have been short-lived. A continued rise of sea level, combined with renewed downwarping of the foreland basin and trapping of sediment within it, led to abrupt westward transgression of the shoreline during Coniacian time.

  11. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01T23:59:59.000Z

    very heavily on the mineral extraction industry for itscomes from levies on mineral extraction. As of summer of

  12. Wyoming-Wyoming Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan 2012 2013

  13. Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling

    SciTech Connect (OSTI)

    Piri, Mohammad

    2014-03-31T23:59:59.000Z

    Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-­?phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­?brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account the underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­?conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­?based dynamic core-­?scale pore network model; (4) Development of new, improved high-­? performance modules for the UW-­?team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­? and core-­?scale models were rigorously validated against well-­?characterized core-­? flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­?resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.

  14. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming. [Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  15. Solar energy system performance evaluation: seasonal report for IBM System 3, Glendo, Wyoming

    SciTech Connect (OSTI)

    None

    1980-06-01T23:59:59.000Z

    The IBM System 3 Solar Energy System was designed by the Federal Systems Division of IBM in Huntsville, Alabama to provide 46% of the space heating and 80% of the domestic hot water (DHW) for a 1078 square foot retrofit of an existing building used as a residence at the Glendo Reservoir State Park Ranger Station. The system consists of fourteen Sunworks Model LA1001A flat plate liquid collectors (294 square feet), a 1000 gallon hot water storage tank, a 65 gallon electric domestic hot water tank, pumps, heat exchangers, controls, and associated plumbing. Water is the heat transfer medium for this closed volume, passive drain down system. A gas furnace is used for auxiliary space heating energy. The system which became operational in October 1978 has five modes of operation. Performance data for the year of 1979 are presented and assessed.

  16. Toxic Release Inventory (TRI), Wyoming, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  17. State 2007 2008 2009 2010 2011 2012 Alabama 16 13 6 9 7 7 -56%

    E-Print Network [OSTI]

    Fernandez, Eduardo

    3 CA 50 OR 5 WA 13 WY 0 ND 5 SD 0 NE 9 KS 5 OK 7 MN 14 WI 12 MI 43 IA 7 MO 19 IL 55 AR 4 AL 7 AK 2 5 6 200% Vermont 5 6 6 5 6 9 80% Virginia 38 40 41 45 49 52 37% Washington 8 8 6 12 13 13 63% West Virginia 6 7 4 2 6 7 17% Wisconsin 10 13 17 18 19 12 20% Wyoming 0 0 0 1 0 0 0% Total States 26,166 26

  18. Anisotropy and Spatial Variation of Relative Permeability and Lithologic Character of Tensleep Sandstone Reservoirs in the Bighorn and Wind River Basins, Wyoming

    SciTech Connect (OSTI)

    Dunn, Thomas L.

    1996-10-01T23:59:59.000Z

    This multidisciplinary study is designed to provide improvements in advanced reservoir characterization techniques. This goal is to be accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, depositional, and diagenetic frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery; and (5) a geochemical investigation of the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2}-enhanced oil recovery processes.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol License Anyone who imports, exports, or supplies ethanol in the state of Wyoming must obtain an annual license from the Wyoming Department of Transportation. The fee for...

  20. Rural migration in the western states

    SciTech Connect (OSTI)

    Freiwald, J.G.; Poster, B.R.; Olinger, C.; Aragon, P.C.; Buslee, P.L.

    1980-05-01T23:59:59.000Z

    The rapid rural growth rate since 1970 in 14 western states (Arizona, Colorado, Kansas, Idaho, Montana, Nebraska, Nevada, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, Utah, and Wyoming) was stimulated by recreation, resource development, manufacturing, commuting, institutional employment, and retirement. The eight Rocky Mountain States had significantly greater rural growth than the six Great Plains States. Other factors correlated with in-migration are population growth during the 1960's, presence of an interstate highway, adjacency to a metropolitan area, high per capita income, high population density, and absence of rural farm population. The presence of a central city with a population of over 20,000 or of a military base does not appear to be significantly related to net in-migration. An overview of regional growth patterns and of the factors related to rural in-migration is included, followed by an examination of these factors for each of the counties that experienced high in-migration in the 14 states.

  1. Regional Per Capita Solar Electric Footprint for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2007-12-01T23:59:59.000Z

    In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

  2. Devils Tower folio, Wyoming 

    E-Print Network [OSTI]

    Darton, Nelson Horatio, 1865-1948.; O'Harra, Cleophas C. (Cleophas Cisney), 1866-1935.

    1907-01-01T23:59:59.000Z

    Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

  3. Wyoming Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic2009 2010 2011

  4. Wyoming Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic2009 2010

  5. Wyoming Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan Feb162 144 152

  6. Origin State Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama...

  7. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    6. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama...

  8. onservationists around the world were delighted

    E-Print Network [OSTI]

    Arbogast, Brian

    . AfterpetitionswerefiledbyagroupcallingitselftheColo- radans for Water Conservation and Development and the State of Wyoming's Office

  9. QER- Comment of Paul Martin

    Broader source: Energy.gov [DOE]

    To Whom It May Concern, Thank you for your work on infrastructure siting. I have been developing several wind projects in Wyoming for the last seven years. The state of Wyoming is blessed with incredible amounts of fantastic wind and natural gas resources that if developed, could provide the cleanest and lowest cost incremental additions of electricity available to California.....even without the PTC. However, it is generally accepted that due to the significant challenges in siting the Gateway and TransWest Transmission Projects, there may not be any room to build new transmission lines out of Wyoming in the future without impacting other visual and environmental resources. This fact can be confirmed by the BLM officials here in Wyoming. Furthermore, these projects may not even be built to their full capacity due to the restrictions on incumbent utilities ability to rate base investments and a lack of investors with a long enough time horizon. If nothing is done, in ten years when the aforementioned transmission projects are at their capacity, there will be no way to access the remaining generation resources in Wyoming and they will be stranded for decades to come. These big transmission lines take decades to develop and no one will start a new project until this perceived situation is altered. This would be a major setback for the American, and more specifically, the California economy if we knowingly limited our access to the western grid's cheapest and cleanest resources. Something should be done sooner rather than later. This is a looming crisis that has been forgotten as the focus has remained on just getting the current ones across the finish line. There are many ways that this situation can be addressed, such as allowing permitting agencies such as the BLM more latitude when it comes to evaluating impacts from critical transmission corridors. Alternatively, the federal government could find ways to encourage owners of existing and planned transmission lines to upgrade the corridors for maximum transmission capacity and to facilitate that process with both the investment of federal dollars as well as easing rate basing restrictions. Thank you for your consideration. Best regards, Paul Martin Intermountain Wind, LLC

  10. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27T23:59:59.000Z

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

  11. Western Region Renewable Energy Markets: Implications for the Bureau of Land Management

    SciTech Connect (OSTI)

    Haase, S.; Billman, L.; Gelman, R.

    2012-01-01T23:59:59.000Z

    The purpose of this analysis is to provide the U.S. Department of the Interior (DOI) and the Bureau of Land Management (BLM) with an overview of renewable energy (RE) generation markets, transmission planning efforts, and the ongoing role of the BLM RE projects in the electricity markets of the 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) that comprise the Western Electricity Coordinating Council (WECC) Region. This analysis focuses on the status of, and projections for, likely development of non-hydroelectric renewable electricity from solar (including photovoltaic [PV] and concentrating solar power [CSP]), wind, biomass and geothermal resources in these states. Absent new policy drivers and without the extension of the DOE loan guarantee program and Treasury's 1603 program, state RPS requirements are likely to remain a primary driver for new RE deployment in the western United States. Assuming no additional policy incentives are implemented, projected RE demand for the WECC states by 2020 is 134,000 GWh. Installed capacity to meet that demand will need to be within the range of 28,000-46,000 MW.

  12. Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: case study in the Powder River Basin of Wyoming

    SciTech Connect (OSTI)

    Thoman, R.W.; Niezgoda, S.L. [Lowham Engineering LLC, Lander, WY (United States)

    2008-12-15T23:59:59.000Z

    The continuous discharge of coalbed natural gas-produced (CBNG-produced) water within ephemeral, cohesive channels in the Powder River Basin (PRB) of Wyoming can result in significant erosion. A study was completed to investigate channel stability in an attempt to correlate cohesive soil properties to critical shear stress. An in situ jet device was used to determine critical shear stress (tau{sub c}) and erodibility (k{sub d}); cohesive soil properties were determined following ASTM procedures for 25 reaches. The study sites were comprised of erodible to moderately resistant clays with tau{sub c} ranging from 0.11 to 15.35 Pa and k{sub d} ranging from 0.27 to 2.38 cm{sup 3}/N s. A relationship between five cohesive soil characteristics and tau{sub c} was developed and presented for use in deriving tau{sub c} for similar sites. Allowable discharges for CBNG-produced water were also derived using tau{sub c} and the tractive force method. An increase in the allowable discharge was found for channels in which vegetation was maintained. The information from this case study is critical to the development of a conservative methodology to establish allowable discharges while minimizing flow-induced instability.

  13. The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium

    E-Print Network [OSTI]

    · Land ownership/management: BLM, private, state Conservation Action Plan #12;Astragalus osterhoutii #12 · Land ownership/management: Colorado National Monument, BLM, possibly on adjacent private #12;Aletes · Land ownership/management: BLM, Mesa Verde NP, tribal (Southern Ute and Ute Mountain Ute), and private

  14. In pursuit of clean air: a data book of problems and strategies at the state level. Volume 5. Federal Regions VIII, IX, and X

    SciTech Connect (OSTI)

    Garvey, D.B.; Streets, D.G.

    1980-02-01T23:59:59.000Z

    The following material is provided for each state in Federal Regions VIII, IX, and X: state title page (lists nonattainment areas for each pollutant, the number of monitors with valid readings for a particular averaging time for a pollutant, and the number of monitors that recorded a violation of the standard); revised State Implementation Plan (SIP) outline (covers sources of the problems, the proposed strategies for achieving attainment, and new state review procedures); maps of nonattainment areas, as designated; SAROAD (Storage and Retrieval of Aerometric Data) data; SAROAD data maps; power plant data; power plant maps; and county maps. States in Federal Region VIII are Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. Federal Region IX includes Arizona, California, and Nevada. Federal Region X includes Idaho, Oregon, and Washington. (JGB)

  15. BLM Arctic Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources JumpPáginasLeasingBLMBLM

  16. BLM Burley Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field Office Jump to:

  17. BLM Field Offices | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field OfficeOpen

  18. BLM Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field

  19. BLM Operations Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLMBLM Nevada

  20. BLM Pocatello Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLMBLM

  1. BLM Prineville District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley FieldBLMBLMPrineville

  2. BLM Sensitive Species | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley

  3. Template:BLM Lease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa

  4. BLM Bishop Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillasInformation Bird

  5. BLM Boise District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillasInformation BirdAbbreviation:

  6. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillasInformation

  7. BLM Extraordinary Circumstances Checklist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillasInformationCentralExtraordinary

  8. BLM Manual 2802 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to: navigation, search OpenEI

  9. BLM NEPA Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | Open

  10. BLM ROW Grant Template | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | OpenBLMROW

  11. BLM Vale District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | OpenBLMROW

  12. BLM Winnemucca District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | OpenBLMROWBLM

  13. Form:BLM Lease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,Forked River, NewDENERGY Input the

  14. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  15. The Colorado Rare Plant Technical Committee presents

    E-Print Network [OSTI]

    Natural Heritage Program #12;#12;Asclepias uncialis ssp. uncialis Dwarf milkweed · Federal status: BLM/USFS sensitive · Heritage ranks: G3G4T2T3/S2 · Global distribution: Arizona, Texas, New Mexico, Wyoming, Oklahoma/11/2004 · Colorado occurrences: 20, 13 historical · Colorado individuals: ~500 · Primary threats: Population

  16. Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site

    SciTech Connect (OSTI)

    Oliver, R.L.; Youngberg, A.D.

    1983-12-01T23:59:59.000Z

    Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

  17. Toxic Release Inventory (TRI), Wyoming, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  18. Final sitewide environmental assessment for continued development of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Secretary of Energy is required by law to explore, prospect, conserve, develop, use, and operate the Naval Petroleum and Oil Shale Reserves. The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258), requires that the Naval Petroleum Reserves be produced at their maximum efficient rate (MER), consistent with sound engineering practices, for a period of six years. To fulfill this mission, DOE is proposing continued development activities which would include the drilling of approximately 250 oil production and injection (gas, water, and steam) wells, the construction of between 25 and 30 miles of associated gas, water, and steam pipelines, the installation of several production and support facilities, and the construction of between 15 and 20 miles of access roads. These drilling and construction estimates include any necessary activities related to the operation of the Rocky Mountain Oilfield Testing Center (RMOTC). The purpose of RMOTC will be to provide facilities and necessary support to government and private industry for testing and evaluating new oilfield and environmental technologies, and to transfer these results to the petroleum industry through seminars and publications. Continued development activities either have no potential to result in adverse environmental impacts or would only result in adverse impacts that could be readily mitigated. The small amounts of disturbed surface area will be reclaimed to its original natural state when production operations terminate. The preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (FONSI). 73 refs.

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013Wyoming

  20. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO] [National Renewable Energy Laboratory Golden, CO

    2013-07-01T23:59:59.000Z

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  1. Secretary Chu Announces Nearly $38 Million in State Awards for...

    Energy Savers [EERE]

    Texas 2,432,068 Utah 451,075 Vermont 257,003 Virginia 912,836 Washington 800,910 West Virginia 366,482 Wisconsin 716,382 Wyoming 248,874 Total 37,839,586 Media...

  2. http://www.blm.gov/nv/st/en/fo/lvfo/blm_programs/energy/propose

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythemeansIHome * About *AboutTHE

  3. BLM - Western BLM Bird Species of Conservation Concern List | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillasInformation Bird Species of

  4. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic Feet)

  5. Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    SciTech Connect (OSTI)

    Kaszuba, John; Sims, Kenneth

    2014-09-30T23:59:59.000Z

    An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO2-bearing experiments is greater at all temperatures compared to the experiments without CO2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO2-rich waters.

  6. An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). TORIS is a tested and verified system maintained and operated by the Department of Energy`s Bartlesville Project Office. The TORTS system was used to evaluate over 2,300 major reservoirs in a consistent manner and on an individual basis, the results of which have been aggregated to arrive at the national total.

  7. Wyoming Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic Feet)2008

  8. Geography of Existing and Potential Alternative Fuel Markets in the United States

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.

    2014-11-01T23:59:59.000Z

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  9. Oregon State University 52 CEM Students Completed the Survey

    E-Print Network [OSTI]

    Haller, Merrick

    % 27% 12% Number of Industry-Related Internships Completed 0 1 2 3 #12; Alliant Systems, Inc. Andersen Corporation BLM Bonneville Power Administration CECOP ­ Portland Water Bureau CECOP ­ Portland Bureau Company - 2 Nordic PCL ODOT ­ Bend Construction Offices Oregon Electric Group ­ 2 PCL Constructors

  10. aluminum culverts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the time of construction, Forest Service, BLM, and state forest roads provided access for timber harvest and recreational use. Culverts used on these roads were historically...

  11. United States

    Office of Legacy Management (LM)

    - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United...

  12. CX-008575: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wyoming Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date: 06/26/2012 Location(s): Wyoming Offices(s): Golden Field Office

  13. Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    SciTech Connect (OSTI)

    Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

    1998-10-01T23:59:59.000Z

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

  14. Conditions during syntectonic vein formation in the footwall of the Absaroka thrust fault of the Idaho-Wyoming-Utah fold and thrust belt

    E-Print Network [OSTI]

    Lambert, George Randall

    1993-01-01T23:59:59.000Z

    the calcite strain gauge technique of Groshong (1972, 1974). 14 Scatter plot of all measured homogenization (Th) and melting temperature (Tm) pairs. . 30 15 P-T diagram used to calculate inclusion entrapment temperatures. . . . . . 31 16 The equilibrium... types of equations of state for the chemical system under scrutiny. Variables associated with a typical equation of state include the measured Th, the measured Tm and a computed fluid density. The microcomputer program FLINCOR (Brown, 1989) was used...

  15. An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, domestic oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit the nation as a whole.

  16. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  17. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect (OSTI)

    Christopher D. White

    2009-12-21T23:59:59.000Z

    Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures can be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial distribution of rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method integrates outcrop--derived statistics, core observations of concretions, and radar amplitude and

  18. 3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect (OSTI)

    Janok P. Bhattacharya; George A. McMechan

    2007-02-16T23:59:59.000Z

    This project examined the internal architecture of delta front sandstones at two locations within the Turonian-age Wall Creek Member of the Frontier Formation, in Wyoming. The project involved traditional outcrop field work integrated with core-data, and 2D and 3D ground penetrating radar (GPR) imaging from behind the outcrops. The fluid-flow engineering work, handled through a collaborative grant given to PI Chris White at LSU, focused on effects on fluid flow of late-stage calcite cement nodules in 3D. In addition to the extensive field component, the work funded 2 PhD students (Gani and Lee) and resulted in publication of 10 technical papers, 17 abstracts, and 4 internal field guides. PI Bhattacharya also funded an additional 3 PhD students that worked on the Wall Creek sandstone funded separately through an industrial consortium, two of whom graduated in the fall 2006 ((Sadeque and Vakarelov). These additional funds provided significant leverage to expand the work to include a regional stratigraphic synthesis of the Wall Creek Member of the Frontier Formation, in addition to the reservoir-scale studies that DOE directly funded. Awards given to PI Bhattacharya included the prestigious AAPG Distinguished Lecture Award, which involved a tour of about 25 Universities and Geological Societies in the US and Canada in the fall of 2005 and Spring of 2006. Bhattacharya gave two talks, one entitled “Applying Deltaic and Shallow Marine Outcrop Analogs to the Subsurface”, which highlighted the DOE sponsored work and the other titled “Martian River Deltas and the Origin of Life”. The outcrop analog talk was given at about 1/2 of the venues visited.

  19. Solid state 13C NMR analysis of shales and coals from Laramide Basins. Final report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Miknis, F.P.; Jiao, Z.S.; Zhao, Hanqing; Surdam, R.C.

    1998-12-31T23:59:59.000Z

    This Western Research Institute (WRI) jointly sponsored research (JSR) project augmented and complemented research conducted by the University of Wyoming Institute For Energy Research for the Gas Research Institute. The project, {open_quotes}A New Innovative Exploitation Strategy for Gas Accumulations Within Pressure Compartments,{close_quotes} was a continuation of a project funded by the GRI Pressure Compartmentalization Program that began in 1990. That project, {open_quotes}Analysis of Pressure Chambers and Seals in the Powder River Basin, Wyoming and Montana,{close_quotes} characterized a new class of hydrocarbon traps, the discovery of which can provide an impetus to revitalize the domestic petroleum industry. In support of the UW Institute For Energy Research`s program on pressure compartmentalization, solid-state {sup 13}C NMR measurements were made on sets of shales and coals from different Laramide basins in North America. NMR measurements were made on samples taken from different formations and depths of burial in the Alberta, Bighorn, Denver, San Juan, Washakie, and Wind River basins. The carbon aromaticity determined by NMR was shown to increase with depth of burial and increased maturation. In general, the NMR data were in agreement with other maturational indicators, such as vitrinite reflectance, illite/smectite ratio, and production indices. NMR measurements were also obtained on residues from hydrous pyrolysis experiments on Almond and Lance Formation coals from the Washakie Basin. These data were used in conjunction with mass and elemental balance data to obtain information about the extent of carbon aromatization that occurs during artificial maturation. The data indicated that 41 and 50% of the original aliphatic carbon in the Almond and Lance coals, respectively, aromatized during hydrous pyrolysis.

  20. Microsoft Word - EIA-914 Instructions_Expiration Date 09202012...

    Gasoline and Diesel Fuel Update (EIA)

    Report totals for the following areas: Federal Offshore Gulf of Mexico, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, and Other States. The Other States include all...

  1. Sitewide environmental assessment EA-1236 for preparation for transfer of ownership of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The Proposed Action includes the following principal elements: (1) The accelerated plugging and abandoning of uneconomic wells over the next six years. Uneconomic wells are operating wells which can no longer cover their direct and indirect costs. DOE estimates that there are 900 wells to be plugged and abandoned over the next six years, leaving approximately 200 wells for transfer by 2003. (2) Complete reclamation and restoration of abandoned sites. Restoration would include dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production. Soil contaminated by hydrocarbons would be biologically treated. Roads, facilities, batteries, and well sites would be ripped up, recontoured, disked and seeded with native vegetation. (3) The continued development of the Rocky Mountain Oilfield Testing Center (RMOTC) through the establishment of a consortium of university, state and private institutions. RMOTC would continue to provide facilities and support to government and private industry for testing and evaluating new oilfield and environmental technologies. Based on the findings of the EA, DOE has determined that the proposal does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, an environmental impact statement is not required.

  2. Aspen Code Development Collaboration

    SciTech Connect (OSTI)

    none,; Cherry, Robert S. [INL] INL; Richard, Boardman D. [INL] INL

    2013-10-03T23:59:59.000Z

    Wyoming has a wealth of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming?s coal and gas resources are exported from the state in unprocessed form rather than as refined higher value products. Wyoming?s leadership recognizes the opportunity to broaden the state?s economic base energy resources to make value-added products such as synthetic vehicle fuels and commodity chemicals. Producing these higher value products in an environmentally responsible manner can benefit from the use of clean energy technologies including Wyoming?s abundant wind energy and nuclear energy such as new generation small modular reactors including the high temperature gas-cooled reactors.

  3. anesthetics blm experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  4. BLM Manual 8270 - General Procedural Guidance for Paleontological...

    Open Energy Info (EERE)

    - General Procedural Guidance for Paleontological Resource Management Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  5. Category:BLM CaseStatus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst2-Mpage? For

  6. Category:BLM Geothermal Case | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst2-Mpage? ForCase Jump to:

  7. http://www.blm.gov/nstc/VRM/8400.html

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythemeansIHome * About *About

  8. Property:BLM CaseType | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:InformationCaseType Jump to: navigation, search

  9. Property:BLM LeaseStatus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:InformationCaseType Jump to: navigation,

  10. DOI-BLM-CA-EA-2002-??? | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump to: navigation, search Tool

  11. DOI-BLM-NV-B020-????-???-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump to: navigation,?? Jump26-EA Jump

  12. DOI-BLM-OR-P000-????-????-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump

  13. DOI-BLM-UT-C010-????-????-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump(Redirected fromCX Jump to:2010-0042-EA

  14. BLM Increases Acreage for Geothermal Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG: Consistent "FiguresIncreases

  15. BLM Lists 2011 Priority Renewable Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG: Consistent "FiguresIncreasesLists

  16. BLM to Invest Recovery Act Funds on Renewable Energy Permitting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG: Consistentof Energy and

  17. BLM - Final Programmatic Environmental Impact Statement for Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources JumpPáginasLeasing in the

  18. BLM - Instruction Memorandum No. 2009-167 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources JumpPáginasLeasing in

  19. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field Office

  20. BLM Fire and Aviation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field OfficeOpenFire and

  1. BLM Four Rivers Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurley Field OfficeOpenFire

  2. BLM-USFWS Migratory Bird MOU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLMUSFWS Migratory Bird

  3. BLM Approves California Geothermal Development Project | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015 The StatusAprilMarchEnergyB lPin-scale

  4. Template:BLM Geothermal Case | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVCEtTemperature"AtlasTabs

  5. Title 43 CFR 3251 Exploration Operations: Getting BLM Approval | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen|AmendmentThat

  6. BLM - Information on Cultural Resource Use Permits webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas JumpBESolar Energy Development

  7. BLM - Instruction Memorandum No. 2012-140 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas JumpBESolar Energy

  8. BLM - Paleontological Resource Use Permits webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas JumpBESolar EnergyInformation

  9. BLM - Paleontological Resources Use Permit Application | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas JumpBESolar

  10. BLM - Sage-Grouse and Sagebrush Conservation webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas JumpBESolarInformation

  11. BLM Central California District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillasInformationCentral California

  12. BLM Color Country District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillasInformationCentral

  13. BLM Geothermal Guidance Documents Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump

  14. BLM IM 2011-003 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: navigation, search OpenEI Reference

  15. BLM Instruction Memorandum No. 2010-141 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: navigation, search

  16. BLM Instruction Memorandum No. 2011-003 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: navigation,

  17. BLM Instruction Memorandum No. 2011-060 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: navigation,Inner-Office Memorandum:

  18. BLM Instruction Memorandum No. 2011-061 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: navigation,Inner-Office

  19. BLM Instruction Memorandum No. 2011-181 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: navigation,Inner-OfficeInstruction

  20. BLM Interim Competitive Procedures for SEZs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:

  1. BLM Manual 2803: Qualifications for Holding FLPMA Grants | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to: navigation, search

  2. BLM Manual 2804: Applying for FLPMA Grants | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to: navigation, searchfor

  3. BLM Manual 8110 - Identifying and Evaluating Cultural Resources | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to: navigation,Energy

  4. BLM Manual 8120 - Tribal Consultation Under Cultural Resources | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to: navigation,EnergyEnergy

  5. BLM Manual 8140 - Protecting Cultural Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:

  6. BLM Manual 8270 - General Procedural Guidance for Paleontological Resource

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | Open Energy

  7. BLM/FS Geothermal MOU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management |Geothermal MOU

  8. Property:BLM CaseStatus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute forToolkit Jump to:AvgTempGeoFluidIntoPlant

  9. BLM California Desert District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP Screening

  10. DOI-BLM-NV-C010-????-????-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump to:2-0214-EA????-????-CX Jump to:

  11. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton Plasma Physics Lab Unique PPPL-ledStates Department of

  12. DOEEA-(0962) BLM EA # CA-016-93-140 BLM R/W S E W NO. CA 31330

    Broader source: Energy.gov (indexed) [DOE]

    FRESH WATER PIPELINE RIGHT-OF-WAY MITIGATION MEASURESRIGHT-OF-WAY STIPULATIONS U.S. FISH AND WILDLIFE SERVICECALIFORNIA DEPARTMENT OF FISH AND GAME CONSULTATION AND BIOLOGICAL...

  13. TopBP1 Interacts with BLM to Maintain Genome Stability but Is Dispensable for Preventing BLM Degradation

    E-Print Network [OSTI]

    Blackford, Andrew N.; Nieminuszczy, Jadwiga; Schwab, Rebekka A.; Galanty, Yaron; Jackson, Stephen P.; Niedzwiedz, Wojciech

    2015-03-19T23:59:59.000Z

    Biotech) or purified GST proteins for 2 hr with end-to-end mixing at 4#3;C. Beads were washed with peptide pull-down buffer (175 mM NaCl, 0.2% Igepal CA-630, 10% glycerol, 5 mM NaF, 1 mM EDTA, 50 mM Tris-HCl [pH 8.0], and protease inhibitors) before resuspension in 23...

  14. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30T23:59:59.000Z

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  15. Absaroka folio, Crandall and Ishawooa quadrangles, Wyoming 

    E-Print Network [OSTI]

    Hague, Arnold, 1840-1917.

    1899-01-01T23:59:59.000Z

    height-to-hydraulic diameter ratio of 0. 0625, a rib pitch-to-height ratio of 10, and Reynolds numbers from 15, 000 to 80, 000. The efFect of wall heat flux ratio on heat transfer rate is considered. It is concluded from this experimental program... . 27 13 Nusselt number ratio distribution for 600 parallel broken ribs on two walls with q, /q, = 6 . 14 Nusselt number ratio distribution for 60 parallel broken ribs on two walls II fl with q, /q, = oo . 29 15 Nusselt number ratio distribution...

  16. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    SciTech Connect (OSTI)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01T23:59:59.000Z

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

  18. GEOTHERMAL RESOURCES AT NPR-3, WYOMING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NPR-3 Teapot Dome NPR-3 LOCATION Salt Creek Anticline Trend NPR-3 WHY CONSIDER GEOTHERMAL ASSETS IN A STRIPPER OIL FIELD? RMOTC will partner with industry and academia to...

  19. Wyoming's Budget: From Champagne to Soda Pop

    E-Print Network [OSTI]

    Schuhmann, Robert A; Skopek, Tracy A

    2011-01-01T23:59:59.000Z

    very heavily on the mineral extraction industry for itsfrom levies on mineral extraction. As of this summer, (2010)

  20. Newcastle folio, Wyoming-South Dakota 

    E-Print Network [OSTI]

    Darton, Nelson Horatio, 1865-1948.

    1904-01-01T23:59:59.000Z

    The second well drilled on Superior's Garfield County lease was tested thoroughly using many of the same tests used on the MWXPI. The shale method and Kukal's technique were compared over a 4000 foot section, as shown in Figure 5. In examining this plot...ABSTRACT Determination of Formation Water Resist1vity Us. 'ng Shale Properties 1n Geopressured Wells. (December 1983) Richard Allen Dusenbery, B. S. ChE. , Un1vers1ty of Michigan Chairman of Advisory Committee: Dr. Joseph S. Osoba Conventional...

  1. Sundance folio, Wyoming-South Dakota 

    E-Print Network [OSTI]

    Darton, Nelson Horatio, 1865-1948.; Smith, W. S. Tangier (William Sidney Tangier), 1869-1962.

    1905-01-01T23:59:59.000Z

    mechanisms in Barnett shale. Barnett Shale core producing region is chosen for the study as it best represents behavior of Barnett Shale. A field wide moving domain analysis is performed over Wise, Denton and Tarrant County wells for understanding decline...

  2. National Park Service - Yellowstone National Park, Wyoming |...

    Energy Savers [EERE]

    isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system for a 7kW photovoltaic (PV)...

  3. Afton, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | OpenInformationAffinityIowa:New

  4. Brookhurst, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative EnergyHeights,Illinois: EnergyBrookhaven,

  5. Casper, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformation Cashtown-McKnightstown,

  6. Cheyenne, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont: EnergyView, Maryland:Kansas:

  7. Evansville, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP)

  8. Wyoming Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicleTrading,781Year

  9. Wyoming Heat Content of Natural Gas Consumed

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic2009 2010 2011 2012

  10. Wyoming Heat Content of Natural Gas Consumed

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic2009 2010 2011

  11. Wyoming Natural Gas Consumption by End Use

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic2009 2010

  12. Wyoming Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic2009 20103,015U.S.

  13. Wyoming Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic2009

  14. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic2009 2010Decade

  15. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic2009

  16. Wyoming Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan Feb Mar

  17. Wyoming Supplemental Supplies of Natural Gas

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan Feb162 1440

  18. Wyoming Underground Natural Gas Storage - All Operators

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan Feb162

  19. Wyoming Underground Natural Gas Storage Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan Feb162111,167

  20. Wyoming-Colorado Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan 2012 2013 View

  1. Utah-Wyoming Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (BillionThousand CubicWorking11,554

  2. Utah Nevada California Arizona Idaho Oregon Wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas Fields 2004 BOE

  3. Utah Nevada California Arizona Idaho Oregon Wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas Fields 2004 BOEProved

  4. Utah Nevada California Arizona Idaho Oregon Wyoming

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas Fields 2004

  5. Wyoming/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New Pages Recent Changes All

  6. Wyoming/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New Pages Recent Changes

  7. Wyoming/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New Pages Recent

  8. Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New Pages

  9. Jackson, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas:South Carolina: Energy

  10. Laramie, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank Jump to:WindLao InstituteLaramie,

  11. Hartrandt, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio:Connecticut:Wisconsin:Hartrandt,

  12. Cody, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated Conductors Cylinder Ltd Jump

  13. PacifiCorp (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama:ASES

  14. Powell, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudre Valley R E(Redirected

  15. Montana-Wyoming Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185 11,206 12,49376

  16. Wyoming Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan FebOECD/IEA -

  17. Wyoming Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels) Reserves(Million

  18. Wyoming Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousandUnderground Storage Volumeper

  19. Wyoming Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousandUnderground Storage VolumeperProved Reserves

  20. PacifiCorp (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD No 1PacifiCorp

  1. Riverton, Wyoming, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct'

  2. Sundance, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault PropagationSummerside WindSunErgySunbeam

  3. The University of Wyoming | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:UncertaintySocial36 Sector:TheUSThe

  4. Alcova, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar Jump to: navigation,Alcotra

  5. Cheyenne, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,VolcanicChevronJump to:

  6. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversary

  7. Wyoming Biodiesel Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxi GuofeiWuyishan

  8. Spook, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV Project ProposalFirstI

  9. Douglas, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProject ProjectonlyOak,

  10. Special Publication No. 1, Checklist Of The Internal And External Parasites of Deer, Odocoileus Hemionus And O. Virginianus, In The United States And Canada

    E-Print Network [OSTI]

    Walker, Martha L.; Becklund, Willard W.

    1970-01-01T23:59:59.000Z

    (Cont.) Thysanosoma sp. Nebraska (M?hler, Wampole, and Fichter, 1951). Oregon (Shaw, Simms, and Muth, 193*0- South Dakota (Boddicker and Hugghins, 1969). Utah (Grundmann, 1958). Wyoming (Landram, 1951a, 1951b; Landram and Honess, 1955; Honess..., 1939). New York, Zoo (Blair, 1903). Oregon (Shaw, Simms, and Muth, 1934). Pennsylvania, Philadelphia Zoo (Weidman, 1923). South Dakota (Boddicker and Hugghins, 1969). Utah (Doman and Rasmussen, 1944; Richens, 19?7)- Wyoming (Landram and Honess...

  11. CX-005151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

  12. Wind energy resources atlas. Volume 1. Northwest region

    SciTech Connect (OSTI)

    Elliott, D.L.; Barchet, W.R.

    1980-04-01T23:59:59.000Z

    Information is presented concering regional wind energy resource assessment; regional features; and state features for Idaho, Montana, Oregon, Washington, and Wyoming.

  13. Gulf of Mexico",,"Louisiana",,"New Mexico",,"Oklahoma",,"Texas...

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-914 Gross Withdrawals1 by Area by Month, Bcfd" "Area","Federal Offshore Gulf of Mexico",,"Louisiana",,"New Mexico",,"Oklahoma",,"Texas",,"Wyoming",,"Other States...

  14. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experiencing year-over-year declines between 5-10%. Only six states (Wyoming, North Dakota, Arizona, West Virginia, North Carolina, and South Carolina) had higher retail sales...

  15. State of the State's Rural Health

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    of health status, health behavior, or health- care access and Oklahomans do not compare favorablyState of the State's Rural Health 2007 Edition Produced by OSU Center for Rural Health ASnapshotof-4391 January 1, 2007 Dear Reader: Welcome to the Oklahoma State University Center for Rural Health's inaugural

  16. States & Emerging Energy Technologies

    Broader source: Energy.gov (indexed) [DOE]

    States & Emerging Energy Technologies August 15, 2013 DOE's State and Local Technical Assistance Program 2 DOE's Technical Assistance Program * Strategic Energy Planning * Program...

  17. Qutrit Magic State Distillation

    E-Print Network [OSTI]

    Anwar, Hussain; Browne, Dan E

    2012-01-01T23:59:59.000Z

    Magic state distillation (MSD) is a purification protocol that plays a central role in fault tolerant quantum computation. Repeated iteration of the steps of a MSD protocol, generates pure single non-stabilizer states, or magic states, from multiple copies of a mixed resource state using stabilizer operations only. Thus mixed resource states promote the stabilizer operations to full universality. Magic state distillation was introduced for qubit-based quantum computation, but little has been known concerning MSD in higher dimensional qudit-based computation. Here, we describe a general approach for studying MSD in higher dimensions. We use it to investigate the features of a qutrit MSD protocol based on the 5-qutrit stabilizer code. We show that this protocol distills non-stabilizer magic states, and identify two types of states, that are attractors of this iteration map. Finally, we show how these states may be converted, via stabilizer circuits alone, into a state suitable for state injected implementation ...

  18. Sandia Energy - Solid-State Lighting Technology: Current State...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Technology: Current State of the Art and Grand Challenges Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Solid-State Lighting...

  19. Secretary Bodman Announces $34.6 Million to Fund State Energy...

    Office of Environmental Management (EM)

    660,000 Texas 1,984,000 Utah 344,000 Vermont 238,000 Virginia 774,000 Washington 620,000 West Virginia 383,000 Wisconsin 773,000 Wyoming 228,000 American Samoa 170,000 Guam...

  20. Are quantum states real?

    E-Print Network [OSTI]

    Lucien Hardy

    2012-06-14T23:59:59.000Z

    In this paper we consider theories in which reality is described by some underlying variables. Each value these variables can take represents an ontic state (a particular state of reality). The preparation of a quantum state corresponds to a distribution over the ontic states. If we make three basic assumptions, we can show that the distributions over ontic states corresponding to distinct pure states are non-overlapping. This means that we can deduce the quantum state from a knowledge of the ontic state. Hence, if these assumptions are correct, we can claim that the quantum state is a real thing (it is written into the underlying variables that describe reality). The key assumption we use in this proof is ontic indifference - that quantum transformations that do not affect a given pure quantum state can be implemented in such a way that they do not affect the ontic states in the support of that state. In fact this assumption is violated in the Spekkens toy model (which captures many aspects of quantum theory and in which different pure states of the model have overlapping distributions over ontic states). This paper proves that ontic indifference must be violated in any model reproducing quantum theory in which the quantum state is not a real thing. The argument presented in this paper is different from that given in a recent paper by Pusey, Barrett, and Rudolph. It uses a different key assumption and it pertains to a single copy of the system in question.

  1. Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product

    SciTech Connect (OSTI)

    Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

    2000-07-01T23:59:59.000Z

    For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

  2. Wyoming fossils change theories about extinction Casper, Wyoming -Wednesday, March 12, 2003

    E-Print Network [OSTI]

    Wilf, Peter

    extinction of about 79 percent of North American insect species at the K-T boundary. The scientists worked numbers, insect species have generally been believed to be less susceptible to extinction events than and John Lawton, only 0.006 percent of known insect species have actually gone extinct since 1600, and only

  3. State Water Quality (Virginia)

    Broader source: Energy.gov [DOE]

    It is the policy of the Commonwealth of Virginia to: (1) protect existing high quality state waters and restore the quality of all other state waters to permit all reasonable public uses and...

  4. Southern States Energy Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Southern States Energy Compact provides for the proper employment and conservation of energy, and for the employment of energy-related facilities, materials, and products, within the context of...

  5. States & Emerging Energy Technologies

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

  6. AASG STATE GDR

    Energy Science and Technology Software Center (OSTI)

    003198MLTPL00 AASG State Geothermal Data Repository for the National Geothermal Data System.  http://repository.stategeothermaldata.org/repository/ 

  7. Ecological Applications, 21(6), 2011, pp. 20162033 2011 by the Ecological Society of America

    E-Print Network [OSTI]

    Hall Jr., Robert O.

    demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes of Ecology, 310 Lewis Hall, Montana State University, Bozeman, Montana 59717 USA 2 Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071 USA 3 Department of Biology, Idaho State University

  8. STATE RESEARCH, OUTREACH AND TECHNICAL ASSISTANCE TO IMPROVE THE NATION’S TRANSMISSION AND DISTRIBUTION SYSTEMS

    SciTech Connect (OSTI)

    David Terry; Ben Deitchman; Shemika Spencer

    2009-06-29T23:59:59.000Z

    The goal of the project 'State Research, Outreach and Technical Assistance to Improve the Nation's Transmission and Distribution Systems' was for the National Association of State Energy Officials (NASEO) to partner with the National Governors Association (NGA) Center for Best Practices, the National Conference of State Legislators (NCSL), and the National Association of Regulatory Utility Commissioners (NARUC) to assist DOE's Office of Electricity Delivery and Energy Reliability (OE) in its effort to modernize and expand America's electric delivery system. NASEO focused on key transmission and distribution issues where coordination between the federal and state governments was critical. Throughout the duration of this program, NASEO engaged in monthly coordination - occasionally more often - with NGA, NCSL and NARUC. NASEO staff and General Counsel Jeff Genzer also had regular face-to-face meetings, phone calls and emails with OE staff to learn from DOE and share information and feedback from the state energy offices on transmission and distribution. To commence work on this project, NASEO met with OE, NGA, NCSL and NARUC in January 2005 and remained committed to regular communications with all involved entities throughout the duration of this project. NASEO provided comments and analysis to the other partners on deliverable reports under this award. This award provided support to NASEO's Energy Production Committee (chaired by Dub Taylor of Texas, followed by Tom Fuller of Wyoming) to plan and host sessions at NASEO's Annual Meeting and Energy Outlook Conferences. Sessions included presentations from state, DOE, national laboratory and private sector experts on transmission, distribution, distributed energy resources, integrating renewable resources into the electricity grid. NASEO disseminated information to its members through emails and its website on transmission and distribution technology and policy. NASEO was an active member of the National Council on Electricity Policy as part of its transmission and distribution work. The National Council on Electricity Policy (National Council) is a venture between NASEO, NARUC, NCSL, National Association of Clean Air Agencies (NACAA) and the National Governors Association (NGA). The National Council also includes several federal members including FERC, DOE, and the U.S. Environment Protection Agency (EPA). NASEO members serve on the policy committee and NASEO General Council Jeff Genzer is a member of the National Council's Executive Committee. NASEO staff participated on regularly scheduled policy committee and executive committee calls and helped to plan agendas and publications for various state decision-makers. Specifically, NASEO organized state energy officials and participating in formulating the agenda for meetings, including the Mid-Atlantic Distributed Generation Workshop in New Jersey in September 2007. NASEO shared the results of these meetings through its website, email communications and direct conversations with state energy officials. NASEO participated as a member of the National Action Plan for Energy Efficiency (NAPEE) Leadership Committee, representing the interests and expertise of the state energy offices. In addition, NASEO was part of the Long-Term Vision Committee. NASEO members also participated in these activities and NASEO has encouraged further efforts of its membership with regards to NAPEE. NASEO has worked to ensure that its membership has the most timely and accurate information about transmission and distribution technology and policy. Its work with other associations has facilitated greater partnerships to enhance activities across the nation and encourage state energy offices to collaborate with public utility commissions, legislatures and executives to improve modern transmission and distribution. NASEO has identified transmission and distribution as a key area for further action.

  9. FISHERY STATISTICS UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1972 STATISTICAL DIGEST NO. 66 Prepared by STATISTICS;ACKNOWLEDGMENTS The data in this edition of "Fishery Statistics of the United States" were collected in co- operation with the various States and tabulated by the staff of the Statistics and Market News Division

  10. Sustainability Cal State Fullerton

    E-Print Network [OSTI]

    de Lijser, Peter

    Sustainability at Cal State Fullerton A Report from the Sustainability Initiative Study Group October 28, 2008 #12;Sustainability at Cal State Fullerton A Report from the Sustainability Initiative Safety Sally Yassine Contracts & Procurement #12;Sustainability at Cal State Fullerton A Report from

  11. MICHIGAN STATE UNIVERSITY INTRODUCTIONi.

    E-Print Network [OSTI]

    #12;2 MICHIGAN STATE UNIVERSITY INTRODUCTIONi. Welcome to the Online Professional Master of Science), and the College of Veterinary Medicine (CVM) at Michigan State University (MSU). This booklet contains important, Program Director Online Master of Science in Food Safety Michigan State University 1129 Farm Lane, Rm B 51

  12. Quantum Sequence States

    E-Print Network [OSTI]

    F. V. Mendes; R. V. Ramos

    2014-08-20T23:59:59.000Z

    In a recent paper it has been shown how to create a quantum state related to the prime number sequence using Grover's algorithm. Moreover, its multiqubit entanglement was analyzed. In the present work, we compare the multiqubit entanglement of several quantum sequence states as well we study the feasibility of producing such states using Grover's algorithm.

  13. Ground State Quantum Computation

    E-Print Network [OSTI]

    Ari Mizel; M. W. Mitchell; Marvin L. Cohen

    1999-08-11T23:59:59.000Z

    We formulate a novel ground state quantum computation approach that requires no unitary evolution of qubits in time: the qubits are fixed in stationary states of the Hamiltonian. This formulation supplies a completely time-independent approach to realizing quantum computers. We give a concrete suggestion for a ground state quantum computer involving linked quantum dots.

  14. State and Local Code Implementation: State Energy Officials ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Officials - 2014 BTO Peer Review State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Presenter: Chris Wagner, National Association of...

  15. State Clean Energy Policies Analysis: State, Utility, and Municipal...

    Open Energy Info (EERE)

    State, Utility, and Municipal Loan Programs Jump to: navigation, search Name State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs AgencyCompany...

  16. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30T23:59:59.000Z

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  17. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01T23:59:59.000Z

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  18. EIS-0449: Department of Energy Loan Guarantee to Solar Millennium for the Proposed Blythe Solar Power Project, California

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement addresses the possible United States Bureau of Land Management approval of an amendment to the California Desert Conservation Area Plan (CDCA Plan) to allow for solar energy and of a right?of?way grant to lease land managed by the BLM for construction, operation and decommissioning of a solar electricity generation facility. The Agency Preferred Alternative covers approximately 7,025 acres (ac), managed by the BLM, and would generate 1000 megawatts (MW) of electricity annually.

  19. Amplitude mediated chimera states

    E-Print Network [OSTI]

    Gautam C Sethia; Abhijit Sen; George L. Johnston

    2013-10-04T23:59:59.000Z

    We investigate the possibility of obtaining chimera state solutions of the non-local Complex Ginzburg-Landau Equation (NLCGLE) in the strong coupling limit when it is important to retain amplitude variations. Our numerical studies reveal the existence of a variety of amplitude mediated chimera states (including stationary and non-stationary two cluster chimera states), that display intermittent emergence and decay of amplitude dips in their phase incoherent regions. The existence regions of the single-cluster chimera state and both types of two cluster chimera states are mapped numerically in the parameter space of $C_1$ and $C_2$ the linear and nonlinear dispersion coefficients respectively of the NLCGLE. They represent a new domain of dynamical behaviour in the well explored rich phase diagram of this system. The amplitude mediated chimera states may find useful applications in understanding spatio-temporal patterns found in fluid flow experiments and other strongly coupled systems.

  20. Michigan State University Alumni Association MICHIGAN STATE UNIVERSITY

    E-Print Network [OSTI]

    Michigan State University Alumni Association Bylaws #12;2 MICHIGAN STATE UNIVERSITY ALUMNI of the organization shall be the Michigan State University Alumni Association (hereinafter, the "Association"). Section 2 Mission Statement The Michigan State University Alumni Association supports and enhances

  1. State Energy Strategic Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 3, 2013 and dealing with state energy strategic planning.

  2. United States Government

    Office of Legacy Management (LM)

    State University, Columbus, OH (*) Stauffer Tenescal Co., Richmond, CA Tocco Induction Heating Division, Clevelaad, OH Utica Drop Forge & Tool Co., Utica, NV Titanium Metals Corp....

  3. United States Government

    Office of Legacy Management (LM)

    State Wversity, Columbus, CM-i (*) Stauffer Tenescal Co., Richmond, CA Tocco Induction Heating Division, Clevelaad, OH Utica Drop Forge & Tool Co., Utica, NV Titanium Metals Corp....

  4. State and Local Incentives

    Broader source: Energy.gov [DOE]

    To help you make energy efficiency improvements in your commercial building, your state and/or local community might offer incentives or have special programs.

  5. Oklahoma State University Purchasing Card

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    Oklahoma State University Purchasing Card Guidelines Oklahoma State University Fiscal and Administrative Compliance 306 Whitehurst Stillwater, OK 74078 http://faac.okstate.edu August 2011 Oklahoma State University Purchasing Card Guidelines Fiscal and Administrative Compliance Oklahoma State University #12;Page

  6. OKLAHOMA STATE June 30, 2009

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY June 30, 2009 #12;OKLAHOMA STATE UNIVERSITY June 30, 2009 AUDITED ..........................................................................................................56 Discretely Presented Component Units Oklahoma State University Foundation..............................................................................................71 OKLAHOMA STATE UNIVERSITY DETAILED SCHEDULE OF EXPENDITURES OF FEDERAL AWARDS General University

  7. OKLAHOMA STATE June 30, 2011

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY June 30, 2011 #12;OKLAHOMA STATE UNIVERSITY June 30, 2011 AUDITED.................................................................................................59 Discretely Presented Component Units Oklahoma State University Foundation..............................................................................................76 OKLAHOMA STATE UNIVERSITY DETAILED SCHEDULE OF EXPENDITURES OF FEDERAL AWARDS General University

  8. OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY June 30, 2010 #12;OKLAHOMA STATE UNIVERSITY MEDICAL Authority Members Oklahoma State University Medical Authority Tulsa, Oklahoma We have audited the accompanying statements of financial position of the Oklahoma State University Medical Authority (the

  9. OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY June 30, 2009 #12;OKLAHOMA STATE UNIVERSITY MEDICAL Authority Members Oklahoma State University Medical Authority Tulsa, Oklahoma We have audited the accompanying statements of financial position of the Oklahoma State University Medical Authority (the

  10. Florida State Bowling Team

    E-Print Network [OSTI]

    Weston, Ken

    The Florida State University Bowling Team Handbook 2012-2013 #12;THE FLORIDA STATE UNIVERSITY BOWLING TEAM HANDBOOK 2012-2013 2 Table of Contents WELCOME 3 VIRES, ARTES AND MORES 4 THE FSU BOWLING TEAM COACHING STAFF 5 PROGRAM PHILOSOPHY 7 Team Goals 7 Methods of Meeting Goals 7 Physical Game 8

  11. Florida State Bowling Team

    E-Print Network [OSTI]

    McQuade, D. Tyler

    The Florida State University Bowling Team Handbook 2014-2015 #12;THE FLORIDA STATE UNIVERSITY BOWLING TEAM HANDBOOK 2014-2015 2 Table of Contents WELCOME 3 VIRES, ARTES AND MORES 4 THE FSU BOWLING TEAM COACHING STAFF 5 PROGRAM PHILOSOPHY 8 Team Goals 8 Methods of Meeting Goals 9 Physical Game 10

  12. Florida State Bowling Team

    E-Print Network [OSTI]

    Ronquist, Fredrik

    The Florida State University Bowling Team Handbook 2014-2015 #12;THE FLORIDA STATE UNIVERSITY BOWLING TEAM HANDBOOK 2014-2015 2 Table of Contents WELCOME 3 VIRES, ARTES AND MORES 4 THE FSU BOWLING TEAM COACHING STAFF 5 PROGRAM PHILOSOPHY 7 Team Goals 7 Methods of Meeting Goals 7 Physical Game 8

  13. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01T23:59:59.000Z

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  14. Compatibility of quantum states

    SciTech Connect (OSTI)

    Poulin, David; Blume-Kohout, Robin [Theoretical Division, Los Alamos National Laboratory, MS-B210, Los Alamos, New Mexico 87545 (United States)

    2003-01-01T23:59:59.000Z

    We introduce a measure of compatibility between quantum states--the likelihood that two density matrices describe the same object. Our measure is motivated by two elementary requirements, which lead to a natural definition. We list some properties of this measure, and discuss its relation to the problem of combining two observers' states of knowledge.

  15. Iowa State University Engineering

    E-Print Network [OSTI]

    Lin, Zhiqun

    1 Iowa State University Engineering Student Clubs Engineering Student CouncilIowa State University #12;2 AirISU Pg. 4 Alpha Pi Mu Industrial Engineering Honor Society (APM) Pg. 4 American Institute of Aeronautics and Astronautics (AIAA) Pg. 5 American Society of Agricultural and Biological Engineers (ASABE) Pg

  16. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    E-Print Network [OSTI]

    Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributionsDepartment of Botany and Program in Ecology and dWyoming Water Resources Data System and Wyoming State Climate Office superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes

  17. STATE OF THE STATES: FUEL CELLS IN AMERICA

    E-Print Network [OSTI]

    Incentives for Renewables & Efficiency (DSIRE). It is a follow-up to the 2010 report, State of the States, particularly the State Fuel Cell and Hydrogen Database and North Carolina Solar Center's Database of State this effort. State and national leaders must work together to develop additional strategies and incentives

  18. New State Standards

    E-Print Network [OSTI]

    Lopez, F. A.

    2011-01-01T23:59:59.000Z

    residential 2009 IECC, commercial 2009 IECC, air sealing and blower doors; ? A resource library of compliance tools, software, and PNNL checklists. 15 CATEE-Dallas 11-09-2011 Questions? Felix Lopez, P.E. State Energy Conservation Office 512...

  19. Greening of State Government

    Broader source: Energy.gov [DOE]

    In July 2005, Colorado’s governor signed Executive Order D005 05, mandating that state agencies and departments evaluate business operations and implement new programs “to promote environmentally...

  20. United States Department of

    E-Print Network [OSTI]

    of a typical wind energy production facility, the results warrant further research on the use of acoustic;1 INTRODUCTION Over the past decade, wind energy production capacity in the United States has increased