Sample records for blm blm color

  1. Category:BLM Lease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm JumpBLM) Lease. Add.png Add a new BLM

  2. BLM - Final Programmatic Environmental Impact Statement for Geothermal...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Legal Document- OtherOther: BLM - Final Programmatic Environmental Impact Statement for Geothermal Leasing in the Western United StatesLegal...

  3. BLM Arctic Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo: BLM Arctic Field

  4. BLM Arizona State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo: BLM Arctic

  5. BLM Burley Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo: BLM

  6. EIS-0403: BLM Notice of Availability of Maps and Additional Public...

    Broader source: Energy.gov (indexed) [DOE]

    BLM Notice of Availability of Maps and Additional Public Scoping from the Programmatic Environmental Impact Statement (Second Scoping Period) EIS-0403: BLM Notice of Availability...

  7. BLM Alaska State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump to:PáginasBEVBJLeasingBLM

  8. BLM Field Offices | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:Open EnergyBLM Field

  9. BLM Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:Open EnergyBLMFourBLM

  10. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program...

  11. BLM and Forest Service Consider Large-Scale Geothermal Leasing...

    Energy Savers [EERE]

    Geothermal Leasing June 18, 2008 - 4:29pm Addthis In an effort to encourage appropriate geothermal energy development on public lands, the Bureau of Land Management (BLM) and the...

  12. BLM/DOI - Notice of Intent to Conduct Geothermal Resource Exploration...

    Open Energy Info (EERE)

    BLMDOI - Notice of Intent to Conduct Geothermal Resource Exploration Operations < BLM Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: BLMDOI - Notice of...

  13. BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power...

    Energy Savers [EERE]

    more than 190 million acres of federal lands for leasing and potential development of geothermal energy resources. On December 18, the BLM published the "Record of Decision and...

  14. EIS-0403-S1: DOE and BLM Notice of Availability of the Supplement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability of the Supplement to the Draft Programmatic Environmental Impact Statement EIS-0403-S1: DOE and BLM Notice of Availability of the Supplement to the Draft Programmatic...

  15. BLM/FS Geothermal MOU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance DocumentsOperations | Open EnergyBLM/FS

  16. BLM Fire and Aviation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:Open EnergyBLM

  17. File:Blm lup handbook.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdf Jump to: navigation,Lab.pdf JumpBlm lup

  18. IntroductionIntroduction The Ashland BLM Field Office has actively pursued fuel reduction since 1996. Treatment

    E-Print Network [OSTI]

    Muir, Patricia

    IntroductionIntroduction The Ashland BLM Field Office has actively pursued fuel reduction since hazardous fuels in the wildland urban interface (WUI). The Ashland Field Office has completed 12 landscape

  19. EIS-0441: BLM Notice of Intent to Prepare an Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Intent to Prepare an Environmental Impact Statement (Second Scoping) Mohave County Wind Farm EIS-0441-BLMNOI2-2010.pdf More Documents & Publications EIA-0441: BLM Notice of...

  20. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect (OSTI)

    Foley, D.; Dorscher, M.

    1982-11-01T23:59:59.000Z

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  1. BLM Color Country District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocolDistrictCountry

  2. BLM | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiahOffice Jump

  3. BLM | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiahOffice Jump

  4. BLM Elko District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to:Ayuda:Palabras HomeElko District Office

  5. BLM Bishop Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocol

  6. BLM Boise District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocolDistrict Office

  7. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocolDistrict OfficeBurns

  8. BLM Extraordinary Circumstances Checklist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:

  9. BLM Idaho State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump to:Idaho State

  10. BLM Manual 2802 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website JumpProcedures

  11. BLM NEPA Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website:Handbook Jump to:

  12. BLM ROW Grant Template | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website:Handbook

  13. BLM Vale District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website:HandbookDistrict

  14. BLM Winnemucca District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents

  15. BLM California State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo: BLMCalifornia State

  16. BLM Colorado State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo: BLMCalifornia

  17. BLM Eastern States Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo: BLMCaliforniaEastern

  18. BLM Montana State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:OpenCruces

  19. BLM National Training Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:OpenCrucesNational

  20. BLM Nevada State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump

  1. BLM Operations Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenter Jump to: navigation,

  2. BLM Oregon State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenter Jump to:

  3. BLM Pocatello Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenter Jump to:Pocatello

  4. BLM Prineville District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenter Jump

  5. BLM Sensitive Species | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenter JumpSensitive

  6. BLM Stillwater Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenter

  7. BLM Ukiah Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiah Field Office

  8. BLM Utah State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiah Field

  9. BLM Washington Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiah FieldOffice

  10. BLM Wyoming State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiahOffice Jump to:

  11. BLM-JCI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiahOffice

  12. Form:BLM Lease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlackFluvanna3°,Forestville,D Jump

  13. Template:BLM Lease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,TeesAtlasTabs Jump to: navigation,Lease'

  14. http://www.blm.gov/nv/st/en/fo/lvfo/blm_programs/energy/propose

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA ReviewManual 8400 - Visual

  15. BLM - Western BLM Bird Species of Conservation Concern List | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocol Agreement with

  16. BLM Manual 8270 - General Procedural Guidance for Paleontological...

    Open Energy Info (EERE)

    - General Procedural Guidance for Paleontological Resource Management Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  17. BLM - Approved Resource Management Plan Amendments/Record of...

    Open Energy Info (EERE)

    Approved Resource Management Plan AmendmentsRecord of Decision for Solar Energy Development in Six Southwestern States Jump to: navigation, search OpenEI Reference LibraryAdd to...

  18. http://www.blm.gov/nstc/VRM/8400.html

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA ReviewManual 8400 - Visual Resource

  19. BLM Approves California Geothermal Development Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21FAQs BEDES FAQs OnBETO-Fundedreport

  20. BLM California Desert District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to:Ayuda:Palabras Home Alevine'sBITESDesert

  1. BLM Carson City District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to:Ayuda:Palabras Home

  2. BLM Idaho Falls District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to:Ayuda:Palabras HomeElko District

  3. BLM Twin Falls District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to:Ayuda:Palabras HomeElko DistrictFalls

  4. BLM - Information on Cultural Resource Use Permits webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA SBIOPARSolar

  5. BLM - Instruction Memorandum No. 2012-140 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA SBIOPARSolar0 Jump to:

  6. BLM - Paleontological Resource Use Permits webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA SBIOPARSolar0 Jump

  7. BLM - Paleontological Resources Use Permit Application | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA SBIOPARSolar0

  8. BLM - Sage-Grouse and Sagebrush Conservation webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA SBIOPARSolar0Information

  9. BLM - State Protocol Agreement with Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocol Agreement with Nevada

  10. BLM Battle Mountain District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocol AgreementMountain

  11. BLM Central California District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocolDistrict

  12. BLM Geothermal Guidance Documents Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump to: navigation,

  13. BLM IM 2011-003 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump to:

  14. BLM Instruction Memorandum No. 2010-141 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump to:Idaho State41

  15. BLM Instruction Memorandum No. 2011-003 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump to:Idaho

  16. BLM Instruction Memorandum No. 2011-060 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump to:Idaho Jump

  17. BLM Instruction Memorandum No. 2011-061 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump to:Idaho

  18. BLM Instruction Memorandum No. 2011-181 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump

  19. BLM Interim Competitive Procedures for SEZs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website JumpProcedures for

  20. BLM Manual 2803: Qualifications for Holding FLPMA Grants | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website

  1. BLM Manual 2804: Applying for FLPMA Grants | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website: Applying for FLPMA

  2. BLM Manual 8110 - Identifying and Evaluating Cultural Resources | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website: Applying forEnergy

  3. BLM Manual 8120 - Tribal Consultation Under Cultural Resources | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website: Applying

  4. BLM Manual 8140 - Protecting Cultural Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website: ApplyingProtecting

  5. BLM Manual 8270 - General Procedural Guidance for Paleontological Resource

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website:

  6. BLM New Mexico State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website:Handbook Jump

  7. BLM Notice of Completion of Geothermal Resource Exploration Operations |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website:Handbook JumpOpen

  8. DOI-BLM-NV-C010-????-????-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNA

  9. BLM - Final Programmatic Environmental Impact Statement for Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump to:PáginasBEVBJLeasing in

  10. BLM - Instruction Memorandum No. 2009-167 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump to:PáginasBEVBJLeasing in

  11. BLM Approves Salt Wells Geothermal Energy Projects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump

  12. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:

  13. BLM Four Rivers Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:Open EnergyBLMFour

  14. BLM Humboldt River Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:Open

  15. BLM Las Cruces District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:OpenCruces District

  16. BLM Sierra Front Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenter JumpSensitiveFront

  17. BLM West Desert District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas JumpCenterUkiah

  18. BLM-USFWS Migratory Bird MOU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWS Migratory Bird MOU Jump

  19. Property:BLM CaseType | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthor Jump to:AwardeeHeadquarters Jump

  20. Property:BLM LeaseStatus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthor Jump to:AwardeeHeadquarters JumpLeaseStatus

  1. Property:BLM CaseStatus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddress Jump to: navigation, search This isCaseStatus

  2. File:BLM MOU Geothermal.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to: navigation, search File File history

  3. DOI-BLM-CA-EA-2002-??? | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation 101:EA-2002-???

  4. DOI-BLM-NV-B020-????-???-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX Jump

  5. DOI-BLM-OR-P000-????-????-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to:2012-0043-CX Jump

  6. DOI-BLM-UT-C010-????-????-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump

  7. Category:BLM CaseStatus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status of cases issued by the United

  8. Category:BLM Geothermal Case | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status of cases issued by the

  9. BLM Increases Acreage for Geothermal Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid Climate:BEoptIncreases Acreage for

  10. BLM Lists 2011 Priority Renewable Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid Climate:BEoptIncreases Acreage

  11. BLM to Invest Recovery Act Funds on Renewable Energy Permitting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid Climate:BEoptIncreasesofDepartment

  12. Template:BLM Geothermal Case | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,TeesAtlasTabs Jump to: navigation,

  13. Title 43 CFR 3251 Exploration Operations: Getting BLM Approval | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl.,InformationInformation 2

  14. DOEEA-(0962) BLM EA # CA-016-93-140 BLM R/W S E W NO. CA 31330

    Broader source: Energy.gov (indexed) [DOE]

    (about 78%). NPR-1 is surrounded on three sides by extensively developed oil and gas fields that have been in production since the early 1900's. Extensively developed...

  15. E-Print Network 3.0 - anesthetics blm experiments Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coherence (HSQC) experi- ments 15 are useful in monitoring the protein-anesthetic interaction studies... them until all necessary experi- ments are completed. This...

  16. AK---------Adaptive Kernel estimates of home-range BLM-------Bureau of Land Management (USDI)

    E-Print Network [OSTI]

    Standiford, Richard B.

    Conservation Areas IPs --------- Industrial Private (Timber Companies) ISC -------- Interagency Scientific

  17. BLACK-TAILED PRAIRIE DOG SURVEYS OF BLM LANDS IN EASTERN COLORADO

    E-Print Network [OSTI]

    ......................................................................................................7 Study Area.........................................................................................51 Sedgwick County..........................................................................................61 Potential Conservation Areas

  18. Prof. Dr. Metin Heper (Siyaset Bilimi Blm), doktoras>n> 1971'de Syracuse

    E-Print Network [OSTI]

    Gürel, Levent

    üniversitelerinde araflt>rmac>l>k yapm>flt>r. Bilkent ?niversitesi'nde >rma Müdürlü¤ü'nde dan>flmanl>k, Michigan State ile Ball State üniversitelerinde ö¤retim üyeli¤i yapm>fl olan Dr. Aydo¤an, Bilkent ?niversitesi'nde ¤> ile

  19. EIS-0256: Sierra Pacific Power Company Alturas Transmission Line Project (adopted from BLM)

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental setting and consequences of the construction and operation of the proposal Alturas Transmission Line Project. Sierra Pacific Power Company (SPPCO) has proposed this electric power transmission line to improve the existing operational capacity and reliability of its power transmission system and provide for anticipated growth in demand for electric power.

  20. ENVIRONMENTAL ASSESSMENT DOI-BLM-NV-W010-2012-0057-EA DOE/EA-1944

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1:EnergyDecember

  1. EIS-0403-S1: DOE and BLM Notice of Availability of the Supplement to the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluates TheWestern AreaDraft Programmatic

  2. EIS-0403: BLM Notice of Availability of Maps and Additional Public Scoping

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluates TheWestern AreaDraftStatement |

  3. EIS-0403: DOE and BLM Notice of Availability of the Draft Programmatic

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluates TheWestern AreaDraftStatement

  4. EIS-0403: DOE and BLM Notice of Availability of the Final Programmatic

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluates TheWestern AreaDraftStatementEnvironmental

  5. EIS-0413: BLM Notice of Intent to Prepare an Environmental Impact Statement

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluatesStatementNotice ofTX | Department of|

  6. EIS-0441: BLM Notice of Intent to Prepare an Environmental Impact Statement

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EISStatement |This EISCowlitzStatement(Second Scoping) |

  7. DOI-BLM-CA-017-P006-60 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation Policy webpage

  8. DOI-BLM-CA-067-2006-12 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation Policy webpage2006-12

  9. DOI-BLM-CA-170-02-15 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation Policy

  10. DOI-BLM-CA-650-2005-086 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation Policy-2005-086 Jump

  11. DOI-BLM-CA-670-2010-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation Policy-2005-086

  12. DOI-BLM-CA-C050-2009-0005-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation

  13. DOI-BLM-ID-110-2009-3825-CE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation-2009-3825-CE Jump to:

  14. DOI-BLM-ID-220-2009-EA-3709 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation-2009-3825-CE Jump

  15. DOI-BLM-ID-B010-2010-0083-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) JumpConsultation-2009-3825-CE

  16. DOI-BLM-ID-T020-2012-0003-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)

  17. DOI-BLM-NM-L000-2012-0046-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump to: navigation,

  18. DOI-BLM-NM-L000-2012-0111-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump to:

  19. DOI-BLM-NV-063-EA08-091 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump to:-EA08-091 Jump

  20. DOI-BLM-NV-B020-2009-0030-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump to:-EA08-091

  1. DOI-BLM-NV-B020-2011-0017-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump

  2. DOI-BLM-NV-B020-2011-0048-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX Jump to:

  3. DOI-BLM-NV-C010-2009-0006-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX Jump to:EA

  4. DOI-BLM-NV-C010-2011-0004-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX Jump

  5. DOI-BLM-NV-C010-2011-0514-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX Jump-EA Jump

  6. DOI-BLM-NV-C010-2012-0016-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX Jump-EA

  7. DOI-BLM-NV-C010-2012-0051-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX

  8. DOI-BLM-NV-C010-2012-0058-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX8-DNA Jump

  9. DOI-BLM-NV-C010-2013-0037-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX8-DNA JumpDNA

  10. DOI-BLM-NV-CO1000-2010-0010-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX Jump48-CX8-DNA

  11. DOI-BLM-NV-CO1000-2010-0022-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX

  12. DOI-BLM-NV-E030-20??-????-?? | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX30-20??-????-?? Jump

  13. DOI-BLM-NV-W010-2010-0039-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX30-20??-????-?? JumpCX

  14. DOI-BLM-NV-W010-2011-0100-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse)L000-2012-0046-CX30-20??-????-??

  15. DOI-BLM-NV-W030-2011-0007-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:

  16. DOI-BLM-NV-W030-2012-0011-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document

  17. DOI-BLM-NV-W030-20??-????-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA

  18. DOI-BLM-OR-P040-0021-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA0021-EA Jump to:

  19. DOI-BLM-OR-V040-2009-0059-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA0021-EA Jump

  20. DOI-BLM-UT-W019-2011-0006-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA0021-EA

  1. DOI-BLM-OR-V040-2013-007-EA - Jonesboro Diversion Dam Replacement

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93Decemberof EnergySeptember 6,Landmark |

  2. BLM - Approved Resource Management Plan Amendments/Record of Decision for

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA SBIOPARSolar Energy

  3. BLM - Solar and Wind Energy Applications - Pre-Application and Screening |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA

  4. BLM Approves Salt Wells Geothermal Plant in Churchill County | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeAProtocol Agreement

  5. BLM Manual 2805: Terms and Conditions for FLPMA Grants | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website: Applying for

  6. BLM/DOI - Notice of Intent to Conduct Geothermal Resource Exploration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance DocumentsOperations | Open Energy

  7. BLM issues final EIS for Tract C-a offsite lease

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    In October, 1986, the US Bureau of Land Management, White River Resource Area, issued the Final Environmental Impact Statement concerning Rio Blanco Oil Shale Company's request to lease an offtract site for disposal of overburden and spent shale from Tract C-a. A major issue which pitted Rio Blanco Oil Shale Company against many other members of the oil shale community was the covering up of oil shale resources on 84 Mesa. The oil shale resource under 84 Mesa may contain as much oil in place as Tract C-a itself. Some of the significant points concerning this issue are discussed. A summary of environmental consequences is given. 5 figures.

  8. DOI-BLM-OR-V040-2013-007-EA - Jonesboro Diversion Dam Replacement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014of EnergyMaySeptemberandDOE/EA-1994

  9. EIA-0441: BLM Notice of Intent to Prepare an Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of EnergyQCJuly8, 2003 VEE-0095EIA|

  10. DOI-BLM-CA-017-05-051 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind

  11. DOI-BLM-CA-670-2010-107 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley Geothermal Area for

  12. DOI-BLM-NM-L000-2012-0200-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley Geothermal Area

  13. DOI-BLM-NV-030-06-025-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley Geothermal AreaNEPA

  14. DOI-BLM-NV-C010-2009-0006-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley Geothermal

  15. DOI-BLM-NV-C010-2009-0018-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley GeothermalEA Jump to:

  16. DOI-BLM-NV-C010-2009-0030-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley GeothermalEA Jump

  17. DOI-BLM-NV-C010-2009-0051-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley GeothermalEA JumpCX

  18. DOI-BLM-NV-C010-2010-0006-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley GeothermalEA

  19. DOI-BLM-NV-C010-2010-0008-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley GeothermalEACX Jump

  20. DOI-BLM-NV-C010-2010-0052-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley GeothermalEACX

  1. DOI-BLM-NV-C010-2012--044-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North Brawley

  2. DOI-BLM-NV-C010-2012-0020-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA Jump to:

  3. DOI-BLM-NV-C010-2012-0035-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA Jump to:DNA Jump

  4. DOI-BLM-NV-C010-2012-0048-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA Jump to:DNA

  5. DOI-BLM-NV-C010-2012-0057-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA Jump to:DNACX Jump

  6. DOI-BLM-NV-C010-2012-0069-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA Jump to:DNACX

  7. DOI-BLM-NV-C010-2013-0007-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA Jump to:DNACXDNA

  8. DOI-BLM-NV-C010-2013-0020-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA Jump

  9. DOI-BLM-NV-C010-2013-0023-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNA Jump to:

  10. DOI-BLM-NV-C010-2013-0026-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNA Jump

  11. DOI-BLM-NV-CO1000-2010-0009-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNACX Jump to:

  12. DOI-BLM-NV-CO1000-2010-0021-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNACX Jump

  13. DOI-BLM-NV-W010-2010-0004-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNACX JumpEA

  14. DOI-BLM-NV-W010-2011-0001-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNACX

  15. DOI-BLM-NV-W010-2011-0004-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNACXCX Jump

  16. DOI-BLM-NV-WO10-2014-0002-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNA JumpDNACXCX

  17. BLM - Federal Land Policy and Management Act of 1976 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump to:PáginasBEVBJ

  18. BLM - Instruction Memorandum No. OC-2012-005 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump to:PáginasBEVBJLeasing

  19. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas Jump Logo:Open Energy

  20. EIA-0441: BLM Notice of Intent to Prepare an Environmental Impact Statement

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirantPartners, Inc. |MoneyDougDepartment ofEIA Cases EIA Cases

  1. EIS-0441: BLM Notice of Intent to Prepare an Environmental Impact Statement

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirantPartners,ofFinal31: DraftDraft Environmental

  2. BLM and Forest Service Consider Large-Scale Geothermal Leasing | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08 Attendance List1-02EvaluationJohn D. WooleryBETOBGEBISON

  3. DOI-BLM-OR-P040-2011-0021-EA Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOE Theory9-9260-2003October 02,(July 2013) |NNSAEnvironmental

  4. File:04-FD-d - BLM Exploration Operations .pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNAMTEEncroachmentPermit.pdf Jumpsource History View New Pages Recent Changes AllFD-d

  5. File:07-CA-e - BLM-CEC Joint Siting Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic UtilitiesCABConstructionStormWaterProgram.pdf JumpUTATransportation.pdf Jump to: navigation,source History

  6. File:BLM-USFWS Migratory Bird MOU.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to: navigation, search File File historyUSFWS

  7. DOI-BLM-CA-670-2010-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation 101:

  8. DOI-BLM-CA-ES-2007-017-3200 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation 101:EA-2002-???

  9. DOI-BLM-CA-ES-2013-002+1793-EIS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation

  10. DOI-BLM-ID-B010-2010-??-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation??-CX Jump to:

  11. DOI-BLM-ID-I020-2012-0017-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation??-CX Jump

  12. DOI-BLM-NM-L000-2012-0020-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation??-CX Jump20-DNA

  13. DOI-BLM-NM-L000-2012-0042-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation??-CX

  14. DOI-BLM-NM-L000-2012-0218-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPowerInformation??-CX218-DNA

  15. DOI-BLM-NV-0063-EA06-100 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica

  16. DOI-BLM-NV-B010-2011-0015-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump to: navigation,

  17. DOI-BLM-NV-B020-2008-0071-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump to:

  18. DOI-BLM-NV-B020-2008-????-?? | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump to:20-2008-????-??

  19. DOI-BLM-NV-B020-2008-????-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump to:20-2008-????-??CX

  20. DOI-BLM-NV-B020-2010-0106-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump

  1. DOI-BLM-NV-B020-2010-????-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX Jump to:

  2. DOI-BLM-NV-B020-2011-0026-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX Jump to:26-EA

  3. DOI-BLM-NV-C010-2010-0006-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX Jump06-EA

  4. DOI-BLM-NV-C010-2010-0008-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX

  5. DOI-BLM-NV-C010-2010-0010-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX10-EA Jump to:

  6. DOI-BLM-NV-C010-2010-0016-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX10-EA Jump

  7. DOI-BLM-NV-C010-2011-0001-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX10-EA Jump-EA

  8. DOI-BLM-NV-C010-2011-0014-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX10-EA

  9. DOI-BLM-NV-C010-2011-0015-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX10-EA5-CX Jump

  10. DOI-BLM-NV-C010-2011-0019-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX10-EA5-CX

  11. DOI-BLM-NV-C010-2011-0501-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA Jump????-CX10-EA5-CX1-EA

  12. DOI-BLM-NV-C010-2011-0504-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA

  13. DOI-BLM-NV-C010-2011-0516-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump to: navigation,

  14. DOI-BLM-NV-C010-2011-0517-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump to:

  15. DOI-BLM-NV-C010-2011-0527-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump to:27-CX Jump

  16. DOI-BLM-NV-C010-2012-0005-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump to:27-CX

  17. DOI-BLM-NV-C010-2012-0019-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump to:27-CX19-DNA

  18. DOI-BLM-NV-C010-2012-0028-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump

  19. DOI-BLM-NV-C010-2012-0029-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump29-EA Jump to:

  20. DOI-BLM-NV-C010-2012-0046-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump29-EA Jump

  1. DOI-BLM-NV-C010-2012-0050-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump29-EA Jump0-EA

  2. DOI-BLM-NV-C010-2012-0068-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump29-EA

  3. DOI-BLM-NV-C010-2012-0070-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump29-EA0-CX Jump

  4. DOI-BLM-NV-C010-2012-0073-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA Jump29-EA0-CX

  5. DOI-BLM-NV-C010-2013-0022-DNA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EA

  6. DOI-BLM-NV-CC-ES-11-10-1793 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EACC-ES-11-10-1793 Jump

  7. DOI-BLM-NV-CO10-2011-0501-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EACC-ES-11-10-1793

  8. DOI-BLM-NV-CO1000-2010-0011-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica10-2011-0015-EA16-EACC-ES-11-10-1793CX

  9. DOI-BLM-NV-E030-2011-0017-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text

  10. DOI-BLM-NV-W010-2009-0018-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation, search

  11. DOI-BLM-NV-W010-2010-0040-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation, search0-CX Jump

  12. DOI-BLM-NV-W010-2010-0041-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation, search0-CX

  13. DOI-BLM-NV-W010-2010-0043-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation, search0-CXCX

  14. DOI-BLM-NV-W010-2010-0043-CX-2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation, search0-CXCXCX-2

  15. DOI-BLM-NV-W010-2012-0005-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation,

  16. DOI-BLM-NV-W010-2012-0057-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation,57-EA Jump to:

  17. DOI-BLM-NV-W030-2010-0006-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation,57-EA Jump

  18. DOI-BLM-NV-W030-2010-0021-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation,57-EA Jump21-CX

  19. DOI-BLM-NV-W030-2012-0020-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation,57-EA

  20. DOI-BLM-OR-P000-2010-0003-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to: navigation,57-EA0-0003-EA

  1. DOI-BLM-OR-P000-2011-0003-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to:

  2. DOI-BLM-OR-P000-2012-0043-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to:2012-0043-CX Jump to:

  3. DOI-BLM-OR-P040-0021-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to:2012-0043-CX Jump40-0021-EA

  4. DOI-BLM-OR-V040-2009-0059-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to:2012-0043-CX

  5. DOI-BLM-OR-V040-2011-0008-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to:2012-0043-CX11-0008-EA Jump

  6. DOI-BLM-UT-C010-2010-0042-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump to:2012-0043-CX11-0008-EA

  7. DOI-BLM-UT-W019-2011-0007-CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump19-2011-0007-CX Jump to:

  8. DOI-BLM-UT-W020-2009-0028-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump19-2011-0007-CX Jump

  9. DOI-BLM-UT-W020-2010-0042-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump19-2011-0007-CX Jump10-0042-EA

  10. DOI-BLM-UT-W020-2010-042-EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CX Jump19-2011-0007-CX Jump10-0042-EA-EA

  11. BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid Climate:BEopt

  12. BLM Offers Geothermal Leases in Utah, Idaho, and Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid Climate:BEoptIncreases

  13. Title Five-Party Cooperative Agreement fy&AF, USDOI, BLM, State of Nevada & DOE/NV)

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review of TransuranicFive-Party

  14. BLM-NV-WN-ES-08-01-1310, NV-020-08-01 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitas

  15. E-Print Network 3.0 - area imperial valley Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universitt Heidelberg Collection: Biology and Medicine ; Physics 24 Camp Pendleton Kings Canyon Summary: BLM Wilderness BLM Wilderness Study Areas NPS Wilderness USFS...

  16. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line...

    Office of Environmental Management (EM)

    of the following ways: Online at: http:www.blm.govordistrictsspokaneplansvph230.php. By email to: blmorvantagepomona@blm.gov (please specify Vantage to Pomona Heights...

  17. Color realism and color science

    E-Print Network [OSTI]

    Byrne, Alex

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, ...

  18. Ionization Chambers in the FLASH Dump Line

    E-Print Network [OSTI]

    . 7, 2010FLASH Seminar, Dec. 7, 2010 BPM 13DUMP Dump Line Upgrade 2009Dump Line Upgrade 2009 BPM 9DUMP BPM 5DUMP Toroid 9DUMP OTR screen 9DUMP BLM 14DUMP BLM 13.1DUMP 13.2DUMP BLM 9DUMP BLM 6DUMP BLM 1.1DUMP 1.2DUMP BPM 10DUMP BPM 16DUMP 8 x BHM 16DUMP BLM 14R.DUMP 14L.DUMP 14U.DUMP 14D.DUMP Ionization

  19. Mechanistic studies of bleomycin-mediated double-stranded DNA cleavage and structural studies of DNA containing normal and 4'-oxidized abasic sites

    E-Print Network [OSTI]

    Chen, Jingyang, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In order to examine the role of partial intercalation in double-stranded (ds) DNA cleavage mediated by a single bleomycin (BLM), a bulky group ([-cyclodextrin) was chemically attached to the polyamine tail of BLM A5 to ...

  20. Ecological and Geochemical Aspects of Terrestrial Hydrothermal Systems

    E-Print Network [OSTI]

    Forrest, Matthew James

    exploitation of nearby geothermal energy resources. Dixieexploitation of nearby geothermal energy resources. In Napachange (USFWS, 2009), geothermal energy development (BLM,

  1. Colorado Rare Plant Symposium G2-G3 Plants in Northeast Colorado

    E-Print Network [OSTI]

    of oil shale, preliminary, might be a final draft early next year, BLM hiring a new botanist in Meeker

  2. Bayesian learning in bioinformatics

    E-Print Network [OSTI]

    Gold, David L.

    2009-05-15T23:59:59.000Z

    . . . . . . . . . . 8 II.2.2. Historical Pathways . . . . . . . . . . . . . . . . 9 II.2.3. Gene Class Detection . . . . . . . . . . . . . . . 11 II.3. Bayesian Learning for Microarrays . . . . . . . . . . . . . 14 II.3.1. BLM1... . . . . . . . . . . . . . . . . . . . . . . . . 14 II.3.2. BLM2 . . . . . . . . . . . . . . . . . . . . . . . . 17 II.3.3. BLM3 . . . . . . . . . . . . . . . . . . . . . . . . 19 II.3.4. Posterior Computation . . . . . . . . . . . . . . 23 II.3.5. False Discovery Analysis...

  3. EA-1996: Glass Buttes Radio Station, Lake County, Oregon

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM), with DOEs Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EA that will evaluate the potential environmental impacts of a proposal to construct two telecommunications facilities, one of which would provide BPA telecommunications services, on BLM land. Additional information is available at http://www.blm.gov/or/districts/prineville/plans/glassbuttes/.

  4. AZ Pending Solar Right-of-Way

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .68 Yuma FO AZA34739 IDIT Inc. N1 CSP Trough 12255.74 Yuma FO AZA34754 Horizon Wind Energy, LLC F1 Solar Field Office C2 C1 FLAGSTAFF KINGMAN Kingman Field Office COLORADO LAKE PRESCOTT HAVASU CITY R D4 F1 I2) City, State, County Parks County Lands BLM National Monument BLM Field Office Boundary BLM District

  5. PERCEIVING COLOR Visual Perception

    E-Print Network [OSTI]

    Majumder, Aditi

    Lightness Relative amount of light reflected A black ball does remains black both outside and inside Wheel Boundary is saturated color Unsaturated colors in the interior Combination of two colors generate's Additive Color Wheel Three colors to create a reasonable subset Devices Even Eye Same color can be created

  6. A. Single-molecule and membrane electrophysiology. Six complete set-ups for single-channel electrical recordings on planar lipid bilayers (BLM) and synthetic nanopores are available in the PI's laboratory. They are

    E-Print Network [OSTI]

    Movileanu, Liviu

    through Peltier elements. In-house fabricated Faraday cages, Racks, Connectors/50 coaxial cables-molecule electrical measurements on cell membranes. This is an instrument that probes picoamper-scale currents through microfuge A Peltier PCR thermocycler (Bio-Rad) Several electrophoresis set-ups for proteins/DNA, including

  7. BLM biological assessment for T and E species for the WyCoalGas project. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project; Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    This volume considers the water requirements of the proposed plant and possible sources of water supply. The water requirements are 7900 acre-feet per year at full production (1720 acre-feet would be supplied by the moisture in the coal). Surface and ground water sources are described and a private reservoir would be built to store water. The priority of use from each source is considered. Also, in some cases other present water rights come first. In almost every year little or no water would be available during August and September. Endangered species in the area are considered, in particular, the effect of the increased water usage on them. (LTN)

  8. Introduction to Color Superconductivity

    E-Print Network [OSTI]

    G. Nardulli

    2006-10-23T23:59:59.000Z

    At high nuclear density and small temperature, due to the asymptotic freedom property of Quantum ChromoDynamics and to the existence of an attractive channel in the color interaction, diquark condensates might be formed. Since these condensates break the color gauge symmetry, this phenomenon has the name of color superconductivity. In the last few years this has become a very active field of research. While a direct experimental test is still missing, color superconductivity might have implications in astrophysics because for some compact stars, e.g. pulsars, the baryon densities necessary for color superconductivity can probably be reached.

  9. Document

    Office of Environmental Management (EM)

    Draft EIS, BLM, NV, Salt Wells Energy Projects, Proposal for Three Separate Geothermal Energy and Transmission Projects, Implementation, Churchill County, NV, Comment Period...

  10. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    Regional Water Quality Control Board, Watershed Managementof Land Management (BLM) Tests preserve water quality, whichRegional Water Quality Control Board. Watershed Management

  11. EIS-0441: EPA Notice of Availability of a Draft Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    the availability of BLM's Draft Environmental Impact Statement for the Mohave County Wind Farm Project, Mohave County, Arizona. DOE's Western Area Power Administration is a...

  12. Microsoft Word - Rockwood _CFC_ Silver Peak Area Final EA V4...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BLM's need is to comply with its Statutory and regulatory obligations to respond to the Operations Plan submitted by Rockwood to conduct geothermal exploration and either approve...

  13. E-Print Network 3.0 - assessment inventory profiles Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles Page: << < 1 2 3 4 5 > >> 1 http:usda-ars.nmsu.edumonitassessmonitoring.php Currently used by: BLM (including post-fire rehabilitation monitoring, trend...

  14. adaptive management tool: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management as an alternative to traditional natural resource planning and management models. Adaptive management may provide BLM managers ... Brandenburg, Peter (Peter J.)...

  15. Memorandum of Understanding between DOI and DOA - Implementation...

    Open Energy Info (EERE)

    Memorandum of Understanding between DOI and DOA - Implementation of Section 225 of the Energy Policy Act of 2005 Regarding Geothermal Leasing and PermittingLegal Abstract (BLM...

  16. anthropogenically rare plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Northeast Colorado Environmental Management and Restoration Websites Summary: of oil shale, preliminary, might be a final draft early next year, BLM hiring a new botanist in...

  17. DOE/EA-1494; Final Environmental Assessment for Activities Using...

    Broader source: Energy.gov (indexed) [DOE]

    ACGIH American Conference of Governmental Industrial Hygienists, Inc. BAPC Bureau of Air Pollution Control BLM Bureau of Land Management BN BechtelNevada CDC Centers for...

  18. Microsoft Word - LANL - Comm Leaders 2003 - Report.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Homeless * Lack of early childhood care * More fundraising for Girl Scouts * Foster care system * Health of people * Lack of hotels * Freeing up BLM land * Global warming *...

  19. Digital color representation

    DOE Patents [OSTI]

    White, James M. (Los Alamos, NM); Faber, Vance (Los Alamos, NM); Saltzman, Jeffrey S. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    An image population having a large number of attributes is processed to form a display population with a predetermined smaller number of attributes which represent the larger number of attributes. In a particular application, the color values in an image are compressed for storage in a discrete lookup table (LUT) where an 8-bit data signal is enabled to form a display of 24-bit color values. The LUT is formed in a sampling and averaging process from the image color values with no requirement to define discrete Voronoi regions for color compression. Image color values are assigned 8-bit pointers to their closest LUT value whereby data processing requires only the 8-bit pointer value to provide 24-bit color values from the LUT.

  20. Extended quantum color coding

    SciTech Connect (OSTI)

    Hayashi, A.; Hashimoto, T.; Horibe, M. [Department of Applied Physics, Fukui University, Fukui 910-8507 (Japan)

    2005-01-01T23:59:59.000Z

    The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.

  1. Color Superconducting Neutral Matter

    E-Print Network [OSTI]

    R. Casalbuoni

    2006-01-20T23:59:59.000Z

    We describe the effects of the strange quark mass and of the color and electric neutrality on the superconducing phases of QCD.

  2. Bibliography 1. Color Vision

    E-Print Network [OSTI]

    Rheingans, Penny

    . Visual Perception: Physiology, Psychology, and Ecology, 2nd edition. Lawrence Erlbaum Associates, Hove UK . Elsvier/North-Holland, New York/Amsterdam, 1981. S. L. Guth. Unified model for human color perception, color, movement, and depth: Anatomy, physiology, and perception. Science, 240:740-749, May 6 1988

  3. Unfolding the color code

    E-Print Network [OSTI]

    Aleksander Kubica; Beni Yoshida; Fernando Pastawski

    2015-03-06T23:59:59.000Z

    The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a $d$-dimensional closed manifold is equivalent to multiple decoupled copies of the $d$-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for $d=2$, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the $d$-dimensional color code with $d+1$ boundaries of $d+1$ distinct colors, we find that the code is equivalent to multiple copies of the $d$-dimensional toric code which are attached along a $(d-1)$-dimensional boundary. In particular, for $d=2$, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the $d$-dimensional toric code admits logical non-Pauli gates from the $d$-th level of the Clifford hierarchy, and thus saturates the bound by Bravyi and K\\"{o}nig. In particular, we show that the $d$-qubit control-$Z$ logical gate can be fault-tolerantly implemented on the stack of $d$ copies of the toric code by a local unitary transformation.

  4. Unconventional Color Superconductor

    E-Print Network [OSTI]

    Mei Huang

    2007-01-31T23:59:59.000Z

    Superfluidity or superconductivity with mismatched Fermi momenta appears in many systems such as charge neutral dense quark matter, asymmetric nuclear matter, and in imbalanced cold atomic gases. The mismatch plays the role of breaking the Cooper pairing, and the pair-breaking state cannot be properly described in the framework of standard BCS theory. I give a brief review on recent theoretical development in understanding unconventional color superconductivity, including gapless color superconductor, the chromomagnetic instabilities and the Higgs instability in the gapless phase. I also introduce a possible new framework for describing unconventional color superconductor.

  5. The 5th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado

    E-Print Network [OSTI]

    Kurzel: monitoring studies have been instituted on BLM and private land Missy Siders: BLM is monitoring set up new demographic plots. RPCI held a Conservation Action Plan workshop to develop strategies 6, although usually it is on 13 Mile Tongue of Green River Shale. There are some populations on private land

  6. EIS-0315-S1: SEIS on Caithness Big Sandy Project

    Broader source: Energy.gov [DOE]

    In June 2001, the Bureau of Land Management (BLM) and Western Area Power Administration (Western) issued the Big Sandy Energy Project Draft Environmental Impact Statement (EIS) (BLM and Western 2001). After June 2001, Caithness Big Sandy, L.L.C. (Caithness), revised aspects of the Big Sandy Energy Project (Project) described as the Proposed Action in the Draft EIS.

  7. The Color Glass Condensate

    E-Print Network [OSTI]

    F. Gelis; E. Iancu; J. Jalilian-Marian; R. Venugopalan

    2010-02-01T23:59:59.000Z

    We provide a broad overview of the theoretical status and phenomenological applications of the Color Glass Condensate effective field theory describing universal properties of saturated gluons in hadron wavefunctions that are extracted from deeply inelastic scattering and hadron-hadron collision experiments at high energies.

  8. Image indexing using color correlograms

    DOE Patents [OSTI]

    Huang, Jing (Ossining, NY); Kumar, Shanmugasundaram Ravi (San Jose, CA); Mitra, Mandar (Calcutta, IN); Zhu, Wei-Jing (Ossining, NY)

    2001-01-01T23:59:59.000Z

    A color correlogram is a three-dimensional table indexed by color and distance between pixels which expresses how the spatial correlation of color changes with distance in a stored image. The color correlogram may be used to distinguish an image from other images in a database. To create a color correlogram, the colors in the image are quantized into m color values, c.sub.i . . . c.sub.m. Also, the distance values k.epsilon.[d] to be used in the correlogram are determined where [d] is the set of distances between pixels in the image, and where dmax is the maximum distance measurement between pixels in the image. Each entry (i, j, k) in the table is the probability of finding a pixel of color c.sub.i at a selected distance k from a pixel of color c.sub.i. A color autocorrelogram, which is a restricted version of the color correlogram that considers color pairs of the form (i,i) only, may also be used to identify an image.

  9. color palette sectionfive

    E-Print Network [OSTI]

    Derisi, Joseph

    black gray pms warm gray 5 web-smart r:187 g:187 b:170 #bbbbaa web-safe r:0 g:51 b:102 #003366 dark blue). It is prescribed for all internal and external communications. (See also pages 95-98 for more information about web palette official color teal: pms 5493 web-smart r:136 g:187 b:187 #88bbbb web-safe r:0 g:0 b:0 #000000

  10. Color in architecture

    E-Print Network [OSTI]

    Vrooman, Richard

    1952-01-01T23:59:59.000Z

    declared that red light stimulated the movement of blood& blue light soothed it, Amulets and gems have been recorded as having protective and healing power accordin, to color, Amulets were preferred in this orders red? blue, yellow, green, white... much is tiring, Slushy Slue is serene, passive, cool. Spaniards and Venetians of the elite classes recognized the aloof di;city of blue and black in clothingi In the church, blue ca-e to s-~bolize sincerity and hope, Still used are the expressions...

  11. How does color neutrality affect collective modes in color superconductors?

    E-Print Network [OSTI]

    Hiroaki Abuki; Tom Brauner

    2012-03-08T23:59:59.000Z

    We revisit the issue of color neutrality in effective model descriptions of dense quark matter based on global color symmetry. While the equilibrium thermodynamics of such models is now well understood, we examine the collective modes, focusing on the fluctuations of the order parameter. We point out that the constraint of color neutrality must be carefully generalized in order to obtain physically consistent and well-defined results. Particularly important is that the collective modes associated with order parameter fluctuations couple to charge density fluctuations in the neutral medium. We start by proving explicitly that, in contrast to claims made previously in literature, Nambu-Goldstone bosons of spontaneously broken global color symmetry remain exactly massless even after imposing the color neutrality constraint. As the next step, we make the argument general by using effective field theory. We then employ the high-density approximation to calculate the couplings in the effective Lagrangian and thus the Nambu-Goldstone boson dispersion relations.

  12. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08T23:59:59.000Z

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  13. False color viewing device

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  14. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-10-20T23:59:59.000Z

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  15. LED Color Stability: 10 Important Questions

    Broader source: Energy.gov [DOE]

    This April 15, 2014 webinar examined the causes of color shift, and took a look at existing metrics used to describe color shift/color stability in LED lighting. The lumen maintenance lifetime of...

  16. EIS-0455: Plan Amendment/Final Environmental Impact Statement for the Genesis Solar Energy Project, California

    Broader source: Energy.gov [DOE]

    The BLMs purpose and need for the GSEP is to respond to Genesis Solar, LLCs application under Title V of FLPMA (43 U.S.C. 1761) for a ROW grant to construct, operate, maintain and decommission a solar thermal facility on public lands in compliance with FLPMA, BLM ROW regulations, and other applicable Federal laws. The BLM will decide whether to approve, approve with modification, or deny issuance of a ROW grant to Genesis Solar, LLC for the proposed GSEP.

  17. Light emitting diode color rendition properties.

    E-Print Network [OSTI]

    Hood, Sean

    2013-01-01T23:59:59.000Z

    ??This paper discusses the color rendition capabilities of light emitting diodes (LEDs) and their relationship with the current standard for color rendition quality. The current (more)

  18. People of Color and Disenfranchised Communities Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    People of Color and Disenfranchised Communities Environmental Health Network (the Coalition) People of Color and Disenfranchised Communities Environmental Health Network (the...

  19. Electroweak Baryogenesis and Colored Scalars

    SciTech Connect (OSTI)

    Cohen, Timothy; /SLAC /Michigan U., MCTP; Pierce, Aaron; /Michigan U., MCTP

    2012-02-15T23:59:59.000Z

    We consider the 2-loop finite temperature effective potential for a Standard Model-like Higgs boson, allowing Higgs boson couplings to additional scalars. If the scalars transform under color, they contribute 2-loop diagrams to the effective potential that include gluons. These 2-loop effects are perhaps stronger than previously appreciated. For a Higgs boson mass of 115 GeV, they can increase the strength of the phase transition by as much as a factor of 3.5. It is this effect that is responsible for the survival of the tenuous electroweak baryogenesis window of the Minimal Supersymmetric Standard Model. We further illuminate the importance of these 2-loop diagrams by contrasting models with colored scalars to models with singlet scalars. We conclude that baryogenesis favors models with light colored scalars. This motivates searches for pair-produced di-jet resonances or jet(s) + = E{sub T}.

  20. Aerial Photography Collection cmkelly@uoregon.edu

    E-Print Network [OSTI]

    Cina, Jeff

    :12,000 Black & white Complete coverage. (not including Medford or Ashland) 1975 BLM-MLC-75 1:12,000 Black-AMC 1:12,000 Black & white Complete coverage. (Medford and Ashland are not included) Roseburg District

  1. A decision-support model for managing the fuel inventory of a Panamanian generating company

    E-Print Network [OSTI]

    Perez-Franco, Roberto, 1976-

    2004-01-01T23:59:59.000Z

    Bahia Las Minas Corp (BLM) is a fuelpowered generating company in the Panamanian power system. The purpose of this thesis is to design and evaluate a decision-support model for managing the fuel inventory of this company. ...

  2. E-Print Network 3.0 - anatolian fault turkey Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in an Summary: -parallel transfer zone: the Kocac ay Basin, western Anatolia,Turkey Hasan So zbilir, Bilal Sari, Bora Uzel, O... Blm, 35100 Bornova-izmir,Turkey ABSTRACT...

  3. EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation.

  4. Acronym List

    Broader source: Energy.gov [DOE]

    ACL Alternate concentration limitAEC U.S. Atomic Energy CommissionBLM U.S. Bureau of Land ManagementBLRA Baseline Risk AssessmentBMT Boundary MonumentCDPHE Colorado Department of Public...

  5. West Wide Programmatic Environmental Impact Statement Record...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- OtherOther: West Wide Programmatic Environmental Impact Statement Record of Decision (BLM)Legal Published NA Year Signed or...

  6. Expansion of Domestic Production of Lithium Carbonate and Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    2010 End Date: February, 2013 Partners Engineering: BE&K (a KBR company) Environmental Assessment: Nevada BLM Budget DOE Share - 28.4 million Rockwood Share - 34.5 million...

  7. 3 Environmental Conditions 3.1 Characterization of Aquatic Habitat Conditions

    E-Print Network [OSTI]

    BLM 1997, 2000; NRCS 2000 for specific methods), which define the ecological condition of streams in the Clover Creek (East Fork Bruneau) subwatershed and include Cedar, Cherry, House, Pole, Shack, and Three

  8. atmospheric particulate matters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  9. atmospheric pollution monitor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  10. atmospheric pollution monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  11. atmospheric methane removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  12. atmospheric particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  13. atmospheric methane extracted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  14. atmospheric methane sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  15. atmospheric methane consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  16. EIS-0343: EPA Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    COB Energy Facility, Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined- Cycle Electric Generating Plant, Right- of-Way Permit across Federal Land under the Jurisdiction of BLM, Klamath Basin, Klamath County, OR

  17. EIS-0454: Department of Energy Loan Guarantee to Tonopah Solar Energy, LLC, for the Proposed Crescent Dunes Solar Energy Project, Nevada

    Broader source: Energy.gov [DOE]

    Tonopah Solar Energy, LLC applied to the BLM for a 7,680-acre right-of-way (ROW) on publiclands to construct a concentrated solar thermal power plant facility approximately 13 milesnorthwest of...

  18. New Beam Loss Monitor for 12 GeV Upgrade

    SciTech Connect (OSTI)

    Jianxun Yan, Kelly Mahoney

    2009-10-01T23:59:59.000Z

    This paper describes a new VME based machine protection Beam Loss Monitor (BLM) signal processing board designed at Jefferson Lab to replace the current CAMAC based BLM board. The new eight-channel BLM signal processor has linear, logarithmic, and integrating amplifiers that simultaneously provide the optimal signal processing for each application. Amplified signals are digitized and then further processed through a Field Programmable Gate Array (FPGA). Combining both the diagnostic and machine protection functions in each channel allows the operator to tune-up and monitor beam operations while the machine protection is integrating the same signal. Other features include extensive built-in-self-test, fast shutdown interface (FSD), and 16-Mbit buffers for beam loss transient play-back. The new VME BLM board features high sensitivity, high resolution, and low cost per channel.

  19. Uinta Basin Oil and Gas Development Air Quality Constraints

    E-Print Network [OSTI]

    Utah, University of

    Production EASTERN UTAH BLM Proposed Leasing for Oil Shale and Tar Sands Development "Indian Country" ­ Regulatory Authority Controlled by the Tribes and EPA Oil Shale Leasing Tar Sands Leasing "Indian Country

  20. DOE/EA-1300: Environmental Assessment for the Nevada Test Site...

    Broader source: Energy.gov (indexed) [DOE]

    Effect AR Air Refueling AnchorTracks ASU Airspace for Special Use ATCAA Air Traffic Control Assigned Airspace BLM Bureau of Land Management BLS Bureau of Labor Statistics BN...

  1. NAVARRO RESEARCH AND ENGINEERING, INC

    Energy Savers [EERE]

    located in California, was sold to Occidental Petroleum Corporation in 1998. Naval Oil Shale Reserve 1 (NOSR-1) and NOSR-3 (located in Colorado) were transferred to BLM and have...

  2. EIS-0449: Department of Energy Loan Guarantee to Solar Millennium for the Proposed Blythe Solar Power Project, California

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement addresses the possible United States Bureau of Land Management approval of an amendment to the California Desert Conservation Area Plan (CDCA Plan) to allow for solar energy and of a right?of?way grant to lease land managed by the BLM for construction, operation and decommissioning of a solar electricity generation facility. The Agency Preferred Alternative covers approximately 7,025 acres (ac), managed by the BLM, and would generate 1000 megawatts (MW) of electricity annually.

  3. Mojave National Preserve Joshua Tree National Park

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Forest (SBNF) Angeles National Forest (ANF) Cleveland National Forest (CNF) CNF CNF SBNF ANF CACA 049111°0'0"N 34°0'0"N 34°0'0"N 33°0'0"N 33°0'0"N California Desert Conservation Area BLM Solar Energy Project Contingent Corridor Deleted Corridor Land Status BLM National Park Service Forest Service Military USFWS

  4. Bureau of Land Management- Campground, Utah

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM) has remote field stations in Arizona, California, Utah, Idaho, and Alaska. This photograph shows the field station at Red Cliffs Campground in Utah's Cedar City District. Photovoltaic power systems allow the people working in these remote areas to have the convenience of continuous power. "The comfort and convenience of having 24-hour continuous power has been greatly appreciated by the users," said Trent Duncan of BLM, the mechanical engineer for the project.

  5. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01T23:59:59.000Z

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  6. New Diagnostics in the FLASH Dump Line

    E-Print Network [OSTI]

    Line Status Aug. 2009 BPM 9DUMP BPM 15DUMP BPM 5DUMP Toroid 9DUMP OTR screen 9DUMP BLM 14DUMP BLM 13 at the dump #12;N. Baboi, MDIN. Baboi, MDI FLASH Seminar, Dec. 1, 2009FLASH Seminar, Dec. 1, 2009 Old BPM 15DUMPOld BPM 15DUMP ·Strange behavior of BPM signals measured impedance from end of cable (in bld. 49): L

  7. Color Printer Characterization Adjustment for Different

    E-Print Network [OSTI]

    Sharma, Gaurav

    is often implemented as a 3D look-up table that maps from a device independent color space (e.g. CIELAB by printing a number of color patches with known device control values, measuring the colors obtained-uniformity). Typically, the impact of these factors is minimized through careful design of the printing system. However

  8. Preserving the Colors of Early Cinema

    E-Print Network [OSTI]

    Zanibbi, Richard

    Preserving the Colors of Early Cinema through the Davide Turconi Film Frame Collection Joshua of Chicago 4pm Wed, Sept. 27 Auditorium of the Center for Imaging Science While most surviving silent films as well as Kinetoscope films were colored. Color has thus existed in the cinema since its inception, yet

  9. Color Matching for PlasticsColor Matching for Plastics Bill CheethamBill Cheetham

    E-Print Network [OSTI]

    Watson, Ian

    1 Color Matching for PlasticsColor Matching for Plastics Bill CheethamBill Cheetham GeneralIndustrial Systems Information ServicesInformation Services Medical SystemsMedical Systems PlasticsPlastics Power Electric Global Research Applications GE Plastics FormTool - lab color matching tool Color

  10. Sandia National Laboratories: Four-color laser white illuminant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECNews & EventsNewsFour-color laser white illuminant demonstrating high color-rendering quality Four-color laser white illuminant demonstrating high color-rendering quality...

  11. Applications of color powder paint in the automotive industry

    E-Print Network [OSTI]

    Barberich, Bevin, 1975-

    2004-01-01T23:59:59.000Z

    Both color keyed and color specific liquid primers have been used successfully in automotive paint application, reducing the use of costly topcoat materials. Generally, color keyed primer is close in color to the topcoat ...

  12. Statistical pressure snakes based on color images.

    SciTech Connect (OSTI)

    Schaub, Hanspeter [ORION International Technologies, Albuquerque, NM

    2004-05-01T23:59:59.000Z

    The traditional mono-color statistical pressure snake was modified to function on a color image with target errors defined in HSV color space. Large variations in target lighting and shading are permitted if the target color is only specified in terms of hue. This method works well with custom targets where the target is surrounded by a color of a very different hue. A significant robustness increase is achieved in the computer vision capability to track a specific target in an unstructured, outdoor environment. By specifying the target color to contain hue, saturation and intensity values, it is possible to establish a reasonably robust method to track general image features of a single color. This method is convenient to allow the operator to select arbitrary targets, or sections of a target, which have a common color. Further, a modification to the standard pixel averaging routine is introduced which allows the target to be specified not only in terms of a single color, but also using a list of colors. These algorithms were tested and verified by using a web camera attached to a personal computer.

  13. Science, Optics and You: Light and Colors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opticstutorialsindex.html INTRODUCTION LIGHT AND COLORS MODULE m4 SCIENCE, OPTICS & YOU GUIDEBOOK - 62 - SCIENCE, OPTICS & YOU GUIDEBOOK - 63 - m4: Light &...

  14. Modular architecture of isospin, color, and generation

    E-Print Network [OSTI]

    David Ritz Finkelstein

    2014-12-22T23:59:59.000Z

    Starting from the vacuum, iterated Grassmann-algebra formation consecutively introduces vector spaces and groups with the structure first of charge, then of isospin, then of color.

  15. Efficient Decoding of Topological Color Codes

    E-Print Network [OSTI]

    Pradeep Sarvepalli; Robert Raussendorf

    2011-11-03T23:59:59.000Z

    Color codes are a class of topological quantum codes with a high error threshold and large set of transversal encoded gates, and are thus suitable for fault tolerant quantum computation in two-dimensional architectures. Recently, computationally efficient decoders for the color codes were proposed. We describe an alternate efficient iterative decoder for topological color codes, and apply it to the color code on hexagonal lattice embedded on a torus. In numerical simulations, we find an error threshold of 7.8% for independent dephasing and spin flip errors.

  16. A quadratic algorithm for road coloring

    E-Print Network [OSTI]

    Bal, Marie-Pierre

    2008-01-01T23:59:59.000Z

    The road coloring theorem states that every aperiodic directed graph with constant out-degree has a synchronized coloring. This theorem had been conjectured during many years as the road coloring problem before being settled by A. Trahtman. Trahtman's proof leads to an algorithm that finds a synchronized labeling with a cubic worst-case time complexity. We show a variant of his construction with a worst-case complexity which is quadratic in time and linear in space. We also extend the road coloring theorem to the periodic case.

  17. An Investigation into the Perception of Color under LED White Composite Spectra with Modulated Color Rendering

    E-Print Network [OSTI]

    O'Reilly, Una-May

    emitting diodes, LEDs. We examined seven LED white composite spectra with different color rendering of a pilot study that evaluates the perceptual impact of modulation of color rendering using multi-chip light

  18. ColorFull -- a C++ library for calculations in SU(Nc) color space

    E-Print Network [OSTI]

    Malin Sjodahl

    2014-12-12T23:59:59.000Z

    ColorFull, a C++ package for treating QCD color structure, is presented. ColorFull, which utilizes the trace basis approach, is intended for interfacing with event generators, but can also be used as a stand-alone package for squaring QCD amplitudes, calculating interferences, and describing the effect of gluon emission and gluon exchange.

  19. Two-color infrared detector

    DOE Patents [OSTI]

    Klem, John F; Kim, Jin K

    2014-05-13T23:59:59.000Z

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  20. I Color recognition models of daylight illumi-

    E-Print Network [OSTI]

    Draper, Bruce A.

    I Color recognition models of daylight illumi- nation and hybrid reflectance, and predicts of the color of ob- jects with respect to existing models of daylight [12] and surface reflectance [17, 14, 211 a surface reflectance model for hybrid surfaces and a context-based model of daylight illumination

  1. Stochastic mechanism of color confinement V. Kuvshinov

    E-Print Network [OSTI]

    Heller, Barbara

    Stochastic mechanism of color confinement V. Kuvshinov Joint Institute for Power and Nuclear, for example inside a hadron or deconfined QGP. QCD vacuum is the environment for color quantum particles whose into the pieces transformed under trivial and adjoint representations [4]. As is known due to Casimir scaling

  2. Entanglement properties of topological color codes

    E-Print Network [OSTI]

    Mehdi Kargarian

    2008-12-07T23:59:59.000Z

    The entanglement properties of a class of topological stabilizer states, the so called \\emph{topological color codes} defined on a two-dimensional lattice or \\emph{2-colex}, are calculated. The topological entropy is used to measure the entanglement of different bipartitions of the 2-colex. The dependency of the ground state degeneracy on the genus of the surface shows that the color code can support a topological order, and the contribution of the color in its structure makes it interesting to compare with the Kitaev's toric code. While a qubit is maximally entangled with rest of the system, two qubits are no longer entangled showing that the color code is genuinely multipartite entangled. For a convex region, it is found that entanglement entropy depends only on the degrees of freedom living on the boundary of two subsystems. The boundary scaling of entropy is supplemented with a topological subleading term which for a color code defined on a compact surface is twice than the toric code. From the entanglement entropy we construct a set of bipartitions in which the diverging term arising from the boundary term is washed out, and the remaining non-vanishing term will have a topological nature. Besides the color code on the compact surface, we also analyze the entanglement properties of a version of color code with border, i.e \\emph{triangular color code}.

  3. E-Print Network 3.0 - acquired color vision Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fredo Durand Summary: 1 The Art and Science of Depiction Fredo Durand MIT- Lab for Computer Science Color Color Vision 2... Color Color Vision 3 Talks Abstract Issues...

  4. GEODESIC INTERACTIVE SEGMENTATION IN THE COLOR MONOGENIC SIGNAL Explora Nova,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GEODESIC INTERACTIVE SEGMENTATION IN THE COLOR MONOGENIC SIGNAL FRAMEWORK G. Demarcq Explora Nova is based on the computation of geodesic distances within color mono- genic signal (CMS) fields-- Interactive Segmentation, Clifford Alge- bra, Color Monogenic Signal, Geodesic Distances 1. INTRODUCTION

  5. Get Current: Switch on Clean Energy Coloring Book | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Coloring book of energy efficiency and renewable energy technologies for kids. coloringbook2010.pdf More Documents & Publications Get Current: Switch on Clean Energy Coloring Book...

  6. Plastics' Color Problem: How a New Device Will Prevent Waste...

    Broader source: Energy.gov (indexed) [DOE]

    facts? Commercial plastics made at 752 degrees Fahrenheit and 2,000 psi Conventional plastic color detectors break at high temps and pressures Plastics with incorrect colors,...

  7. Induced Magnetism in Color-Superconducting Media

    E-Print Network [OSTI]

    Efrain J. Ferrer

    2010-01-22T23:59:59.000Z

    The dense core of compact stars is the natural medium for the realization of color superconductivity. A common characteristic of such astrophysical objects is their strong magnetic fields, especially those of the so called magnetars. In this talk, I discuss how a color superconducting core can generate or/and enhance the stellar magnetic field independently of a magnetohydrodynamic dynamo mechanism. The magnetic field generator is in this case a gluonic current which circulates to stabilize the color superconductor in the presence of a strong magnetic field or under the pairing stress produced in the medium by the neutrality and $\\beta$-equilibrium constraints.

  8. Color theory too: an instructional aid

    E-Print Network [OSTI]

    Thiagarajan, Archana

    2012-06-07T23:59:59.000Z

    This thesis primarily deals with the conceptualization, design and evaluation of an instructional learning tool. The focus of the instructional aid is to bring an understanding of the theory of color to students in art, architecture...

  9. Statistical Mechanical Models and Topological Color Codes

    E-Print Network [OSTI]

    H. Bombin; M. A. Martin-Delgado

    2007-11-03T23:59:59.000Z

    We find that the overlapping of a topological quantum color code state, representing a quantum memory, with a factorized state of qubits can be written as the partition function of a 3-body classical Ising model on triangular or Union Jack lattices. This mapping allows us to test that different computational capabilities of color codes correspond to qualitatively different universality classes of their associated classical spin models. By generalizing these statistical mechanical models for arbitrary inhomogeneous and complex couplings, it is possible to study a measurement-based quantum computation with a color code state and we find that their classical simulatability remains an open problem. We complement the meaurement-based computation with the construction of a cluster state that yields the topological color code and this also gives the possibility to represent statistical models with external magnetic fields.

  10. 2-D color code quantum computation

    E-Print Network [OSTI]

    Austin G. Fowler

    2011-01-10T23:59:59.000Z

    We describe in detail how to perform universal fault-tolerant quantum computation on a 2-D color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. CNOT is implemented between pairs of triple defect logical qubits via braiding.

  11. Color superconductivity and dense quark matter

    E-Print Network [OSTI]

    Massimo Mannarelli

    2008-12-26T23:59:59.000Z

    The properties of cold and dense quark matter have been the subject of extensive investigation, especially in the last decade. Unfortunately, we still lack of a complete understanding of the properties of matter in these conditions. One possibility is that quark matter is in a color superconducting phase which is characterized by the formation of a diquark condensate. We review some of the basic concepts of color superconductivity and some of the aspects of this phase of matter which are relevant for compact stars. Since quarks have color, flavor as well as spin degrees of freedom many different color superconducting phases can be realized. At asymptotic densities QCD predicts that the color flavor locked phase is favored. At lower densities where the QCD coupling constant is large, perturbative methods cannot be applied and one has to rely on some effective model, eventually trying to constrain such a model with experimental observations. The picture is complicated by the requirement that matter in the interior of compact stars is in weak equilibrium and neutral. These conditions and the (possible) large value of the strange quark mass conspire to separate the Fermi momenta of quarks with different flavors, rendering homogenous superconducting phases unstable. One of the aims of this presentation is to introduce non-experts in the field to some of the basic ideas of color superconductivity and to some of its open problems.

  12. ISCC Annual Meeting, April 23-25, 1995 Experience with the new color facsimile standard

    E-Print Network [OSTI]

    Beretta, Giordano

    been classified into four categories: · full color (color photographs) · multi-color (color charts likes CMYK and YIQ, colorimetric spaces like the CIE color spaces, and color order systems methods of predicting the magnitude of per- ceived color difference when two colors do not match

  13. Antibacterial Colorants: Characterization of Prodiginines and Their Applications on Textile Materials

    E-Print Network [OSTI]

    Hammock, Bruce D.

    with a broad spectrum of colors (4). Besides, some natural colorants, especially anthraquinone type compounds

  14. ATTACK BY COLORIZATION OF A GREY-LEVEL IMAGE HIDING ITS COLOR PALETTE Chaumont M. and Puech W.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ATTACK BY COLORIZATION OF A GREY-LEVEL IMAGE HIDING ITS COLOR PALETTE Chaumont M. and Puech W, FRANCE ABSTRACT In this paper, we present a novel attack named colorization attack. This attack of such an attack and thus to take it into account for the future color-hiding watermarking schemes. Index Terms

  15. The LCLS Undulator Beam Loss Monitor Readout System

    SciTech Connect (OSTI)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23T23:59:59.000Z

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  16. Reading color barcodes using visual snakes.

    SciTech Connect (OSTI)

    Schaub, Hanspeter (ORION International Technologies, Albuquerque, NM)

    2004-05-01T23:59:59.000Z

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method, the numeric bar codes reveal if the target is right-side-up or up-side-down.

  17. Mathematical Proofs of Two Conjectures: The Four Color Problem and The Uniquely 4-colorable Planar Graph

    E-Print Network [OSTI]

    Jin Xu

    2012-01-18T23:59:59.000Z

    The famous four color theorem states that for all planar graphs, every vertex can be assigned one of 4 colors such that no two adjacent vertices receive the same color. Since Francis Guthrie first conjectured it in 1852, it is until 1976 with electronic computer that Appel and Haken first gave a proof by finding and verifying 1936 reducible unavoidable sets, and a simplified proof of Robertson, Sanders, Seymour and Thomas in 1997 only involved 633 reducible unavoidable sets, both proofs could not be realized effectively by hand. Until now, finding the reducible unavoidable sets remains the only successful method to use, which came from Kempe's first "proof" of the four color problem in 1879. An alternative method only involving 4 reducible unavoidable sets for proving the four color theorem is used in this paper, which takes form of mathematical proof rather than a computer-assisted proof and proves both the four color conjecture and the uniquely 4-colorable planar graph conjecture by mathematical method.

  18. Color selective photodetector and methods of making

    DOE Patents [OSTI]

    Walker, Brian J.; Dorn, August; Bulovic, Vladimir; Bawendi, Moungi G.

    2013-03-19T23:59:59.000Z

    A photoelectric device, such as a photodetector, can include a semiconductor nanowire electrostatically associated with a J-aggregate. The J-aggregate can facilitate absorption of a desired wavelength of light, and the semiconductor nanowire can facilitate charge transport. The color of light detected by the device can be chosen by selecting a J-aggregate with a corresponding peak absorption wavelength.

  19. Linking color polymorphism maintenance and speciation

    E-Print Network [OSTI]

    review the literatures of these two fields, seeking in particular to identify insights arising from, WI 53190, USA Here, we review the recently burgeoning literature on color polymorphisms, seeking: the study of the processes maintaining genetic variation in nature and the study of speciation. Here we

  20. Digital Color in Cellulose Nanocrystal Films

    E-Print Network [OSTI]

    Dumanli, Ahu Gu?mrah; van der Kooij, Hanne M.; Kamita, Gen; Reisner, Erwin; Baumberg, Jeremy J.; Steiner, Ullrich; Vignolini, Silvia

    2014-07-09T23:59:59.000Z

    - photonics 2012, 6, 063516. (18) Vignolini, S.; Rudall, P. J.; Rowland, A. V.; Reed, A.; Moyroud, E.; Faden, R. B.; Baumberg, J. J.; Glover, B. J.; Steiner, U. Pointillist Structural Color in Pollia fruit. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 15712...

  1. Oceanography June 200450 Colored Dissolved Organic

    E-Print Network [OSTI]

    Oregon, University of

    blue sea" can typically be seen only hundreds of miles offshore. The areas of the ocean that most that are by products of plant and animal decompo- sition, and can come from both terrestrial and marine sources. When of the Mississippi River just offshore of where it enters the Gulf of Mexico. The brown color observed from a Paula

  2. ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED WITHDRAWAL OF PUBLIC LANDS WITHIN AND SURROUNDING THE CALIENTE RAIL CORRIDOR, NEVADA

    SciTech Connect (OSTI)

    DOE

    2005-12-01T23:59:59.000Z

    The purpose for agency action is to preclude surface entry and the location of new mining claims, subject to valid existing rights, within and surrounding the Caliente rail corridor as described in the Yucca Mountain FEIS (DOE 2002). This protective measure is needed to enhance the safe, efficient, and uninterrupted evaluation of land areas for potential rail alignments within the Caliente rail corridor. The evaluation will assist the DOE in determining, through the Rail Alignment environmental impact statement (EIS) process, whether to construct a branch rail line, and to provide support to the BLM in deciding whether or not to reserve a ROW for the rail line under the Federal Land Policy and Management Act (FLPMA). The BLM participated as a cooperating agency in preparing this EA because it is the responsible land manager and BLM staff could contribute resource specific expertise.

  3. EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates Ormat Nevada, Inc.s (Ormats) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

  4. EIS-0403: Solar Energy Development in Six Southwestern States

    Broader source: Energy.gov [DOE]

    The BLM and DOE have jointly prepared this PEIS to evaluate actions that the agencies are considering taking to further facilitate utility-scale solar energy development in six southwestern states. For the BLM, this includes the evaluation of a new Solar Energy Program applicable to solar development on BLM-administered lands. For DOE, it includes the evaluation of developing new guidance to further facilitate utility-scale solar energy development and maximize the mitigation of associated potential environmental impacts. This Solar PEIS evaluates the potential environmental, social, and economic effects of the agencies proposed actions and alternatives. For additional information, please visit the Solar PEIS website at http://solareis.anl.gov.

  5. The rules of perception : American color science, 1831-1931

    E-Print Network [OSTI]

    Rossi, Michael Paul, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Although vision was seldom studied in Antebellum America, color and color perception became a critical field of scientific inquiry in the United States during the Gilded Age and progressive era. Through a historical ...

  6. Geometric Histogram: A Distribution of Geometric Configurations of Color Subsets

    E-Print Network [OSTI]

    Zhang, Zhongfei "Mark"

    spatial constraints proposed by Stricker and Dimai, 11 binary color sets proposed by Smith and Chang, 9 information of the selected colors using maximum entropy quantization with event covering method. Stricker

  7. Effects of Storage Container Color and Shading on Water Temperature

    E-Print Network [OSTI]

    Clayton, James Brent

    2012-07-16T23:59:59.000Z

    RWH systems has become a concern. Water temperature is a parameter of water quality and storage container color and shading affect this temperature. Four different colors and three different shadings were applied to twelve rainwater storage barrels...

  8. Color-accurate underwater imaging using perceptual adaptive illumination

    E-Print Network [OSTI]

    Vasilescu, Iuliu

    Capturing color in water is challenging due to the heavy non-uniform attenuation of light in water across the visible spectrum, which results in dramatic hue shifts toward blue. Yet observing color in water is important ...

  9. For the Birds: The Magic of Color in Feathers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that are understood to provide the pigmentation that confers color to animal skin, hair, and feathers. So, how is nature able to achieve such a wide variety of colors with so...

  10. Neutral Color Superconductivity and Pseudo-Goldstone Modes

    E-Print Network [OSTI]

    Lianyi He; Meng Jin; Pengfei Zhuang

    2005-05-09T23:59:59.000Z

    Four of the five expected Goldstone modes, which will be eaten up by gauge fields, in neutral two-flavor color superconductor are actually pseudo-Goldstone modes, and their degenerated mass is exactly the magnitude of the color chemical potential, which is introduced to guarantee the color neutrality at moderate baryon density.

  11. Stop-sign-recognition based on color processing

    E-Print Network [OSTI]

    Kang, Dae-Seong

    2012-06-07T23:59:59.000Z

    of segmenting color images. D. l. C. I. E. Spectral Primary Color Coordinate System (R, G, B) In 1931, the C. I. F. (Commission Internationale de I'Eclairage) developed a color specification system based on three monochromatic primaries of 700 nm for red...

  12. Computing the Channel with Probabilistic Segmentation for Image Colorization

    E-Print Network [OSTI]

    Rivera, Mariano

    , Guanajuato, Gto. 36000 Mexico {dalmau,mrivera,mayorga}@cimat.mx Figure 1. Interactive colorization using, or a sequence of images, in regions with an assumed same color. Afterwards, it comes the process of assigning- phisticated methods in commercial processing software has become popular. In interactive colorization

  13. Color No Longer A Sign of Bondage: Race, Identity and the First Kansas Colored Volunteer Infantry Regiment (1862-1865)

    E-Print Network [OSTI]

    Ringquist, John Paul

    2011-08-31T23:59:59.000Z

    "Color No Longer A Sign of Bondage" is an account of the First Kansas Colored Volunteer Infantry Regiment from its earliest days in 1862 to the regiment's triumphant return to Kansas in November 1865. This work encompasses ...

  14. Green is Our Favorite Color: Students Fill in the Lines with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green is Our Favorite Color: Students Fill in the Lines with Energy-themed Coloring Book Green is Our Favorite Color: Students Fill in the Lines with Energy-themed Coloring Book...

  15. The Symmetry, Color, and Morphology of Galaxies

    E-Print Network [OSTI]

    Christopher J. Conselice

    1997-10-22T23:59:59.000Z

    The structural symmetry of forty-three face-on galaxy images in the R(65 0 nm) and J(450 nm) bands are measured to determine the usefulness of symmetry a s a morphological parameter. Each galaxy image is rotated by $180$\\deg and subtr acted from the original to obtain a quantitative value for its structural symmet ry. The symmetry numbers computed for the sample are then compared with RC3 mor phological types, color \\& absolute blue magnitudes. A strong correlation betw een color and symmetry is found, and the RC3 Hubble sequence is found to be one of increasing asymmetry. The use of symmetry as a morphological parameter, and the possible causes of the asymmetries are discussed.

  16. Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    color rendering index Sedat Nizamoglu, Gulis Zengin, and Hilmi Volkan Demira Department of Electrical 2008 Warm-white light emitting diodes with high color rendering indices are required for the widespreadSe/ZnS core-shell nanocrystals hybridized on InGaN/GaN LEDs for high color rendering index. Three sets

  17. Landau gauge condensates from global color model

    E-Print Network [OSTI]

    Zhao Zhang; Wei-qin Zhao

    2006-03-23T23:59:59.000Z

    We compute the dimension-2 gluon pair condensate $g^2$ and the dimension-4 mixed quark-gluon condensate $$ in Landau gauge within the framework of global color model. The result for the dynamical gluon mass is within the range given by other independent determinations. The obtained mixed Landau gauge condensate $$ is clearly dependent on the definitions of the condensates. We show that the consistent result may be obtained when the same definitions are used.

  18. Philips Color Kinetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color Kinetics Jump to: navigation, search Name:

  19. Sandia National Laboratories: correlated color temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogenmaterial elementswavecorrectcorrelated color

  20. THE INFRARED COLORS OF THE SUN

    SciTech Connect (OSTI)

    Casagrande, L.; Asplund, M. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australian National University, ACT 2611 (Australia); Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Melendez, J., E-mail: luca@mso.anu.edu.au [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil)

    2012-12-10T23:59:59.000Z

    Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

  1. Create The Look You Like-With Color.

    E-Print Network [OSTI]

    Rhoades, Beverly

    1984-01-01T23:59:59.000Z

    and 8-1326 Create The Look You Like- With Texture. DIMENSIONS OF COLOR To become more familiar with the dimensions of color, let's consider a few principles. Hue refers to the name of a color. Primary hues are red, yellow and blue. These cannot... and are arranged between the primary colors on the color Wheel : purple or violet-a combination of red and blue green - a combination of blue and yellow orange-a combination of red and yellow , Extension consumer information specailist, The Texas A&M University...

  2. Abrikosov Gluon Vortices in Color Superconductors

    E-Print Network [OSTI]

    Efrain J. Ferrer

    2010-04-05T23:59:59.000Z

    In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a consequence, the charged gluonic currents induce a magnetic field. Finally, I will point out a possible relation between glitches in neutron stars and the existence of the gluon vortices.

  3. Color superconducting quark matter in compact stars

    E-Print Network [OSTI]

    D. B. Blaschke; T. Klahn; F. Sandin

    2007-12-02T23:59:59.000Z

    Recent indications for high neutron star masses (M \\sim 2 M_sun) and large radii (R > 12 km) could rule out soft equations of state and have provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. For these objects color superconductivity turns out to be an essential ingredient for a successful description of the cooling phenomenology in accordance with recently developed tests. We discuss the energy release in the neutrino untrapping transition as a new aspect of the problem that hybrid stars masquerade themselves as neutron stars. Quark matter searches in future generations of low-temperature/high-density nucleus-nucleus collision experiments such as low-energy RHIC and CBM @ FAIR might face the same problem of an almost crossover behavior of the deconfinement transition. Therefore, diagnostic tools shall be derived from effects of color superconductivity.

  4. EIS-0446: Department of Energy Loan Guarantee to AES for the Proposed Daggett Ridge Wind Farm, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Department of the Interior (Bureau of Land Management [BLM], Barstow Field Office) evaluates the environmental impacts of a proposed 82.5-megawatt (MW) Daggett Ridge Wind Farm project on land managed by the BLM located 11 miles southwest of Barstow, California, and five miles southwest of Daggett, California. DOE, a cooperating agency, is considering the impacts of its proposal to issue a Federal loan guarantee to AES Wind Generation, Inc., to support the construction of the proposed wind project. This EIS has been cancelled.

  5. Causal Baryon Diffusion and Colored Noise

    E-Print Network [OSTI]

    J. I. Kapusta; C. Young

    2014-04-18T23:59:59.000Z

    We construct a model of baryon diffusion which has the desired properties of causality and analyticity. The model also has the desired property of colored noise, meaning that the noise correlation function is not a Dirac delta function in space and time; rather, it depends on multiple time and length constants. The model can readily be incorporated in 3+1 dimensional second order viscous hydro-dynamical models of heavy ion collisions, which is particularly important at beam energies where the baryon density is large.

  6. Initial Conditions from Color Glass Condensate

    E-Print Network [OSTI]

    Chen, Guangyao

    2013-08-06T23:59:59.000Z

    of charge density over charge density for a re- alistic gold nucleus with Woods-Saxon profile. Eq. (4.6) is true for more than 90% of matter in a nucleus if a realistic infrared cutoff 1 fm?1 ? 200 MeV is chosen... boson ? the gluons ? carry color charge. This is explicitly shown by the last term in Eq. (1.4) which leads to interactions between gluons. Consequently the coupling constant of QCD ?s decreases logarithmically as the momentum transfer increases [1, 2...

  7. Cdigo color Arnimo Observaciones CSL Obligatoria

    E-Print Network [OSTI]

    Rey Juan Carlos, Universidad

    Código color Arónimo Observaciones MAT I FIS GEO QUI IIE CSL Obligatoria 1 2 3 4 5 Hora Lunes:00-10:00 10:00-11:00 FIS FIS IIE IIE 10:00-11:00 11:00-12:00 MAT I GEO MAT I GEO 11:00-12:00 12:00-13:00 MAT I QUI FIS 09:00-10:00 10:00-11:00 FIS FIS IIE IIE IIE 10:00-11:00 11:00-12:00 MAT I GEO MAT I GEO IIE 11

  8. Fermilab | Graphic Standards at Fermilab | Color palette

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group Robert R.Color palette PDF

  9. The Color Lavender: Audience Reception, Adaptation, and Performance of The Color Purple

    E-Print Network [OSTI]

    Melton, Elizabeth M.

    2010-07-14T23:59:59.000Z

    as from the Pulitzer Prize-winning novel. Each iteration of The Color Purple offers ambivalent representations of Black female experience in the early 20th century era of the American South. My research thus far has placed me in the midst of other audience...

  10. The strength of crystalline color superconductors

    E-Print Network [OSTI]

    Massimo Mannarelli; Krishna Rajagopal; Rishi Sharma

    2007-10-01T23:59:59.000Z

    We present a study of the shear modulus of the crystalline color superconducting phase of quark matter, showing that this phase of dense, but not asymptotically dense, quark matter responds to shear stress as a very rigid solid. This phase is characterized by a gap parameter $\\Delta$ that is periodically modulated in space and therefore spontaneously breaks translational invariance. We derive the effective action for the phonon fields that describe space- and time-dependent fluctuations of the crystal structure formed by $\\Delta$, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase of matter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superfluid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example, (some) pulsar glitches may originate in crystalline superconducting neutron star cores.

  11. Color stable manganese-doped phosphors

    DOE Patents [OSTI]

    Lyons, Robert Joseph (Burnt Hills, NY); Setlur, Anant Achyut (Niskayuna, NY); Deshpande, Anirudha Rajendra (Twinsburg, OH); Grigorov, Ljudmil Slavchev (Sofia, BG)

    2012-08-28T23:59:59.000Z

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  12. Acceptance test report for the mobile color camera system

    SciTech Connect (OSTI)

    Castleberry, J.L., Fluor Daniel Hanford

    1997-02-27T23:59:59.000Z

    The purpose of this report is to present test data recorded during acceptance testing of the Mobile Color Camera System (MCCS).

  13. Goldstone bosons in the color-flavor locked phase

    E-Print Network [OSTI]

    Verena Werth; Michael Buballa; Micaela Oertel

    2006-11-30T23:59:59.000Z

    We study pseudoscalar meson excitations in the color-flavor locked phase within a Nambu-Jona-Lasinio-type model by calculating diquark loops.

  14. Goldstone bosons in the color-flavor locked phase

    E-Print Network [OSTI]

    Werth, V; rtel, M; Werth, Verena; Buballa, Michael; Oertel, Micaela

    2006-01-01T23:59:59.000Z

    We study pseudoscalar meson excitations in the color-flavor locked phase within a Nambu-Jona-Lasinio-type model by calculating diquark loops.

  15. aerial color infrared: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but to this purpose they must be measured with both accuracy and precision....

  16. Optofluidic-Tunable Color Filters And Spectroscopy Based On Liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Based On Liquid-Crystal Microflows. Abstract: The integration of color filters with microfluidics has attracted substantial attention in recent years, for on-chip absorption,...

  17. LED lamp color control system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05T23:59:59.000Z

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  18. Scannerless loss modulated flash color range imaging

    DOE Patents [OSTI]

    Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

    2008-09-02T23:59:59.000Z

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  19. Scannerless loss modulated flash color range imaging

    DOE Patents [OSTI]

    Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

    2009-02-24T23:59:59.000Z

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  20. Rates for Color Shifted Microlensing Events

    E-Print Network [OSTI]

    Ari Buchalter; Marc Kamionkowski; R. Michael Rich

    1995-11-08T23:59:59.000Z

    If the objects responsible for gravitational microlensing (ML) of Galactic-bulge stars are faint dwarfs, then blended light from the lens will distort the shape of the ML light curve and shift the color of the observed star during the event. The resolution in current surveys is not accurate enough to observe this effect, but it should be detected with frequent and precise followup observations. We calculate the expected rates for ML events where the shape distortions will be observable by such followup observations, assuming that the lenses are ordinary main-sequence stars in a bar and in the disk. We study the dependence of the rates for color-shifted (CS) events on the frequency of followup observations and on the precision of the photometry for a variety of waveband pairings. We find that for hourly observations in $B$ and $K$ with typical photometric errors of 0.01 mag, 28\\% of the events where a main-sequence bulge star is lensed, and 7\\% of the events where the source is a bulge giant, will give rise to a measurable CS at the 95\\% confidence level. For observations in $V$ and $I$, the fractions become 18\\% and 5\\%, respectively, but may be increased to 40\\% and 13\\% by improved photometric accuracy and increased sampling frequency. We outline how the mass, distance, and transverse speed of the lens can be obtained, giving examples of typical errors. We discuss how CS events can be distinguished from events where the source is blended with a binary companion.

  1. Enhancement of Color Images By Efficient Demosaicing Liron D. Grossmann

    E-Print Network [OSTI]

    Eldar, Yonina

    Enhancement of Color Images By Efficient Demosaicing Liron D. Grossmann and Yonina C. Eldar November 4, 2004 Abstract We propose an efficient method for reconstructing a full-color image from its partially sam- pled version. The suggested algorithm is non-iterative and is based on the properties

  2. Factors affecting the color of corn tortillas and tortilla chips

    E-Print Network [OSTI]

    Mireles, Raquel C

    1995-01-01T23:59:59.000Z

    to increase or decrease pH. Hydrogen, benzoyl and calcium peroxide were added as bleaching agents to improve tortilla chip color. Masa was sheeted, baked, cut, equilibrated and fried to produce tortillas and chips using pilot plant equipment. The color (L, a...

  3. Finite temperature topological order in 2D topological color codes

    E-Print Network [OSTI]

    Mehdi Kargarian

    2009-07-19T23:59:59.000Z

    In this work the topological order at finite temperature in two-dimensional color code is studied. The topological entropy is used to measure the behavior of the topological order. Topological order in color code arises from the colored string-net structures. By imposing the hard constrained limit the exact solution of the entanglement entropy becomes possible. For finite size systems, by raising the temperature, one type of string-net structure is thermalized and the associative topological entropy vanishes. In the thermodynamic limit the underlying topological order is fragile even at very low temperatures. Taking first the thermodynamic limit and then the zero-temperature limit and vice versa does not commute, and their difference is related only to the topology of regions. The contribution of the colors and symmetry of the model in the topological entropy is also discussed. It is shown how the gauge symmetry of the color code underlies the topological entropy.

  4. The Role of Sarcolipin and ATP in the Transport of Phosphate Ion into the Sarcoplasmic Reticulum

    E-Print Network [OSTI]

    Thomas, David D.

    The Role of Sarcolipin and ATP in the Transport of Phosphate Ion into the Sarcoplasmic Reticulum toward chloride ion when incorporated in a mercury-supported tethered bilayer lipid membrane (tBLM). ItsM. Phenylphosphonium ion and adenosine monophosphate exert an inhibitory effect on membrane permeabilization

  5. Journal of Colloid and Interface Science 301 (2006) 461469 www.elsevier.com/locate/jcis

    E-Print Network [OSTI]

    Lee, Ilsoon

    2006-01-01T23:59:59.000Z

    of trans-membrane proteins, and to allow lateral mobility of mem- brane components, and (2) they lack lipid membrane (BLM) and associated membrane proteins. These membranes represent one of the major struc Equal contributors. lipidprotein interactions [17], they have two serious limita- tions: (1) they do

  6. Applicable HCP NCCP 0 0 0 CREZ 1 Lassen South A&B

    E-Print Network [OSTI]

    habitat 0 0 0 Number of special status species present 112 Wind quantity accounts for entire CREZ of special status species present 110 Wind quantity accounts for entire CREZ Important/Sensitive Habitat Biomass Phase 1b CREZ Acres 10158 Ac 42228 Ac Unidentified BLM Wind near Lower Klamath Lake, Shasta County

  7. EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

  8. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Michael Lane

    Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010. ArcGIS map package containing topographic base map, Township and Range layer, Oski BLM and private leases at time of survey, and locations, with selected shot points, of the five seismic lines.

  9. RENEWABLE ENERGY ACTION TEAM Milestones to Permit California Renewable Portfolio Standard Energy Projects

    E-Print Network [OSTI]

    renewable energy resources. In November 2008, the CEC, DFG, the Bureau of Land Management (BLM1 RENEWABLE ENERGY ACTION TEAM Milestones to Permit California Renewable Portfolio Standard Energy on November 17, 2008, requiring 33 percent of the electricity sold in California to come from renewable

  10. Biomimetic Interfaces Based on Membrane Proteins for Bioelectronic

    E-Print Network [OSTI]

    , R. Michael Garavito2 and R. Mark Worden1 1 Department of Chemical Engineering and Materials Science bilayer lipid membrane (tBLM) Electrochemical impedance spectroscopy (EIS) Methodology for t-throughput drug screening These interfaces can be characterized using electrochemical and optical techniques #12

  11. WILDLIFE REFUGE BACA NATIONAL

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Rio Grande National Forest Rio Grande National Forest San Isabel National Forest Solar Energy Study Great Sand Dunes National Preserve 285 160 160 160 285 Carson National Forest Grand Mesa National Forest Note 2) (As of 6/5/2009) Solar Energy Study Area (As of 6/5/2009) BLM Lands Being Analyzed for Solar

  12. White Sands Reservation

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Note 2) (As of 6/5/2009) Solar Energy Study Area (As of 6/5/2009) BLM Lands Being Analyzed for Solar Cruces New Mexico Solar Energy Study Areas in New Mexico Map Prepared June 5, 2009 Property of the U Spaceport City Dona Ana Sunland Park Strauss Hatch Valmont Salem Boles Acres Grama La Union Garfield Arrey

  13. Solar Energy Study Areas in Colorado Map Prepared June 5, 2009

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Solar Energy Study Areas in Colorado Map Prepared June 5, 2009 State Line County Boundary Solar and Implement Agency-Specific Programs for Solar Energy Development Platoro Reservoir Alamosa National Wildlife Energy Study Area (As of 6/5/2009) Existing Designated Corridor (See Note 2) (As of 6/5/2009) BLM Lands

  14. WISDOM number two / page 7 IN THE FOREST

    E-Print Network [OSTI]

    Sisk, Thomas D.

    a decision support tool for land managers that met the needs of the BLM managers perfectly. The ForestERA project was in the final stages of a 2 million acre analysis of forest and fire risk management jurisdictions, they could accomplish for- est management planning to address fire risks. Luckily, the Forest

  15. 35961Federal Register / Vol. 77, No. 116 / Friday, June 15, 2012 / Notices Dated: June 8, 2012.

    E-Print Network [OSTI]

    in its e- NEPA electronic EIS submission pilot. Participating agencies can fulfill all requirements for EIS filing, eliminating the need to submit paper copies to EPA Headquarters, by filing documents://cdx.epa.gov. EIS No. 20120182, Final EIS, BLM, NM, Alamogordo Regional Water Supply Project, Construction

  16. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small IV, Ward; Celliers, Peter

    2004-01-27T23:59:59.000Z

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  17. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward (Livermore, CA); Celliers, Peter (Berkeley, CA)

    2000-01-01T23:59:59.000Z

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  18. Color stable manganese-doped phosphors

    DOE Patents [OSTI]

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirundha Rajendra; Grigorov, Ljudmil Slavchev

    2014-04-29T23:59:59.000Z

    A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor material radiationally coupled to the light source. The phosphor material includes a color-stable Mn.sup.+4 doped phosphor prepared by a process including providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof.

  19. Spin-one color superconductors: collective modes and effective Lagrangian

    E-Print Network [OSTI]

    Jin-yi Pang; Tomas Brauner; Qun Wang

    2010-10-11T23:59:59.000Z

    We investigate the collective excitations in spin-one color superconductors. We classify the Nambu--Goldstone modes by the pattern of spontaneous symmetry breaking, and then use the Ginzburg--Landau theory to derive their dispersion relations. These soft modes play an important role for the low-energy dynamics of the system such as the transport phenomena and hence are relevant for late-stage evolution of neutron stars. In the case of the color-spin-locking phase, we use a functional technique to obtain the low-energy effective action for the physical Nambu--Goldstone bosons that survive after gauging the color symmetry.

  20. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01T23:59:59.000Z

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

  1. Full-Color Emission and Temperature Dependence of the Luminescence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Luminescence in Poly-P -Phenylene Ethynylene-ZnS:Mn2+ Composite Particles. Full-Color Emission and Temperature Dependence of the Luminescence in Poly-P -Phenylene...

  2. Quantum computing by color-code lattice surgery

    E-Print Network [OSTI]

    Andrew J. Landahl; Ciaran Ryan-Anderson

    2014-07-18T23:59:59.000Z

    We demonstrate how to use lattice surgery to enact a universal set of fault-tolerant quantum operations with color codes. Along the way, we also improve existing surface-code lattice-surgery methods. Lattice-surgery methods use fewer qubits and the same time or less than associated defect-braiding methods. Furthermore, per code distance, color-code lattice surgery uses approximately half the qubits and the same time or less than surface-code lattice surgery. Color-code lattice surgery can also implement the Hadamard and phase gates in a single transversal step---much faster than surface-code lattice surgery can. Against uncorrelated circuit-level depolarizing noise, color-code lattice surgery uses fewer qubits to achieve the same degree of fault-tolerant error suppression as surface-code lattice surgery when the noise rate is low enough and the error suppression demand is high enough.

  3. How ocean color can steer Pacific tropical cyclones

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter ...

  4. System design description 241-SY-101 color video camera

    SciTech Connect (OSTI)

    Kohlman, E.H.; Smet, D.B.

    1994-12-01T23:59:59.000Z

    This System Design Description describes the major components of the 101-SY color camera system. The system is comprised of the camera assembly, the purge system, and the multiport riser unit.

  5. Hair treatment process providing dispersed colors by light diffraction

    DOE Patents [OSTI]

    Lamartine, Bruce Carvell; Orler, E. Bruce; Sutton, Richard Matthew Charles; Song, Shuangqi

    2014-11-11T23:59:59.000Z

    Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.

  6. Exact Solution of Graph Coloring Problems via Constraint ...

    E-Print Network [OSTI]

    2011-09-21T23:59:59.000Z

    of coloring the vertices of a graph so that adjacent vertices have different ..... in a vector y having always the same order corresponding to that of matrix A rows.

  7. Hair treatment process providing dispersed colors by light diffraction

    DOE Patents [OSTI]

    Lamartine, Bruce Carvell; Orler, E. Bruce; Sutton, Richard Matthew Charles; Song, Shuangqi

    2013-12-17T23:59:59.000Z

    Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.

  8. Computer rotoscoping with the aid of color recognition

    E-Print Network [OSTI]

    Allen, Rebecca A

    1980-01-01T23:59:59.000Z

    Rotoscoping is explored as a computer animation technique. The optical videodisc serves as the image storage and input source. Image processing and tablet painting routines are applied to digitized frames. "Color recognition", ...

  9. Text-Alternative Version: LED Color Stability Webinar

    Broader source: Energy.gov [DOE]

    Michael Royer: All right, welcome ladies and gentleman. I'm Michael Royer of Pacific Northwest National Laboratory, and I'd like to welcome you to today's webinar on LED Color Stability, Ten...

  10. Low voltage solid-state lateral coloration electrochromic device

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Ruth, Marta R. (Boulder, CO)

    1987-01-01T23:59:59.000Z

    A solid-state transition metal oxide device comprising a plurality of lay having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  11. Low voltage solid-state lateral coloration electrochromic device

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1984-12-21T23:59:59.000Z

    A solid-state transition metal oxide device comprising a plurality of layers having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  12. Object individuation in infancy: the value of color and luminance

    E-Print Network [OSTI]

    Woods, Rebecca Jindalee

    2009-06-02T23:59:59.000Z

    OBJECT INDIVIDUATION IN INFANCY: THE VALUE OF COLOR AND LUMINANCE A Dissertation by REBECCA JINDALEE WOODS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY August 2006 Major Subject: Psychology OBJECT INDIVIDUATION IN INFANCY: THE VALUE OF COLOR AND LUMINANCE A Dissertation by REBECCA JINDALEE WOODS Submitted to the Office of Graduate...

  13. Factors affecting color stability of vinegar pickled meat products

    E-Print Network [OSTI]

    Ploch, Carol Ann

    1978-01-01T23:59:59.000Z

    150 ppm nitrite and 600 ppm erythorbate. Visual color scores decreased (P& . 05) with increasing storage intervals. pH values were signifi- cantly (P &. 05) affected by color additive, vinegar strength, nitrite level, erythorbate level and storage... interval. Higher nitrite levels (150 ppm) and higher erythorbate levels (600 ppm) resulted in higher (P&. 05) pH values than did lower levels of these ingredients. With increased storage time, pH values increased and were significantly (p &. 05...

  14. Inheritance of mature green fruit color in cucumber

    E-Print Network [OSTI]

    Peterson, Gregory Calvin

    1986-01-01T23:59:59.000Z

    INHERITANCE OF MATURE GREEN FRUIT COLOR IN CUCUMBER A Thesis by GREGORY CALVIN PETERSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1986... Major Subject: plant Breeding INHERITANCE OF MATURE GREEN FRUIT COLOR IN CUCUMBER A Thesis by GREGORY CALVIN PETERSON Approved as to style and content by: Leonard M. Pike (Chairman of Committee) J. Creighton Miller, J (Member) James D. Smith...

  15. Initial laboratory evaluation of color video cameras: Phase 2

    SciTech Connect (OSTI)

    Terry, P.L.

    1993-07-01T23:59:59.000Z

    Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than to identify intruders. The monochrome cameras were selected over color cameras because they have greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Because color camera technology is rapidly changing and because color information is useful for identification purposes, Sandia National Laboratories has established an on-going program to evaluate the newest color solid-state cameras. Phase One of the Sandia program resulted in the SAND91-2579/1 report titled: Initial Laboratory Evaluation of Color Video Cameras. The report briefly discusses imager chips, color cameras, and monitors, describes the camera selection, details traditional test parameters and procedures, and gives the results reached by evaluating 12 cameras. Here, in Phase Two of the report, we tested 6 additional cameras using traditional methods. In addition, all 18 cameras were tested by newly developed methods. This Phase 2 report details those newly developed test parameters and procedures, and evaluates the results.

  16. Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

    2011-05-26T23:59:59.000Z

    We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

  17. Scale Setting Using the Extended Renormalization Group and the Principle of Maximal Conformality: the QCD Coupling at Four Loops

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; /SLAC; Wu, Xing-Gang; /SLAC /Chongqing U.

    2012-02-16T23:59:59.000Z

    A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The extended renormalization group equations, which express the invariance of physical observables under both the renormalization scale- and scheme-parameter transformations, provide a convenient way for estimating the scale- and scheme-dependence of the physical process. In this paper, we present a solution for the scale-equation of the extended renormalization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all non-conformal {beta}{sub i} terms in the perturbative expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are independent of the renormalization scheme. Different schemes lead to different effective PMC/BLM scales, but the final results are scheme independent. Conversely, from the requirement of scheme independence, one not only can obtain scheme-independent commensurate scale relations among different observables, but also determine the scale displacements among the PMC/BLM scales which are derived under different schemes. In principle, the PMC/BLM scales can be fixed order-by-order, and as a useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales up to NNLO. An explicit application for determining the scale setting of R{sub e{sup +}e{sup -}}(Q) up to four loops is presented. By using the world average {alpha}{sub s}{sup {ovr MS}}(MZ) = 0.1184 {+-} 0.0007, we obtain the asymptotic scale for the 't Hooft associated with the {ovr MS} scheme, {Lambda}{sub {ovr MS}}{sup 'tH} = 245{sub -10}{sup +9} MeV, and the asymptotic scale for the conventional {ovr MS} scheme, {Lambda}{sub {ovr MS}} = 213{sub -8}{sup +19} MeV.

  18. Artificial selection for structural color on butterfly wings and comparison with natural evolution

    E-Print Network [OSTI]

    Cao, Hui

    of applications in color display, paint, cosmetics, and textile industries (2). Structural color surveys acrossArtificial selection for structural color on butterfly wings and comparison with natural evolution (received for review February 13, 2014) Brilliant animal colors often are produced from light interacting

  19. Magnetic Phases in Three-Flavor Color Superconductivity

    E-Print Network [OSTI]

    Ferrer, E J; Ferrer, Efrain J.; Incera, Vivian de la

    2007-01-01T23:59:59.000Z

    The best natural candidates for the realization of color superconductivity are quark stars -not yet confirmed by observation- and the extremely dense cores of compact stars, many of which have very large magnetic fields. To reliably predict astrophysical signatures of color superconductivity, a better understanding of the role of the star's magnetic field in the color superconducting phase that realizes in the core is required. This paper is an initial step in that direction. The field scales at which the different magnetic phases of a color superconductor with three quark flavors can be realized are investigated. Coming from weak to strong fields, the system undergoes first a symmetry transmutation from a Color-Flavor-Locked (CFL) phase to a Magnetic-CFL (MCFL) phase, and then a phase transition from the MCFL phase to the Paramagnetic-CFL (PCFL) phase. The low-energy effective theory for the excitations of the diquark condensate in the presence of a magnetic field is derived using a covariant representation ...

  20. Elliptic Flow from Nonequilibrium Color Glass Condensate Initial Conditions

    E-Print Network [OSTI]

    Ruggieri, M; Plumari, S; Greco, V

    2013-01-01T23:59:59.000Z

    A current goal of relativistic heavy ion collisions experiments is the search for a Color Glass Condensate as the limiting state of QCD matter at very high density. In viscous hydrodynamics simulations, a standard Glauber initial condition leads to estimate $4\\pi \\eta/s \\sim 1$, while a Color Glass Condensate modeling leads to at least a factor of 2 larger $\\eta/s$. Within a kinetic theory approach based on a relativistic Boltzmann-like transport simulation, we point out that the out-of-equilibrium initial distribution proper of a Color Glass Condensate reduces the efficiency in building-up the elliptic flow. Our main result at RHIC energy is that the available data on $v_2$ are in agreement with a $4\\pi \\eta/s \\sim 1$ also for Color Glass Condensate initial conditions, opening the possibility to describe self-consistently also higher order flow, otherwise significantly underestimated, and to pursue further the search for signatures of the Color Glass Condensate.

  1. OPTICAL COLORS OF INTRACLUSTER LIGHT IN THE VIRGO CLUSTER CORE

    SciTech Connect (OSTI)

    Rudick, Craig S.; Mihos, J. Christopher; Harding, Paul; Morrison, Heather L. [Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Feldmeier, John J. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Janowiecki, Steven, E-mail: csr10@case.ed [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States)

    2010-09-01T23:59:59.000Z

    We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to {mu}{sub B} {approx}29 mag arcsec{sup -2}, confirming the results of Mihos et al., who saw a vast web of low surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's low surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000'', and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B - V {approx}0.8. The common colors of these features suggest that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.

  2. Isotropization from Color Field Condensate in heavy ion collisions

    E-Print Network [OSTI]

    Stefan Floerchinger; Christof Wetterich

    2014-08-27T23:59:59.000Z

    The expanding fireball shortly after a heavy ion collision may be qualitatively described by a condensate of color fields or gluons which is analogous to Bose-Einstein-condensation for massive bosonic particles. This condensate is a transient non-equilibrium phenomenon and breaks Lorentz-boost symmetry. The dynamics of color field condensates involves collective excitations and is rather different from the perturbative scattering of gluons. In particular, it provides for an efficient mechanism to render the local pressure approximately isotropic after a short time of 0.2 fm/c. We suggest that an isotropic color field condensate may play a central role for a simple description of prethermalization and isotropization in the early stages of the collision.

  3. THE UBV(RI){sub C} COLORS OF THE SUN

    SciTech Connect (OSTI)

    Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Michel, R.; Schuster, W. J. [Observatorio Astronomico Nacional, Universidad Nacional Autonoma de Mexico, Apartado Postal 877, Ensenada, B.C., CP 22800 (Mexico); Sefako, R.; Van Wyk, F. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Tucci Maia, M. [UNIFEI, DFQ-Instituto de Ciencias Exatas, Universidade Federal de Itajuba, Itajuba MG (Brazil); Melendez, J. [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil); Casagrande, L. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany); Castilho, B. V. [Laboratorio Nacional de Astrofisica/MCT, Rua Estados Unidos 154, 37504-364 Itajuba, MG (Brazil)

    2012-06-10T23:59:59.000Z

    Photometric data in the UBV(RI){sub C} system have been acquired for 80 solar analog stars for which we have previously derived highly precise atmospheric parameters T{sub eff}, log g, and [Fe/H] using high-resolution, high signal-to-noise ratio spectra. UBV and (RI){sub C} data for 46 and 76 of these stars, respectively, are published for the first time. Combining our data with those from the literature, colors in the UBV(RI){sub C} system, with {approx_equal} 0.01 mag precision, are now available for 112 solar analogs. Multiple linear regression is used to derive the solar colors from these photometric data and the spectroscopically derived T{sub eff}, log g, and [Fe/H] values. To minimize the impact of systematic errors in the model-dependent atmospheric parameters, we use only the data for the 10 stars that most closely resemble our Sun, i.e., the solar twins, and derive the following solar colors: (B - V){sub Sun} = 0.653 {+-} 0.005, (U - B){sub Sun} = 0.166 {+-} 0.022, (V - R){sub Sun} = 0.352 {+-} 0.007, and (V - I){sub Sun} = 0.702 {+-} 0.010. These colors are consistent, within the 1{sigma} errors, with those derived using the entire sample of 112 solar analogs. We also derive the solar colors using the relation between spectral-line-depth ratios and observed stellar colors, i.e., with a completely model-independent approach, and without restricting the analysis to solar twins. We find (B - V){sub Sun} = 0.653 {+-} 0.003, (U - B){sub Sun} = 0.158 {+-} 0.009, (V - R){sub Sun} = 0.356 {+-} 0.003, and (V - I){sub Sun} = 0.701 {+-} 0.003, in excellent agreement with the model-dependent analysis.

  4. Macdonald operators and homological invariants of the colored Hopf link

    E-Print Network [OSTI]

    Hidetoshi Awata; Hiroaki Kanno

    2011-08-30T23:59:59.000Z

    Using a power sum (boson) realization for the Macdonald operators, we investigate the Gukov, Iqbal, Kozcaz and Vafa (GIKV) proposal for the homological invariants of the colored Hopf link, which include Khovanov-Rozansky homology as a special case. We prove the polynomiality of the invariants obtained by GIKV's proposal for arbitrary representations. We derive a closed formula of the invariants of the colored Hopf link for antisymmetric representations. We argue that a little amendment of GIKV's proposal is required to make all the coefficients of the polynomial non-negative integers.

  5. Hadronically decaying color-adjoint scalars at the LHC

    E-Print Network [OSTI]

    Steffen Schumann; Adrien Renaud; Dirk Zerwas

    2011-08-15T23:59:59.000Z

    We study the phenomenology of the pair-production of scalar color-octet electroweak singlet states at the LHC. Such states appear in many extensions of the Standard Model. They can be pair-produced copiously at the LHC and will signal themselves as resonances in multijet final states. Beyond the QCD pair-production process we consider a vectorlike confinement scenario with an additional color-octet vector state. These vector particles can be produced in the s-channel and through their decay contribute to the scalar pair production. We point out the differences between the two hypotheses and device a strategy to distinguish them.

  6. Color Rapid Prototyping for Diffusion-Tensor MRI Visualization

    E-Print Network [OSTI]

    Laidlaw, David

    . Laidlaw, Christopher W. Bull Brown University, Providence, RI 02912, USA a) b) c) Fig. 1. (a,b) A plaster color rapid prototyping (RP) plaster mod- els as visualization tools to support scientific research by the printer software. These layers are then manufactured by putting down a thin layer of plaster powder

  7. On the Minimum Load Coloring Problem --Extended Abtract--

    E-Print Network [OSTI]

    Doerr, Benjamin

    # such that the maximum load, l # := max{r# , b #}, is minimized. In the following we shall skip the term ``maximumOn the Minimum Load Coloring Problem --Extended Abtract-- Nitin Ahuja 1 , Andreas Baltz 2 Abstract. Given a graph G = (V, E) with n vertices, m edges and maximum vertex degree #, the load

  8. Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays

    E-Print Network [OSTI]

    Tanner, David B.

    Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays Pierre of electroactive and conducting polymers offers new opportunities for the design of materials for electrochromic the most promising electrochromic (EC) properties. Here, we report the use of highly porous metallized

  9. Silicon Carbide Photonic Crystal Cavities with Integrated Color Centers

    E-Print Network [OSTI]

    Greg Calusine; Alberto Politi; David D. Awschalom

    2014-05-20T23:59:59.000Z

    The recent discovery of color centers with optically addressable spin states in 3C silicon carbide (SiC) similar to the negatively charged nitrogen vacancy center in diamond has the potential to enable the integration of defect qubits into established wafer scale device architectures for quantum information and sensing applications. Here we demonstrate the design, fabrication, and characterization of photonic crystal cavities in 3C SiC films with incorporated ensembles of color centers and quality factor (Q) to mode volume ratios similar to those achieved in diamond. Simulations show that optimized H1 and L3 structures exhibit Q as high as 45,000 and mode volumes of approximately $(\\lambda/n)^{3}$. We utilize the internal color centers as a source of broadband excitation to characterize fabricated structures with resonances tuned to the color center zero phonon line and observe Q in the range of 900-1,500 with narrowband photoluminescence collection enhanced by up to a factor of 10. By comparing the Q factors observed for different geometries with finite-difference time-domain simulations, we find evidence that nonvertical sidewalls are likely the dominant source of discrepancies between our simulated and measured Q factors. These results indicate that defect qubits in 3C SiC thin films show clear promise as a simple, scalable platform for interfacing defect qubits with photonic, optoelectronic, and optomechanical devices.

  10. Silicon Carbide Photonic Crystal Cavities with Integrated Color Centers

    E-Print Network [OSTI]

    Calusine, Greg; Awschalom, David D

    2014-01-01T23:59:59.000Z

    The recent discovery of color centers with optically addressable spin states in 3C silicon carbide (SiC) similar to the negatively charged nitrogen vacancy center in diamond has the potential to enable the integration of defect qubits into established wafer scale device architectures for quantum information and sensing applications. Here we demonstrate the design, fabrication, and characterization of photonic crystal cavities in 3C SiC films with incorporated ensembles of color centers and quality factor (Q) to mode volume ratios similar to those achieved in diamond. Simulations show that optimized H1 and L3 structures exhibit Q as high as 45,000 and mode volumes of approximately (\\lambda/n). We utilize the internal color centers as a source of broadband excitation to characterize fabricated structures with resonances tuned to the color center zero phonon line and observe Q in the range of 900-1,500 with narrowband photoluminescence collection enhanced by up to a factor of 10. By comparing the Q factors obser...

  11. Multivariate Mathematical Morphology applied to Color Image Analysis

    E-Print Network [OSTI]

    Lefèvre, Sébastien

    Chapter 10 Multivariate Mathematical Morphology applied to Color Image Analysis 10.1. Introduction analysis framework, currently fully developed for both binary and gray-level images. Its popularity in the image processing community is mainly due to its rigorous mathematical foundation as well as its inherent

  12. Electron Electric Dipole Moment induced by Octet-Colored Scalars

    E-Print Network [OSTI]

    Jae Ho Heo; Wai-Yee Keung

    2007-12-31T23:59:59.000Z

    An appended sector of two octet-colored scalars, each an electroweak doublet, is an interesting extension of the simple two Higgs doublet model motivated by the minimal flavor violation. Their rich CP violating interaction gives rise to a sizable electron electric dipole moment, besides the quark electric dipole moment via the two-loop contribution of Barr-Zee mechanism.

  13. Earthstone granite pavers provide a mix of colors and patterns.

    E-Print Network [OSTI]

    Earthstone granite pavers provide a mix of colors and patterns. Earthstone pavers and interior Review from Environmental Building News August 1, 2010 Earthstone's Affordable, Recycled Granite Pavers that's manufactured entirely from pre-consumer recycled granite. These pavers, as well as finished

  14. Nuclear DVCS within the high energy QCD color dipole formalism

    E-Print Network [OSTI]

    M. V. T. Machado

    2009-05-27T23:59:59.000Z

    In this contribution, we present a study of the coherent and incoherent nuclear DVCS process in the small-$x$ regime within the color dipole formalism. Predictions for the nuclear DVCS cross section at photon level in the collider kinematics are presented.

  15. HigherOrder Colored Unification: A Linguistic Application

    E-Print Network [OSTI]

    Kohlhase, Michael

    . In sentence (1) for instance, the meaning of the elliptical verb phrase (VP) does is the property of "likingRECHERCHE Higher­Order Colored Unification: A Linguistic Application Claire Gardent Michael the last decade, Higher-Order unification (HOU) has become a popular tool for constructing the semantic

  16. Color Appearance and the Digital Imaging Pipeline Brian A. Wandell

    E-Print Network [OSTI]

    Wandell, Brian A.

    Color Appearance and the Digital Imaging Pipeline Brian A. Wandell Psychology Department Stanford reproduction pipeline, spanning image capture, processing and display, must be designed to account for the properties of the human observer. In designing an image pipeline, three principles of human vision

  17. Progress and Poverty: An Inquiry into Color Appearance Modeling

    E-Print Network [OSTI]

    Fairchild, Mark D.

    Progress and Poverty: An Inquiry into Color Appearance Modeling and Increase of Want with Increase and Poverty ... #12;Progress and Poverty: An Inquiry into the Cause of Industrial Depressions and of Increase of Want with Increase of Wealth: The Remedy Henry George, 1879 #12;Progress and Poverty by Henry George

  18. An Automated Method for Digitizing Color Thematic Maps

    E-Print Network [OSTI]

    Lawrence, Rick L.

    An Automated Method for Digitizing Color Thematic Maps Rick L. Lawrence, Joseph E. Means maps that makes use of standard image processing techniques. The method uses a digital camera followed an extremely challenging test map was 93 percent, our results indicate that for most applications ex- pected

  19. Remote multi-color excitation using femtosecond propagating surface

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold away from a micrometer sized focused laser spot. We attribute the observed remote nonlinear signal of unwanted heating effects at the target site and represents an attractive approach for surface

  20. Color Evolution from z=0 to z=1

    E-Print Network [OSTI]

    Karl Rakos; James Schombert

    1996-03-13T23:59:59.000Z

    Rest frame Stromgren photometry (3500A, 4100A, 4750A and 5500A) is presented for 509 galaxies in 17 rich clusters between z=0 and z=1 as a test of color evolution. Our observations confirm a strong, rest frame, Butcher-Oemler effect where the fraction of blue galaxies increases from 20% at z=0.4 to 80% at z=0.9. We also find that a majority of these blue cluster galaxies are composed of normal disk or post-starbursts systems based on color criteria. When comparing our colors to the morphological results from HST imaging, we propose that the blue cluster galaxies are a population of late-type, LSB objects who fade and are then destroyed by the cluster tidal field. After isolating the red objects from Butcher-Oemler objects, we have compared the mean color of these old, non-star forming objects with SED models in the literature as a test for passive galaxy evolution in ellipticals. We find good agreement with single burst models which predict a mean epoch of galaxy formation at z=5. Tracing the red envelope for ellipticals places the earliest epoch of galaxy formation at z=10.

  1. GALEX UV Color Relations for Nearby Early-Type Galaxies

    E-Print Network [OSTI]

    Jose Donas; Jean-Michel Deharveng; R. Michael Rich; Sukyoung K. Yi; Young-Wook Lee; Alessandro Boselli; Armando Gil de Paz; Samuel Boissier; Stephane Charlot; Samir Salim; Luciana Bianchi; Tom A. Barlow; Karl Forster; Peter G. Friedman; Timothy M. Heckman; Barry F. Madore; D. Christopher Martin; Bruno Milliard; Patrick Morrissey; Susan G. Neff; David Schiminovich; Mark Seibert; Todd Small; Alex S. Szalay; Barry Y. Welsh; Ted K. Wyder

    2006-08-29T23:59:59.000Z

    We use GALEX/optical photometry to construct color-color relationships for early-type galaxies sorted by morphological type. We have matched objects in the GALEX GR1 public release and the first IR1.1 internal release, with the RC3 early-type galaxies having a morphological type -5.5color-color diagrams FUV-NUV vs. (B-V)_{Tc} are plotted for the two subsamples. We find a tight anti-correlation between the FUV-NUV and (B-V)_{Tc} colors for Ellipticals, the UV color getting bluer when the (B-V)_{Tc} get redder. This relationship very likely is an extension of the color-metallicity relationship into the GALEX NUV band. We suspect that the main source of the correlation is metal line blanketing in the NUV band. The FUV-NUV vs B-V correlation has larger scatter for lenticular galaxies; we speculate this reflects the presence of low level star formation. If the latter objects (i.e. those that are blue both in FUV-NUV and B-V) are interpreted as harboring recent star formation activity, this would be the case for a few percent (~4%) of Ellipticals and ~15% of Lenticulars; this would make about 10% of early-type galaxies with residual star formation in our full sample of 130 early-type galaxies. We also plot FUV-NUV vs. the Mg_2 index and central velocity dispersion. We find a tight anti-correlation between FUV-NUV and the Mg_2 index(...).

  2. Differences in color vision make passerines less conspicuous in the eyes of their predators

    E-Print Network [OSTI]

    °stad*, Jonas Victorsson*, and Anders O¨ deen* *Department of Animal Ecology, Evolutionary Biology Centre in SWS1 tuning changes not only the perception of UV or violet colors but also all nonspectral colors

  3. Absence of Red Structural Color in Photonic Glasses, Bird Feathers and Certain Beetles

    E-Print Network [OSTI]

    Sofia Magkiriadou; Jin-Gyu Park; Young-Seok Kim; Vinothan N. Manoharan

    2014-11-14T23:59:59.000Z

    Colloidal glasses, bird feathers, and beetle scales can all show structural colors arising from short-ranged spatial correlations between scattering centers. Unlike the structural colors arising from Bragg diffraction in ordered materials like opals, the colors of these photonic glasses are independent of orientation, owing to their disordered, isotropic microstructures. However, there are few examples of photonic glasses with angle-independent red colors in nature, and colloidal glasses with particle sizes chosen to yield structural colors in the red show weak color saturation. Using scattering theory, we show that the absence of angle-independent red color can be explained by the tendency of individual particles to backscatter light more strongly in the blue. We discuss how the backscattering resonances of individual particles arise from cavity-like modes, and how they interact with the structural resonances to prevent red. Finally, we use the model to develop design rules for colloidal glasses with red, angle-independent structural colors.

  4. PERCEPTUAL COLOR SPACES FOR COMPUTER GRAPHICS Gary W. Meyer and Donald P. Greenberg

    E-Print Network [OSTI]

    Meyer, Gary

    de L'Eclairage (CIE). Since color television is based on the CIE color notation system, these uniformcopyright notice and the title of the publication and its date appear, and notice is given that copying

  5. An eye for vulgarity : how MoMA saw color through Wild Bill's lens

    E-Print Network [OSTI]

    Kivlan, Anna Karrer

    2007-01-01T23:59:59.000Z

    This thesis is an examination of the 1976 Museum of Modern Art exhibition of color photographs by William Eggleston-the second one-man show of color photography in the museum's history- with particular attention to the ...

  6. Two-color Laser Desorption of Nanostructured MgO Thin Films....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

  7. Ocean color observations and modeling for an optically complex site: Santa Barbara

    E-Print Network [OSTI]

    Maritorena, Stphane

    goods and services including biogeo- chemical cycling, waste recycling, fisheries, and recreation. Our by colored dissolved organic matter and suspended sediments which only weakly covary with chlorophyll phytoplankton and colored dissolved organic matter contribute approximately equally to the total nonwater

  8. Teaching color theory to children with three-dimensional computer animation

    E-Print Network [OSTI]

    Ju, Yoomi Choi

    1999-01-01T23:59:59.000Z

    generated images is an effective teaching device for helping children to understand color theory, and enhancing the traditional methods. In this study, a 3-D computer generated presentation was created and it demonstrated the mixing of primary colors...

  9. E-Print Network 3.0 - asignar falso color Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dominios: colores posibles restricciones: nodos adyacentes... Caractersticas: CSP binario, discreto y finito ... Source: Camacho, David - Escuela Politcnica Superior,...

  10. A Search of The Four-Color Theorem and its Higher Dimensional Generalization

    E-Print Network [OSTI]

    Qizhi Wang

    2014-08-02T23:59:59.000Z

    Four-Color Theorem has secret in its logical proof and actual operating. In this paper we will give a proof of Four-Color Theorem based on Kuratowski's Theorem using some induction argument and give a description of the most complicated coloring map, a simple proof of Kuratowski's Theorem using Euler charateristic is also presented. We also conjecture the higher dimensional generalization of Four-Color Theorem.

  11. Fossilized Biophotonic Nanostructures Reveal the Original Colors of 47-Million-Year-Old Moths

    E-Print Network [OSTI]

    Cao, Hui

    lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors

  12. MODERN DISPLAYS: WHY WE SEE DIFFERENT COLORS, AND WHAT IT MEANS? Abhijit Sarkar1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODERN DISPLAYS: WHY WE SEE DIFFERENT COLORS, AND WHAT IT MEANS? Abhijit Sarkar1,2 , Laurent Blondé

  13. Biomarker Detection in Whole Slide Imaging based on Statistical Color Models

    E-Print Network [OSTI]

    Aickelin, Uwe

    Biomarker Detection in Whole Slide Imaging based on Statistical Color Models Jie Shu1 , Guoping Qiu slides. We treat immunostaining detection as a color image analysis problem and build statistical color slides of oesophagitis and colorectal biopsies. We present experimental results and show

  14. Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    36 #12;37 Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora By Dirk Lummerzheim Abstract The aurora has fascinated observers at high latitudes for centuries, but only recently have we that are responsible for the colors of the aurora. Observations of color balance in aurora can provide us

  15. Coat Color and Solar Heat Gain in Animals Author(s): Glenn E. Walsberg

    E-Print Network [OSTI]

    Cavitt, John F.

    when exposed to solar radiation than do light surfaces. For ani- mals such as birds or mammalsCoat Color and Solar Heat Gain in Animals Author(s): Glenn E. Walsberg Source: BioScience, Vol. 33://www.jstor.org #12;Coat Color and Solar Heat Gain in Animals Glenn E. Walsberg The relationbetween coat color

  16. U.S. Department of Energy Office of Legacy Management Legacy Uranium Mine Site Reclamation - Lessons Learned - 12384

    SciTech Connect (OSTI)

    Kilpatrick, Laura E. [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado 80021 (United States); Cotter, Ed [S.M. Stoller Corporation, Grand Junction, Colorado 81503 (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management is responsible for administering the DOE Uranium Leasing Program (ULP) and its 31 uranium lease tracts located in the Uravan Mineral Belt of southwestern Colorado (see Figure 1). In addition to administering the ULP for the last six decades, DOE has also undertaken the significant task of reclaiming a large number of abandoned uranium (legacy) mine sites and associated features located throughout the Uravan Mineral Belt. In 1995, DOE initiated a 3-year reconnaissance program to locate and delineate (through extensive on-the-ground mapping) the legacy mine sites and associated features contained within the historically defined boundaries of its uranium lease tracts. During that same time frame, DOE recognized the lack of regulations pertaining to the reclamation of legacy mine sites and contacted the U.S. Bureau of Land Management (BLM) concerning the reclamation of legacy mine sites. In November 1995, The BLM Colorado State Office formally issued the United States Department of the Interior, Colorado Bureau of Land Management, Closure/Reclamation Guidelines, Abandoned Uranium Mine Sites as a supplement to its Solid Minerals Reclamation Handbook (H-3042-1). Over the next five-and-one-half years, DOE reclaimed the 161 legacy mine sites that had been identified on DOE withdrawn lands. By the late 1990's, the various BLM field offices in southwestern Colorado began to recognize DOE's experience and expertise in reclaiming legacy mine sites. During the ensuing 8 years, BLM funded DOE (through a series of task orders) to perform reclamation activities at 182 BLM mine sites. To date, DOE has reclaimed 372 separate and distinct legacy mine sites. During this process, DOE has learned many lessons and is willing to share those lessons with others in the reclamation industry because there are still many legacy mine sites not yet reclaimed. DOE currently administers 31 lease tracts (11,017 ha) that collectively contain over 220 legacy (abandoned) uranium mine sites. This contrasts to the millions of hectares administered by the BLM, the U.S. Forest Service, and other federal, tribal, and state agencies that contain thousands of such sites. DOE believes that the processes it has used provide a practical and cost-effective approach to abandoned uranium mine-site reclamation. Although the Federal Acquisition Regulations preclude DOE from competing with private industry, DOE is available to assist other governmental and tribal agencies in their reclamation efforts. (authors)

  17. Optimizing Spectral Color Reproduction in Multiprimary Digital David Long, Mark D. Fairchild; Munsell Color Science Laboratory, Rochester Institute of Technology; Rochester, NY

    E-Print Network [OSTI]

    Fairchild, Mark D.

    . Fairchild; Munsell Color Science Laboratory, Rochester Institute of Technology; Rochester, NY Abstract of constructing an abridged spectral reproduction display environment from P3 digital cinema-based displays

  18. Identification and confirmation of molecular markers and orange flesh color associated with major QTL for high beta-carotene content in muskmelon

    E-Print Network [OSTI]

    Napier, Alexandra Bamberger

    2009-05-15T23:59:59.000Z

    -carotene content, flesh color, and flesh color intensity. Bulk segregent analysis was used with RAPD markers to identify molecular markers associated with high beta-carotene content. Flesh color and flesh color intensity both had significant relationships with beta...

  19. Color Glass Condensate in SchwingerKeldysh QCD

    SciTech Connect (OSTI)

    Jeon, Sangyong, E-mail: jeon@physics.mcgill.ca

    2014-01-15T23:59:59.000Z

    Within the SchwingerKeldysh representation of many-body QCD, it is shown that the leading quantum corrections to the strong classical color field are classical in the sense that the fluctuation field still obeys the classical Jacobi-field equation, while the quantum effects solely reside in the fluctuations of the initial field configurations. Within this context, a systematic derivation of the JIMWLK renormalization group equation is presented. A clear identification of the correct form of gauge transformation rules and the correct form of the matter-field Lagrangian in the SchwingerKeldysh QCD is also presented. -- Highlights: Application of the SchwingerKeldysh formalism to many-body QCD. Clean separation of classical and quantum degrees of freedom. Identification of the correct coupling between the gluon field and the color source. Identification of the correct gauge transformation rules. Sources of the classicality and quantum corrections to JIMWLK clarified.

  20. Induced color in ostracode shells: an experimental study

    E-Print Network [OSTI]

    Kontrovitz, M.; Ainsworth, N. R.; Burnett, R. D.; Slack, J. M.

    1992-08-01T23:59:59.000Z

    ). Temp. (C) Color Remarks 100 10YR 3/1 (very dark gray) 200 7.5YR 3.5/0 (very dark gray) 300 - 325 7.5YR 3.5/2 (dark brown) 400 - 425 7.5YR 4.5/2 (dark brown) 490 - 510 5YR 4.5/1 (dark gray) 600 - 625 5Y 4.5/2 (dark reddish gray) 700 7.5YR 6...). Temp. (C) Color Remarks 100 10YR 3/1 (very dark gray) 200 7.5YR 3.5/0 (very dark gray) 300 - 325 7.5YR 3.5/2 (dark brown) 400 - 425 7.5YR 4.5/2 (dark brown) 490 - 510 5YR 4.5/1 (dark gray) 600 - 625 5Y 4.5/2 (dark reddish gray) 700 7.5YR 6...