Sample records for bliss area combs

  1. Core Holes At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers Area(Armstrong, Et

  2. Fort Bliss Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorthFort Bliss

  3. Resistivity Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field |

  4. Slim Holes At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim Holes Activity

  5. Neutron Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel Wind Power Project Jump

  6. Static Temperature Survey At Fort Bliss Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| Open Energy

  7. Core Analysis At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump to:Coppell,Information

  8. Gamma Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy Resources Jump81"

  9. Dust Plume Modeling from Ranges and Maneuver Areas on Fort Bliss and the White Sands Missile Range: Final Report

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Barnard, James C.; Rutz, Frederick C.; Pekour, Mikhail S.; Rishel, Jeremy P.; Shaw, William J.

    2009-05-04T23:59:59.000Z

    The potential for air quality impacts from heavy mechanized vehicles operating on and between the unpaved main supply routes at Fort Bliss and White Sands Missile Range was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical move-out activities occurring on the installations were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing the modeling scenarios are summarized and results of simulations conducted under these assumptions are presented for four representative meteorological periods.

  10. Mr. Stewart A. Bliss Stewart A. Bliss is a Senior Consultant with a broad range of expertise in the areas of business,

    E-Print Network [OSTI]

    in the areas of business, governmental affairs and mergers and acquisitions, with specific emphasis on energy, technology, energy and industrial distribution corporations. He presently offices with Faegre Baker Daniels LLP in Denver. For the previous six years, he was affiliated with Green Manning & Bunch, a private

  11. Pressure Temperature Log At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-| Open

  12. El Paso County Geothermal Project at Fort Bliss

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Determine if, and where, economically viable low temperature geothermal resources might exist in the McGregor test area ?or if necessary at other lesser known sites that exist on the Fort Bliss Military Reservation ?and to determine at what location they can be best accessed without compromising the tactical and strategic missions of Fort Bliss. Determine if identified resources have adequate temperatures and flow rates/volumes to justify development at any scale, with an eye toward the 20 megawatt target identified. Over base need: 45 megawatts.

  13. Idaho_BlissRestArea

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power -Mtn.

  14. Dust Plume Modeling at Fort Bliss: Full Training Scenario

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.; Seiple, Timothy E.; Newsom, Rob K.; Allwine, K Jerry

    2006-09-26T23:59:59.000Z

    The potential for air quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss is being investigated. The investigation uses the atmospheric modeling system DUSTRAN to simulate fugitive dust emission and dispersion from typical activities occurring on the installation. This report conveys the results of DUSTRAN simulations conducted using a Full Training scenario developed by Fort Bliss personnel. he Full Training scenario includes simultaneous off-road activities of two full Heavy Brigade Combat Teams (HCBTs) and one HCBT battalion on three training ranges. Simulations were conducted for the six-day period, April 25-30, 2005, using previously archived meteorological records. Simulation results are presented in the form of 24-hour average PM10 plots and peak 1-hour PM10 concentration plots, where the concentrations represent contributions resulting from the specified military vehicular activities, not total ambient PM10 concentrations. Results indicate that the highest PM10 contribution concentrations occurred on April 30 when winds were light and variable. Under such conditions, lofted particulates generated by vehicular movement stay in the area of generation and are not readily dispersed. The effect of training duration was investigated by comparing simulations with vehicular activity extending over a ten hour period (0700 to 1700 MST) with simulations where vehicular activity was compressed into a one hour period (0700 to 0800 MST). Compressing all vehicular activity into one hour led to higher peak one-hour and 24-hour average concentration contributions, often substantially higher.

  15. Fort Bliss Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFort BelknapFort

  16. Static Temperature Survey At Newberry Caldera Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)Open

  17. Static Temperature Survey At Steamboat Springs Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)OpenOpen

  18. Fort Bliss, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd aNorthFort BlissBliss,

  19. Radiometrics At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGS Development BVRadiantRadioFort

  20. Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlanGmbH und Co KGEnergyFish Lake

  1. Thermochronometry At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe yearThermalSoul Jump to:ThermoDate

  2. Multispectral Imaging At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry,Energy Information

  3. Detrital zircon geochronology from the Cambrian-Ordovician Bliss Sandstone, New Mexico: Evidence for contrasting Grenville-age and

    E-Print Network [OSTI]

    Amato, Jeff

    Detrital zircon geochronology from the Cambrian-Ordovician Bliss Sandstone, New Mexico: Evidence and Greg H. Mack Department of Geological Sciences, New Mexico State University, Las Cruces, New Mexico-Ordovician Bliss Sandstone in southern New Mexico are used to test models for the influence and signifi- cance

  4. Dust Plume Modeling at Fort Bliss: Move-Out Operations, Combat Training and Wind Erosion

    SciTech Connect (OSTI)

    Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.; Seiple, Timothy E.; Newsom, Rob K.; Allwine, K Jerry

    2006-09-29T23:59:59.000Z

    The potential for air-quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical activities, including move outs and combat training, occurring on the installation were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing specific modeling scenarios are summarized, and results from the simulations are presented.

  5. Octave Spanning Frequency Comb on a Chip

    E-Print Network [OSTI]

    Del'Haye, P; Gavartin, E; Holzwarth, R; Kippenberg, T J

    2009-01-01T23:59:59.000Z

    Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range...

  6. 2-M Probe At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe At DesertFort

  7. Resistivity Log At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field

  8. Slim Holes At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim Holes ActivityNotes 2 slim holes

  9. Ground Gravity Survey At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000) Exploration ActivityInformation

  10. Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year open

  11. Core Analysis At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|

  12. Cuttings Analysis At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and HeatOpen

  13. Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore

  14. Compound and Elemental Analysis At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:GovernorCommons(Grigsby, Et Al.,Information

  15. Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b

  16. Doppler cooling with coherent trains of laser pulses and a tunable velocity comb

    SciTech Connect (OSTI)

    Ilinova, Ekaterina; Ahmad, Mahmoud; Derevianko, Andrei [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States)

    2011-09-15T23:59:59.000Z

    We explore the possibility of decelerating and Doppler cooling an ensemble of two-level atoms by a coherent train of short, nonoverlapping laser pulses. We derive analytical expressions for mechanical force exerted by the train. In frequency space the force pattern reflects the underlying frequency comb structure. The pattern depends strongly on the ratio of the atomic lifetime to the repetition time between the pulses and pulse area. For example, in the limit of short lifetimes, the frequency-space peaks of the optical force wash out. We propose to tune the carrier-envelope offset frequency to follow the Doppler-shifted detuning as atoms decelerate; this leads to compression of atomic velocity distribution about comb teeth and results in a ''velocity comb''--a series of narrow equidistant peaks in the velocity space.

  17. Wax combs mediate nestmate recognition by guard honeybees

    E-Print Network [OSTI]

    Wenseleers, Tom

    Wax combs mediate nestmate recognition by guard honeybees PATRIZIA D'ETTORRE*, TOM WENSELEERS 2006; MS. number: 8465) Research has shown that the wax combs are important in the acquisition in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition

  18. Comb models for transport along spiny dendrites

    E-Print Network [OSTI]

    Mndez, V

    2015-01-01T23:59:59.000Z

    This chapter is a contribution in the "Handbook of Applications of Chaos Theory" ed. by Prof. Christos H Skiadas. The chapter is organized as follows. First we study the statistical properties of combs and explain how to reduce the effect of teeth on the movement along the backbone as a waiting time distribution between consecutive jumps. Second, we justify an employment of a comb-like structure as a paradigm for further exploration of a spiny dendrite. In particular, we show how a comb-like structure can sustain the phenomenon of the anomalous diffusion, reaction-diffusion and L\\'evy walks. Finally, we illustrate how the same models can be also useful to deal with the mechanism of ta translocation wave / translocation waves of CaMKII and its propagation failure. We also present a brief introduction to the fractional integro-differentiation in appendix at the end of the chapter.

  19. Quantum cascade laser Kerr frequency comb

    E-Print Network [OSTI]

    Lecaplain, Caroline; Lucas, Erwan; Jost, John D; Kippenberg, Tobias J

    2015-01-01T23:59:59.000Z

    The mid-infrared (mid-IR) regime (typically the wavelength regime of $\\lambda \\sim 2.5-20 \\ \\mathrm{\\mu m}$) is an important spectral range for spectroscopy as many molecules have their fundamental rotational-vibrational absorption in this band. Recently optical frequency combs based on optical microresonators ("Kerr" combs) at the onset of the mid-IR region have been generated using crystalline resonators and integrated planar silicon micro-resonators. Here we extend for the first time Kerr combs deep into the mid-IR i.e. the 'molecular fingerprint' region. This is achieved by combining an ultra high quality (Q) factor mid-IR microresonator based on crystalline $\\mathrm{MgF_{2}}$ with the quantum cascade laser (QCL) technology. Using a tapered chalgogenide (ChG) fiber and a QCL continuous wave pump laser, frequency combs at $\\lambda\\sim 4.4\\ \\mathrm{\\mu m}$ (i.e. 2270cm$^{-1}$) are generated, that span over 600nm (i.e. 300cm$^{-1}$) in bandwidth, with a mode spacing of 14.3GHz (0.5cm$^{-1}$), corresponding t...

  20. Pellet Fueling Technology Development S. K. Combs

    E-Print Network [OSTI]

    Pellet Fueling Technology Development S. K. Combs Fusion Energy Division, Oak Ridge National/10/00 Pellet Sizes Are Relevant for Fueling Applications on Any Present Experimental Fusion Device and Future pellet injector technology ¥ Hydrogen properties ¥ Ice/pellet formation techniques ¥ Acceleration

  1. Coherent data transmission with microresonator Kerr frequency combs

    E-Print Network [OSTI]

    Pfeifle, Joerg; Wegner, Daniel; Brasch, Victor; Herr, Tobias; Hartinger, Klaus; Li, Jingshi; Hillerkuss, David; Schmogrow, Rene; Holzwarth, Ronald; Freude, Wolfgang; Leuthold, Juerg; Kippenberg, Tobias J; Koos, Christian

    2013-01-01T23:59:59.000Z

    Optical frequency combs enable coherent data transmission on hundreds of wavelength channels and have the potential to revolutionize terabit communications. Generation of Kerr combs in nonlinear integrated microcavities represents a particularly promising option enabling line spacings of tens of GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr combs may exhibit strong phase noise and multiplet spectral lines, and this has made high-speed data transmission impossible up to now. Recent work has shown that systematic adjustment of pump conditions allows generating low phase-noise Kerr combs with singlet spectral lines. Here, by employing an integrated Si3N4 microresonator, we demonstrate that Kerr combs are suited for coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the optical source. In our experiment, we encode a data stream of 392 Gbit/s on subsequent lines of a Kerr comb using quadrature phase shift keying (...

  2. Laser frequency combs for astronomical observations

    E-Print Network [OSTI]

    Tilo Steinmetz; Tobias Wilken; Constanza Araujo-Hauck; Ronald Holzwarth; Theodor W. Hnsch; Luca Pasquini; Antonio Manescau; Sandro D'Odorico; Michael T. Murphy; Thomas Kentischer; Wolfgang Schmidt; Thomas Udem

    2008-09-09T23:59:59.000Z

    A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of about 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrate the first use of a laser frequency comb for wavelength calibration of an astronomical telescope. Even with a simple analysis, absolute calibration is achieved with an equivalent Doppler precision of approximately 9 meters per second at about 1.5 micrometers - beyond state-of-the-art accuracy. We show that tracking complex, time-varying systematic effects in the spectrograph and detector system is a particular advantage of laser frequency comb calibration. This technique promises an effective means for modeling and removal of such systematic effects to the accuracy required by future experiments to see direct evidence of the universe's putative acceleration.

  3. adaptive sum comb: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profi- cient of these individu- als have physical or cognitive disabilities (such as dyslexia), but many have no such problems Williams, Sandra 6 Frequency comb swept lasers MIT -...

  4. Spectral Noise Correlations of an Ultrafast Frequency Comb

    E-Print Network [OSTI]

    Roman Schmeissner; Jonathan Roslund; Claude Fabre; Nicolas Treps

    2014-10-16T23:59:59.000Z

    Cavity-based noise detection schemes are combined with ultrafast pulse shaping as a means to diagnose the spectral correlations of both the amplitude and phase noise of an ultrafast frequency comb. The comb is divided into ten spectral regions, and the distribution of noise as well as the correlations between all pairs of spectral regions are measured against the quantum limit. These correlations are then represented in the form of classical noise matrices, which furnish a complete description of the underlying comb dynamics. Their eigendecomposition reveals a set of theoretically predicted, decoupled noise modes that govern the dynamics of the comb. Finally, the matrices contain the information necessary to deduce macroscopic noise properties of the comb.

  5. Efficiency optimization for Atomic Frequency Comb storage

    E-Print Network [OSTI]

    M. Bonarota; J. Ruggiero; J. -L. Le Gout; T. Chanelire

    2009-11-23T23:59:59.000Z

    We study the efficiency of the Atomic Frequency Comb storage protocol. We show that for a given optical depth, the preparation procedure can be optimize to significantly improve the retrieval. Our prediction is well supported by the experimental implementation of the protocol in a \\TMYAG crystal. We observe a net gain in efficiency from 10% to 17% by applying the optimized preparation procedure. In the perspective of high bandwidth storage, we investigate the protocol under different magnetic fields. We analyze the effect of the Zeeman and superhyperfine interaction.

  6. Carolyn Bliss, PhD Jeff Webb, PhD Carolan Ownby, PhD Director of LEAP Associate Director of LEAP c.ownby@leap.utah.edu

    E-Print Network [OSTI]

    Carolyn Bliss, PhD Jeff Webb, PhD Carolan Ownby, PhD Director of LEAP Associate Director of LEAP c-3104 Executive Assistant Program Assistant Jennifer Bauman, PhD Ann Engar, PhD Meg Harper, PhD j-Law LEAP Business LEAP Rebecca Larsen, PhD Stephen Maisch, PhD Belinda 'Otukolo Saltiban, PhD r

  7. Carolyn Bliss, PhD Jeff Webb, PhD Carolan Ownby, PhD Director of LEAP Associate Director of LEAP Assistant Director of LEAP

    E-Print Network [OSTI]

    Tipple, Brett

    Carolyn Bliss, PhD Jeff Webb, PhD Carolan Ownby, PhD Director of LEAP Associate Director of LEAP 581-3104 Executive Assistant Program Assistant Jennifer Bauman, PhD Ann Engar, PhD Meg Harper, PhD j-Law LEAP Business LEAP Rebecca Larsen, PhD Stephen Maisch, PhD Jennifer Seagrave, PhD r

  8. Towards an eficient atomic frequency comb quantum memory

    E-Print Network [OSTI]

    Amari, A; Sabooni, M; Huang, M; Krll, S; Afzelius, M; Usmani, I; Lauritzen, B; Sangouard, N; de Riedmatten, H; Gisin, N

    2009-01-01T23:59:59.000Z

    We present an efficient photon-echo experiment based on atomic frequency combs [Phys. Rev. A 79, 052329 (2009)]. Echoes containing an energy of up to 35% of that of the input pulse are observed in a Pr3+-doped Y2SiO5 crystal. This material allows for the precise spectral holeburning needed to make a sharp and highly absorbing comb structure. We compare our results with a simple theoretical model with satisfactory agreement. Our results show that atomic frequency combs has the potential for high-efficiency storage of single photons as required in future long-distance communication based on quantum repeaters.

  9. Self Potential At Steamboat Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners,EnergyInformation Roosevelt

  10. Magnetotellurics At Brady Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas &

  11. Magnetotellurics At Dixie Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas

  12. Magnetotellurics At Roosevelt Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison

  13. Magnetotellurics At Soda Lake Area (Combs 2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen Energynot indicated

  14. Stabilized Ultrafast Pulse Generation and Optical Frequency Combs Techniques

    E-Print Network [OSTI]

    Van Stryland, Eric

    Stabilized Ultrafast Pulse Generation and Optical Frequency Combs ­ Techniques and Applications Diodes ­ Review Ultrafast Dynamics ­ Breathing Mode (Dispersion Managed Cavity) · High Pulse Energy to Make Short Pulses - Review Ultrafast Dynamics- - Dispersion Managed (Breathing Mode) MLL #12

  15. Universal Dynamics of Kerr Frequency Comb Formation in Microresonators

    E-Print Network [OSTI]

    Herr, T; Wang, C; Hartinger, K; Gavartin, E; Holzwarth, R; Gorodetsky, M L; Kippenberg, T J

    2011-01-01T23:59:59.000Z

    Optical frequency combs allow for precise measurement of optical frequencies and are used in a growing number of applications beyond spectroscopy and optical frequency metrology. A class of compact microresonator based frequency comb generators has emerged recently based on (hyper)-parametric frequency conversion, mediated by the Kerr-non-linearity, of a continuous wave laser beam. Despite the rapid progress and the emergence of a wide variety of micro-resonator Kerr-comb platforms, an understanding of the dynamics of the Kerr comb formation is still lacking. In particular the question in which regime low phase noise performance can be achieved has so far not been answered but is of critical importance for future application of this technology. Here an universal, platform independent understanding of the Kerr-comb formation dynamics based on experimental observations in crystalline MgF2 and planar Si3N4 comb generators is given. This explains a wide range of hereto not understood phenomena and reveals for the...

  16. Self-referenced 1.5 [mu]m fiber frequency combs at GHz repetition rates

    E-Print Network [OSTI]

    Chao, David, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Tremendous advances in recent years to the optical frequency comb, particularly frequency combs deriving from solid-state and fiber architectures, have enabled a host of important new applications to emerge - applications ...

  17. Phase noise characterization of injection locked semiconductor lasers to a 250 MHz optical frequency comb

    E-Print Network [OSTI]

    Sbester, Andrs

    frequency comb David S. Wu1 , Radan Slavk1 , Giuseppe Marra2 and David J. Richardson1 1. Optoelectronics

  18. The Structure and Dynamics of Flexible Polyelectrolyte Combs

    E-Print Network [OSTI]

    A. Papagiannopoulos; T. A. Waigh; C. Fernyhough; T. Hardingham; M. Heinrich

    2005-08-27T23:59:59.000Z

    The structure and dynamics of a range of polystyrene sulphonate comb polyelectrolytes with well defined chain architectures were examined with static light scattering, dynamic light scattering, small angle neutron/X-ray scattering, particle tracking microrheology and diffusing wave spectroscopy. The chains adopted extended cylindrical conformations in dilute solutions. In semi-dilute solutions a universal behaviour was found for the correlation length (X) on the monomer concentration (c), X=(3.0/b)c^-0.47, independent of the comb architecture (b is the monomer size). The high frequency viscoelasticity (104-106Hz) is found to be in agreement with a model for the Rouse dynamics of the chains and is again independent of the architecture of the combs. However the architecture had a significant impact on the low frequency viscosity of the solutions and the particle tracking data was in good agreement with a dynamic scaling theory for the unentangled dynamics of the combs. Analogous results are found with the biological comb polyelectrolyte aggrecan.

  19. Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb

    E-Print Network [OSTI]

    Phillips, David F.

    We deployed two wavelength calibrators based on laser frequency combs (astro-combs) at an astronomical telescope. One astro-comb operated over a 100 nm band in the deep red (~ 800 nm) and a second operated over a 20 nm ...

  20. Mid-Infrared Optical Frequency Combs based on Crystalline Microresonators

    E-Print Network [OSTI]

    Wang, C Y; Del'Haye, P; Schliesser, A; Hofer, J; Holzwarth, R; Hnsch, T W; Picqu, N; Kippenberg, T J

    2011-01-01T23:59:59.000Z

    The mid-infrared spectral range (\\lambda ~ 2 \\mu m to 20 \\mu m) is known as the "molecular fingerprint" region as many molecules have their highly characteristic, fundamental ro-vibrational bands in this part of the electromagnetic spectrum. Broadband mid-infrared spectroscopy therefore constitutes a powerful and ubiquitous tool for optical analysis of chemical components that is used in biochemistry, astronomy, pharmaceutical monitoring and material science. Optical frequency combs, i.e. broad spectral bandwidth coherent light sources consisting of equally spaced sharp lines, have revolutionized optical frequency metrology one decade ago. They now demonstrate dramatically improved acquisition rates, resolution and sensitivity for molecular spectroscopy mostly in the visible and near-infrared ranges. Mid-infrared frequency combs have therefore become highly desirable and recent progress in generating such combs by nonlinear frequency conversion has opened access to this spectral region. Here we report on a pr...

  1. Routes to spatiotemporal chaos in Kerr optical frequency combs

    SciTech Connect (OSTI)

    Coillet, Aurlien; Chembo, Yanne K., E-mail: yanne.chembo@femto-st.fr [Optics Department, FEMTO-ST Institute CNRS UMR6174, 16 Route de Gray, 25030 Besanon cedex (France)

    2014-03-15T23:59:59.000Z

    We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The LugiatoLefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.

  2. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    SciTech Connect (OSTI)

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou; Ren, Quansheng; Zhang, Zhigang; Zhao, Jianye, E-mail: zhaojianye@pku.edu.cn [Department of Electronics, Peking University, Beijing, 100871 (China)

    2014-03-17T23:59:59.000Z

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  3. Direct Frequency Comb Spectroscopy and High-Resolution Coherent Control

    E-Print Network [OSTI]

    Jin, Deborah

    stabilized the inter-pulse period and optical phases of the pulses emitted from a mode-locked Ti we demonstrate the phase sensitive excitation of a closed-loop four-level system in a diamond- and two-photon transitions using direct frequency comb spec- troscopy (DFCS). In particular we phase

  4. Laser mode hyper-combs Alon Schwartz and Baruch Fischer*

    E-Print Network [OSTI]

    Fischer, Baruch

    , and G. Angelow, "Toward single-cycle laser systems," IEEE J. Select. Topics in Quantum. Electron. 9, 990. Fischer, "Melting and freezing of light pulses and modes in mode-locked lasers," Opt. Express 11(25), 3418Laser mode hyper-combs Alon Schwartz and Baruch Fischer* Department of Electrical Engineering

  5. Generation of a frequency comb and applications thereof

    SciTech Connect (OSTI)

    Hagmann, Mark J; Yarotski, Dmitry A

    2013-12-03T23:59:59.000Z

    Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.

  6. Physicochemical characterization of PEG-based comb-like amphiphilic copolymer structures for possible imaging and therapeutic applications

    E-Print Network [OSTI]

    Dawson, Jin Zhou

    2008-01-01T23:59:59.000Z

    Comb-like copolymer structures, also known as graft/comb copolymers, have obtained a significant amount of attention in biomedical and industrial applications because of their unique compositional flexibility, which can ...

  7. 1M Time-reversible and equivariant pitchfork bifurcation * Chjan C. Limz and I-Heng McComb

    E-Print Network [OSTI]

    Lim, Chjan C.

    * * | Chjan C. Limz and I-Heng McComb Mathematical Sciences are discussed in detail in I-Heng McComb's Ph.D thesis of May 19* *93. We show that given appropriate

  8. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    E-Print Network [OSTI]

    Zhenda Xie; Tian Zhong; Sajan Shrestha; XinAn Xu; Junlin Liang; Yan-Xiao Gong; Joshua C. Bienfang; Alessandro Restelli; Jeffrey H. Shapiro; Franco N. C. Wong; Chee Wei Wong

    2015-06-13T23:59:59.000Z

    Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform in photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding.

  9. High performance tunnel injection quantum dot comb laser

    SciTech Connect (OSTI)

    Lee, C.-S.; Guo Wei; Basu, Debashish; Bhattacharya, Pallab [Department of Electrical Engineering and Computer Science, Solid State Electronics Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2010-03-08T23:59:59.000Z

    A high-speed multiwavelength quantum dot comb laser, grown by molecular beam epitaxy, is demonstrated. The device is characterized with a 75.9 nm (full width at half maximum) and a 91.4 nm (DELTA{sub -15dB}) wide lasing spectrum. There are 105 and 185 simultaneously emitted longitudinal modes with a maximum channel intensity nonuniformity of less than 3 dB in the spectral range of 1231-1252 nm and 1274-1311 nm, respectively, for a laser with 1040 mum cavity length. The channel spacing can be tuned with cavity length and remains invariant in the temperature range of 300-323 K. The small signal modulation bandwidth is 7.5 GHz.

  10. Time-Delay Interferometry with optical frequency comb

    E-Print Network [OSTI]

    Tinto, Massimo

    2015-01-01T23:59:59.000Z

    Heterodyne laser phase measurements in a space-based gravitational wave interferometer are degraded by the phase fluctuations of the onboard clocks, resulting in unacceptable sensitivity performance levels of the interferometric data. In order to calibrate out the clock phase noises it has been previously suggested that additional inter-spacecraft phase measurements must be performed by modulating the laser beams. This technique, however, considerably increases system complexity and probability of subsystem failure. With the advent of self-referenced optical frequency combs, it is possible to generate the heterodyne microwave signal that is coherently referenced to the onboard laser. We show in this case that the microwave noise can be cancelled directly by applying modified second-generation Time-Delay Interferometric combinations to the heterodyne phase measurements. This approach avoids use of modulated laser beams as well as the need of additional ultra-stable oscillator clocks.

  11. Time-Delay Interferometry with optical frequency comb

    E-Print Network [OSTI]

    Massimo Tinto; Nan Yu

    2015-02-23T23:59:59.000Z

    Heterodyne laser phase measurements in a space-based gravitational wave interferometer are degraded by the phase fluctuations of the onboard clocks, resulting in unacceptable sensitivity performance levels of the interferometric data. In order to calibrate out the clock phase noises it has been previously suggested that additional inter-spacecraft phase measurements must be performed by modulating the laser beams. This technique, however, considerably increases system complexity and probability of subsystem failure. With the advent of self-referenced optical frequency combs, it is possible to generate the heterodyne microwave signal that is coherently referenced to the onboard laser. We show in this case that the microwave noise can be cancelled directly by applying modified second-generation Time-Delay Interferometric combinations to the heterodyne phase measurements. This approach avoids use of modulated laser beams as well as the need of additional ultra-stable oscillator clocks.

  12. Quest for MeV frequency combs -- proposal for ELI experiments

    E-Print Network [OSTI]

    Katarzyna Krajewska; Jerzy Z. Kami?ski

    2014-10-04T23:59:59.000Z

    The optical frequency comb has become an indispensable tool for high precision spectroscopy. Also experiments in the field of ultrafast physics rely on the frequency comb technique to generate precisely controlled attosecond optical pulses by means of the high-order harmonic generation. However, in order to generate even shorter laser pulses or to apply this technique in investigations of nuclear structure, combs of frequencies of the order of MeV are necessary. It seems that it may not be possible to achieve such photon energies by high-order harmonic generation. In this context the possibility of the generation of Thomson and Compton-based frequency combs is presented. Diffraction of generated radiation by a sequence of laser pulses and its analogy to the diffraction grating is elucidated. Theoretical investigations presented in this report can be considered as the proposal for future ELI experiments [www.eli-laser.eu

  13. Applications and noise properties of high repetition rate : TiSapphire frequency combs

    E-Print Network [OSTI]

    Benedick, Andrew John

    2011-01-01T23:59:59.000Z

    Femtosecond mode-locked lasers are a unique laser technology due to their broad optical bandwidth and potential for linking the optical and radio frequency domains when these lasers are configured as frequency combs. ...

  14. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    E-Print Network [OSTI]

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01T23:59:59.000Z

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  15. The applications of comb polymer to the study of liver cell adhesion and signaling

    E-Print Network [OSTI]

    Yin, David, 1973-

    2004-01-01T23:59:59.000Z

    Comb polymer, which consists of a hydrophobic poly(methyl methacrylate) (PMMA) backbone with hydrophilic hydroxy-poly(ethylene oxide) (HPOEM) side chains, is a tool that has many possible applications for the study of liver ...

  16. Gigahertz Self-referenceable Frequency Comb from a Semiconductor Disk Laser

    E-Print Network [OSTI]

    Zaugg, Christian A; Mangold, Mario; Mayer, Aline S; Link, Sandro M; Emaury, Florian; Golling, Matthias; Gini, Emilio; Saraceno, Clara J; Tilma, Bauke W; Keller, Ursula

    2014-01-01T23:59:59.000Z

    We present a 1.75-GHz self-referenceable frequency comb from a vertical external-cavity surface-emitting laser (VECSEL) passively modelocked with a semiconductor saturable absorber mirror (SESAM). The VECSEL delivers 231-fs pulses with an average power of 100 mW and is optimized for stable and reliable operation. The optical spectrum was centered around 1038 nm and nearly transform-limited with a full width half maximum (FWHM) bandwidth of 5.5 nm. The pulses were first amplified to an average power of 5.5 W using a backward-pumped Yb-doped double-clad large mode area (LMA) fiber and then compressed to 85 fs with 2.2 W of average power with a passive LMA fiber and transmission gratings. Subsequently, we launched the pulses into a highly nonlinear photonic crystal fiber (PCF) and generated a coherent octave-spanning supercontinuum (SC). We then detected the carrier-envelope offset (CEO) frequency (fCEO) beat note using a standard f-to-2f-interferometer. The fCEO exhibits a signal-to-noise ratio of 17 dB in a 10...

  17. PHYSICAL REVIEW A 84, 062512 (2011) XUV frequency-comb metrology on the ground state of helium

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    PHYSICAL REVIEW A 84, 062512 (2011) XUV frequency-comb metrology on the ground state of helium in a scheme of direct-frequency-comb excitation of helium atoms from the ground state to the 1s4p and 1s5p 1 P with a modulation contrast of up to 55%. Analysis of the visibility of this comb structure, thereby using the helium

  18. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    E-Print Network [OSTI]

    Xie, Zhenda; Shrestha, Sajan; Xu, XinAn; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C; Restelli, Alessandro; Shapiro, Jeffrey H; Wong, Franco N C; Wong, Chee Wei

    2015-01-01T23:59:59.000Z

    Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to...

  19. Numerical investigation into the injection-locking phenomena of gain switched lasers for optical frequency comb generation

    E-Print Network [OSTI]

    Duill, Sean P O; Zhou, Rui; Barry, Liam P

    2015-01-01T23:59:59.000Z

    We present detailed numerical simulations of the laser dynamics that describe optical frequency comb formation by injection-locking a gain-switched laser. The typical rate equations for semiconductor lasers including stochastic carrier recombination and spontaneous emission suffice to show the injection-locking behavior of gain switched lasers, and we show how the optical frequency comb evolves starting from the free-running state, right through the final injection- locked state. Unlike the locking of continuous wave lasers, we show that the locking range for gain switched lasers is considerably greater because injection locking can be achieved by injecting at frequencies close to one of the comb lines. The quality of the comb lines are formally assessed by calculating the FM-noise spectral density and we show that under injection-locking conditions the FM-noise spectral density of the comb lines tend to that of the maser laser.

  20. Flow Test At Steamboat Springs Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergy Information RooseveltFlow

  1. Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00AboutAchille,Acme,

  2. Self Potential At Dixie Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeegerSelden, NewVC-2A,Open

  3. Self Potential At Roosevelt Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners,EnergyInformation Roosevelt Hot

  4. Slim Holes At Alvord Hot Springs Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish,New York: Energy Resources

  5. Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish,New York: Energy

  6. Slim Holes At Vale Hot Springs Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish,New York:

  7. Acoustic Logs At Steamboat Springs Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,Barriers toAclara Software

  8. Injectivity Test At Vale Hot Springs Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida:InerjyInghamInformation

  9. Pressure Temperature Log At Steamboat Springs Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for Energy EfficiencyConsultation|MauiOpen Energy

  10. Pressure Temperature Log At Vale Hot Springs Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for Energy EfficiencyConsultation|MauiOpen

  11. Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information2003)

  12. Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information2003)Energy

  13. Self Potential At Cove Fort Area (Combs 2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia | OpenSelawik WindCosoCove

  14. Slim Holes At International Geothermal Area, Japan (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim Holes ActivityNotes 2Open Energy

  15. Slim Holes At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim Holes

  16. Slim Holes At Steamboat Springs Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim HolesNewberry

  17. Static Temperature Survey At Vale Hot Springs Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr|| Open EnergyOpenOpen Energy

  18. Core Holes At Vale Hot Springs Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers

  19. Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump to:1999) |MethanolEnergy

  20. Direct-Current Resistivity Survey At Brady Hot Springs Area (Combs 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump(Thomas, 1986) |Open Energy

  1. Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources(Richards, Et Al., 2010)2006) |

  2. Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson, New York: Energy Resources JumpEnergy

  3. Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson, New York: EnergyInformation Soda Lake

  4. Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergy Information

  5. Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergyOpen Energy

  6. Core Holes At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump|InformationInformation

  7. Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds WindDilconWindEnergy

  8. Direct-Current Resistivity Survey At Cove Fort Area - Liquid (Combs 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbsInformationEnergy2002) |Open

  9. Direct-Current Resistivity Survey At Soda Lake Area (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Energy Information At1986) | OpenEnergy

  10. Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses

    E-Print Network [OSTI]

    Sautenkov, V. A.; Rostovtsev, Y. V.; Ye, C. Y.; Welch, George R.; Kocharovskaya, O.; Scully, Marlan O.

    2005-01-01T23:59:59.000Z

    It was shown by Kocharovskaya and Khanin [Sov. Phys. JETP 63, 945 (1986)] that a comb of optical pulses can induce a ground-state atomic coherence and change the optical response of an atomic medium. In our experiment, we studied the propagation...

  11. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    SciTech Connect (OSTI)

    Ronald Justin, Terence Davies, Frans Janson, Bruce Marshall, Perry Bell, Daniel Kalantar, Joseph Kimbrough, Stephen Vernon, Oliver Sweningsen

    2008-09-18T23:59:59.000Z

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called comb pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber.

  12. Adsorption of comb copolymers on weakly attractive solid surfaces A. Strioloa

    E-Print Network [OSTI]

    Jayaraman, Arthi

    Adsorption of comb copolymers on weakly attractive solid surfaces A. Strioloa Department In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both

  13. Molecules in Space & Laboratory, Paris, 2007 J.L. Lemaire & F. Combes (eds)

    E-Print Network [OSTI]

    Millar, Tom

    , and Tdust = 120K. 100K, only water, whose binding energy is high, accretes onto the grains. This waterMolecules in Space & Laboratory, Paris, 2007 J.L. Lemaire & F. Combes (eds) CHEMICAL MODELS OF HOT rates on gas temperature and of deple- tion rates on dust temperature. Physical properties

  14. Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated

    E-Print Network [OSTI]

    Purdue University

    linearly with the RF voltage driving the phase modulator. RF power handling limits the number of lines.g., 200 GHz band- width at 10 GHz drive). To reach the 100 line level, we would have to cascade five a 10 GHz frequency comb with over 100 lines in a 10 dB bandwidth in which a record 75 lines are within

  15. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured

  16. Elimination of pump-induced frequency jitter on fiber-laser frequency combs

    E-Print Network [OSTI]

    Washburn, Brian

    Elimination of pump-induced frequency jitter on fiber-laser frequency combs J. J. McFerran, W. C-loop carrier-envelope offset phase jitter, integrated to 100 kHz, is 1.3 rad. OCIS codes: 140.3510, 120 to stabilize fceo, re- ducing its linewidth from 250 kHz to below 1 Hz, and the ceo phase noise jitter to 1

  17. A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps

    SciTech Connect (OSTI)

    Greenwood, J. B.; Kelly, O.; Calvert, C. R.; Duffy, M. J.; King, R. B.; Belshaw, L.; Graham, L.; Alexander, J. D.; Williams, I. D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); Bryan, W. A. [Department of Physics, Swansea University, Swansea SA2 8PP (United Kingdom); Turcu, I. C. E.; Cacho, C. M.; Springate, E. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2011-04-15T23:59:59.000Z

    In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components.

  18. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s$^{-1}$

    E-Print Network [OSTI]

    Chih-Hao Li; Andrew J. Benedick; Peter Fendel; Alexander G. Glenday; Franz X. Kaertner; David F. Phillips; Dimitar Sasselov; Andrew Szentgyorgyi; Ronald L. Walsworth

    2008-04-07T23:59:59.000Z

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm/s (ref 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earthlike orbit, a precision of 5 cm/s is necessary. The combination of a laser frequency comb with a Fabry-Perot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40- GHz (1-A) line spacing, generated from a 1- GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or `astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm/s in astronomical radial velocity measurements.

  19. Implementation of a Long Path Multi-Reflection Optical Cell with a Mid-Infrared Frequency Comb Laser Source for Sensitive Molecular Spectroscopy

    E-Print Network [OSTI]

    Askar, Ruqayyah F.M. H. H.

    2014-04-25T23:59:59.000Z

    photo-detector that allows sensitive detection of the dual comb signal. It is a HgCdTe (MCT) photo-detector with a bandwidth of 100 MHz. It is connected to a high- pass filter then to an oscilloscope of 8 bit resolution. The recorded dual comb signal...

  20. High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 {\\mu}m wavelength region

    E-Print Network [OSTI]

    Adler, Florian

    2012-01-01T23:59:59.000Z

    We present a 2-\\mum frequency comb based on a reliable mode-locked Er:fiber laser with 100 MHz repetition rate. After shifting the spectrum of the amplified Er:fiber comb to longer wavelengths, a single-clad Tm/Ho:fiber is used as a self-pumped pre-amplifier to generate a coherent and broadband spectrum centered at 1.93 \\mum. Subsequently, a cladding-pumped Tm:fiber amplifier boosts the system to a maximum output power of 4.8 W at 1.96 \\mum. After compression in a compact grating compressor, our amplified Er:fiber/Tm:fiber hybrid system delivers as much as 2.9 W with a pulse duration of 141 fs. The system's comb properties are examined via heterodyne measurement.

  1. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOE Patents [OSTI]

    Chandler, David W; Strecker, Kevin E

    2014-04-01T23:59:59.000Z

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  2. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    E-Print Network [OSTI]

    Raphael Pooser; Jietai Jing

    2014-12-30T23:59:59.000Z

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexing in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.

  3. Spin Wave Storage using Chirped Control Fields in Atomic Frequency Comb based Quantum Memory

    E-Print Network [OSTI]

    Ji? Min?; Nicolas Sangouard; Mikael Afzelius; Hugues de Riedmatten; Nicolas Gisin

    2010-08-13T23:59:59.000Z

    It has been shown that an inhomogeneously broadened optical transition shaped into an atomic frequency comb can store a large number of temporal modes of the electromagnetic field at the single photon level without the need to increase the optical depth of the storage material. The readout of light modes is made efficient thanks to the rephasing of the optical-wavelength coherence similarly to photon echo-type techniques and the re-emission time is given by the comb structure. For on-demand readout and long storage times, two control fields are used to transfer back and forth the optical coherence into a spin wave. Here, we present a detailed analysis of the spin wave storage based on chirped adiabatic control fields. In particular, we verify that chirped fields require significantly weaker intensities than $\\pi$-pulses. The price to pay is a reduction of the multimode storage capacity that we quantify for realistic material parameters associated with solids doped with rare-earth-metal ions.

  4. PUBLISHED ONLINE: 22 DECEMBER 2013 | DOI: 10.1038/NPHYS2807 Ramsey-comb spectroscopy with intense

    E-Print Network [OSTI]

    Loss, Daniel

    in the following. Traditionally, excitation of atoms or molecules with two short and phase-coherent laser pulses combs based on mode-locked lasers have revolutionized the field of metrology and precision spec pulses could be amplified, and phase shift effects during the amplification process compromised

  5. HIGH-FIELD-SIDE PELLET INJECTION TECHNOLOGY S. K. Combs, L. R. Baylor, C. R. Foust, M. J. Gouge,

    E-Print Network [OSTI]

    HIGH-FIELD-SIDE PELLET INJECTION TECHNOLOGY S. K. Combs, L. R. Baylor, C. R. Foust, M. J. Gouge, T of pellets, composed of frozen hydrogen isotopes and multimillimeter in size, is com- monly used for core tubes have typically been used to trans- port/deliver pellets from the acceleration device to the out

  6. Wax Inhibition by Comb-like Polymers: Support of the Incorporation-Perturbation Mechanism from Molecular Dynamics Simulations

    E-Print Network [OSTI]

    Goddard III, William A.

    Wax Inhibition by Comb-like Polymers: Support of the Incorporation-Perturbation Mechanism from ReceiVed: April 10, 2007; In Final Form: July 26, 2007 Deposition of wax on a cold surface is a serious problem in oil production. Progress in developing more effective wax inhibitors has been impeded

  7. Two-Sided Comb Poly(amic ester)Poly(propylene oxide) Graft Copolymers as Porous Polyimide Precursors

    E-Print Network [OSTI]

    Carter, Kenneth

    Two-Sided Comb Poly(amic ester)Poly(propylene oxide) Graft Copolymers as Porous Polyimide. These polymers were thermally cured to produce polyimide/PPO composites. The thermolysis of these polyimide/ PPO composites yielded porous polyimide films with porosities ranging of 422.5%. 2005 Wiley Periodicals, Inc

  8. Quantum logic for control and manipulation of molecular ions using a frequency comb

    E-Print Network [OSTI]

    S. Ding; D. N. Matsukevich

    2011-09-20T23:59:59.000Z

    Due to their rich level structure, molecules are well-suited for probing time variation of fundamental constants, precisely measuring parity violation and time-reversal non-invariance effects, studying quantum mechanical aspects of chemical reactions, and implementing scalable quantum information processing architectures. Molecular ions are particularly attractive for these applications due to their long storage times and the near-perfect isolation from environment that result in long coherence times required to achieve high measurement precision and reduce systematic errors. However, the control of molecular quantum states remains a challenge. Based on quantum logic techniques, we propose a scheme for preparation, manipulation, and detection of quantum states of single molecular ions. The scheme relies on coherent coupling between internal and motional degrees of freedom of the molecular ion via a frequency comb laser field, while detection and cooling of the motion of ions is done via a co-trapped atomic ion.

  9. Coherent Storage of Temporally Multimode Light Using a Spin-Wave Atomic Frequency Comb Memory

    E-Print Network [OSTI]

    Mustafa Gndo?an; Margherita Mazzera; Patrick M. Ledingham; Matteo Cristiani; Hugues de Riedmatten

    2013-01-14T23:59:59.000Z

    We report on coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr3+:Y2SiO5 to spin-waves in the hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of 5 temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light.

  10. Noble Bliss Windpark | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppelsource History(CTI PFAN)Fossil

  11. Real-time absolute frequency measurement of continuous-wave terahertz wave based on dual terahertz combs of photocarriers with different frequency spacings

    E-Print Network [OSTI]

    Yasui, Takeshi; Ichikawa, Ryuji; Cahyadi, Harsono; Hsieh, Yi-Da; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru

    2015-01-01T23:59:59.000Z

    Real-time measurement of the absolute frequency of continuous-wave terahertz (CW-THz) waves is required for characterization and frequency calibration of practical CW-THz sources. We proposed a method for real-time monitoring of the absolute frequency of CW-THz waves involving temporally parallel, i.e., simultaneous, measurement of two pairs of beat frequencies and laser repetition frequencies based on dual THz combs of photocarriers (PC-THz combs) with different frequency spacings. To demonstrate the method, THz-comb-referenced spectrum analyzers were constructed with a dual configuration based on dual femtosecond lasers. Regardless of the presence or absence of frequency control in the PC-THz combs, a frequency precision of 10-11 was achieved at a measurement rate of 100 Hz. Furthermore, large fluctuation of the CW-THz frequencies, crossing several modes of the PC-THz combs, was correctly monitored in real time. The proposed method will be a powerful tool for the research and development of practical CW-THz...

  12. Ab initio theoretical investigation of the frequency comb structure and coherence in the vuv-xuv regimes via high-order harmonic generation

    E-Print Network [OSTI]

    Chu, Shih-I; Carrera, Juan J.; Son, Sang-Kil

    2008-03-03T23:59:59.000Z

    ;. Phase coherence among excitation pulses essentially prevails as the time delay is prolonged. We now study the effect on the frequency comb structure as the number of phase-locked pulses N is varied. Figure 3#1;c#2; shows the frequency comb structure... mode-locked laser, consider the pulse circulat- ing in a laser cavity #3;14#4;. Since the group and phase veloci- ties inside the cavity are not equal, there is a phase shift #3;#4; from pulse to pulse. The angular frequency spectrum ema- nating from...

  13. Coherent control and giant enhancement of multiphoton ionization and high-order-harmonic generation driven by intense frequency-comb laser fields: An ab initio theoretical investigation

    E-Print Network [OSTI]

    Chu, Shih-I; Zhao, Di; Li, Fu-li

    2013-04-11T23:59:59.000Z

    the intensity of the driving frequency-comb laser fields. However, the two-level model does not take into account the effects of multilevel structure and ionization, which are inherent in real atomic and/or molecular systems driven by intense laser fields... function. In general, the carrier frequency ?c is not necessarily one of the comb frequencies nor does it equal ?0. Due to the incommensuration between the time period (=2?/?c) of the carrier wave and the time interval ? of the pulse envelope, there is a...

  14. Postmortem analysis of sand grain crushing from pile interface using X-ray I. Matas Silva, Gal Combe, Pierre Foray, Frdric Flin, and Bernard Lesaffre

    E-Print Network [OSTI]

    Ribes, Aurlien

    Postmortem analysis of sand grain crushing from pile interface using X-ray tomography I. Matas of Sand Grain Crushing From Pile Interface Using X-ray Tomography Matas Silva I., Gal Combe, Pierre. Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety

  15. New Pellet Injection Schemes on DIII-D* S. K. Combs, L. R. Baylor, C. R. Foust, and T. C. Jernigan

    E-Print Network [OSTI]

    New Pellet Injection Schemes on DIII-D* S. K. Combs, L. R. Baylor, C. R. Foust, and T. C. Jernigan Energy Research Corp. Abstract--The pellet system on DIII-D has been modified for injection of deuterium pellets from two vertical ports and two inner wall locations on the magnetic high-field side (HFS

  16. Direct-Current Resistivity At Beowawe Hot Springs Area (Garg...

    Open Energy Info (EERE)

    Philip E. Wannamaker, Jim Combs (2007) Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Additional References Retrieved from...

  17. Direct-Current Resistivity Survey At Beowawe Hot Springs Area...

    Open Energy Info (EERE)

    Philip E. Wannamaker, Jim Combs (2007) Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Additional References Retrieved from...

  18. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range

    E-Print Network [OSTI]

    Lin, Guoping

    2015-01-01T23:59:59.000Z

    Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above $10^9$. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion ($GVD$). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the $GVD$ of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar $GVD$, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to pus...

  19. BioCoComb -- Gasification of biomass and co-combustion of the gas in a pulverized-coal-boiler

    SciTech Connect (OSTI)

    Anderl, H.; Zotter, T.; Mory, A.

    1999-07-01T23:59:59.000Z

    In a demonstration project supported by an European Community Thermie Fund a biomass gasifier for bark, wood chips, saw dust, etc. has been installed by Austrian Energy and Environment at the 137 MW{sub el} pulverized-coal fired power station in Zeltweg, Austria. The project title BioCoComb is an abbreviation for Preparation of Biofuel for Co-Combustion, where co-combustion means combustion together with coal in existing power plants. According to the thermal capacity of 10 MW the produced gas substitutes approx. 3% of the coal fired in the boiler. Only the coarse fraction of the biomass has to pass a shredder and is then fed together with the fine fraction without any further pretreatment into the gasifier. In the gasification process the biomass will combust in a substoichiometric atmosphere, create the necessary temperature of 820 C and partly gasify due to the lack of oxygen in the combustion chamber (autothermal operation). The gasifier uses circulating fluidized bed technology, which guarantees even relatively low temperatures in all parts of the gasifier to prevent slagging. The intense motion of the bed material also favors attrition of the biomass particles. Via a hot gas duct the produced low calorific value (LCV) gas is directly led into the furnace of the existing pulverized coal fired boiler for combustion. The gas also contains fine wood char particles, that can pass the retention cyclone and burn out in the furnace of the coal boiler. The main advantages of the BioCoComb concept are: low gas quality sufficient for co-firing; no gas cleaning or cooling; no predrying of the biomass; relatively low temperatures in the gasifier to prevent slagging; favorable effects on power plant emissions (CO{sub 2}, NO{sub x}); no severe modifications of the existing coal fired boiler; and high flexibility in arranging and integrating the main components into existing plants. The plant started its trial run in November 1997 and has been in successful commercial operation since January 1998.

  20. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References by WebsitehomeResearch Areas

  1. Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields

    E-Print Network [OSTI]

    Son, Sang-Kil; Chu, Shih-I

    2008-06-05T23:59:59.000Z

    .07#3;?8#4; 2.92 2.41#3;?3#4; 2.92 1.33#3;?6#4; 2.92 2.01#3;?3#4; 5.00 4.53#3;?20#4; 4.91 3.42#3;?12#4; 5.00 6.62#3;?15#4; 4.93 3.39#3;?10#4; 5.00 1.28#3;?12#4; 4.94 2.07#3;?9#4; 7.02 1.99#3;?28#4; 6.92 1.83#3;?20#4; 7.00 3.10#3;?21#4; 6.93 1.82#3;?16#4; 7.00 4...Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields Sang-Kil Son (???#1;1,* and Shih-I Chu (???#1;1,2, 1Department of Chemistry, University of Kansas, Lawrence, Kansas...

  2. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation

    E-Print Network [OSTI]

    Fritz Keilmann; Sergiu Amarie

    2012-03-22T23:59:59.000Z

    We describe a coherent mid-infrared continuum source with 700 cm-1 usable bandwidth, readily tuned within 600 - 2500 cm-1 (4 - 17 \\mum) and thus covering much of the infrared "fingerprint" molecular vibration region. It is based on nonlinear frequency conversion in GaSe using a compact commercial 100-fs-pulsed Er fiber laser system providing two amplified near-infrared beams, one of them broadened by a nonlinear optical fiber. The resulting collimated mid-infrared continuum beam of 1 mW quasi-cw power represents a coherent infrared frequency comb with zero carrier-envelope phase, containing about 500,000 modes that are exact multiples of the pulse repetition rate of 40 MHz. The beam's diffraction-limited performance enables long-distance spectroscopic probing as well as maximal focusability for classical and ultraresolving near-field microscopies. Applications are foreseen also in studies of transient chemical phenomena even at ultrafast pump-probe scale, and in high-resolution gas spectroscopy for e.g. breath analysis.

  3. Efficient generation of twin photons at telecom wavelengths with 10 GHz repetition-rate tunable comb laser

    E-Print Network [OSTI]

    Rui-Bo Jin; Ryosuke Shimizu; Isao Morohashi; Kentaro Wakui; Masahiro Takeoka; Shuro Izumi; Takahide Sakamoto; Mikio Fujiwara; Taro Yamashita; Shigehito Miki; Hirotaka Terai; Zhen Wang; Masahide Sasaki

    2014-09-10T23:59:59.000Z

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility.Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.

  4. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  5. Wildlife Management Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas.

  6. Pellet injector development at ORNL* S. K. Combs,a S. L. Milora,a L. R. Baylor,a P. W. Fisher,a C. A. Foster,a C. R. Foust,a M. J. Gouge,a

    E-Print Network [OSTI]

    Pellet injector development at ORNL* S. K. Combs,a S. L. Milora,a L. R. Baylor,a P. W. Fisher,a C developing pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain

  7. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  8. Heat flow studies, Coso Geothermal Area, China Lake, California...

    Open Energy Info (EERE)

    is useless for calculating the geothermal gradients. This is due to the effects of solar radiation at the surface of the earth. Authors Combs and J. Published Publisher Not...

  9. Photoelectrochemical molecular comb

    SciTech Connect (OSTI)

    Thundat, Thomas G. (Knoxville, TN); Ferrell, Thomas L (Knoxville, TN); Brown, Gilbert M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least two electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.

  10. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency generation

    E-Print Network [OSTI]

    Anne Amy-Klein; Andrei Goncharov; Mickael Guinet; Christophe Daussy; Olivier Lopez; Alexander Shelkovnikov; Christian Chardonnet

    2005-09-07T23:59:59.000Z

    We demonstrate a new simple technique to measure IR frequencies near 30 THz using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical frequency is directly compared to the distance between two modes of the fs laser, and the resulting beat note is used to control this distance which depends only on the repetition rate fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured for the first time. This line is an attractive alternative to the usual saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results demonstrate a fractional Allan deviation of 3.10-14 at 1 s.

  11. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency generation

    E-Print Network [OSTI]

    Amy-Klein, A; Guinet, M; Daussy, C; Lpez, O; Shelkovnikov, A; Chardonnet, C; Amy-Klein, Anne; Goncharov, Andrei; Guinet, Mickael; Daussy, Christophe; Lopez, Olivier; Shelkovnikov, Alexander; Chardonnet, Christian

    2005-01-01T23:59:59.000Z

    We demonstrate a new simple technique to measure IR frequencies near 30 THz using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical frequency is directly compared to the distance between two modes of the fs laser, and the resulting beat note is used to control this distance which depends only on the repetition rate fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured for the first time. This line is an attractive alternative to the usual saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results demonstrate a fractional Allan deviation of 3.10-14 at 1 s.

  12. El Paso County Geothermal Project at Fort Bliss

    Broader source: Energy.gov (indexed) [DOE]

    GIS database development * Conceptual geologicgeothermal system modeling - Slim-hole drilling & Resource testing * Corecuttings analysis including XRD * Integrated wellbore...

  13. Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County, Georgia:

  14. RECORD OF DECISION FOR THE BLISS & LAUGHLIN SITE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +NewAugustr* R $ s- 0a \n aR

  15. Western Area Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development...

  16. Hydrologically Sensitive Areas: Variable Source Area Hydrology

    E-Print Network [OSTI]

    Walter, M.Todd

    Hydrologically Sensitive Areas: Variable Source Area Hydrology Implications for Water Quality Risk hydrology was developed and applied to the New York City (NYC) water supply watersheds. According and are therefore hydrologically sensitive with respect to their potential to transport contaminants to perennial

  17. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  18. Wetland Preservation Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    A wetland owner can apply to the host county for designation of a wetland preservation area. Once designated, the area remains designated until the owner initiates expiration, except where a state...

  19. Protected Areas Stacy Philpott

    E-Print Network [OSTI]

    Gottgens, Hans

    Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas Natural preservation Research No No #12;II. National Parks Ecosystem protection

  20. Service Entry Delivery Area

    E-Print Network [OSTI]

    New South Wales, University of

    Catheter Lab Boiler House Main Entry Short Street ChapelStreet Vehicle Exit 23. Gray Street Car ParkingService Entry Waste Handling Area Delivery Area Admissions Entrance Inquiries Desk Cafeteria Coffee in July 2000 Vehicle Entry Emergency Main Entrance TOKOGARAHRAILWAYSTATION LEGEND Areas under construction

  1. Groundwater Management Areas (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation,...

  2. Riparian Area. . . . . . . . . . . . . . . . . . . . Management Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    ..............................................................................................................19 Bruce Hoagland, Oklahoma Biological Survey and the University of Oklahoma Forest Management Riparian Area. . . . . . . . . . . . . . . . . . . . Management Handbook E-952 Oklahoma Cooperative . . . . . . . . . . . . . Oklahoma Conservation Commission Management Handbook #12

  3. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Zone Mesozoic granite granodiorite Aurora Geothermal Area Aurora Geothermal Area Walker Lane Transition Zone Geothermal Region MW Beowawe Hot Springs Geothermal Area Beowawe Hot...

  4. Ab initio time-dependent density-functional-theory study of the frequency comb structure, coherence, and dephasing of multielectron systems in the vuv-xuv regimes via high-order harmonic generation

    E-Print Network [OSTI]

    Chu, Shih-I; Carrera, Juan J.

    2009-06-17T23:59:59.000Z

    stabilized narrow-band continuous-wave #1;cw#2; laser used for the actual spectroscopy. However, suitable narrow-band-width cw sources rarely exist at high frequencies #3;10#4;, such as vacuum-ultraviolet #1;vuv#2; and extreme-ultraviolet #1;xuv#2; radiations...;. If the high-frequency comb laser can be generated successfully, there will be a number of applications such as vuv-xuv holography, nanolithography, x-ray atomic clocks, and for the testing of fundamental theories such as quantum electrodynamics. However...

  5. 300 AREA URANIUM CONTAMINATION

    SciTech Connect (OSTI)

    BORGHESE JV

    2009-07-02T23:59:59.000Z

    {sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

  6. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  7. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum ReservesThrust Areas Physics Thrust Areas

  8. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07T23:59:59.000Z

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  9. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25T23:59:59.000Z

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  10. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News linkThermalInner Area Principles The Inner Area

  11. PROTECTED AREAS AMENDMENTS AND.

    E-Print Network [OSTI]

    as critical fish and wildlife habitat. The "protected areas" amendment is a major step in the Council's efforts to rebuild fish and wildlife populations that have been damaged by hydroelectric development. Low also imposed significant costs. The Northwest's fish and wildlife have suffered extensive losses

  12. MSL ENTERANCE REFERENCE AREA

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

  13. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  14. Plutonium focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  15. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 11:12am Addthis...

  16. Scientific and Natural Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain scientific and natural areas are established throughout the state for the purpose of preservation and protection. Construction and new development is prohibited in these areas.

  17. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

    2002-01-01T23:59:59.000Z

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  18. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354Strategic Focus Areas Lockheed

  19. T-1 Training Area

    SciTech Connect (OSTI)

    None

    2014-11-07T23:59:59.000Z

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  20. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  1. Functional Area Assessments Project Charter Workstream Name Functional Area Assessments

    E-Print Network [OSTI]

    Sheridan, Jennifer

    with Huron on detailed project plan. Subject Experts Subject Expert Role Functional leadership Administrative1 of 2 Functional Area Assessments Project Charter Workstream Name Functional Area Assessments - Internal Budgeting - Human Resources These diagnostics will be performed using interviews, surveys, data

  2. Surface Water Management Areas (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation establishes surface water management areas, geographically defined surface water areas in which the State Water Control Board has deemed the levels or supply of surface water to be...

  3. Boundary Waters Canoe Area (Minnesota)

    Broader source: Energy.gov [DOE]

    The Boundary Waters Canoe Area occupies a large section of northern Minnesota, and is preserved as a primitive wilderness area. Construction and new development is prohibited. A map of the...

  4. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    used in area like smart buildings, street light controls andbuilding. This section focuses on HAN design to address two smart

  5. Fire Hazards Analysis for the 200 Area Interim Storage Area

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-01-06T23:59:59.000Z

    This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

  6. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Energy Savers [EERE]

    twelve years. The Mid-Atlantic Area National Corridor includes certain counties in Ohio, West Virginia, Pennsylvania, New York, Maryland, Virginia, and all of New Jersey,...

  7. area spoil area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 25 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  8. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    and implementation of smart home energy management systemsStandard Technologies for Smart Home Area Networks EnablingInteroperability framework for smart home systems, Consumer

  9. Tech Area II: A history

    SciTech Connect (OSTI)

    Ullrich, R. [Ktech Corp., Albuquerque, NM (United States)] [Ktech Corp., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  10. Hanford 200 Areas Development Plan

    SciTech Connect (OSTI)

    Rinne, C.A.; Daly, K.S.

    1993-08-01T23:59:59.000Z

    The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas.

  11. AREA

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW W.categoricalHSS/UNIONAREA

  12. The Program Area Committee Chairperson.

    E-Print Network [OSTI]

    Marshall, Mary; Richardson, Burl B.

    1986-01-01T23:59:59.000Z

    worksheets and others. Prepared by Mary G. Marshall and Burl B. RichardsQ Extension program development specialists, The Texas A&M University System. THE PROGRAM AREA COMMITTEE CHAIRPERSON You Hold an Important Position! Whenever people gather...

  13. Focus Area Tax Credits (Maryland)

    Broader source: Energy.gov [DOE]

    Focus Area Tax Credits for businesses in Baltimore City or Prince Georges County enterprise zones include: (1) Ten-year, 80% credit against local real property taxes on a portion of real property...

  14. Security Area Vouching and Piggybacking

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05T23:59:59.000Z

    Establishes requirements for the Department of Energy (DOE) Security Area practice of "vouching" or "piggybacking" access by personnel. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01.

  15. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  16. Protected Water Area System (Iowa)

    Broader source: Energy.gov [DOE]

    The Natural Resource Commission maintains a state plan for the design and establishment of a protected water area system and those adjacent lands needed to protect the integrity of that system. A...

  17. Wellhead Protection Area Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This section regulates activities which can occur on or below the land surface of the area surrounding a wellhead. The purpose of these regulations is to limit well contamination and preserve...

  18. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA)

    1982-01-01T23:59:59.000Z

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  19. Biological Inventory Colorado Canyons National Conservation Area

    E-Print Network [OSTI]

    Biological Inventory of the Colorado Canyons National Conservation Area Prepared by: Joe Stevens .............................. 12 Identify Targeted Inventory Areas

  20. 100 Areas CERCLA ecological investigations

    SciTech Connect (OSTI)

    Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

    1993-09-01T23:59:59.000Z

    This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

  1. Plutonium focus area: Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  2. Authorization for Remedial Action at the Former Bliss & Laughlin Steel Company Site, Buffalo, New York

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic and Monitor WellAshtabula, Ohio,

  3. B-BLISS AND LAUGHLIN FUSRAP SITE ADMINISTRATIVE RECORD FILE INDEX

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic and Monitor WellAshtabula,B I

  4. DECONTAMINATION OF THE FORMER BLISS & LAUGHLIN FACILITY, BUFFALO, NEW YORK

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic andRECORDD O E F 1325.8 .DOEi

  5. EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping...

  6. Montana Natural Areas Act of 1974 (Montana)

    Broader source: Energy.gov [DOE]

    The Montana Natural Areas Act of 1974 provides for the designation and establishment of a system of natural areas in order to preserve the natural ecosystems of these areas. Designated natural...

  7. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, T.C.

    1986-12-23T23:59:59.000Z

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  8. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, Thomas C. (Raleigh, NC)

    1986-01-01T23:59:59.000Z

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  9. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  10. Chickasaw National Recreational Area, Chickasaw, Oklahoma | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chickasaw National Recreational Area, Chickasaw, Oklahoma Chickasaw National Recreational Area, Chickasaw, Oklahoma Photo of Comfort Station at the Chickasaw National Recreation...

  11. Quality Assurance Functional Area Qualification Standard - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-2013, Quality Assurance Functional Area Qualification Standard by Administrator The Quality Assurance (QA) Functional Area Qualification Standard (FAQS) establishes common...

  12. Aquifer Protection Area Land Use Regulations (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

  13. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  14. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  15. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response...

    Office of Environmental Management (EM)

    Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions This document was...

  16. Personal Background andPersonal Background and AreasAreas ofof InterestInterest

    E-Print Network [OSTI]

    Boehning, Dankmar

    General Topics CurrentCurrent AreasAreas ofof InterestInterest ResearchResearch AreasAreas inin Preperation InterestInterest ResearchResearch AreasAreas inin PreperationPreperation #12;Personal BackgroundHistory BesidesBesides cooperatingcooperating inin severalseveral projectsprojects in SEin SE AsiaAsia oneone

  17. Tanks focus area. Annual report

    SciTech Connect (OSTI)

    Frey, J.

    1997-12-31T23:59:59.000Z

    The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

  18. History of 100-B Area

    SciTech Connect (OSTI)

    Wahlen, R.K.

    1989-10-01T23:59:59.000Z

    The initial three production reactors and their support facilities were designated as the 100-B, 100-D, and 100-F areas. In subsequent years, six additional plutonium-producing reactors were constructed and operated at the Hanford Site. Among them was one dual-purpose reactor (100-N) designed to supply steam for the production of electricity as a by-product. Figure 1 pinpoints the location of each of the nine Hanford Site reactors along the Columbia River. This report documents a brief description of the 105-B reactor, support facilities, and significant events that are considered to be of historical interest. 21 figs.

  19. Resource Areas of Texas: Land.

    E-Print Network [OSTI]

    Godfrey, Curtis L.; Carter, Clarence R.; McKee, Gordon S.

    1967-01-01T23:59:59.000Z

    Prairie (Coastal ~~~(l), soils are less acid and some are calcareous. Main series: lrictoria, Orelia, Clareville. ~ight, acid sands and darker, loamy to clayey soils-some $;dine and sodic-lie in a narrow band along the coast. Main aeries: Harris...). Mai series: Truce, Waurika, Brown, moderately deep 11 shallow, calcareous, clay1 a1 oils are alg common. Main series: (: 1 to alk nts; somt Bonti. ey soils >wens. over sh Bottomlands-minor areas or brown to clam gray, loam1 1 Main senes 3...

  20. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik IndustriesStateTagsTexas Area Jump to:

  1. Focus Areas | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOE O 413.2B Admin ChgFocus Areas Focus

  2. Surrounding Area Restaurants...Hungry

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - January 16, 2015 Summary ofAboutDepartmentControlSurrounding Area

  3. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29T23:59:59.000Z

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  4. 300 Area signal cable study

    SciTech Connect (OSTI)

    Whattam, J.W.

    1994-09-15T23:59:59.000Z

    This report was prepared to discuss the alternatives available for removing the 300 Area overhead signal cable system. This system, installed in 1969, has been used for various monitoring and communication signaling needs throughout the 300 Area. Over the years this cabling system has deteriorated, has been continually reconfigured, and has been poorly documented to the point of nonreliability. The first step was to look at the systems utilizing the overhead signal cable that are still required for operation. Of the ten systems that once operated via the signal cable, only five are still required; the civil defense evacuation alarms, the public address (PA) system, the criticality alarms, the Pacific Northwest Laboratory Facilities Management Control System (FMCS), and the 384 annunciator panel. Of these five, the criticality alarms and the FMCS have been dealt with under other proposals. Therefore, this study focused on the alternatives available for the remaining three systems (evacuation alarms, PA system, and 384 panel) plus the accountability aid phones. Once the systems to be discussed were determined, then three alternatives for providing the signaling pathway were examined for each system: (1) re-wire using underground communication ducts, (2) use the Integrated Voice/Data Telecommunications System (IVDTS) already installed and operated by US West, and (3) use radio control. Each alternative was developed with an estimated cost, advantages, and disadvantages. Finally, a recommendation was provided for the best alternative for each system.

  5. Large Area Vacuum Deposited Coatings

    SciTech Connect (OSTI)

    Martin, Peter M.

    2003-04-30T23:59:59.000Z

    It's easy to make the myriad of types of large area and decorative coatings for granted. We probably don't even think about most of them; the low-e and heat mirror coatings on our windows and car windows, the mirrors in displays, antireflection coatings on windows and displays, protective coatings on aircraft windows, heater coatings on windshields and aircraft windows, solar reflectors, thin film solar cells, telescope mirrors, Hubble mirrors, transparent conductive coatings, and the list goes on. All these products require large deposition systems and chambers. Also, don't forget that large batches of small substrates or parts are coated in large chambers. In order to be cost effective hundreds of ophthalmic lenses, automobile reflectors, display screens, lamp reflectors, cell phone windows, laser reflectors, DWDM filters, are coated in batches.

  6. Ashland Area Support Substation Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power Light Company's (PP L) 115-kilovolt (kV) transmission lines and through PP L's Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP L to allow transfer of three megawatts (MW's) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

  7. Game Preserves and Closed Areas (Montana)

    Broader source: Energy.gov [DOE]

    Game preserves and closed areas exist within the state of Montana for the protection of all the game animals and birds. Construction and development is limited in these areas. Currently, only three...

  8. Critical Areas of State Concern (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation designates the Chesapeake Bay, other Atlantic Coastal Bays, and their tributaries and adjacent lands as critical areas of state concern. It is state policy to protect these areas...

  9. Electricity Suppliers' Service Area Assignments (Indiana)

    Broader source: Energy.gov [DOE]

    To promote efficiency and avoid waste and duplication, rural and unincorporated areas of Indiana are divided into geographic areas, to be assigned to an electricity provider that will have the sole...

  10. Plutonium focus area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  11. Optimization Online - All Areas Submissions - January 2011

    E-Print Network [OSTI]

    All Areas Submissions - January 2011. Linear, Cone and ... Anders Skajaa, John Bagterp Jrgensen, Per Christian Hansen. Convex and Nonsmooth...

  12. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Paik, I.R. [Westinghouse Safety Management Solutions, , ()

    1998-04-01T23:59:59.000Z

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  13. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

  14. Optimization Online - All Areas Submissions - February 2011

    E-Print Network [OSTI]

    Stochastic Optimization for Power System Configuration with Renewable Energy in Remote Areas Ludwig Kuznia, Bo Zeng, Grisselle Centeno, Zhixin Miao.

  15. Considering LEDs for Street and Area Lighting

    Broader source: Energy.gov [DOE]

    View Jim Brodrick's keynote video from the September 2009 IES Street and Area Lighting Conference in Philadelphia.

  16. Local control of area-preserving maps

    E-Print Network [OSTI]

    Cristel Chandre; Michel Vittot; Guido Ciraolo

    2008-09-01T23:59:59.000Z

    We present a method of control of chaos in area-preserving maps. This method gives an explicit expression of a control term which is added to a given area-preserving map. The resulting controlled map which is a small and suitable modification of the original map, is again area-preserving and has an invariant curve whose equation is explicitly known.

  17. Original article Photosynthesis, leaf area and productivity

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Original article Photosynthesis, leaf area and productivity of 5 poplar clones during; The stem volume and biomass (stem + branches) production, net photosynthesis of mature leaves and leaf area found in volume production, woody biomass production, total leaf area and net photosynthesis. Above

  18. Introduction Marine protected areas (MPA's) are

    E-Print Network [OSTI]

    67(1) 1 Introduction Marine protected areas (MPA's) are an important tool for managing fisheries protected area is "any area of the marine environ- ment that has been reserved by Federal, State, tribal, territorial, or local laws or regulations to provide lasting protection for part or all of the natural

  19. Common File Formats in Rosetta Steven Combs

    E-Print Network [OSTI]

    Meiler, Jens

    different ways Command Line Fixbb.release database -s 1thfD.pdb ex1 ex2 packing.942 19.190 1.00 8.50 P Ligand lines Atom # Atom name Residue name Chain ID Residue # Xcoord Ycoord Zcoord occupancy Bfactor Element name Atom lines #12;Silent Files Specify by in:file:silent and out

  20. Laser frequency combs for precision astrophysical spectroscopy

    E-Print Network [OSTI]

    Li, Chih-Hao

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines resulting from the motion of the host star around the barycentre of an extrasolar system have recently achieved a precision of 60 ...

  1. Redevelopment of Areas Needing Redevelopment Generally (Indiana)

    Broader source: Energy.gov [DOE]

    Redevelopment commissions are responsible for developing plans and managing tools used to address conditions of blight (redevelopment areas) and underutilized land of economic significance ...

  2. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiation-dominated HED dynamo, and radiation-dominated reconnection. Nonlinear Optics of Plasmas and Laser-Plasma Interactions Specific areas of interest include, but are...

  3. area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 25 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  4. areas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 25 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  5. Safety Software Quality Assurance Functional Area Qualification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72-2011, Safety Software Quality Assurance Functional Area Qualification Standard by Diane Johnson This SSQA FAQS identifies the minimum technical competency requirements for DOE...

  6. The Ohio Community Reinvestment Area (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Community Reinvestment Area program is an economic development tool administered by municipal and county government that provides real property tax exemptions for property owners who...

  7. DFAS Wide-Area Workflow Issues

    Broader source: Energy.gov [DOE]

    Presentation covers the DFAS wide-area workflow issues and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  8. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  9. Management of Specific Flood Plain Areas (Iowa)

    Broader source: Energy.gov [DOE]

    Floodplain management orders by the Iowa Department of Natural Resources as well as approved local ordinances designate an area as a regulated floodplain. These regulations establish minimum...

  10. White Etch Areas: Metallurgical Characterization and Atomistic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Atomistic Modeling Presented by R. Scott Hyde of Timken Company at the 2014 Wind Turbine Tribology Seminar Timken Hyde White Etch Areas ANL Presentation Oct 2014...

  11. Postdoctoral Scholar position Area: Mathematics Education

    E-Print Network [OSTI]

    de Leon, Alex R.

    with the City of Calgary's vibrant energy and diversity. The university is home to scholars in 14 facultiesPostdoctoral Scholar position Area: Mathematics Education Duration: 18 months Start date: January 1, invites applications for a Postdoctoral Fellowship in the area of mathematics education. This competition

  12. ARRA Proposed Award: Retrofit Bay Area

    E-Print Network [OSTI]

    ARRA Proposed Award: Retrofit Bay Area Counties of Alameda, Contra Costa, Marin, San Francisco per year Prime contractor: Association of Bay Area Governments (ABAG) Sub contractors: Alameda County Waste Management Authority (StopWaste.org) County of Contra Costa County of Marin City

  13. BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION

    E-Print Network [OSTI]

    OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven FOR U.S. Department of Energy March 2009 #12;i OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA..................................................................................................................4 4.0 Building 96 ­ Operational Background

  14. Radiation Protection Surveys in Clinical Areas

    E-Print Network [OSTI]

    Jia, Songtao

    Radiation Protection Surveys in Clinical Areas Procedure: 7.521 Created: 4/23/2014 Version: 1 as low as reasonably achievable (ALARA) it is necessary to perform routine radiation protection surveys minute (DPM) or below. Results should be recorded in DPM. a. Survey Areas #12;Radiation Protection

  15. Industrial & Systems Engineering Areas of Engineering Interests

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial & Systems Engineering Areas of Engineering Interests The Department of Industrial and Systems Engineering understands our students may work as Industrial Engineers in other engineering industries, and to help prepare them for these careers, the ISE Areas of Interest was formulated. The courses

  16. Pine Ridge Area Community Wildfire Protection Plan

    E-Print Network [OSTI]

    Farritor, Shane

    Pine Ridge Area Community Wildfire Protection Plan Update 2013 West Ash Fire: Wednesday August 29 the boundary of the original plan to include all the area within the Upper Niobrara White Natural Resource, 2012 #12;Facilitated by: Nebraska Forest Service In cooperation with: Region 23 Fire Protection

  17. amplified genomic areas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to usually as "Solutions") offers 18 focus areas covering a wealth of genetics and genomics areas, Biotechnology Websites Summary: ") offers 18 focus areas covering a wealth of...

  18. Controlling Tree Squirrels in Urban Areas

    E-Print Network [OSTI]

    Texas Wildlife Services

    2006-09-06T23:59:59.000Z

    In urban areas, tree squirrels can become pests when they eat pecans, berries, bird seed or vegetables from home gardens, or when they nest in attics. This leaflet discusses control of squirrels by fencing, trapping, poisoning and shooting....

  19. Redefining Housing Market Areas in Scotland

    E-Print Network [OSTI]

    Muir, Christopher Iain

    2009-01-01T23:59:59.000Z

    This research aims to address some of the limitations inherent in the methods currently used for identification of Housing Market Areas (HMAs) in Scotland. Firstly the conventionally defined geography of HMAs for the four ...

  20. Coal seam natural gas producing areas (Louisiana)

    Broader source: Energy.gov [DOE]

    In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

  1. 300 area TEDF permit compliance monitoring plan

    SciTech Connect (OSTI)

    BERNESKI, L.D.

    1998-11-20T23:59:59.000Z

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  2. Sierra Nevada Region - Western Area Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Sierra Nevada Region is one of five offices in the Western Area Power Administration. SN markets power in northern and central California, and portions of Nevada, to wholesale...

  3. astronautical aste overview majors & areas of emphasis

    E-Print Network [OSTI]

    Rohs, Remo

    - communications, propulsion, structures and mechanisms, thermal control, power systems, launch systems Astronautical engineers design, build and operate space vehicles used in exploration and applications of places in areas such as electric propulsion, plasma physics, heliospheric structure, fundamental processes

  4. Fast Adaptive Silhouette Area based Template Matching

    E-Print Network [OSTI]

    Zachmann, Gabriel

    Fast Adaptive Silhouette Area based Template Matching Daniel Mohr and Gabriel Zachmann If (Technical Informatics and Computer Systems) Prof. Dr. Gabriel Zachmann (Computer Graphics) Prof. Dr Template Matching Daniel Mohr and Gabriel Zachmann Clausthal University of Technology, Department

  5. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  6. Regulating new construction in historic areas

    E-Print Network [OSTI]

    Sellers-Garcia, Oliver

    2006-01-01T23:59:59.000Z

    This study is an examination of how the restrictiveness of different design regulations impacts the process of new construction in historic areas. The North End, South End, and Back Bay neighborhoods of Boston were identified ...

  7. Critical Areas Act of 1973 (Minnesota)

    Broader source: Energy.gov [DOE]

    This Act applies to certain areas of the state with important historic, cultural, or esthetic values, or natural systems with functions of greater than local significance. Plans for a given...

  8. Managing Imported Fire Ants in Urban Areas

    E-Print Network [OSTI]

    Drees, Bastiaan M.

    2006-08-17T23:59:59.000Z

    individual colonies may occur that require individual mound treatment. Properties that border untreated areas such as agricultural lands, water edges, flood plains and wilderness will likely have a continuous reinfes- tation of ant colonies unless...

  9. Using mammographic density to predict breast cancer risk: dense area or percent dense area

    E-Print Network [OSTI]

    Stone, Jennifer; Ding, Jane; Warren, Ruth M L; Duffy, Stephen; Hopper, John L

    2010-11-18T23:59:59.000Z

    and dense area were strongly associated with breast cancer risk; however, inclusion of dense area in a PDA-adjusted model improved the pre- diction of breast cancer risk, but not vice versa. This suggests that, in terms of a single parameter, dense area... dense area alone. Conclusions: As a single parameter, dense area provides more information than PDA on breast cancer risk. Introduction A number of prospective, nested case control studies have shown that, for women of the same age, those with greater...

  10. Broad-area tandem semiconductor laser

    SciTech Connect (OSTI)

    Chen, T.R.; Mehuys, D.; Zhuang, Y.H.; Mittelstein, M.; Wang, H.; Derry, P.L.; Kajanto, M.; Yariv, A.

    1988-10-17T23:59:59.000Z

    A tandem combination of a uniform gain broad-area semiconductor laser and a (lateral) periodic gain section displays a stable, near-diffraction-limited single-lobed far-field pattern. The GaAs/GaAlAs quantum well lasers display a high degree of coherence across 60-..mu..m-wide apertures provided that the broad-area section is sufficiently long.

  11. Area and Volume Problems 1. Given the formula for the area of a square, derive the formula for the area of a rectangle

    E-Print Network [OSTI]

    Lee, Carl

    Area and Volume Problems 1. Given the formula for the area of a square, derive the formula for the area of a rectangle of dimensions a and b. 2. Given the formula for the area of a rectangle, derive the formula for the area of a parallelogram of base b and height h. 3. Use calculus to derive the formula

  12. Environmental assessment for the salvage/demolition of 200 West Area, 200 East Area, and 300 Area steam plants

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This environmental assessment has been prepared to assess potential environmental impacts associated with the US Department of Energy`s proposed action: the salvage/demolition of the 200 West Area, 200 East Area, and 300 Area Steam Plants and steam distribution piping. Impact information will be used by the US Department of Energy, Richland Operations Office Manager, to determine if the proposed action is a major federal action significantly affecting the quality of the human environment. If the proposed action is determined to be major and significant, an environmental impact statement will be prepared. If the proposed action is determined not to be major and significant, a Finding of No Significant Impact (FONSI) will be issued and the action can proceed. The proposed action involves the salvage and demolition of the 200 West Area, 200 East Are, and 300 Area steam plants and their associated steam distribution piping, equipment, and ancillary facilities. Activities include the salvaging and recycling of all materials, wastes, and equipment where feasible, with waste minimization efforts utilized.

  13. Free-surface flows from Kinect : Feasibility and limits Benoit Comb`es1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    is to evaluate the ability of the Kinect sensor to estimate time- dependent 3D free-surface geometries (Section 2 Hertz 320240 RGB sensor, a 30 Hertz 320240 infrared sensor and an infrared pattern projector. Range on the object under study is captured by the infrared sensor and the analysis of this projection is used

  14. Metropolitan area network support at Fermilab

    SciTech Connect (OSTI)

    DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

    2007-09-01T23:59:59.000Z

    Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

  15. The QUEST Large Area CCD Camera

    E-Print Network [OSTI]

    Charlie Baltay; David Rabinowitz; Peter Andrews; Anne Bauer; Nancy Ellman; William Emmet; Rebecca Hudson; Thomas Hurteau; Jonathan Jerke; Rochelle Lauer; Julia Silge; Andrew Szymkowiak; Brice Adams; Mark Gebhard; James Musser; Michael Doyle; Harold Petrie; Roger Smith; Robert Thicksten; John Geary

    2007-02-21T23:59:59.000Z

    We have designed, constructed and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back illuminated devices with 13 um x 13 um pixels. The camera covers an area of 4.6 deg x 3.6 deg on the sky with an active area of 9.6 square degrees. This camera has been installed at the prime focus of the telescope, commissioned, and scientific quality observations on the Palomar-QUEST Variability Sky Survey were started in September of 2003. The design considerations, construction features, and performance parameters of this camera are described in this paper.

  16. Notification of Transfer of the Bliss and Laughlin, New York, FUSRAP Site to DOE for Long-Term Stewardship

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New York,Niagarapf-

  17. POST-REMEDIAL RADIOLOGICAL DOSE AND RISK ASSESSMENT FOR THE BLISS & LAUGHLIN SITE BUFFALO, NEW YORK

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +NewAugust 4,P -.,. ~i TABLE

  18. Rye Patch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLand Focus AreaGeothermal Area Jump

  19. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    SciTech Connect (OSTI)

    CARRELL, R D

    2002-07-16T23:59:59.000Z

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  20. On uniformly subelliptic operators and stochastic area

    E-Print Network [OSTI]

    2008-08-12T23:59:59.000Z

    Nov 27, 2007 ... area, which generalizes previous works of LyonsStoica and then ..... ?a;x. B(x0,r) = inf. { t ? 0 : X a;x t. /? B (x0,r). } ,. Pa;x. B(x0,r) (t, ) = P.

  1. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI Big Area Additive Manufacturing Neutron Characterization for AM Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  2. Cod. Fisc. 90031700322 AREA Science Park

    E-Print Network [OSTI]

    Cod. Fisc. 90031700322 AREA Science Park Padriciano 99 34149 Trieste, ITALY Tel: +39-040-37571 Fax Trieste and champion of the Trieste Science System Paolo Budinich, co-founder of the Abdus Salam International Centre for Theoretical Physics in Trieste, passed away on 14 November 2013. For over 50 years one

  3. West Central North East Area of Tucson

    E-Print Network [OSTI]

    Hall, Sharon J.

    a, b) in urbanized areas. The Tucson Hummingbird Project (THP) is a citizen-science, reconciliation for migrating ones. Citizen Science and OutreachCitizen Science and Outreach The latter was achieved with citizen scientists via large-scale outreach to the local community. Projects such as the THP can

  4. USACE Small Business Area of Responsibility

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ACE Page 1 USACE Small Business Area of Responsibility OFC CODE STREET CITY ST ZIP TELEPHONE D S N-761-4609 Deputy to PARCs , Office of Small Business Prog, HQ U.S. Army Corps of CESB 60 Forsyth Street RM10M15

  5. Postdoctoral Scholar position Area: Ethical Leadership

    E-Print Network [OSTI]

    de Leon, Alex R.

    Postdoctoral Scholar position Area: Ethical Leadership Duration: 2 Years Start date: Negotiable at the University of Calgary is accepting applications for a Postdoctoral Fellow in Ethical Leadership. Job Description: The Canadian Centre for Advanced Leadership in Business (CCAL), in the Haskayne School

  6. MFR PAPER 1170 Water Surface Area Within

    E-Print Network [OSTI]

    in hectares for each subsubarea within each subarea. Conversion factor Central latllude Stallstlcal hectares the Gulf coa t. especiall y tho e concerning im- pact of energy-related development. METHODS Water surface.-Converslon factors (hectares per planimeter unit) used to convert average planimeter units to area

  7. Geophysical investigations of certain Montana geothermal areas

    SciTech Connect (OSTI)

    Wideman, C.J. (Montana Bureau of Mines and Geology, Butte); Dye, L.; Halvorson, J.; McRae, M.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    Selected hot springs areas of Montana have been investigated by a variety of geophysical techniques. Resistivity, gravity, seismic, and magnetic methods have been applied during investigations near the hot springs. Because the geology is extremely varied at the locations of the investigations, several geophysical techniques have usually been applied at each site.

  8. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Mark R. Cole

    2013-12-01T23:59:59.000Z

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and cracking. The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  9. MAGNITUDE OF IMPERVIOUS SURFACES IN URBAN AREAS

    E-Print Network [OSTI]

    Pitt, Robert E.

    Quality Database NURP Nationwide Urban Runoff Program P Phosphorus PLSS Public Land Survey System QA Chemical Oxygen Demand DCIA Directly Connected Impervious Areas DOQQ Digital Ortho Quarter Quads EIA Total Suspended Solids USDA Unite States Department of Agriculture USGS Unites States Geological Survey

  10. ARLINGTON/DEFOREST AREA CATERING INFORMATION

    E-Print Network [OSTI]

    Balser, Teri C.

    ARLINGTON/DEFOREST AREA CATERING INFORMATION Rude's Family Catering DeForest, WI 608-846-5959 (Debbie) Roadside Grill DeForest, WI 608-846-1874 (Pete) Piggly Wiggly Poynette, WI 608-635-2647 (Heidi INFORMATION Holiday Inn Express 7184 Morrisonville Rd. DeForest, WI 53532 608-846-8686 toll free 800-HOLIDAY

  11. 100-B area technical baseline report

    SciTech Connect (OSTI)

    Carpenter, R.W.

    1994-09-01T23:59:59.000Z

    This document supports the environmental remediation effort of the 100-B Area by providing remediation planners with key data that characterize the 100-B and 100-C Reactor sites. It provides operational histories of the 100-B and 100-C Reactors and each of their associated liquid and solid waste sites.

  12. n. Area Dipartimento Proponente Titolo Finanziamento

    E-Print Network [OSTI]

    Guidoni, Leonardo

    Breuil (Monte Circeo) e di altri siti del Lazio meridionale, quale possibile area rifugio nel Pleistocene'enteropatogeno Shigella flexneri. 5.000,00 si 13 A Dip. Biologia e biotecnologie BIAGIONI Stefano Biochemical biotecnologie CACCHIONE Stefano Functional characterization of Drosophila telomeres 5.000,00 17 A Dip. Biologia

  13. Nutrient Management Examination Competency Areas Individual Specialists

    E-Print Network [OSTI]

    Guiltinan, Mark

    Management: Soil Health 2. Understand how to use soil survey data and maps in nutrient management planning and experience relating to nutrient management planning and plan development. These competency areas function Management Act (Act 38): Who Is Affected? 3. Know the required components of a nutrient management plan

  14. Determination of leakage areas in nuclear piping

    SciTech Connect (OSTI)

    Keim, E. [Siemens/KWU, Erlangen (Germany)

    1997-04-01T23:59:59.000Z

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  15. Campus Area Housing RENTAL RESOURCE GUIDE

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    , faculty, staff, communi- ty members, and area property owners and management companies. For more they live, have access to the academic and personal support programs and services offered by UW owned properties that participate in PHC. PHC property owners and managers provide enhanced services

  16. Turkish Trailblazer: Boosting Rural Areas through Business

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    okgezen Reviewed by Aline Kraemer Sector Consumer Products Enterprise Class Large Domestic Company her company and the economic and social welfare of rural areas of Turkey. To achieve success, Ms production units in impoverished parts of Turkey in six years. Hey Textile's investment has improved

  17. Navasota river crossings in a selected area

    E-Print Network [OSTI]

    Andrews, George Thomas

    1994-01-01T23:59:59.000Z

    disappears with the passing of each generation of the population. The need for study in areas of historical and cultural information is primary. This is a study of crossings on the Navasota River between Brazos County, Texas and the adjacent counties...

  18. Areas of Specialization: 2014 Page 1 B.S. Degree in Electrical Engineering Areas of Specialization

    E-Print Network [OSTI]

    Piao, Daqing

    Areas of Specialization: 2014 Page 1 B.S. Degree in Electrical Engineering Areas of Specialization and B.S. Degree in Computer Engineering Requirements for Degree Plans School of Electrical and Computer This document provides enrollment guidance for all students in the School of Electrical and Computer Engineering

  19. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ``Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility`` issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan.

  20. 100 Area and 300 Area Component of the RCBRA Fall 2005 Data Compilation

    SciTech Connect (OSTI)

    J.M. Queen

    2006-05-30T23:59:59.000Z

    The purpose of this report is to provide a brief description of the sampling approaches, a description of the samples collected, and the results for the Fall 2005 sampling event. This report presents the methods and results of the work to support the 100 Area and 300 Area Component of the River Corridor Baseline Risk Assessment.

  1. Electrohydrodynamically driven large-area liquid ion sources

    DOE Patents [OSTI]

    Pregenzer, Arian L. (Corrales, NM)

    1988-01-01T23:59:59.000Z

    A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.

  2. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  3. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  4. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-05-01T23:59:59.000Z

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste.

  5. Superfund record of decision (EPA Region 2): Federal Aviation Administration Technical Center (Area 29 - Fire Training and Area K - storage area near area 29), Altantic County, Atlantic City International Airport, NJ, September 20, 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This decision document presents the selected remedial action for Area 29, the Fire Training Area and Area K, a former drum and tank storage area located adjacent to Area 29 at the FAA Technical Center, Atlantic City International Airport, New Jersey. The selected remedy for Areas 29 and K address the principal threat by controlling the migration of and treating dissolved chemicals in ground water. Contaminated soils will be excavated and disposed of offsite.

  6. Kirkland gets license in hot Philippines area

    SciTech Connect (OSTI)

    Kirkland, A.S.

    1992-08-03T23:59:59.000Z

    This paper reports that Kirkland As, Oslo, has received a geophysical survey and exploration contract (GSEC) in a sizzling exploration and development theater off the Philippines. The license covers about 6,000 sq miles of undisputed waters, with depths mostly less than 300 ft, and lies in the Reed Bank area off Northwest Palawan Island, where several major oil and gas strikes have been made recently. Kirkland has 1 year in which to carry out its seismic work commitment. The terms of the GSEC then give an option to drill one well in a 6 month period. Once the results have been analyzed, the company can either drill another well or enter into a service contract for the license. Kirkland has a 65% share in the license, with the remainder split between Philippine companies Philodrill Corp., Beguet Mining Corp. subsidiary Petrofields, and Seafront Resources Corp. The Philippines is one of Kirkland's main areas of activity, the Kirkland Commercial Manager Ralph Baxter.

  7. Linear tailored gain broad area semiconductor lasers

    SciTech Connect (OSTI)

    Lindsey, C.P.; Mehuys, D.; Yariv, A.

    1987-06-01T23:59:59.000Z

    Tailored gain semiconductor lasers capable of high-power operation with single-lobed, nearly diffraction limited beamwidths only a few degrees wide have been demonstrated in proton implanted chirped arrays and ''halftone'' broad area lasers. The authors analyze lasers with a linear gain gradient, and obtain analytic approximations for their unsaturated optical eigenmodes. Unlike a uniform array, the fundamental mode of a linear tailored gain laser is the mode at threshold. Mode discrimination may be controlled by lasing the spatial gain gradient. All modes of asymmetric tailored gain waveguides have single-lobed far-field patterns offset from 0/sup 0/. Finally, they utilize tailored gain broad area lasers to make a measurement of the antiguiding parameter, and find b = 2.5 +- 0.5, in agreement with previous results.

  8. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  9. The Downtown Area of Jonestown, Texas.

    E-Print Network [OSTI]

    Booth, Geoffrey; Molina, Daniel; Santos, Alexander; Garcia, Laura; Garcia, Sarah; Olivarez, Cristopher; Wolff, Alec; Richarson, Jennifer; Romero, Megan; Beckett, Katherine; Strom, Robert; Cheek, Joseph; Davis, Zachary; Guerra, Daniel; McIntyre, Scott; Bishop, William; Hoff, Austin; Hernandez, Alex; Stewart, Sean; Kulka, William; Whitis, Dillon; Couvillion, Sarah; English, Garrett; Vasylyeva, Anastasiya; Allen, Jacob; Jorgenson, Davis; Kaska, Michael; Terrazas, Nathan; Barnete, Beau; Garcia, Karina; Cruz, Sarah; Harwell, Ethan

    2014-10-03T23:59:59.000Z

    for walking and running Research (including source): No name trail was about half a mile long and Jones Brothers Park is a huge 32 acre park. Source- (Personal experience and City of Jonestown website) Analysis: On my visit to Jonestown we got to walk... of public parks and exercise areas Research (including source): Jones Brother Park, Firemens Park, Veterans Park, No name trial- Source (Marilee Pfannstiel, City of Jonestown Website) Analysis: All three parks are great for community gatherings...

  10. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  11. Functional Area Criteria & Review Approach Documents

    Broader source: Energy.gov [DOE]

    CRADS provided on this page are provided as examples of functional area Objectives and Criteria used to evaluate how requirements are meet. They are only examples and should not be utilized as is. In accordance with DOE Standard 3006-2010, CRADs should be developed by team members to reflect the specifics of the proposed review (i.e., breadth and depth) as defined in the approved Plan of Action.

  12. North Area Right-of-Way Maintenance Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Area Right-of-Way Maintenance Project North Area Right-of-Way Maintenance Project Western FONSI (PDF - 487 KB) Final Environmental Assessment (PDF - 4200 KB) Environmental...

  13. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique...

  14. THURSDAY: Deputy Secretary of Energy to Visit Western Area Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THURSDAY: Deputy Secretary of Energy to Visit Western Area Power Administration Transmission Substation THURSDAY: Deputy Secretary of Energy to Visit Western Area Power...

  15. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Environmental Management (EM)

    Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf More Documents & Publications Computational Advances in Applied...

  16. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details Location Lightning Dock Geothermal Area...

  17. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity...

  18. area linares precordillera: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image through flexible fiber bundle One set of optics per viewport 11 12; tight environment high radiation area non-serviceable area passive components...

  19. azilal moroccan area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image through flexible fiber bundle One set of optics per viewport 11 12; tight environment high radiation area non-serviceable area passive components...

  20. areas naturais protegidas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image through flexible fiber bundle One set of optics per viewport 11 12; tight environment high radiation area non-serviceable area passive components...

  1. area strontium-90 treatability: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image through flexible fiber bundle One set of optics per viewport 11 12; tight environment high radiation area non-serviceable area passive components...

  2. area finnish lapland: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image through flexible fiber bundle One set of optics per viewport 11 12; tight environment high radiation area non-serviceable area passive components...

  3. area mercantour massif: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image through flexible fiber bundle One set of optics per viewport 11 12; tight environment high radiation area non-serviceable area passive components...

  4. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  5. Energy Innovation Hub Report Shows Philadelphia-area Building...

    Office of Environmental Management (EM)

    Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support...

  6. area skamania county: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are subject to debris flowsBurned Area Emergency Response Report July 8, 2010 Schultz Fire Coconino National Forest 12;Executive Summary Burned Area Report Cost Benefit...

  7. Petrography Analysis At Kilauea East Rift Geothermal Area (Quane...

    Open Energy Info (EERE)

    Petrography Analysis At Kilauea East Rift Geothermal Area (Quane, Et Al., 2003) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique...

  8. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area...

  9. areas vulnerabilities impacts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on residential electricity consumption for the nine San Francisco Bay Area counties 22 Seismic vulnerability analysis of moderate seismicity areas using in situ experimental...

  10. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Area (Fairbank Engineering Ltd, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date...

  11. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Home Exploration Activity: Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

  12. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Activity: Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal Literature Review Activity Date...

  14. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

  15. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area...

  16. Economic Potential of CHP in Detroit Edison Service Area: The...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective,...

  17. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

  18. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

  19. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

  20. Energy Department Recognizes San Antonio Area Partners for Advancing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    San Antonio Area Partners for Advancing Energy Efficiency Energy Department Recognizes San Antonio Area Partners for Advancing Energy Efficiency April 15, 2015 - 10:36am Addthis...

  1. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

  2. area environmental monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    valley of Santa Barbara County, California, with agricultural fields located in the area between Lompoc and the coast. As with most California coastal valleys, the area is cool...

  3. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Nash & D., 1997) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Geographic Information System Activity Date...

  4. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration...

  5. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Thermal...

  6. Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan

    SciTech Connect (OSTI)

    Robinson, S.; Pugsley, M.

    1981-01-01T23:59:59.000Z

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

  7. Geothermal resource area 6: Lander and Eureka Counties. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01T23:59:59.000Z

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

  8. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  9. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect (OSTI)

    NELSON RL

    2008-07-18T23:59:59.000Z

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  10. Expanding the Area of Gravitational Entropy

    E-Print Network [OSTI]

    R. B. Mann

    2002-11-12T23:59:59.000Z

    I describe how gravitational entropy is intimately connected with the concept of gravitational heat, expressed as the difference between the total and free energies of a given gravitational system. From this perspective one can compute these thermodyanmic quantities in settings that go considerably beyond Bekenstein's original insight that the area of a black hole event horizon can be identified with thermodynamic entropy. The settings include the outsides of cosmological horizons and spacetimes with NUT charge. However the interpretation of gravitational entropy in these broader contexts remains to be understood.

  11. Area C borrow Site Habitat Assessment

    SciTech Connect (OSTI)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2009-12-04T23:59:59.000Z

    A habitat quality assessment was performed within selected portions of the proposed Area C Borrow Source. The previously identified Bitterbrush / Indian ricegrass stabilized dune element occurrence was determined to be better described as a sagebrush /needle-and-thread grass element occurrence of fair to good quality. A new habitat polygon is suggested adjacent to this element occurrence, which would also be sagebrush/needle-and-thread grass, but of poor quality. The proposed site of initial borrow site development was found to be a very low quality community dominated by cheatgrass.

  12. 100-N Area underground storage tank closures

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-08-01T23:59:59.000Z

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  13. Larderello Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development Jump to:WaveLarderello Geothermal Area

  14. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,Little Valley Geothermal Area (Redirected

  15. Akun Strait Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,Akun Strait Geothermal Area

  16. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED LightingOutdoor Area

  17. Western Area Power Administration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook, Minnesota: EnergyWestcreek,Area Power

  18. Salavatli Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChange ResilienceSalavatli Geothermal Area

  19. Salton Sea Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton Sea Geothermal Area Jump to: navigation, search

  20. Fallon Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway, Kansas: EnergyFallon Geothermal Area

  1. Wilbur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMapUtilityRateEntryHelperVideoVimeoWilbur Springs

  2. Ahuachapan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWindcapital GmbHAhuachapan Geothermal Area Jump

  3. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter icon » Property:GeothermalArea Jump to:

  4. Clean Cities: Chicago Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12 BONNEVILLECoast CleanChicago Area Clean

  5. Kilauea Summit Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: EnergyFacilityKilauea Summit Geothermal Area

  6. Yamagawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:StateXiningYamagawa Geothermal Area

  7. Patuha Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits Pvt LtdPatriotPatuha Geothermal Area Jump

  8. Moana Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana Geothermal Area Jump to:

  9. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep GradientWashington:Stillwater Geothermal Area

  10. Svartsengi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co LtdLLC Place:Svartsengi Geothermal Area Jump to:

  11. Emmons Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy InformationEmily, Minnesota:Emmons Lake Geothermal Area

  12. North Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources JumpOklahoma:North Brawley Geothermal Area Jump to:

  13. Oita Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of State LandsOhio: EnergyOita Geothermal Area

  14. Okeanskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of State LandsOhio:Okeanskaya Geothermal Area

  15. Maibarara Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP)Texas:MSML JumpMahopac,

  16. Manley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area6612134°,Manistee County,ManitouManley

  17. Teels Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVC JumpTeels Marsh Geothermal Area

  18. Tokamachi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldsonInformation 61Tokamachi Geothermal Area Jump to:

  19. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayoOregon:Medical Area Total

  20. Southern CA Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc Jump to: navigation, searchCA Area Jump

  1. Aqua Quieta Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT), IndiaOpen EnergyQuieta Geothermal Area

  2. Circle Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset CountryChoosEV JumpCircle Geothermal Area

  3. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California: Energy ResourcesMori Geothermal Area

  4. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotion Energy Jump to: navigation,Area Jump

  5. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotion Energy Jump to: navigation,Area

  6. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers'sAIRMaster+APFED-GoodAPIsAREA USA

  7. FY 2000 Deactivation and Decommissioning Focus Area Annual Report

    SciTech Connect (OSTI)

    None

    2001-03-01T23:59:59.000Z

    This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

  8. NIH POLICY MANUAL 3015 -Admittance of Minors to Hazardous Areas

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3015 - Admittance of Minors to Hazardous Areas Issuing Office: OD/OM/ORS/DOHS 301 on admittance of minors to hazardous work areas that may contain inherently or potentially hazardous chemicals. Definitions: 1. Hazardous Area Any area that poses an actual or potential risk of illness or injury

  9. Contributed Paper Protected-Area Boundaries as Filters of

    E-Print Network [OSTI]

    Kratochvl, Lukas

    Contributed Paper Protected-Area Boundaries as Filters of Plant Invasions LLEWELLYN C. FOXCROFT of Pretoria, Pretoria 0002, South Africa Abstract: Human land uses surrounding protected areas provide propagules for colonization of these areas by non-native species, and corridors between protected-area

  10. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Y. E. Townsend

    2003-06-01T23:59:59.000Z

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  11. Turbine airfoil with controlled area cooling arrangement

    DOE Patents [OSTI]

    Liang, George

    2010-04-27T23:59:59.000Z

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  12. High surface area, high permeability carbon monoliths

    SciTech Connect (OSTI)

    Lagasse, R.R.; Schroeder, J.L. [Sandia National Labs., Albuquerque, NM (United States). Organic Materials Processing Dept.

    1994-12-31T23:59:59.000Z

    The goal of this work is to prepare carbon monoliths having precisely tailored pore size distribution. Prior studies have demonstrated that poly(acrylonitrile) can be processed into a precursor having tailored macropore structure. Since the macropores were preserved during pyrolysis, this synthetic process provided a route to porous carbon having macropores with size =0.1 to 10{mu}m. No micropores of size <2 nm could be detected in the carbon, however, by nitrogen adsorption. In the present work, the authors have processed a different polymer, poly(vinylidene chloride) into a macroporous precursor, Pyrolysis produced carbon monoliths having macropores derived from the polymer precursor as well as extensive microporosity produced during the pyrolysis of the polymer. One of these carbons had BET surface area of 1,050 m{sup 2}/g and about 1.2 cc/g total pore volume, with about 1/3 of the total pore volume in micropores and the remainder in 1{mu}m macropores. No mesopores in the intermediate size range could be detected by nitrogen adsorption. Carbon materials having high surface area as well as micron size pores have potential applications as electrodes for double layer supercapacitors containing liquid electrolyte, or as efficient media for performing chemical separations.

  13. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  14. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  15. L AREA WASTEWATER STORAGE DRUM EVALUATION

    SciTech Connect (OSTI)

    Vormelker, P; Cynthia Foreman, C; Zane Nelson, Z; David Hathcock, D; Dennis Vinson, D

    2007-11-30T23:59:59.000Z

    This report documents the determination of the cause of pressurization that led to bulging deformation of a 55 gallon wastewater drum stored in L-Area. Drum samples were sent to SRNL for evaluation. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  16. Home Area Networks and the Smart Grid

    SciTech Connect (OSTI)

    Clements, Samuel L.; Carroll, Thomas E.; Hadley, Mark D.

    2011-04-01T23:59:59.000Z

    With the wide array of home area network (HAN) options being presented as solutions to smart grid challenges for the home, it is time to compare and contrast their strengths and weaknesses. This white paper examines leading and emerging HAN technologies. The emergence of the smart grid is bringing more networking players into the field. The need for low consistent bandwidth usage differs enough from the traditional information technology world to open the door to new technologies. The predominant players currently consist of a blend of the old and new. Within the wired world Ethernet and HomePlug Green PHY are leading the way with an advantage to HomePlug because it doesn't require installing new wires. In the wireless the realm there are many more competitors but WiFi and ZigBee seem to have the most momentum.

  17. Ashland Area Support Substation Project : Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-06-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power & Light Company`s (PP&L) 115-kilovolt (kV) transmission lines and through PP&L`s Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP&L to allow transfer of three megawatts (MW`s) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP&L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

  18. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. 2005 Diesel Engine Emissions...

  19. area dnapl characterization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assumes to consider the images in terms of area with the same texture. In uncertain environment, it could be better to take an imprecise decision or to reject the area...

  20. Comparison with traditional calibration Wide Area Camera Calibration Using

    E-Print Network [OSTI]

    Stanford University

    Comparison with traditional calibration Wide Area Camera Calibration Using Virtual Calibration Objects Xing Chen, James Davis, Philipp Slusallek Goal Calibrate many cameras arranged to cover a wide area working volume. Building a large physical calibration object is impractical. Solution Build

  1. The Lower Mississippi Valley as a Language Area

    E-Print Network [OSTI]

    Kaufman, David Vincent

    2014-08-31T23:59:59.000Z

    It has been hypothesized that the Southeastern U.S. is a language area, or Sprachbund. However, there has been little systematic examination of the supposed features of this area. The current analysis focuses on a smaller ...

  2. IMPACTS OF CLIMATE CHANGE ON SAN FRANCISCO BAY AREA

    E-Print Network [OSTI]

    IMPACTS OF CLIMATE CHANGE ON SAN FRANCISCO BAY AREA RESIDENTIAL ELECTRICITY CONSUMPTION anthropogenic climate change on residential electricity consumption for the nine San Francisco Bay Area counties with different meant temperatures on households' electricity consumption. The estimation uses a comprehensive

  3. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld...

    Open Energy Info (EERE)

    thermal gradient in the center of the areas is around 320C m- 1. We estimate total heat loss from the two areas to be about 6.1 and 2.3 MW. Given current thinking on the...

  4. GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS

    E-Print Network [OSTI]

    Til, C. J. Van

    2012-01-01T23:59:59.000Z

    1976, "Blowout o f a Geothermal Well", California Geology,in Rocks from Two Geothermal Areas'' , -- P1 anetary ScienceMonitoring Ground Movement in Geothermal Areas", Hydraul ic

  5. area consortium energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Solar Energy in Un-electrified Areas' in Namibia by Heidi Camesano, Terri 54 FINITE ENERGY CYLINDERS OF SMALL AREA H. HOFER 1, K. WYSOCKI 2, AND E. ZEHNDER 3 Mathematics...

  6. Packing efficiency and accessible surface area of crumpled graphene

    E-Print Network [OSTI]

    Cranford, Steven Wayne

    Graphene holds promise as an ultracapacitor due to its high specific surface area and intrinsic capacitance. To exploit both, a maximum surface area must be accessible while the two-dimensional (2D) graphene is deformed ...

  7. Incremental Updates to Scenes Illuminated by Area Light Sources

    E-Print Network [OSTI]

    Chrysanthou, Yiorgos

    by a singular sharp boundary (umbra), but also have partially lit areas (penumbra). In this paper we present. The boundaries between lit and penumbra and between penumbra and umbra areas are called the extremal boundaries

  8. A comparative analysis of area navigation systems for general aviation

    E-Print Network [OSTI]

    Dodge, Steven Malcolm

    1973-01-01T23:59:59.000Z

    Within the next decade area navigation is to become the primary method of air navigation within the United States. There are numerous radio navigation systems that offer the capabilities of area navigation to general ...

  9. Decomposition algorithms for multi-area power system analysis

    E-Print Network [OSTI]

    Min, Liang

    2007-09-17T23:59:59.000Z

    A power system with multiple interconnected areas needs to be operated coordinately for the purposes of the system reliability and economic operation, although each area has its own ISO under the market environment. In consolidation of different...

  10. area index lai: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models CiteSeer Summary: Abstract: Leaf Area Index (LAI) is a key parameter in the...

  11. area part ii: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models CiteSeer Summary: Abstract: Leaf Area Index (LAI) is a key parameter in the...

  12. Composite System based Multi-Area Reliability Evaluation

    E-Print Network [OSTI]

    Nagarajan, Ramya

    2011-02-22T23:59:59.000Z

    of such systems. Multi - area reliability evaluation is typically done by considering equivalent tie lines between different areas in an integrated power system. It gives approximate results for the reliability indices of a power system as it models each...

  13. 100 Area soil washing treatability test plan

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This test plan describes specifications, responsibilities, and general methodology for conducting a soil washing treatability study as applied to source unit contamination in the 100 Area. The objective ofthis treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. The purpose of separating these fractions is to minimize the volume of soil requiring permanent disposal. It is anticipated that this treatability study will be performed in two phases of testing, a remedy screening phase and a remedy selection phase. The remedy screening phase consists of laboratory- and bench-scale studies performed by Battelle Pacific Northwest laboratories (PNL) under a work order issued by Westinghouse Hanford Company (Westinghouse Hanford). This phase will be used to provide qualitative evaluation of the potential effectiveness of the soil washing technology. The remedy selection phase, consists of pilot-scale testing performed under a separate service contract to be competitively bid under Westinghouse Hanford direction. The remedy selection phase will provide data to support evaluation of the soil washing technology in future feasibility studies for Interim Remedial Measures (IRMs) or final operable unit (OU) remedies. Performance data from these tests will indicate whether applicable or relevant and appropriate requirements (ARARs) or cleanup goals can be met at the site(s) by application of soil washing. The remedy selection tests wig also allow estimation of costs associated with implementation to the accuracy required for the Feasibility Study.

  14. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2001-01-01T23:59:59.000Z

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  15. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  16. Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004) Exploration Activity...

  17. Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell, 2004) Exploration Activity...

  18. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity...

  19. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details...

  20. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Exploration Activity Details Location...

  1. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Exploration Activity Details Location...

  2. Isotopic Analysis At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity...

  3. Cuttings Analysis At Roosevelt Hot Springs Area (Christensen...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Area (Christensen, Et Al., 1983) Exploration Activity...

  4. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration...

  5. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity...

  6. Preserving Area Coverage in Wireless Sensor Networks by using

    E-Print Network [OSTI]

    Boyer, Edmond

    a studied phenomenon. Sensor nodes are deployed over hostile or remote environments to monitor a target area

  7. Data Acquisition-Manipulation At Truckhaven Area (Layman Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Truckhaven Area (Layman Energy Associates, 2007)...

  8. The Business Role Focus Area From a business

    E-Print Network [OSTI]

    Coopers, Sony, Teijin, Umicore and Weyerhaeuser. The Business Role Focus Area aims to engage, equip and mobilize

  9. AREA DEL PERSONALE SETTORE PERSONALE DOCENTE E RICERCATORE

    E-Print Network [OSTI]

    Milano-Bicocca, Universit

    vota nei seggi telematici. IL CAPO AREA DEL PERSONALE (Dott. Francesco Battaglia) f.to Francesco Battaglia #12;

  10. area northeastern arizona: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona's Riparian Areas Environmental Sciences and Ecology Websites Summary: management, riparian ecology, riparian restoration, soils and soil ecology. Recent and...

  11. Energy and Switch Area Optimizations for FPGA Global Routing Architectures

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    13 Energy and Switch Area Optimizations for FPGA Global Routing Architectures YI ZHU, YUANFANG HU and wire style optimization, to reduce the energy and switch area of FPGA global routing architectures achieve up to 10% to 15% energy savings and up to 20% switch area savings in average for a set of seven

  12. ACCURATE MODELS FOR ESTIMATING AREA AND POWER OF FPGA IMPLEMENTATIONS

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    -circuit power and leak- age power. Models for large parametrized IP cores have been pre- sented in [6], [7]; [6] presents area models and detailed power model for fast Hadamard transform, and [7] presents area modelsACCURATE MODELS FOR ESTIMATING AREA AND POWER OF FPGA IMPLEMENTATIONS Lanping Deng, Kanwaldeep

  13. Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)

    E-Print Network [OSTI]

    Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated to be chemically hazardous and shall be kept in a Satellite Accumulation Area (SAA). The safety coordinator will keep a list of all SAA's in the division and must be notified before an accumulation area

  14. Stochastic Modeling of Multi-Area Wind Power Production

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou Department we present a stochastic model for multi-area wind production that is used for planning reserves model accounts for the inter-temporal and spatial dependencies of multi-area wind power production

  15. Identification of 300 Area Contaminants of Potential Concern for Soil

    SciTech Connect (OSTI)

    R.W. Ovink

    2010-04-05T23:59:59.000Z

    This report documents the process used to identify source area contaminants of potential concern (COPCs) in support of the 300 Area remedial investigation/feasibility study (RI/FS) work plan. This report also establishes the exclusion criteria applicable for 300 Area use and the analytical methods needed to analyze the COPCs.

  16. Critical Area Computation for Missing Material Defects in VLSI Circuits

    E-Print Network [OSTI]

    Papadopoulou, Evanthia

    Critical Area Computation for Missing Material Defects in VLSI Circuits Evanthia Papadopoulou IBM the problem of computing critical area for miss- ing material defects in a circuit layout. The extraction of critical area is the main computational problem in VLSI yield prediction. Missing material defects cause

  17. AREA-EFFICIENTHIGH-THROUGHPUTVLSI ARCHITECTUREFOR MAP-BASED TURBO EQUALIZER

    E-Print Network [OSTI]

    Singer, Andrew C

    AREA-EFFICIENTHIGH-THROUGHPUTVLSI ARCHITECTUREFOR MAP-BASED TURBO EQUALIZER Seok-Jun Lee, Naresh R an area-efficient MAP-based turbo equalizer VLSI architecture by proposing a symbol-based soft-input soft-interleaved com- putation with an area savings of 25%. 1. INTRODUCTION The turbo decoding technique has found

  18. 100 Area and 300 Area Component of the River Corridor Baseline Risk Assessment Spring 2006 Data Compilation

    SciTech Connect (OSTI)

    J. M. Queen; S. G. Weiss

    2006-11-20T23:59:59.000Z

    The purpose of this report is to describe the sampling approaches, modifications made to the 100 Area and 300 Area component of the RCBRA Sampling and Analysis Plan, summarize validation efforts, and provide sample identification numbers.

  19. Sediment Properties: E-Area Completion Project

    SciTech Connect (OSTI)

    Millings, M.; Bagwell, L.; Amidon, M.; Dixon, K.

    2011-04-29T23:59:59.000Z

    To accommodate a future need for additional waste disposal facilities at the Savannah River Site, the Solid Waste Management Division (SWMD) designated nine additional plots for development (Kasraii 2007; SRS 2010); these plots are collectively known as the E Area Completion Project (ECP). Subsurface samples were collected from ECP plots 6, 7, 8 and 9 (Figure 1) for chemical and physical property analyses to support Performance Assessment (PA) and Special Analyses (SA) modeling. This document summarizes the sampling and analysis scheme and the resultant data, and provides interpretations of the data particularly in reference to existing soil property data. Analytical data in this document include: gamma log, cone penetrometer log, grain size (sieve and hydrometer), water retention, saturated hydraulic conductivity (falling head permeameter), porosity, dry bulk density, total organic carbon, x-ray diffraction, and x-ray fluorescence data. SRNL provided technical and safety oversight for the fieldwork, which included completion of eight soil borings, four geophysical logs, and the collection of 522 feet of core and 33 Shelby tubes from ECP plots 6, 7, 8, and 9. Boart Longyear provided sonic drilling and logging services. Two soil borings were completed at each location. The first set of boreholes extended into (but did not fully penetrate) the Warley Hill Formation. These boreholes were continuously cored, then geophysically (gamma ray) logged. The recovered core was split, photographed, and described; one half of the core was archived at SRS's Core Lab facilities, and the remaining half was consumed as necessary for testing at SRS and off-site labs. Core descriptions and geophysical data were used to calculate target elevations for Shelby tube samples, which were obtained from the second set of boreholes. Shelby tubes were shipped to MACTEC Engineering and Consulting Inc. (MACTEC) in Atlanta for physical property testing. SRNL deployed their Site Characterization and Analysis Penetrometer System (SCAPS) cone penetrometer test (CPT) truck at ECP plots 6, 7, 8 and 9 to collect inferred lithology data for the vadose zone. Results from this study are used to make recommendations for future modeling efforts involving the ECP plots. The conceptual model of the ECP hydrogeology differs from the conceptual model of the current ELLWF disposal area in that for the ECP plots, the topography (ground surface) is generally lower in elevation; The Upland and top of Tobacco Road lithostratigraphic units are missing (eroded); The water table occurs lower in elevation (i.e., it occurs in lower stratigraphic units); and the Tan Clay Confining Zone (TCCZ) often occurs within the vadose zone (rather than in the saturated zone). Due to the difference in the hydrogeology between the current ELLWF location and the ECP plots, different vadose zone properties are recommended for the ECP plots versus the properties recommended by Phifer et al. (2006) for the current disposal units. Results from this study do not invalidate or conflict with the current PA's use of the Upper and Lower Vadose Zone properties as described by Phifer et al. (2006) for the current ELLWF disposal units. The following modeling recommendations are made for future modeling of the ECP plots where vadose zone properties are required: (1) If a single vadose zone property is preferred, the properties described by Phifer et al. (2006) for the Upper Vadose Zone encompass the general physical properties of the combined sands and clays in the ECP vadose zone sediments despite the differences in hydrostratigraphic units. (2) If a dual zone system is preferred, a combination of the Lower Zone properties and the Clay properties described by Phifer et al. (2006) are appropriate for modeling the physical properties of the ECP vadose zone. The Clay properties would be assigned to the Tan Clay Confining Zone (TCCZ) and any other significant clay layers, while the Lower Zone properties would be assigned for the remainder of the vadose zone. No immediate updates or changes are recommended for

  20. Mixed waste focus area alternative technologies workshop

    SciTech Connect (OSTI)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

    1995-05-24T23:59:59.000Z

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

  1. Alternatives to incineration. Technical area status report

    SciTech Connect (OSTI)

    Schwinkendorf, W.E. [BDM Federal, Inc., Albuquerque, NM (United States); McFee, J.; Devarakonda, M. [International Technology Corp., Albuquerque, NM (United States); Nenninger, L.L.; Fadullon, F.S. [Science Applications International Corp., Gaithersburg, MD (United States); Donaldson, T.L. [Oak Ridge National Lab., TN (United States); Dickerson, K. [Oak Ridge National Lab., TN (United States); [Rocky Flats Environmental Technology Site, Golden, CO (United States)

    1995-04-01T23:59:59.000Z

    Recently, the DOE`s Mixed Waste Integrated Program (MWIP) (superseded by the Mixed Waste Focus Area) initiated an evaluation of alternatives to incineration to identify technologies capable of treating DOE organically contaminated mixed wastes and which may be more easily permitted. These technologies have the potential of alleviating stakeholder concerns by decreasing off-gas volurties and the associated emissions of particulates, volatilized metals and radionuclides, PICs, NO{sub x}, SO{sub x}, and recombination products (dioxins and furans). Ideally, the alternate technology would be easily permitted, relatively omnivorous and effective in treating a variety of wastes with varying constituents, require minimal pretreatment or characterization, and be easy to implement. In addition, it would produce secondary waste stream volumes significantly smaller than the original waste stream, and would minimize the environmental health and safety effects on workers and the public. The purpose of this report is to provide an up-to-date (as of early 1995) compendium of iternative technologies for designers of mixed waste treatment facilities, and to identify Iternate technologies that may merit funding for further development. Various categories of non-thermal and thermal technologies have been evaluated and are summarized in Table ES-1. Brief descriptions of these technologies are provided in Section 1.7 of the Introduction. This report provides a detailed description of approximately 30 alternative technologies in these categories. Included in the report are descriptions of each technology; applicable input waste streams and the characteristics of the secondary, or output, waste streams; the current status of each technology relative to its availability for implementation; performance data; and costs. This information was gleaned from the open literature, governments reports, and discussions with principal investigators and developers.

  2. Wide Area Security Region Final Report

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin; Gronquist, James; Du, Pengwei; Nguyen, Tony B.; Burns, J. W.

    2010-03-31T23:59:59.000Z

    This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of system parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed technology. Recommendations for the future work have also been formulated.

  3. A study of offshore benthic communities in natural areas and in areas affected by dredging and dredged material disposal

    E-Print Network [OSTI]

    Henry, Clyde Allan

    1976-01-01T23:59:59.000Z

    A STUDY QF OFFSHORE BENTHIC COMMUNITIES IN NATURAL AREAS AND IN AREAS AFFECTED BY DREDGING AND DREDGED MATERIAL DISPOSAL A Thesis by CLYDE ALLAN HENRY e Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Biology A STCDY OF 0-FSHOBE BENTHIC COMKTNITIES IN NATURAL AREAS AND IN AREAS AFFECTED BY DREDGING AND DREDCFD NATERIAL DISPOSAL A Thesis by CLYDE ALLAN HENRY Approved...

  4. Multiple missions: The 300 Area in Hanford Site history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01T23:59:59.000Z

    This report provides an historical overview of the role of the 300 Area buildings at the Hanford Reservation. Topics covered are: Early fuel fabrication at the Hanford site (313 and 314 Buildings); N reactor fuel fabrication in the 300 Area; 305 test pile was Hanford`s first operating reactor; Early process improvement chemical research (321 and 3706 Buildings); Major 1952 and 1953 expansions in the 300 area (325 and 329 Buildings); Early 300 area facilities constructed to support reactor development (326 and 327 Buildings); Hanford site ventures with the peaceful atom (309, 308 and 318 Buildings); Modern 300 Area Buildings; Significant miscellaneous buildings in the 300 area; 300 Area process waste handling and disposal.

  5. Aquatic Natural Areas Analysis and Evaluation: Oak Ridge Reservation

    SciTech Connect (OSTI)

    Baranski, Dr. Michael J. [Catawba College

    2011-04-01T23:59:59.000Z

    This report presents an assessment of the natural area value of eight Aquatic Natural Areas (ANAs) and seven Aquatic Reference Areas (ARAs) on the Oak Ridge Reservation (ORR) in Anderson and Roane Counties in east Tennessee. It follows a previous study in 2009 that analyzed and evaluated terrestrial natural areas on the Reservation. The purpose of both studies was to evaluate and rank those specially designated areas on the Reservation that contain sensitive species, special habitats, and natural area value. Natural areas receive special protections through established statutes, regulations, and policies. The ORR contains 33,542 acres (13,574 ha) administered by the Department of Energy. The surface waters of the Reservation range from 1st-order to 5th-order streams, but the majority of the streams recognized as ANAs and ARAs are 1st- and 2nd-order streams. East Fork Poplar Creek is a 4th-order stream and the largest watershed that drains Reservation lands. All the waters of the Reservation eventually reach the Clinch River on the southern and western boundaries of the ORR. All available information was collected, synthesized, and evaluated. Field observations were made to support and supplement the available information. Geographic information system mapping techniques were used to develop several quantitative attributes about the study areas. Narrative descriptions of each ANA and ARA and tables of numerical data were prepared. Criteria for assessment and evaluation were developed, and eight categories of factors were devised to produce a ranking system. The evaluation factors used in the ranking system were: (A) size of area, (B) percentage of watershed protected, (C) taxa present with protected status, (D) overall biotic diversity, (E) stream features, (F) water quality and use support ratings, (G) disturbance regime, and (H) other factors. Each factor was evaluated on a 5-point ranking scale (0-4), and each area received a composite score, where 32 was the maximum score possible. A highly ranked ANA or ARA is one that is large in size compared to other areas, includes a greater proportion of the watershed within Reservation boundaries, contains a number of status taxa at high densities, exhibits a high overall biodiversity, has very good or excellent habitat and water quality, is well protected and isolated from disturbances, and shows several other characteristics that contribute to natural area value. In this report, the term 'natural area' is loosely defined as a terrestrial or aquatic system that exhibits, or is thought to exhibit, high natural integrity and other significant natural values. The purpose of the present study is to evaluate and rank the currently recognized Aquatic Natural Areas (ANAs) and Aquatic Reference Areas (ARAs) on the Oak Ridge Reservation (ORR) for their natural area value. A previous study (Baranski 2009) analyzed, evaluated, and ranked terrestrial areas (Natural Areas [NAs], Reference Areas [RAs], and Cooperative Management Areas [CMAs]) on the ORR for natural area value, and a precise methodology for natural area evaluation was developed. The present study is intended to be a complement and companion to the terrestrial area study and attempts to employ a similar methodology for aquatic areas so that aquatic and terrestrial areas can be compared on a similar scale. This study specifically develops criteria for assessing the ecological, biodiversity, and natural area importance and significance of aquatic systems on the Reservation in a relevant and consistent manner. The information can be integrated into the Tennessee Natural Heritage Program (http://tn.gov/environment/na/nhp.shtml) system and applied to potential new aquatic areas. Further, the information will be useful in planning, management, and protection efforts on the ORR.

  6. CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS

    SciTech Connect (OSTI)

    Lee, S.; Garrett, A.; Bollinger, J.

    2009-09-02T23:59:59.000Z

    Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some degree of flow communications between adjacent cells through the 9-in gap at the bottom of the tower cells as shown in Fig. 2. Detailed geometrical dimensions for the H-Area tower configurations are presented in the figure. The model was benchmarked and verified against off-site and on-site test results. The verified model was applied to the investigation of cooling fan and wind effects on water cooling in cells when fans are off and on. This report will discuss the modeling and test results.

  7. Geothermal br Resource br Area Geothermal br Resource br Area Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlan Geothermal Area Amatitlan Geothermal

  8. Geothermal br Resource br Area Geothermal br Resource br Area Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlan Geothermal Area Amatitlan

  9. Geothermal br Resource br Area Geothermal br Resource br Area Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlan Geothermal Area AmatitlanExtensional

  10. Geothermal br Resource br Area Geothermal br Resource br Area Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlan Geothermal Area

  11. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Rosensteel

    1997-01-01T23:59:59.000Z

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2.

  12. Vital area determination techniques at nuclear power plants

    SciTech Connect (OSTI)

    Pan, P.Y.

    1987-07-01T23:59:59.000Z

    This paper describes the vital area determination programs being conducted at the Los Alamos National Laboratory to support the Nuclear Regulatory Commission (NRC) in evaluating nuclear power plant licensees' compliance with safeguards/security requirements. These projects, the Vital Area Analysis (VAA) Program and the Vital Equipment Determination Techniques Research Study (VEDTRS), are designed to identify a plant's vital areas and to develop protection strategies against adversary threats in nuclear power plants.

  13. Ark-Tex Area Regional Public Transportation Coordination Plan

    E-Print Network [OSTI]

    Ark-Tex Council of Governments

    2006-11-30T23:59:59.000Z

    ? 30 corridor. The transportation network in the Ark-Tex area is managed and operated through two transit providers, a variety of organizations that provide or fund transportation in support of their primary programs (including public entities... and Texarkana proper. 3. Ark-Tex Area Agency on Aging (AAA) ? Senior transportation throughout the service area to meals and other services. 4. Northeast Texas Community College ? Service from Mt. Pleasant to the community college is provided by TRAX...

  14. A statistical analysis of personnel contaminations in 200 Area facilities

    SciTech Connect (OSTI)

    Wagner, M.A.; Stoddard, D.H.

    1983-05-18T23:59:59.000Z

    This study determined the frequency statistics of personnel contaminations in 200 Area facilities. These statistics are utilized in probability calculations for contamination risks, and are part of an effort to provide reliable information for use in safety studies. Data for this analysis were obtained from the 200 Area and the Tritium Area Fault Tree Data Banks and were analyzed with the aid of the STATPAC computer code.

  15. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect (OSTI)

    COOPER, J.R.

    2000-04-17T23:59:59.000Z

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  16. WESTERN AREA POWER ADMINISTRATION COMMENTS/CHANGES TO DRAFT RMR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WESTERN AREA POWER ADMINISTRATION COMMENTSCHANGES TO DRAFT RMR PA FOR ROUTINE MAINTENANCE DATED 101613 (REQUESTED ON DEC 18, 2014; EXTENDED THROUGH MARCH 10, 2014) AgencyTribe...

  17. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Zacharakis, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,...

  18. area multiyear program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been created to encourage companies to engage in behaviors that mitigate environmental impacts (e.g., recycling, emissions reduction). Many ski areas (more) Little,...

  19. area protein patterning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reifenberger, Ronald G. 64 STUDY: SHIFTS IN SETTLEMENT PATTERNS IN THE KYZIL AREA, CHELYABINSK DISTRICT. by CiteSeer Summary: The following paper focuses on the transitional...

  20. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass...

  1. Multispectral Imaging At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Pickles, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Geothermal Area (Pickles, Et...

  2. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova &...

  3. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...

    Open Energy Info (EERE)

    Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

  4. area integral estimates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    often employed in cellular telephony networks, where the data rates between the central Kansas, University of 125 An integrated organic circuit array for flexible large-area...

  5. area process trenches: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area Minnesota, University of 144 Periphery Trench for Reducing the Impact of Surface Subsidence on Structures Physics Websites Summary: and Components Subsidence is a vertical...

  6. Resistivity Log At Valles Caldera - Redondo Geothermal Area ...

    Open Energy Info (EERE)

    Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al., 1987)...

  7. Density Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    Rowley, Et Al., 1987) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Density Log Activity Date 1984 - 1984 Usefulness not...

  8. Neutron Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Neutron Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al., 1987) Exploration...

  9. Caliper Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    Rowley, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Caliper Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al.,...

  10. Self Potential At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    1987) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Self Potential Activity Date 1984 - 1984 Usefulness not indicated...

  11. Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity...

  12. Modeling-Computer Simulations At San Juan Volcanic Field Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Exploration...

  13. Modeling-Computer Simulations At Chocolate Mountains Area (Alm...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity...

  14. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

  15. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding...

  16. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding...

  17. LED Provides Effective and Efficient Parking Area Lighting at...

    Broader source: Energy.gov (indexed) [DOE]

    White Light Options for Parking Area Lighting Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Guide to FEMP-Designated Parking Lot...

  18. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  19. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross, Et Al., 1999) Exploration Activity Details Location...

  20. Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al., 2010) Exploration Activity Details Location...

  1. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Exploration Activity Details Location...

  2. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...

    Open Energy Info (EERE)

    Goff,J. N. Gardner. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal System, New Mexico. Map. Place of publication not provided. Los Alamos National...

  3. areas lixiviacion estatica: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 25 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  4. areas sob influencia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 45 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  5. area iberian pyrite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 105 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  6. area factor determinations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: 20 North Adit North Damping Ring Radioactive Material Storage Yard (RAMSY) Radioactive Waste Storage A (includes fenced RAM storage area) End Station B Heavy...

  7. area sila massif: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 92 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  8. alfarcito area cordillera: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 50 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  9. area iwate prefecture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 33 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  10. area karachi sindh: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 29 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  11. areas stei romania: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 67 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  12. areas protegidas caso: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 60 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  13. adultos mayores area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 68 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  14. area tamil nadu: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 111 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  15. afar pastoral area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 75 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  16. area otsenka dinamiki: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 25 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  17. area roller embossing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 82 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  18. area influence caracterizacao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: 20 North Adit North Damping Ring Radioactive Material Storage Yard (RAMSY) Radioactive Waste Storage A (includes fenced RAM storage area) End Station B Heavy...

  19. area fukui prefecture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 44 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  20. area diretamente afetada: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 25 tight environment high radiation area Physics Websites Summary: , no active electronics ...