Sample records for blending rbob futures

  1. Biodiesel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

  2. Optimal Blending Quality

    SciTech Connect (OSTI)

    Harris, S.P.

    2001-03-28T23:59:59.000Z

    This paper discusses a functional program developed for product blending. The program is installed at a Savannah River Plant production site on their VAX computer. A wide range of blending choices is available. The program can be easily changed or expanded. The technology can be applied at other areas where mixing or blending is done.

  3. Preliminary assessment of blending Hanford tank wastes

    SciTech Connect (OSTI)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01T23:59:59.000Z

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  4. DPF Performance with Biodiesel Blends

    Broader source: Energy.gov (indexed) [DOE]

    DPF Performance with Biodiesel Blends Aaron Williams, Bob McCormick, Bob Hayes, John Ireland National Renewable Energy Laboratory Howard L. Fang Cummins, Inc. Diesel Engine...

  5. Ethanol-blended Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@EnergyErnestEthanol-Blended Fuels A Study

  6. BLENDED AND ONLINE LEARNING IN

    E-Print Network [OSTI]

    Ellis, Randy

    ) "Flipped classroom" - focus on active learning and enhanced student engagement in the classroom #12;First dissatisfied with student learning experience #12;Blended Learning Initiative Large, first-year courses student engagement improve student learning outcomes improve knowledge retention #12;Framework for Blended

  7. Thermal Stabilization Blend Plan

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-05-02T23:59:59.000Z

    This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

  8. Biodiesel ASTM Update and Future Technical Needs

    Broader source: Energy.gov (indexed) [DOE]

    ASTM Update and Future Technical Needs Steve Howell Technical Director National Biodiesel Board ASTM Current Status ASTM D6751 is the approved standard for B100 for blending up to...

  9. Polycarbonate blends having an improved impact strength

    SciTech Connect (OSTI)

    Krishnan, S.; Lazear, N.R.

    1984-05-15T23:59:59.000Z

    Thermoplastic molding compositions characterized by their improved impact performance and deformation under load are disclosed comprising a homogeneous, intimate blend of a polycarbonate resin and a nuclear alkylated polycarbonate resin wherein blend dispersed is a polymeric modifier.

  10. Intrinsically safe moisture blending system

    DOE Patents [OSTI]

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11T23:59:59.000Z

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  11. Sandia National Laboratories: blending feedstock varieties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Research & Capabilities, Transportation Energy Winemakers have long known that blending different grape varietals can favorably...

  12. Fuel blending with PRB coal

    SciTech Connect (OSTI)

    McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

    2009-03-15T23:59:59.000Z

    Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

  13. Mid-Blend Ethanol Fuels ? Implementation Perspectives

    Broader source: Energy.gov (indexed) [DOE]

    Blend Ethanol Fuels - Implementation Perspectives William Woebkenberg - US Fuels Technical and Regulatory Affairs Mercedes-Benz Research & Development North America July 25, 2013...

  14. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Environmental Management (EM)

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

  15. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  16. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01T23:59:59.000Z

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  17. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  18. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect (OSTI)

    CERTA, P.J.

    2006-02-22T23:59:59.000Z

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  19. Green emitting phosphors and blends thereof

    DOE Patents [OSTI]

    Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

    2010-12-28T23:59:59.000Z

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  20. Thermal characterization of polymer blends prepared by reactive blending of PC and PET

    SciTech Connect (OSTI)

    Fiorini, M.; Marchese, P. [Univ. of Bologna (Italy); Pilati, F. [Univ. of Modena (Italy)] [and others

    1996-12-31T23:59:59.000Z

    Several Poly(ethylene terephthalate)-Bisphenol A polycarbonate (PC/PET) blends were prepared by reactive blending poly(ethylene terephthalate) and Bisphenol A polycarbonate in a batch mixer in the presence of ester exchange catalysts with different catalytic activity, such as Titanium, Terbium, Cerium, Samarium, Europium and Calcium/Antimony compounds. The catalytic activity and mixing time have been correlated with the extent of ester-carbonate exchange reactions and hence the influence of the PET/PC block copolymers formed during the blending on miscibility has been investigated by differential scanning calorimetry. The results of the thermal characterization showed that blends with a single glass transition temperature can be prepared at different mixing time determined by the ester-carbonate exchange reaction activity of the different catalysts employed. In addition, the Tg`s values for the miscible blends were lower than those predicted by the widely used Flory-Fox equation, except from the blends prepared with the Titanium catalyst. Crystallization of PET in PC/PET blends was also investigated. Thermal analysis is a powerful technique that can be applied to the determination of miscibility in polymer blends. In this communication, the results of a differential scanning calorimetry (DSC) study on blends prepared by reactive blending PC and PET are reported.

  1. Two glass transitions in miscible polymer blends?

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-06-28T23:59:59.000Z

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  2. Continuous blending of dry pharmaceutical powders

    E-Print Network [OSTI]

    Pernenkil, Lakshman

    2008-01-01T23:59:59.000Z

    Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

  3. Imaginative play with blended reality characters

    E-Print Network [OSTI]

    Robert, David Yann

    2011-01-01T23:59:59.000Z

    The idea and formative design of a blended reality character, a new class of character able to maintain visual and kinetic continuity between the fully physical and fully virtual; the technical underpinnings of its unique ...

  4. Vehicle Technologies Office: Intermediate Ethanol Blends

    Broader source: Energy.gov [DOE]

    Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

  5. Carnegie Mellon Multiperiod Blend Scheduling Problem

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Department of Chemical Engineering Center for Advanced Process Decision-making Carnegie Mellon University frequently in the petrochemical industry. -Large cost savings can be achieved if the correct blending

  6. Exciting careers blending engineering, science, and ecology

    E-Print Network [OSTI]

    Tullos, Desiree

    Exciting careers blending engineering, science, and ecology New Opportunities Making the world://bee.oregonstate.edu/ecoe Ecological Engineering is: · Ecosystem restoration and habitat design at multiple scales · Watershed · Phytoremediation and bioremediation · Industrial ecology · Constructed wetlands and tidal marshlands · Mitigation

  7. Biodiesel Production and Blending Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS...

  8. Viscoelastic properties of bidisperse homopolymer blends

    E-Print Network [OSTI]

    Juliani

    2000-01-01T23:59:59.000Z

    VISCOELASTIC PROPERTIES OF BIDISPKRSE HOMOPOLYMER BLENDS A Thesis by JULIANI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2000... Major Subject. Chemical Engineering VISCOELASTIC PROPERTIES OF BIDISPERSE HOMOPOLYMER BLENDS A Thesis by JULIANI Submitted to Texas A&M University m partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style...

  9. WI Biodiesel Blending Progream Final Report

    SciTech Connect (OSTI)

    Redmond, Maria E; Levy, Megan M

    2013-04-01T23:59:59.000Z

    The Wisconsin State Energy Office�¢����s (SEO) primary mission is to implement cost�¢���effective, reliable, balanced, and environmentally�¢���friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

  10. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    SciTech Connect (OSTI)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2008-10-23T23:59:59.000Z

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  11. Development of By-Pass Blending Station System

    E-Print Network [OSTI]

    Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

    2003-01-01T23:59:59.000Z

    A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can...

  12. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

  13. Exploration of parameters for the continuous blending of pharmaceutical powders

    E-Print Network [OSTI]

    Lin, Ben Chien Pang

    2011-01-01T23:59:59.000Z

    The transition from traditional batch blending to continuous blending is an opportunity for the pharmaceutical industry to reduce costs and improve quality control. This operational shift necessitates a deeper understanding ...

  14. Blended Shelf: Reality-based Presentation and Exploration of Library

    E-Print Network [OSTI]

    Reiterer, Harald

    Blended library; shelf browsing; digital library ACM Classification Keywords H.5.2. [InformationBlended Shelf: Reality-based Presentation and Exploration of Library Collections Abstract We location of the library. Blended Shelf offers a 3D visualization of library collections

  15. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  16. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  17. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01T23:59:59.000Z

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  18. Tough Blends of Polylactide and Castor Oil

    SciTech Connect (OSTI)

    Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A. (UMM)

    2012-10-10T23:59:59.000Z

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

  19. Process for blending coal with water immiscible liquid

    DOE Patents [OSTI]

    Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

    1982-10-26T23:59:59.000Z

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  20. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll Brian West Wendy Clark...

  1. Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI Exhaust Speciation - ORNL Reference Fuel Blends Accurately measure exhaust profile from an HCCI engine with a variety of fuels and create a better understanding of HCCI...

  2. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01T23:59:59.000Z

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  3. Interface modification in an immiscible rod-coil polymer blend using functionalized copolymers and polyelectrolytes

    E-Print Network [OSTI]

    Passinault, Robbie J

    1996-01-01T23:59:59.000Z

    -polymer specific interactions on interfacial properties and mechanical performance of the blend. Specifi cally, in uncompatibilized blends, the effect of vectra concentration and domain size on shear modulus is studied. While, in blends compatibilized with small...

  4. Purification Testing for HEU Blend Program

    SciTech Connect (OSTI)

    Thompson, M.C. [Westinghouse Savannah River Company, AIKEN, SC (United States); Pierce, R.A.

    1998-06-01T23:59:59.000Z

    The Savannah River Site (SRS) is working to dispose of the inventory of enriched uranium (EU) formerly used to make fuel for production reactors. The Tennessee Valley Authority (TVA) has agreed to take the material after blending the EU with either natural or depleted uranium to give a {sup 235}U concentration of 4.8 percent low-enriched uranium will be fabricated by a vendor into reactor fuel for use in TVA reactors. SRS prefers to blend the EU with existing depleted uranium (DU) solutions, however, the impurity concentrations in the DU and EU are so high that the blended material may not meet specifications agreed to with TVA. The principal non-radioactive impurities of concern are carbon, iron, phosphorus and sulfur. Neptunium and plutonium contamination levels are about 40 times greater than the desired specification. Tests of solvent extraction and fuel preparation with solutions of SRS uranium demonstrate that the UO{sub 2} prepared from these solutions will meet specifications for Fe, P and S, but may not meet the specifications for carbon. The reasons for carbon remaining in the oxide at such high levels is not fully understood, but may be overcome either by treatment of the solutions with activated carbon or heating the UO{sub 3} in air for a longer time during the calcination step of fuel preparation.Calculations of the expected removal of Np and Pu from the solutions show that the specification cannot be met with a single cycle of solvent extraction. The only way to ensure meeting the specification is dilution with natural U which contains no Np or Pu. Estimations of the decontamination from fission products and daughter products in the decay chains for the U isotopes show that the specification of 110 MEV Bq/g U can be met as long as the activities of the daughters of U- 235 and U-238 are excluded from the specification.

  5. Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373

    SciTech Connect (OSTI)

    Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

  6. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27T23:59:59.000Z

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  7. Alternative Fuels Data Center: Ethanol Blends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities ReflectsElectricityEthanol Blends to

  8. E-Print Network 3.0 - aluminate blend phosphate Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Sciences Collection: Physics 42 Formation of Biomimetic Porous Calcium Phosphate Coatings on Surfaces of PolyethyleneZinc Stearate Blends Summary: -zinc stearate blends...

  9. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Broader source: Energy.gov (indexed) [DOE]

    The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization...

  10. Anomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical

    E-Print Network [OSTI]

    , as well as interpenetrating and bicontinu- ous networks.7,8 Phase inversion occurs when the mi- norityAnomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical Alloying Archie P strategies for producing highly dis- persed multicomponent polymer blends. By their very nature

  11. CASIMIR EFFECT IN CROSSLINKED POLYMER BLENDS M. Benhamou

    E-Print Network [OSTI]

    Boyer, Edmond

    -potential. I. INTRODUCTION Interpenetrated polymer networks (IPNs) or crosslinked polymer blends constitute new interpenetrating networks used as electronic device encapsulants [3]. For certain practical realizations, the IPNsCASIMIR EFFECT IN CROSSLINKED POLYMER BLENDS M. Benhamou , M. Boughou, H. Ka¨idi M. El Yaznasni, H

  12. Achieving High Chilled Water Delta T Without Blending Station

    E-Print Network [OSTI]

    Wang, Z.; Wang, G.; Xu, K.; Yu, Y.; Liu, M.

    2007-01-01T23:59:59.000Z

    on the blending station performance. The results show that the blending station is not necessary in the building chilled water systems with 2-way modulation valves at end users. Actually the end user valve configuration and control mainly impacts building chilled...

  13. Calcination of calcium carbonate and blend therefor

    DOE Patents [OSTI]

    Mallow, William A. (Helotes, TX); Dziuk, Jr., Jerome J. (San Antonio, TX)

    1989-01-01T23:59:59.000Z

    A method for calcination of a calcium carbonate material comprising heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a catalyst; said catalyst comprising at least one fused salt having the formula MCO.sub.3.CaCO.sub.3.CaO.H.sub.2 O.sub.x, wherein M is an alkali metal and x is 0 to 1 and formed by fusing MCO.sub.3 and CaCO.sub.3 in a molar ratio of about 1:2 to 2:1, and a blend adapted to be heated to CaO comprising a calcium carbonate material and at least one such fused salt.

  14. RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY

    SciTech Connect (OSTI)

    SHUFORD DH; STEGEN G

    2010-04-19T23:59:59.000Z

    Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

  15. Phosphor blends for high-CRI fluorescent lamps

    DOE Patents [OSTI]

    Setlur, Anant Achyut (Niskayuna, NY); Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY); Beers, William Winder (Chesterland, OH); Toth, Katalin (Pomaz, HU); Balazs, Laszlo D. (Budapest, HU)

    2008-06-24T23:59:59.000Z

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  16. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  17. Time phased alternate blending of feed coals for liquefaction

    DOE Patents [OSTI]

    Schweigharett, Frank (Allentown, PA); Hoover, David S. (New Tripoli, PA); Garg, Diwaker (Macungie, PA)

    1985-01-01T23:59:59.000Z

    The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

  18. Photonic polymer-blend structures and method for making

    DOE Patents [OSTI]

    Barnes, Michael D.

    2004-06-29T23:59:59.000Z

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  19. Evaluation of Ethanol Blends for PHEVs using Simulation and Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Neeraj Shidore (PI) - Vehicle...

  20. ash blended cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass blends Texas A&M University - TxSpace Summary: , low ash partially composted manure LAPC, high ash raw manure HARM, and high ash partially composted manure HAPC)...

  1. Quality, Performance, and Emission Impacts of Biodiesel Blends

    Broader source: Energy.gov (indexed) [DOE]

    Impacts of Biodiesel Blends Bob McCormick (PI) With Teresa Alleman, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon Luecke, Dan Pedersen, Ken Proc, Matt Ratcliff, Matt...

  2. Disease resistance and performance of blended populations of creepi

    E-Print Network [OSTI]

    Abernathy, Scott David

    1999-01-01T23:59:59.000Z

    . . Materials and Methods. . Results and Discussion. Conclusions. . . . 41 . . 41 . . 42 . . 45 . 74 SUMMARY REFERENCES. . 80 LIST OF FIGURES Figure 1. Dollar spot progression in January, 1998 on single cultivar treatments. Page 32 Figure 2.... Dollar spot progression in January 1998 on Crenshaw, L-93 and Crenshaw / L-93 blended treatments. 33 Figure 3. Dollar spot progression in January, 1998 on Crenshaw, A-4 and Crenshaw / A-4 blended treatments. 34 Figure 4. Dollar spot progression...

  3. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect (OSTI)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15T23:59:59.000Z

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  4. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect (OSTI)

    Wallner, T. (Energy Systems)

    2011-08-01T23:59:59.000Z

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

  5. Framtidens lantbruk / Future Agriculture Future Agriculture

    E-Print Network [OSTI]

    Framtidens lantbruk / Future Agriculture Future Agriculture ­ Livestock, Crops and Land Use Report from a multidisciplinary research platform. Phase I (2009 ­ 2012) #12;Future Agriculture ­ Livestock Waldenström Utgivningsår: 2012, Uppsala Utgivare: SLU, Framtidens lantbruk/Future Agriculture Layout: Pelle

  6. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10T23:59:59.000Z

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  7. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01T23:59:59.000Z

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  8. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN)

    2009-02-24T23:59:59.000Z

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  9. Evaluation of bitumen by realization of bitumen/polymer blends

    SciTech Connect (OSTI)

    Cogneau, P.; Goosse, S. [Parc Industriel, Perwez (Belgium)

    1995-12-31T23:59:59.000Z

    Today, if we want to guarantee the durability of bitumen/polymer blends and membranes, characterization of bitumen by penetration hardness and softening point is not enough. Bitumen which is a {open_quotes}residue{close_quotes} of distillation is a poor relation of the petrochemistry. It will tend to become more so in view of the more sophisticated treatment units of the heavy components coming from refining. This paper will present the correlation existing between generic composition of bitumen and the characteristics of the bitumen/polymers (atatic polypropylene) blends. The generic composition of the bitumen is determined by thin layer chromatography associated with a detection flame ionization (Iatroscan method). More than 20 bitumens of different origins have been studied. The quality of the blends done with an EPP batch for each of these bitumens is acquired by using determination trials of viscosity, cold bending (new state and after aging), segregation, and morphological analyses.

  10. Blended learning through the eyes of Malagasy students Hoby ANDRIANIRINA Anne-Laure FOUCHER

    E-Print Network [OSTI]

    Boyer, Edmond

    Clermont-Ferrand, France Keywords: blended learning ; experience of students ; didactics French in a blended learning environment. This is part of a wider action research study in the Didactics of Languages

  11. Theoretical and experimental investigation of particle interactions in pharmaceutical powder blending

    E-Print Network [OSTI]

    Pu, Yu, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    In pharmaceutical manufacturing practices, blending of active pharmaceutical ingredient (API) with excipients is a crucial step in that homogeneity of active ingredient after blending is a key issue for the quality assurance ...

  12. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends...

    Energy Savers [EERE]

    BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines June 22,...

  13. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

    2013-01-15T23:59:59.000Z

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  14. Solid State Blending of Poly(ethylene terephthalate) with Polystyrene: Extent of PET Amorphization and

    E-Print Network [OSTI]

    Mitchell, Brian S.

    Solid State Blending of Poly(ethylene terephthalate) with Polystyrene: Extent of PET Amorphization.interscience.wiley.com). ABSTRACT: Polystyrene (PS) and poly(ethylene terephthalate) (PET) were blended to- gether in the solid. CMA PS/PET blend morphologies were characterized both qualitatively and quantitatively through

  15. Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains

    E-Print Network [OSTI]

    Potter, Don

    1 Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains N. K. Roy1 potential candidates for blending using Neural Networks. Generally the parent polymers of the blend need systems like branched polymers, high molecular weight polymer mixtures, block copolymers, interpenetrating

  16. ccsd00000932 Electronic structure of wurtzite and zinc-blende AlN

    E-Print Network [OSTI]

    ccsd­00000932 (version 1) : 10 Dec 2003 Electronic structure of wurtzite and zinc-blende AlN P. (December 10, 2003) Abstract The electronic structure of AlN in wurtzite and zinc-blende phases is studied in the calculations. Di#11;erences 1 #12; between the wurtzite and zinc-blende phases are small and re ect the slight

  17. Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

  18. Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we- ration, air-to-fuel ratio control, gasoline-ethanol blend, flex-fuel vehicles I. INTRODUCTION Currently

  19. Conjugated-Polymer Blends for Optoelectronics By Christopher R. McNeill* and Neil C. Greenham*

    E-Print Network [OSTI]

    Weeks, Eric R.

    Conjugated-Polymer Blends for Optoelectronics By Christopher R. McNeill* and Neil C. Greenham* 1. Introduction Blending of polymers has long been established as a technique to tune their physical properties the microstructure of the blend has new properties not present in either component. In the field of polymer

  20. HEU to LEU Conversion and Blending Facility: UNH blending alternative to produce LEU UNH for commercial use

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form that is more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed. This document provides data to be used in the environmental impact analysis for the UNH blending HEU disposition option. Process requirements, resource needs, employment needs, waste/emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  1. Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials

    E-Print Network [OSTI]

    Mobasher, Barzin

    Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials Barzin Mobasher1. A simplified model is presented which used cement chemistry, concrete physics, and mechanics to develop of hardened concrete, principally the cement paste, caused by exposure of concrete to sulfates and moisture

  2. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect (OSTI)

    Labbe, D.

    2009-11-15T23:59:59.000Z

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  3. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11T23:59:59.000Z

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  4. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOE Patents [OSTI]

    Skotheim, Terje (East Patchogue, NY)

    1984-01-01T23:59:59.000Z

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  5. HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U{sub 3} O{sub 8}) per year to produce 177 MT of 4% U235 assay U{sub 3} O{sub 8}, for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

  6. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  7. Review Of Rheology Models For Hanford Waste Blending

    SciTech Connect (OSTI)

    Koopman, D. C.; Stone, M.

    2013-09-26T23:59:59.000Z

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 ?m diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 ?m in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation experience). As experience is ga

  8. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01T23:59:59.000Z

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  9. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  10. Effect of Organoclay on Compatibilization, Thermal and Mechanical Properties of Polycarbonate/Polystyrene Blends

    E-Print Network [OSTI]

    Singh, A K

    2014-01-01T23:59:59.000Z

    Pristine and organoclay modified polycarbonate/polystyrene (PC/PS) blends are prepared using melt-mixing technique. These blends are characterized for their morphology, structural, thermal and mechanical properties. Though our FTIR and XRD results show weak interactions between PC and PS phases, however, DSC and morphological study reveals that pristine PC/PS blends are immiscible. On other hand, introduction of organoclay results compatibilization of two polymer phases which is supported by significant shift in glass transition temperatures of the component phases and a distinct morphology having no phase segregation on sub-micron scale. Intercalation of polymers inside the clay gallery is achieved and is supported by XRD studies. A better thermal stability and higher value of modulus of the compatibilized blends compared to pristine PC/PS blends also support the reinforcement effect of organoclay to the PC/PS blend matrix.

  11. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

  12. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How...

  13. Multi-scale analysis and simulation of powder blending in pharmaceutical manufacturing

    E-Print Network [OSTI]

    Ngai, Samuel S. H

    2005-01-01T23:59:59.000Z

    A Multi-Scale Analysis methodology was developed and carried out for gaining fundamental understanding of the pharmaceutical powder blending process. Through experiment, analysis and computer simulations, microscopic ...

  14. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Broader source: Energy.gov (indexed) [DOE]

    IMPACT OF LOW OCTANE HYDROCARBON BLENDING STREAMS ON "E85" ENGINE OPTIMIZATION Jim Szybist and Brian West Oak Ridge National Laboratory October 19, 2012 Acknowledgement This...

  15. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26T23:59:59.000Z

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

  16. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non?Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, Keith [National Renewable Energy Laboratory (NREL); West, Brian H [ORNL; Clark, Wendy [National Renewable Energy Laboratory (NREL); Graves, Ronald L [ORNL; Orban, John [Battelle, Columbus; Przesmitzki, Steve [National Renewable Energy Laboratory (NREL); Theiss, Timothy J [ORNL

    2009-02-01T23:59:59.000Z

    In summer 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20--gasoline blended with 15 and 20% ethanol--on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This first report provides the results available to date from the first stages of a much larger overall test program. Results from additional projects that are currently underway or in the planning stages are not included in this first report. The purpose of this initial study was to quickly investigate the effects of adding up to 20% ethanol to gasoline on the following: (1) Regulated tailpipe emissions for 13 popular late model vehicles on a drive cycle similar to real-world driving and 28 small non-road engines (SNREs) under certification or typical in use procedures. (2) Exhaust and catalyst temperatures of the same vehicles under more severe conditions. (3) Temperature of key engine components of the same SNREs under certification or typical in-use conditions. (4) Observable operational issues with either the vehicles or SNREs during the course of testing. As discussed in the concluding section of this report, a wide range of additional studies are underway or planned to consider the effects of intermediate ethanol blends on materials, emissions, durability, and driveability of vehicles, as well as impacts on a wider range of nonautomotive engines, including marine applications, snowmobiles, and motorcycles. Section 1 (Introduction) gives background on the test program and describes collaborations with industry and agencies to date. Section 2 (Experimental Setup) provides details concerning test fuels, vehicle and SNRE selection, and test methods used to conduct the studies presented in this report. Section 3 (Results and Discussion) summarizes the vehicle and SNRE studies and presents data from testing completed to date. Section 4 (Next Steps) describes planned future activities. The appendixes provide test procedure details, vehicle and SNRE emissions standards, analysis details, and additional data and tables from vehicle and SNRE tests.

  17. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  18. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect (OSTI)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06T23:59:59.000Z

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  19. Emissions mitigation of blended coals through systems optimization

    SciTech Connect (OSTI)

    Don Labbe [IOM Invensys Operations Management (United States)

    2009-10-15T23:59:59.000Z

    For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

  20. Hydrogen effects on materials for CNG/H2 blends.

    SciTech Connect (OSTI)

    Farese, David (Air Products, USA); Keller, Jay O.; Somerday, Brian P.

    2010-09-01T23:59:59.000Z

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  1. INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2005-02-01T23:59:59.000Z

    Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

  2. Mid-Level Ethanol Blends Test Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 AcquisitionO 231.1B ChgMicrosoft WordBlends

  3. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01T23:59:59.000Z

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  4. Interface modification in an immiscible rod-coil polymer blend using functionalized copolymers and polyelectrolytes 

    E-Print Network [OSTI]

    Passinault, Robbie J

    1996-01-01T23:59:59.000Z

    Blends of rod-like and flexible-coil polymers are attractive for synthesizing molecular composites. In this study, a blend of a rod-like polymer (Vectra B950) and a flexible polymer (polystyrene) is used to investigate the influence of polymer-polymer...

  5. Blended Interaction Toward a Framework for the Design of Interactive Spaces

    E-Print Network [OSTI]

    Reiterer, Harald

    Blended Interaction ­ Toward a Framework for the Design of Interactive Spaces Hans-Christian Jetter, Florian Geyer, Tobias Schwarz, Harald Reiterer Human-Computer Interaction Group, University of Konstanz In this paper, we propose Blended Interaction as a conceptual framework for the design of interactive spaces. We

  6. Probing Water Phases in Cement Blends using 1 Magnetic Resonance Relaxometry

    E-Print Network [OSTI]

    Sheffield, University of

    Probing Water Phases in Cement Blends using 1 H Nuclear Magnetic Resonance Relaxometry Jean)114 222 5973 Fax: +44 (0)114 222 5943 E-Mail: j.gorce@sheffield.ac.uk Extended Abstract: Cement and Concrete Science, Warwick, 16th + 17th September 2004 Introduction The nuclear industry uses blended cement

  7. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone

    E-Print Network [OSTI]

    Weiss, Lee E.

    In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering Kacey G. Marra,1 Jeffrey W. Szem,2 Prashant N. Kumta,3 Paul A. DiMilla,4 Lee E. Weiss5 1 14 April 1999 Abstract: Blends of biodegradable polymers, poly(capro- lactone) and poly

  8. Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures

    E-Print Network [OSTI]

    Yu, Edward T.

    Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire-shell heterostructures in 111 zinc blende and 0001 wurtzite geometries. These calculations reveal that critical wurtzite nanowire systems. In this article we extend this methodology to explore and contrast coherency

  9. Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite Yong Ding a

    E-Print Network [OSTI]

    Wang, Zhong L.

    Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite Yong Ding a , Xu Dong WangS nanostructures normally take the metastable wurtzite structure. This Letter investigates the conditions under which the formed phase can be con- trolled between zinc blende and wurtzite in nanomaterials synthesis

  10. Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires

    E-Print Network [OSTI]

    Wang, Deli

    Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires between pure zinc blende (ZB) NWs and wurtzite (WZ) NWs containing stacking faults and small ZB segments their growth-direction axis while wurtzite (WZ) InAs NWs grown on InAs (111)B substrates have numerous stacking

  11. Theoretical study of nonpolar surfaces of aluminum nitride: Zinc blende ,,110... and wurtzite ,,1010...

    E-Print Network [OSTI]

    Pandey, Ravi

    Theoretical study of nonpolar surfaces of aluminum nitride: Zinc blende ,,110... and wurtzite ,,101 structure and electronic properties of the nonpolar surfaces, namely zinc blende 110 and wurtzite (10 1 and small ther- mal expansion coefficient. At ambient conditions, AlN crys- tallizes in the wurtzite phase

  12. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-09-01T23:59:59.000Z

    This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

  13. X-ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance

    E-Print Network [OSTI]

    X-ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance no features on the length scale of 50 nm or greater. Additionally, the performance of photovoltaic devices evaluated and compared to the performance of chloroform blends with varied weight ratio. By studying

  14. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  15. Synergistic Effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Kensuke Masaki; Atsushi Dobashi; Kiyoshi Fukada [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2006-12-15T23:59:59.000Z

    To maximize the conversion of low-quality coal into good coke, we investigated the thermoplasticity of various binary blends of caking coals with slightly or noncaking coals using a dynamic viscoelastic technique with a temperature-variable rheometer. Coal blend samples were prepared by mixing two coals (1:1 by weight), which were heated from room temperature to 600 C at a rate of 3-80{sup o}C/min. At the slow rate of 3{sup o}C/min, the blends had a tan {delta} that was generally lower than the calculated value, showing that a negative interaction caused a loss of thermoplasticity. In contrast, at the rapid heating rate of 80{sup o}C/min, the tan {delta} of some blends was higher than the calculated value, indicating a positive interaction that enhanced the thermoplasticity. With rapid heating, the thermoplasticity of each coal itself increased, and their thermoplastic temperature ranges widened with rapid heating. Therefore, rapid heating was effective at converting these coal blends into good cokes. Moreover, even with slow heating, when a combination of coals (Gregory:Enshu, 1:1) showing some thermoplasticity in nearly the same temperature range was blended, a desirable synergistic effect of the blend was obtained. This suggests that blending coal with an overlapping thermoplastic temperature range is important for the synergistic effect, regardless of the heating rate. 15 refs., 9 figs., 2 tabs.

  16. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

    2008-05-15T23:59:59.000Z

    Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

  17. Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.

    E-Print Network [OSTI]

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being

  18. HIGH-TEMPERATURE STEAM-TREATMENT OF PEEK, PEKK, PBI, AND THEIR BLENDS

    E-Print Network [OSTI]

    Bluemel, Janet

    1 HIGH-TEMPERATURE STEAM-TREATMENT OF PEEK, PEKK, PBI, AND THEIR BLENDS: A SOLID-STATE NMR AND IR and their pure components after treating them with liquid water and steam at elevated temperatures and pressures. The pure polymer components and the PAEK-PBI (50 : 50 wt%) blends are steam-treated at 150 °C (302 °F

  19. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Broader source: Energy.gov [DOE]

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

  20. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect (OSTI)

    Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

    2011-01-01T23:59:59.000Z

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  1. ccsd-00000932(version1):10Dec2003 Electronic structure of wurtzite and zinc-blende AlN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ccsd-00000932(version1):10Dec2003 Electronic structure of wurtzite and zinc-blende AlN P. Jonnard) Abstract The electronic structure of AlN in wurtzite and zinc-blende phases is studied experimentally. Differences 1 #12;between the wurtzite and zinc-blende phases are small and reflect the slight variations

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  6. CHARTING BC'S ECONOMIC FUTURE

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    CHARTING BC'S ECONOMIC FUTURE discussionguide 100communityconversations #12;1 Thank you for agreeing to participate in this Community Conversation about BC's economic future. Each year Simon Fraser is "Charting BC's Economic Future". Faced with an increasingly competitive global economy, it is more important

  7. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  8. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  9. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  10. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  11. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01T23:59:59.000Z

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

  12. Conducting polymer blends: Polypyrrole and polythiophene blends with polystyrene, polycarbonate resin, poly(vinyl alcohol) and poly(vinyl methyl ketone)

    SciTech Connect (OSTI)

    Wang, H.L.

    1992-01-01T23:59:59.000Z

    Various aromatic compounds can be polymerized by electrochemical oxidation in solution containing a supporting electrolyte. Most studies have been devoted to polypyrrole and polythiophene. In situ doping during electrochemical polymerization yields free standing conductive polymer film. One major approach to making conducting polymer blends is electrochemical synthesis after coating the host polymer on a platinum electrode. In the electrolysis of pyrrole or thiophene monomer, using (t-Bu[sub 4]N)BF[sub 4] as supporting electrolyte, and acetonitrile as solvent, monomer can diffuse through the polymer film, to produce a polypyrrole or polythiophene blend in the film. Doping occurs along with polymerization to form a conducting polymer alloy. The strongest molecular interaction in polymers, and one that is central to phase behavior, is hydrogen bonding. This mixing at the molecular level enhances the degree of miscibility between two polymers and results in macroscopic properties indicative of single phase behavior. In this dissertation, the authors describes the syntheses of conducting polymer blends: polypyrrole and polythiophene blends with polystyrene, poly(bisphenol-A-carbonate), polyvinyl alcohol and poly(vinyl methyl ketone). The syntheses are performed both electrochemically and chemically. Characterization of these blends was carried out by Fourier Transform Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis, Scanning Electron Microscopy, and X-ray diffraction. Percolating threshold conductivities occur from 7% to 20% for different polymer blends. The low threshold conductivity is attributed to blend homogeneity enhanced by hydrogen bonding between the carbonyl group in the insulating polymer and the N-H group in polypyrrole. Thermal stability, environmental stability, mechanical properties, crystallinity and morphological structure are also discussed. The authors have also engaged in the polymerization of imidazoles.

  13. Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.

    SciTech Connect (OSTI)

    Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

    2009-11-01T23:59:59.000Z

    The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

  14. Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability

    E-Print Network [OSTI]

    Assef, R J; Afonso, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Beaulieu, J P; Charlot, X; Coutures, C; Ferlet, R; Fouqué, P; Glicenstein, J F; Goldman, B; Graff, D; Gros, M; Haïssinski, J; Hamadache, C; De Kat, J; Le Guillou, Laurent; Lesquoy, E; Loup, C; Magneville, C; Marquette, J B; Maurice, E; Maury, A; Milsztajn, A; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Rahal, Y R; Rich, J; Spiro, M; Tisserand, P; Vidal-Madjar, A; Vigroux, L; Zylberajch, S; Bennett, D P; Becker, A C; Griest, K; Vandehei, T; Welch, D L; Udalski, A; Szymanski, M K; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Wyrzykowski, L

    2006-01-01T23:59:59.000Z

    Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is a variable star, simply because most variable stars are systematically eliminated from microlensing studies. Using observational data for this event, we show that the intrinsic variability of a microlensed star is a powerful tool to constrain the nature of the lens by breaking the degeneracy between the microlens parallax and the blended light. We also present a statistical test for discriminating the location of the lens based on the \\chi^2 contours of the vector \\Lambda, the inverse of the projected velocity. We find that while SMC self lensing is somewhat favored, neither location can be ruled out with good confidence.

  15. Influence of Substrate on Crystallization in Polythiophene/fullerene Blends

    SciTech Connect (OSTI)

    C He; D Germack; J Kline; D Delongchamp; D Fischer; C Snyder; M Toney; J Kushmerick; L Richter

    2011-12-31T23:59:59.000Z

    The nanoscale morphology of the active layer in organic, bulk heterojunction (BHJ) solar cells is crucial to device performance. Often a combination of casting conditions and post deposition thermal treatment is used to optimize the morphology. In general, the development of microscopic crystals is deleterious, as the exciton diffusion length is {approx}10 nm. We find that the microscopic crystallization behavior in polythiophene/fullerene blends is strongly influenced by the substrate on which the BHJ is cast. With a silicon oxide substrate, the crystal nucleation density is high and significant crystallization occurs at a temperature of 140 C. On more hydrophobic substrates, significantly higher temperatures are required for observable crystallization. This difference is attributed to the interfacial segregation of the PCBM, controlled by the substrate surface energy. The substrate dependence of crystallization has significant implications on the fullerene crystal growth mechanisms and practical implications for device studies.

  16. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  17. HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  18. The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting

    E-Print Network [OSTI]

    Travis, Adrian

    The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solventsm00343c The power conversion efficiency in a conjugated polymer-functionalized fullerene bulk heterojunction organic photovoltaic (OPV) device is dependent both on the electronic properties

  19. Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends

    E-Print Network [OSTI]

    Savant, Gautam Sandesh

    2012-07-16T23:59:59.000Z

    into biodiesel. It is well known vegetable oil to biodiesel conversion involves many processes including transesterification, which makes biodiesel costly and time-consuming to produce. In this study, the effects of blending high-viscosity fresh and used corn...

  20. Knock limits in spark ignited direct injected engines using gasoline/ethanol blends

    E-Print Network [OSTI]

    Kasseris, Emmanuel P

    2011-01-01T23:59:59.000Z

    Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

  1. Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers

    E-Print Network [OSTI]

    in the systems polystyrene/polypropylene (PS/PP), polystyrene/high density polyethylene (PS/PE) and polycarbonate were conducted to study these effects by preparing blends with various polymers that varied

  2. Leaching and standing water characteristics of bottom ash and composted manure blends

    E-Print Network [OSTI]

    Mathis, James Gregory

    2001-01-01T23:59:59.000Z

    in significantly higher concentrations of total Kjeldahl nitrogen (TKN), P, and potassium (K). Generally, a higher CM content in acidic and alkaline blends resulted in higher leachate concentrations for total solids (TS), total dissolved solids (TDS), total...

  3. Evaluation of Ethanol Blends for PHEVs using Simulation andEngine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engine-in-the-Loop Evaluation of Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  4. Exciton localization mechanisms in wurtzite/zinc-blende GaAs nanowires

    E-Print Network [OSTI]

    Graham, Alexandra; Corfdir, Pierre; Heiss, Martin; Conesa-Boj, Sonia; Uccelli, Emanuele; Fontcuberta i Morral, Anna; Phillips, Richard

    We investigate the emission properties of excitons in GaAs nanowires containing quantum disks formed by structural alternation between the zinc-blende and wurtzite phases, by means of temperature-dependent photoluminescence. At 10 K the emission...

  5. Glass Transition Phenomena in Melt-Processed Polystyrene/Polypropylene Blends

    E-Print Network [OSTI]

    . The presence of a rigid polycarbonate matrix as PET cools through its glass transition gives rise to a "wall" effect, causing the Tg of PET to increase [6]. The Tg of polybutadiene in polycarbonate/ABS blends

  6. Influence of branch content on the microstructure of blends of linear and octene-branched polyethylene

    E-Print Network [OSTI]

    Hussein, Ibnelwaleed A.

    experimental densities of the two polymer melts. Initially, chains of LLDPE and HDPE were completely mixed POLYMER JOURNAL #12;short chain branching (SCB) [26]. Few studies have made use of m-LLDPE in blend

  7. Process simulation, integration and optimization of blending of petrodiesel with biodiesel

    E-Print Network [OSTI]

    Wang, Ting

    2009-05-15T23:59:59.000Z

    strategies to meet these requirements. The primary objective of this work is to analyze alternatives for producing ULSD. In addition to the conventional approach of revamping existing hydrotreating facilities, the option of blending petrodiesel with biodiesel...

  8. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate of biodiesel fuels in diesel and homogeneous charge compression ignition engines. Keywords: Methyl decanoate; Methyl decenoate; Surrogate; Oxidation; Biodiesel fuels; Kinetic modeling; Engine; Low

  9. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01T23:59:59.000Z

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  10. My Amazing Future 2012

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory's My Amazing Future program gives 8th grade women the opportunity to experience careers in science and engineering.

  11. Future City Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition is an unique opportunity for middle school children to combine skills in engineering, environmental science, and art to create a vision for the future. Exercising your...

  12. Characterization of Jeffamine (polyoxypropyleneamine) based compatibilizers and bisphenol-a polycarbonate blends

    E-Print Network [OSTI]

    Guenther, Gerhard Kurt

    1991-01-01T23:59:59.000Z

    CHARACTERIZATION OF IEFFAMINE (POLYOXYPROPYLENEAMINE) BASED COMPATIBILIZERS AND BISPHENOL-A POLYCARBONATE BLENDS A Thesis by GERHARD KURT GUENTHER Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1991 Major Subject: Mechanical Engineering CHARACTERIZATION OF JEFFAMINE (POLYOXYPROPYLENEAMINE) BASED COMPATIBILIZERS AND BISPHENOL-A POLYCARBONATE BLENDS A Thesis by GERHARD KURT GUENTHER...

  13. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene [ORNL; Moyer, Bruce A [ORNL

    2012-12-01T23:59:59.000Z

    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  14. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01T23:59:59.000Z

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  17. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  18. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  19. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  20. The Hanford Story: Future

    Broader source: Energy.gov [DOE]

    The Future Chapter of the Hanford Story illustrates the potential and possibilities offered by a post-cleanup Hanford. From land use plans and preservation at Hanford to economic development and tourism opportunities, the Future chapter touches on a variety of local economic, cultural and environmental perspectives.

  1. Feedstock blending studies with laboratory indirectly heated gasifiers

    SciTech Connect (OSTI)

    Green, A.E.S.; Mullin, J.P.

    1999-10-01T23:59:59.000Z

    To support the further development of indirectly heated gasifiers intended to provide fuels for advanced gas turbines, several indirectly heated laboratory gasifiers were constructed. During many comparative tests, advantages and problems with each system were observed. The most useful systems make use of laboratory tube furnaces in conjunction with temperature, time and pressure or volume yield measuring systems and a gas chromatograph with a thermal conductivity detector. In this paper, high temperature pyrolysis results obtained with the latest system are presented. Contrasting feedstocks suitable for commercial systems separately or in blends are used. Yield versus time measurements are used to determine relevant rate constants and outputs. Since the rate constants are mainly reflective of heat transfer effects, cylindrical dowel sticks of varying radii were volatilized. The data set leads to an analytic heat transfer model that considers the hemicellulose, cellulose, and lignin components of the dowels. Also developed from the dowel experiments is an approximate procedure for estimating the proportionate releases of CO, CO{sub 2}, CH{sub 4}, and H{sub 2} for any type of biomass whose component proportions are known.

  2. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect (OSTI)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)] [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain)] [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain) [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15T23:59:59.000Z

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  3. EXPERIMENTAL INVESTIGATION OF PERFORMANCE PARAMETERS OF SINGLE CYLINDER FOUR STROKE DI DIESEL ENGINE OPERATING ON NEEM OIL BIODIESEL AND ITS BLENDS

    E-Print Network [OSTI]

    Rob Res; Dharmendra Yadav; Nitin Shrivastava; Vipin Shrivastava

    Increasing oil prices, and global warming activates the research and development of substitute energy resources to maintain economic development. The methyl esters of vegetable oil, known as biodiesel are becoming popular because of their low ecological effect and potential as a green substitute for compression ignition engine. The main objective of this study is to investigate the performance of neem oil methyl ester on a single cylinder, four stroke, direct injection, and 8 HP capacity diesel engine. The Experimental research has been performed to analyze the performance of different blends 20 % (BD20), 50 % (BD50), and 100 % (BD100) of neem oil biodiesel. Biodiesel, when compared to conventional diesel fuel, results showed that the brake specific fuel consumption and brake specific energy consumption are higher and brake thermal efficiency less during testing of engine. The brake specific energy consumption is increased by 0.60 % to 8.25 % and brake thermal efficiency decreased by 0.57 % to 7.62 % at 12 kg engine brake load as compared to diesel fuel. When the fuel consumption of biodiesel is compared to diesel fuel it observed that the fuel consumption was increased by 2.5 % to 19.5 % than that of diesel fuel for B20, B50 and B100 bends at 12 kg engine brake load. It is observed that the performance of biodiesel blends is less as compared to plain diesel and during testing of diesel engine run normally for all engine loads. It is investigated that the neem oil biodiesel 20 % blend showed very close performance when compared to plain diesel and hence can be used as an alternative fuel for conventional diesel in the future.

  4. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect (OSTI)

    Krishna, C.R.

    2010-10-01T23:59:59.000Z

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  6. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  7. Gas and hydrocarbon vapor permeation in poly(1-trimethylsilyl-1-propyne)/poly(1-phenyl-1-propyne) blends

    SciTech Connect (OSTI)

    Morisato, A.; Shen, H.C.; Toy, L.G. [North Carolina State Univ., Raleigh, NC (United States)] [and others

    1996-12-31T23:59:59.000Z

    Permeation properties of phase-separated blends prepared from glassy poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) were determined as a function of blend composition with pure hydrogen, nitrogen, oxygen, carbon dioxide, and butane. Blend permeabilities decrease significantly with increasing PPP concentration and suggest the occurrence of a phase inversion at low PPP content (5 to 20 wt%). Based on TEM analysis high-aspect-ratio (extended) PPP ellipsoidal dispersions are found in a PTMSP matrix, indicating that the phase inversion is closely related to dispersed-phase connectivity in the blends.

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  9. Buying Hedge with Futures

    E-Print Network [OSTI]

    Welch, Mark; Kastens, Terry L.

    2009-01-07T23:59:59.000Z

    Agricultural Economist, Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Many bulk purchasers of agricultural com- modities need price risk management tools to help stabilize input prices. Livestock feeders... anticipating future feed needs or grain export- ers making commitments to sell grain are two users of agricultural commodities who could benefit from input price management strate- gies. A common tool is a buying, or long, hedge using futures. Producers...

  10. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  11. Chain ordering of regioregular polythiophene films through blending with a nickel bisdithiolene complex

    SciTech Connect (OSTI)

    Hernandez-Maldonado, D. [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France) [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Ramos, B.; Bedel-Pereira, E.; Séguy, I. [LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France) [LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Villeneuve-Faure, C. [LAPLACE, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse (France)] [LAPLACE, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse (France); Sournia-Saquet, A.; Moineau-Chane Ching, K. I., E-mail: kathleen.chane@lcc-toulouse.fr [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France); LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Alary, F.; Heully, J. L. [LCPQ-IRSAMC, 118 Route de Narbonne, F-31077 Toulouse Cedex 4 (France)] [LCPQ-IRSAMC, 118 Route de Narbonne, F-31077 Toulouse Cedex 4 (France)

    2014-03-10T23:59:59.000Z

    An “annealing-free” strategy consisting of using a planar nickel bisdithiolene complex nickel bis[1,2-di(3?,4?-di-n-decyloxyphenyl)ethene-1,2-dithiolene] ([Ni(4dopedt){sub 2}]) is proposed for structuring poly(3-hexyl-thiophene) (P3HT). Photoluminescence (PL) and Raman spectroscopies, in conjunction with electronic absorption, have been used for evidencing P3HT changes due to blending. PL and absorption observations are consistent and show a correlation between polymer chain organization and increasing amounts of [Ni(4dopedt){sub 2}]. Blending with [Ni(4dopedt){sub 2}] do not modify the Raman ring-breathing modes energies indicating that blending does not induce strongly disorder in P3HT chains. Atomic force microscopic measurements show that blends nanoscale morphology presents a homogeneous matrix and small fibrils related to [Ni(4dopedt){sub 2}] concentration, especially for blends with a [Ni(4dopedt){sub 2}] weight ratio lower than 50%.

  12. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)] [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States) [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-05-21T23:59:59.000Z

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature ? ? (T ? T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

  13. Analysis Of Exhaust Emission Of Internal Combustion Engine Using Biodiesel Blend

    E-Print Network [OSTI]

    Suvendu Mohanty; Dr. Om Prakash; Reasearch Scholar

    Abstract-The main purpose of this research is to study the effect of various blends of an environmental friendly alternative fuel such as biodiesel on the performance of diesel engine. In the Present investigation experimental work has been carried out to analyze the performance and exhaust emission characteristics of a single cylinder internal combustion engine fuelled with biodiesel blend at the different load. In this experiment the biodiesel which is use as a waste cooking oil (WCO) biodiesel.To investigation of the emission characteristics of the engine loads, which is supplied from the alternator. The experiment was carried out different load i.e. (NO LOAD, 100W 200W, 500W, 1000W, 1500W, 2000W, 2500W & 3000Watt) at engine speed 1500 rpm/min. A test was applied in which an engine was fuel with diesel and seven different blends of diesel. Biodiesel (B5, B10, B20, B40, B60, B80, B100) made from waste cooking oil and the results were analyzed.The emission of were measured carbon monoxide (CO), hydrocarbon carbon(HC), Oxides of nitrogen (NOX) and oxygen ().The experimental results will be compared with biodiesel blends and diesel. The biodiesel results of (WCO) in lower emission of hydro carbon (HC) and (CO) and increase emission of (NO2). This study showed that the results of exhaust emission of biodiesel blends were lower than the diesel fuel. Keyword- Biodiesel (WCO), diesel engine, gas analyzer, Exhaust emission. I.

  14. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01T23:59:59.000Z

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  15. The relationship between the thermoplastic behavior of blends and their component coals

    SciTech Connect (OSTI)

    Sakurovs, R.

    1999-07-01T23:59:59.000Z

    The thermoplastic behaviors of a number of coking coal blends were measured using proton magnetic resonance thermal analysis (PMRTA) to determine to what extent they were affected by interactions between the component coals. Most blends showed evidence that at temperatures near their temperatures of maximum fluidity the extent to which they fused was different to that expected if the coals did not interact. Only blends of coking coals of different rank fused to a greater extent than expected in the absence of interactions. Semi-anthracite, low rank coals and charcoal reduced the extent of fusion of coking coals to values below those expected if they were acting as inert diluents. These interactions are interpreted as being mediated by transfer of volatile material between the coals on heating.

  16. Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends

    E-Print Network [OSTI]

    Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

    Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

  17. Water for future Mars astronauts?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water for future Mars astronauts? Water for future Mars astronauts? Within its first three months on Mars, NASA's Curiosity Rover saw a surprising diversity of soils and sediments...

  18. The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

    E-Print Network [OSTI]

    Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

    2005-01-01T23:59:59.000Z

    diethyl ether (DEE) in ethanol fuel blends for a range ofbio-derived fuel components (ethanol) in emission productsHCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

  19. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2014-03-03T23:59:59.000Z

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

  20. A novel reactive processing technique: using telechelic polymers to reactively compatibilize polymer blends

    SciTech Connect (OSTI)

    Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2009-01-01T23:59:59.000Z

    Difunctional reactive polymers, telechelics, were used to reactively form multiblock copolymers in situ when melt-blended with a blend of polystyrene and polyisoprene. To quantify the ability of the copolymer to compatibilize the blends, the time evolution of the domain size upon annealing was analyzed by SEM. It was found that the most effective parameter to quantify the ability of the copolymer to inhibit droplet coalescence is Kreltstable, the relative coarsening constant multiplied by the stabilization time. These results indicate that intermediate-molecular-weight telechelic pairs of both highly reactive Anhydride-PS-Anhydride/NH2-PI-NH2 and slower reacting Epoxy-PS-Epoxy/COOH-PI-COOH both effectively suppress coalescence, with the optimal molecular weight being slightly above the critical molecular weight of the homopolymer,Mc. The effects of telechelic loading were also investigated, where the optimal loading concentration for this system was 0.5 wt %, as higher concentrations exhibited a plasticizing effect due to the presence of unreacted low-molecular-weight telechelics present in the blend. A determination of the interfacial coverage of the copolymer shows that a conversion of 1.5-3.0% was required for 20% surface coverage at 5.0 wt % telechelic loading, indicating a large excess of telechelics in this system. At the optimal loading level of 0.5 wt %, a conversion of 15% was required for 20% surface coverage. The results of these experiments provide a clear understanding of the role of telechelic loading and molecular weight on its ability to reactively form interfacial modifiers in phase-separated polymer blends and provide guidelines for the development of similar reactive processing schemes that can use telechelic polymers to reactively compatibilize a broad range of polymer blends.

  1. Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    ABSTRACT: Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could conditions exist. Ethanol- derived methane may also increase the vapor intrusion potential of toxic fuel to be modified when dealing with some high ethanol blend fuel (i.e., E20 up to E95) releases. INTRODUCTION

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  3. Introduction to Futures Markets

    E-Print Network [OSTI]

    Mintert, James R.; Welch, Mark

    2009-01-07T23:59:59.000Z

    are some terms and definitions. Figure 1. Marking-to-Market Buyer and Seller Accounts at Exchange Clearinghouse. Buyer (Long) Date Action Price Day 1 Buy at $6.00/bu Day 2 No action (but price increases) $6.10/bu $0.10/bu gain x 5,000 bu... $500 gain from day 1 Seller (Short) Date Action Price Day 1 Sell at $6.00/bu Day 2 No action (but price increases) $6.10/bu $0.10/bu loss x 5,000 bu $500 loss from day 1 Long A buyer of a futures contract. Someone who buys a futures...

  4. Prediction of metallurgical coke strength from the petrographic composition of coal blends

    SciTech Connect (OSTI)

    Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

    2009-07-01T23:59:59.000Z

    Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

  5. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect (OSTI)

    Pauls, R. E. (Chemical Sciences and Engineering Division)

    2011-05-01T23:59:59.000Z

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  6. Future Fixed Target Facilities

    SciTech Connect (OSTI)

    Melnitchouk, Wolodymyr

    2009-01-01T23:59:59.000Z

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  7. Quantum motor and future

    E-Print Network [OSTI]

    Evgeny G. Fateev

    2013-01-20T23:59:59.000Z

    In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

  8. Effect of thermal history on the molecular orientation in polystyrene/poly(vinyl methyl ether) blends

    E-Print Network [OSTI]

    Pezolet, Michel

    ether) (PS/PVME) has been studied using polarization modulation infrared linear dichroism (PM to an increased orientation if the heating time at 51 8C is kept short. Moreover, PS and PVME develop a larger) blends; Thermal history; Polarization modulation infrared linear dichroism 1. Introduction The influence

  9. Ultrasonic and microscopic investigation of blends of polydimethylsiloxane and polyisobutylene at all

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it would be important to control the mixing of two polymers during blend processing, in an extruder in different fields of application, in particular to characterize solid and molten polymers [Bridge (1987 50 years back. In 1948, Urick reported data of the ultrasonic attenuation in aqueous kaolin and sand

  10. Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here of coal and biomass fuels are presented. Different classes of co-firing methods are identified

  11. TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS

    E-Print Network [OSTI]

    Daripa, Prabir

    coal or by ex- haust clean up technology. For the power plants, the simplest solution is the preventive- ity well into the 21st century. This dependency on coal calls for better technologies to reduceTURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS

  12. Relationship between MTBE-blended gasoline properties and warm-up driveability

    SciTech Connect (OSTI)

    Suzawa, Takumi; Yamaguchi, Kazunori; Kashiwabara, Kimito [Mitsubishi Motors Corp., Tokyo (Japan); Fujisawa, Norihiro; Matsubara, Michiro

    1995-12-31T23:59:59.000Z

    The relationship between MBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100 C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio ({lambda}) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated. The results indicate that the new DI worsen when heavy reformate containing large amounts of aromatics or MTBE, an oxygen-containing compound, is used for the octane improver, leaving the balance of the volatility out of consideration.

  13. Detonations in Hydrocarbon Fuel Blends J.M. Austin and J.E. Shepherd

    E-Print Network [OSTI]

    Low, Steven H.

    in high-molecular weight hydrocarbon fuels of interest to pulse detonation engine applications of thermally decomposed JP-10 was studied at 295 K. This blend consisted of hydrogen, carbon monoxide, methane to be comparable. The addition of lower molecular weight fuels (hydrogen, acetylene, ethylene, 1 #12;and carbon

  14. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate)

    E-Print Network [OSTI]

    Wood plastic composites based on microfibrillar blends of high density polyethylene January 2010 Keywords: Wood plastic composites Poly(ethylene terephthalate) Polyethylene Extrusion a b into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre

  15. Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires

    E-Print Network [OSTI]

    Wang, Zhong L.

    Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires Yong Ding of wurtzite WZ ZnO tetrapods. The formation of the wurtzite 011¯3 twined nanowires is proposed based on the ZB core. Simple bonding density calculation shows that the wurtzite nanowires with 011¯0 side surfaces

  16. Using blends of cerambycid beetle pheromones and host plant volatiles to simultaneously attract a

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    ethanol and a-pinene to determine whether such blends could be effective lures for detecting and moni-(undecyloxy)-ethanol, and race- mic 2-methyl-1-butanol. Bioassays in east-central Illinois captured 3070 to ethanol, with a-pinene enhancing attraction only for the pine specialist M. carolinensis. The optimal

  17. Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames

    E-Print Network [OSTI]

    Ju, Yiguang

    analyses of kinetic path ways and species transport on flame extinction were also conducted. The results and emission properties, such as the ignition delay times, extinction limits, flame speeds, species profilesKinetic effects of toluene blending on the extinction limit of n-decane diffusion flames Sang Hee

  18. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOE Patents [OSTI]

    Skotheim, Terje (East Patchogue, NY)

    1986-01-01T23:59:59.000Z

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  19. Optimization of Crude-Oil Blending Operations Sylvain Mouret Ignacio E. Grossmann Pierre Pestiaux

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    refinery Crude-oil blending scheduling Scheduling formulations 2 Proposed approach Basic idea MINLP model Proposed approach Results and comparisons Conclusion Oil refinery A typical oil refinery Refining crude definition Given Refinery configuration Logistics constraints Initial tank inventory and composition Vessel

  20. Femtosecond electron-transfer holography in C{sub 60}/polymer blends

    SciTech Connect (OSTI)

    Maniloff, E. [Los Alamos National Lab., NM (United States); Vacar, D. [California Univ., Santa Barbara, CA (United States). Inst. for Polymers and Organic Solids; McBranch, D.; Wang, Hsing-Lin; Mattes, B. [Los Alamos National Lab., NM (United States); Heeger, A.J. [California Univ., Santa Barbara, CA (United States). Inst. for Polymers and Organic Solids

    1996-10-01T23:59:59.000Z

    Holographic recording has recently been demonstrated in conducting polymer/C{sub 60} blends. Results are presented that demonstrate an improved signal-to-noise ratio is obtained when holographic detection is used to observe the dynamics of photo-induced absorption.

  1. Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost

    E-Print Network [OSTI]

    Minnesota, University of

    Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost Effectiveness Stephen J in Method? #12;Deicing and Anti-icing Treatments ·Sodium Chloride (NaCl) ·Cargill, NA Salt ·Magnesium Chloride (MgCl2) w/additives ·Envirotech Serv., Scotwood Ind., NA Salt ·Calcium Chloride (CaCl2) ·Tiger

  2. Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene

    E-Print Network [OSTI]

    McGehee, Michael

    Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene States *S Supporting Information ABSTRACT: We compare the solar cell performance of several polymers the efficiency of the solar cells only when they do not intercalate between the polymer side chains. When

  3. The Blend Down Monitoring System Demonstration at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Benton, J.; Close, D.; Johnson, W., Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-07-25T23:59:59.000Z

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor {sup 235}U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF{sub 6} flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities.

  4. Vapour Phase Hydration of Blended Oxide Magnox Waste Glasses Neil C. Hyatt,1*

    E-Print Network [OSTI]

    Sheffield, University of

    Vapour Phase Hydration of Blended Oxide ­ Magnox Waste Glasses Neil C. Hyatt,1* William E. Lee,1 BNFL Technology Centre, Sellafield, Seascale, Cumbria, CA20 1PG. UK. ABSTRACT Vapour phase hydration across the alteration layer. Vapour phase hydration leads to formation of surface alteration products

  5. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOE Patents [OSTI]

    Skotheim, T.

    1984-09-28T23:59:59.000Z

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  6. FUTURES with Jaime Escalante

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The United States Department of Energy awarded the Foundation for Advancements in Science and Education (FASE) $826,000 as support to produce the second set of FUTURES segments consisting of 12, 15-minute programs. The programs provide motivation for students to study math by connecting math to the work place and real-life problem scenarios. The programs are broadcast in 50 states through PBS Elementary and Secondary Service (E/SS). The grant term ended on December 16, 1993 and this final report documents program and financial activity results. The 12 episodes are titled: Animal Care, Meteorology, Mass Communication, Advanced Energy, Oceanography, Graphic Design, Future Habitats, Environmental Science & Technology, Fitness & Physical Performance, Interpersonal Communications, Advanced Transportation and Product Design. Each program addresses as many as ten careers or job types within the broader field named. Minority and gender-balanced role models appear throughout the programs.

  7. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    SciTech Connect (OSTI)

    Szybist, James P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

  8. Future directions for QCD

    SciTech Connect (OSTI)

    Bjorken, J.D.

    1996-10-01T23:59:59.000Z

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  9. Steganography: Past, Present, Future

    SciTech Connect (OSTI)

    Judge, J C

    2001-12-01T23:59:59.000Z

    Steganography (a rough Greek translation of the term Steganography is secret writing) has been used in various forms for 2500 years. It has found use in variously in military, diplomatic, personal and intellectual property applications. Briefly stated, steganography is the term applied to any number of processes that will hide a message within an object, where the hidden message will not be apparent to an observer. This paper will explore steganography from its earliest instances through potential future application.

  10. Buildings of the Future

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the Pacific Northwest National Laboratory are developing a vision for future buildings—at least one hundred years from today—based on the collective views of thought leaders. As part of this effort, we will explore technology and demographic trends that could revolutionize the built environment across energy, water, environment, resilient design, health, security, and productivity.

  11. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    SciTech Connect (OSTI)

    Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

    2003-08-01T23:59:59.000Z

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

  12. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect (OSTI)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

    2009-05-15T23:59:59.000Z

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  13. Development of shape memory polymer (SMP) blend for biomedical and clinical applications Shape memory polymers (SMP) are a class of responsive stimuli materials that are able to respond to external stimulus

    E-Print Network [OSTI]

    Development of shape memory polymer (SMP) blend for biomedical and clinical applications Shape properties of this shape memory biopolymers and blends. The bio-compatible SMP blend will be fabricated by melt-blending and gas foaming. The various shape memory and mechanical properties of the foam and solid

  14. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12T23:59:59.000Z

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  15. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31T23:59:59.000Z

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  16. ARM - Future Trends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature StoriesgovCampaignsSurfacegovFrontFuture

  17. Future Mobility in Maryland

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12 Press98918,FUTURE

  18. Future City Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities HighFusionFusionFuture

  19. Milk Futures, Options and Basis

    E-Print Network [OSTI]

    Haigh, Michael; Stockton, Matthew; Anderson, David P.; Schwart Jr., Robert B.

    2001-10-12T23:59:59.000Z

    The milk futures and options market enables producers and processors to manage price risk. This publication explains hedging, margin accounts, basis and how to track it, and other fundamentals of the futures and options market....

  20. The research programme Future Agriculture

    E-Print Network [OSTI]

    The research programme Future Agriculture ­ livestock, crops and land use Welcome to a lunch.slu.se/futureagriculture For questions, please contact KatarinaVrede (katarina.vrede@slu.se) About Future Agriculture ­ livestock, crops and land use The changes and challenges facing agriculture in the future will be substantial, not only

  1. Mode-of-Action of Self-Extinguishing Polymer Blends Containing Organoclays

    SciTech Connect (OSTI)

    Pack, S.; Si, M; Koo, J; Sokolov, J; Koga, T; Kashiwagi, T; Rafailovich, M

    2009-01-01T23:59:59.000Z

    We have shown that the addition of nanoclays is an effective means for enhancing the flame retardant properties of polymer blends. Polymer blends are difficult to render flame retardant even with the addition of flame retardant agents due to dispersion and phase segregation during the heating process. We show that the addition of 5% functionalized Cloisite 20A clays in combination with 15% decabromodiphenyl ether and 4% antimony trioxide to a polystyrene/poly(methyl methacrylate) blend can render the compound flame resistant within the UL-94-V0 standard. Using a variety of micro-characterization methods, we show that the clays are concentrated at the interfaces between the polymers in this blend and completely suppress phase segregation. The flame retardant (FR) is absorbed onto the clay surfaces, and the exfoliation of the clays also distributes the FR agent uniformly within the matrix. TGA of the nanocomposite indicates that prior to the addition of clay, the dissociation times of the individual components varied by more than 20 C, which complicated the gas-phase kinetics. Addition of the clays causes all the components to have a single dissociation temperature, which enhanced the efficacy of the FR formula in the gas phase. Cone calorimetry also indicated that the clays decreased the heat release rate (HRR) and the mass loss rate (MLR), due to the formation of a robust char. In contrast, minimal charring occurred in blends containing just the FR. SEM examination of the chars showed that the clay platelets were curved and in some cases tightly folded into nanotube-like structures. These features were only apparent in blends, indicating that they might be associated with thermal gradients across the polymer phase interface. SEM and SAXS examinations of the nanocomposites after partial exposure to the flame indicated that the clays aggregated into ribbon-like structures, approximately microns in length, after the surfactant thermally decomposed. Thermal modeling indicated that these ribbons might partially explain the synergy due to better distribution of the heat and improve the mechanical properties of the melt at high temperatures, in a manner similar to the one reported for carbon nanotubes.

  2. Viscoelastic Properties and Phase Behavior of 12-tert-Butyl Ester Dendrimer/Poly(methyl methacrylate) Blends

    E-Print Network [OSTI]

    Harmon, Julie P.

    with bis- phenol A polycarbonate (PC), resulting in an in- crease in free volume with increasing dendrimer hyperbranched polyester/bisphenol A PC blends with respect to pure PC. Studies were conducted by Carr et al.24

  3. Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

    E-Print Network [OSTI]

    Dimou, Iason

    The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

  4. Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends 

    E-Print Network [OSTI]

    Uggini, Hari

    2012-07-16T23:59:59.000Z

    by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously...

  5. Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends

    E-Print Network [OSTI]

    Kar, Kenneth

    The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

  6. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

    2009-02-01T23:59:59.000Z

    Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

  7. Nanowire-Induced Wurtzite InAs Thin Film on Zinc-Blende InAs Substrate

    E-Print Network [OSTI]

    Bao, Jiming

    Nanowire-Induced Wurtzite InAs Thin Film on Zinc-Blende InAs Substrate By Jiming Bao, David C. Bell as that of their substrates. Here, we report on the observation of a wurtzite InAs thin-film structure on a zinc-blende In the wurtzite crystal structure. The bandgap of wurtzite InAs, obtained by low-temperature photoluminescence

  8. Solubility of carbon dioxide in an aqueous blend of diethanolamine and piperazine

    SciTech Connect (OSTI)

    Mondal, M.K. [Banaras Hindu University, Varanasi (India). Dept. of Chemical Engineering and Technology

    2009-09-15T23:59:59.000Z

    The solubility of CO{sub 2} in aqueous blends of diethanolamine (DEA) and piperazine (PZ), from mixtures of CO{sub 2} and N{sub 2}, was measured for temperatures and CO{sub 2} partial pressures ranging from (303.14 to 353.14) K and (10.133 to 20.265) kPa, respectively. Measurements were made by a saturation method using a laboratory scale bubble column. The results of CO{sub 2} solubility in liquid are expressed as {alpha}(CO{sub 2}) (mol CO{sub 2}/mol amine) for all experimental runs. A solubility model is developed to correlate and predict the solubility data of CO{sub 2} in aqueous blends of DEA and PZ. There is all acceptable degree of agreement between the experimental data of the present study and predictions of the solubility model with an average absolute deviation of less than 4.5%.

  9. Finite element analysis on the fracture of rubber toughened polymer blends

    SciTech Connect (OSTI)

    Wu, Y.; Mai, Y.W. [Univ. of Sydney, New South Wales (Australia); Wu, J. [Hong Kong Univ. of Science and Technology (Hong Kong)

    1997-12-31T23:59:59.000Z

    The effect of rubber particle volume fraction on the constitutive relation and fracture toughness of polymer blends was studied using elastic-plastic Finite Element Analysis (FEA). The effect of rubber particle cavitation on the stress-strain state at a crack tip was also investigated. Stress analysis reveals that because of the high rubber bulk modulus, the hydrostatic stress inside the rubber particle is close to that in the adjacent matrix material element. As a result, the rubber particle imposes a severe plastic constraint to the surrounding matrix and limits its plastic strain. Rubber particle cavitation can effectively release the constraint and enable large scale plastic strain to occur. Different failure criteria were used to determine the optimum rubber particle volume fraction for the polymer blends studied in this paper.

  10. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    SciTech Connect (OSTI)

    Pak, J.; Lin, W.; Wang, K.; Chinchore, A.; Shi, M.; Ingram, D. C.; Smith, A. R.; Sun, K.; Lucy, J. M.; Hauser, A. J.; Yang, F. Y. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, The Ohio State University, 191 Woodruff Avenue, Columbus, Ohio 43210 (United States)

    2010-07-15T23:59:59.000Z

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  11. Disk-cylinder and disk-sphere nanoparticles from block copolymer blend solution construction

    SciTech Connect (OSTI)

    Zhu, Jiahua [ORNL] [ORNL; Zhang, Shiyi [Texas A& M University] [Texas A& M University; Zhang, Ke [Northeastern University] [Northeastern University; Wang, Xiaojun [ORNL] [ORNL; Mays, Jimmy [ORNL] [ORNL; Wooley, Karen L [ORNL] [ORNL; Pochan, Darrin [University of Delaware] [University of Delaware

    2013-01-01T23:59:59.000Z

    Researchers strive to produce nanoparticles with complexity in composition and structure. Although traditional spherical, cylindrical and membranous, or planar, nanostructures are ubiquitous, scientists seek more complicated geometries for potential functionality. Here we report the simple solution construction of multigeometry nanoparticles, disk-sphere and diskcylinder, through a straightforward, molecular-level, blending strategy with binary mixtures of block copolymers. The multigeometry nanoparticles contain disk geometry in the core with either spherical patches along the disk periphery in the case of disk-sphere particles or cylindrical edges and handles in the case of the disk-cylinder particles. The portions of different geometry in the same nanoparticles contain different core block chemistry, thus also defining multicompartments in the nanoparticles. Although the block copolymers chosen for the blends are important for the definition of the final hybrid particles, the control of the kinetic pathway of assembly is critical for successful multigeometry particle construction.

  12. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01T23:59:59.000Z

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  13. Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

    SciTech Connect (OSTI)

    Buchholz, B A; Cheng, A S; Dibble, R W

    2003-03-03T23:59:59.000Z

    Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

  14. Use of Savannah River Site facilities for blend down of highly enriched uranium

    SciTech Connect (OSTI)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01T23:59:59.000Z

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO{sub 3}) powder, uranyl nitrate [UO{sub 2}(NO{sub 3}){sub 2}] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO{sub 2}) or uranium hexafluoride (UF{sub 3}), the normal inputs for commercial fuel fabrication. This study`s scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO{sub 2} or UF{sub 6}, blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM).

  15. Ab initio study of phase transition of boron nitride between zinc-blende and rhombohedral structures

    SciTech Connect (OSTI)

    Nishida, S.; Funashima, H.; Sato, K.; Katayama-Yoshida, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2013-12-04T23:59:59.000Z

    Boron nitride has polymorphs such as zinc-blende (c-BN), wurtzite (w-BN), rhombohedral (r-BN), and graphite-like (h-BN) forms. We simulate the direct conversion of r-BN to c-BN through electronic excitation. In our calculation, the conversion is made possible by increasing the hole concentration to over 0.06/atom. This conversion should be experimentally possible by hole-doping via an electric double layer transistor (EDLT) or capacitor.

  16. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  17. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  18. Low-temperature pyrolysis of coal to produce diesel-fuel blends

    SciTech Connect (OSTI)

    Shafer, T.B.; Jett, O.J.; Wu, J.S.

    1982-10-01T23:59:59.000Z

    Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

  19. The Future of Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

  20. NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott [ORNL; West, Brian H [ORNL

    2012-01-01T23:59:59.000Z

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  1. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott [ORNL; West, Brian H [ORNL

    2011-10-01T23:59:59.000Z

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  2. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

  3. James Smith: Building the Energy Future Shaping the Future Lecture

    E-Print Network [OSTI]

    Mumby, Peter J.

    James Smith: Building the Energy Future Shaping the Future Lecture James Smith was appointed been involved in Shell business in a number of Middle Eastern countries and in the US. James Smith `ought'to do in response and assess what society will `choose'to do in reality. James Smith will identify

  4. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  5. Rights, Obligations, and Future Generations

    E-Print Network [OSTI]

    Strole, Donald

    the right to use whatever we can regardless of the effects such action may have on future persons.2 On the other extreme are people who argue that future generations are entitled to a polution free environment, vast food reserves, and an abundance...

  6. Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet

    SciTech Connect (OSTI)

    Rich, Bechtold [Alliance Technical Services; Thomas, John F [ORNL; Huff, Shean P [ORNL; Szybist, James P [ORNL; West, Brian H [ORNL; Theiss, Timothy J [ORNL; Timbario, Tom [Alliance Technical Services; Goodman, Marc [Alliance Technical Services

    2007-08-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

  7. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect (OSTI)

    Boehm, H. [Physikalische Chemie I, Universitaet Bielefeld (Germany); Braun-Unkhoff, M. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2008-04-15T23:59:59.000Z

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased. (author)

  8. ETBE as a gasoline blending component. The experience of Elf Aquitaine

    SciTech Connect (OSTI)

    Chatin, L.; Fombarlet, C.; Bernasconi, C.; Gauthier, A.; Schmelzle, P.

    1994-10-01T23:59:59.000Z

    This study, led by Elf Aquitaine for several years, shows the possibility to use ETBE instead of MTBE as a gasoline component and compares properties of these two ethers regarding different parameters like octanes, volatility, engine cleanliness, stability of the ethers themselves and of gasoline blends, lubricant compatibility and toxicological data. ETBE appears at least as good as MTBE and sometimes better, as ETBE is chemically more similar to hydrocarbons than MTBE and can be used advantageously as a gasoline oxygenated component. 9 refs., 4 figs., 8 tabs.

  9. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

  10. Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study

    SciTech Connect (OSTI)

    Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

    2010-11-01T23:59:59.000Z

    The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

  11. The Use of Triangular-Shaped PV Arrays to Better Blend into Historical Structures

    Broader source: Energy.gov [DOE]

    When considering the installation of a solar PV array on a designated historical structure, placement of each solar panel requires extra attention to aesthetic considerations. If the solar array cannot be installed behind the structure or “hidden” on a roof plane that is not visible from the public street or sidewalk, it can sometimes be installed as an architectural feature that blends into the historical structure. One way to do this is to utilize triangular-shaped PV panels that conform with the building’s roof lines.

  12. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-08-01T23:59:59.000Z

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

  13. The Future of Microbial Genomics

    SciTech Connect (OSTI)

    Kyrpides, Nikos [Genome Biology group at the DOE Joint Genome Institute

    2010-06-02T23:59:59.000Z

    Nikos Kyrpides, head of the Genome Biology group at the DOE Joint Genome Institute discusses current challenges in the field of microbial genomics on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  14. Israel Careers ACCELERATE YOUR FUTURE

    E-Print Network [OSTI]

    Rimon, Elon

    Lithography Control products within the product lifecycle process including defining requirements, settingIsrael Careers ACCELERATE YOUR FUTURE Product Marketing Manager Job Description: Product Marketing Manager at the Optical Metrology Division is responsible for product strategy and customer interface

  15. Future Fuels: Issues and Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    R Y S L E R G R O U P Fuel Quality Issues * Cetane * Lubricity * Aromatics * Sulfur * Biodiesel - adequate quality standards needed * GTL, CTL, and BTL -- The Future 9142005 2 C...

  16. Texas Industries of the Future

    E-Print Network [OSTI]

    Ferland, K.

    The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

  17. Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer

    E-Print Network [OSTI]

    Gordillo Ariza, Gerardo

    2010-10-12T23:59:59.000Z

    W) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were...

  18. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11T23:59:59.000Z

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  19. Effect of Blending on High-Pressure Laminar Flame Speed Measurements, Markstein Lengths, and Flame Stability of Hydrocarbons

    E-Print Network [OSTI]

    Lowry, William Baugh

    2012-02-14T23:59:59.000Z

    . Hydrocarbon blends of methane, ethane, and propane make up a large portion of natural gas and it has been shown that dimethyl ether can be used as a supplement or in its pure form for gas turbine combustion. Because of this, a fundamental understanding... include the flame speeds for binary blends of methane, ethane, propane, and dimethyl ether performed at elevated pressures, up to 10-atm initial pressure, using a spherically expanding flame in a constant-volume vessel. Also included in this thesis is a...

  20. Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy

    SciTech Connect (OSTI)

    Shi, B. M.; Xie, M. H.; Wu, H. S.; Wang, N.; Tong, S. Y. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tang, Hong Kong (China)

    2006-10-09T23:59:59.000Z

    GaN exists in both wurtzite and zinc-blende phases and the growths of the two on its (0001) or (111) surfaces are achieved by choosing proper deposition conditions of molecular-beam epitaxy (MBE). At low substrate temperatures but high gallium fluxes, metastable zinc-blende GaN films are obtained, whereas at high temperatures and/or using high nitrogen fluxes, equilibrium wurtzite phase GaN epilayers resulted. This dependence of crystal structure on substrate temperature and source flux is not affected by deposition rate. Rather, the initial stage nucleation kinetics plays a primary role in determining the crystallographic structures of epitaxial GaN by MBE.

  1. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect (OSTI)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)] [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15T23:59:59.000Z

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  2. Experimental investigation of burning rates of pure ethanol and ethanol blended fuels

    SciTech Connect (OSTI)

    Parag, Shintre; Raghavan, Vasudevan [Thermodynamics and Combustion Engineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036 (India)

    2009-05-15T23:59:59.000Z

    A fundamental experimental study to determine the burning rates of ethanol and ethanol-blended fossil fuels is presented. Pure liquid ethanol or its blends with liquid fossil fuels such as gasoline or diesel, has been transpired to the surface a porous sphere using an infusion pump. Burning of the fuel takes place on the surface of the porous sphere, which is placed in an air stream blowing upwards with a uniform velocity at atmospheric pressure and temperature under normal gravity conditions. At low air velocities, when ignited, a flame envelopes the sphere. For each sphere size, air stream velocity and fuel type, the fuel feed rate will vary and the same is recorded as the burning rate for that configuration. The flame stand-off distances from the sphere surface are measured by post-processing the digital image of the flame photograph using suitable imaging software. The transition velocity at which the flame moves and establishes itself at the wake region of the sphere has been determined for different diameters and fuel types. Correlations of these parameters are also presented. (author)

  3. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    SciTech Connect (OSTI)

    Balazs, Anna (U of Pittsburgh) [U of Pittsburgh

    2008-11-05T23:59:59.000Z

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  4. 95 Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    E-Print Network [OSTI]

    Oguntola J Alamu; Opeoluwa Dehinbo; Adedoyin M Sulaiman; Oguntola J. Alamu; Opeoluwa Dehinbo; Adedoyin M. Sulaiman

    Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0 % ethanol (wt % coconut oil), 0.8% potassium hydroxide catalyst at 65°C reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4%) was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

  5. Preliminary assessment of future refining impacts of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Hadder, G.R.

    1991-09-01T23:59:59.000Z

    A preliminary assessment of the future refining impacts of the Clean Air Act Amendments of 1990 has been performed with the Navy Mobility Fuels Forecasting Systems. The assessment suggests that gasoline reformulation costs in domestic coastal and near-coastal refining regions in the year 2000 could be 3.5 to 5.6 cents per gallon (in terms of 1989 currency). For heating value equivalent to one gallon of conventional gasoline, the regional total added costs (including reformulation costs) for reformulated gasoline could be 5.9 to 8.0 cents. In blending reformulated gasolines, the reduction of butane for lower Reid vapor pressure and the reduction of reformate for lower aromatics are generally compensated by increased percentages of alkylate and/or straight run naphthas. Relatively larger refinery process capacity additions are required for butane isomerization, alkylation, aromatics recovery, and distillate hydrotreating. 21 refs., 3 figs., 18 tabs.

  6. Small-angle scattering investigations of poly([epsilon]-caprolactone)/polycarbonate blends -- 2: Small-angle X-ray and light scattering study of semicrystalline/semicrystalline and semicrystalline/amorphous blend morphologies

    SciTech Connect (OSTI)

    Cheung, Y.W.; Stein, R.S. (Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering); Lin, J.S.; Wignall, G.D. (Oak Ridge National Lab., Oak Ridge, TN (United States))

    1994-04-25T23:59:59.000Z

    Crystalline morphologies of poly([epsilon]-caprolactone) (PCL) and polycarbonate (PC) blends were probed with small-angle X-ray scattering (SAXS) and small-angle light scattering (SALS). Quantitative SAXS analysis suggested that random mixing of PCL and PC lamellae occurred in the semicrystalline/semicrystalline state. Two distinct regions of incorporation were identified in the semicrystalline/amorphous state. It was found that PCL was rejected from the PC interlamellar region in the PCL-rich blends. In contrast, PCL was incorporated into the amorphous phase between the crystalline lamellae in the PC-rich blends. This transition from interlamellar exclusion to interlamellar inclusion may be related to the glass transition temperatures or the mobility of the blends. It is proposed that the mode of incorporation or exclusion is governed by the competition between entropy and diffusion. Additionally, SALS coupled with optical microscopy indicated that PC is an effective nucleating agent for PCL crystallization as manifested by the reduction of PCL spherulitic size with the addition of PC.

  7. FutureGen Project Report

    SciTech Connect (OSTI)

    Cabe, Jim; Elliott, Mike

    2010-09-30T23:59:59.000Z

    This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: • Site evaluation and selection process and environmental characterization • Underground Injection Control (UIC) Permit Application including well design and subsurface modeling • FutureGen IGCC-CCS Design Basis Document • Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report • Process flow diagrams and heat/material balance for slurry-fed gasifier configuration • Process flow diagrams and heat/material balance for dry-fed gasifier configuration • Full capital cost report and cost category analysis (CAPEX) • Full operating cost report and assumptions (OPEX) Comparative technology evaluations, value engineering exercises, and initial air permitting activities are also provided; the report concludes with schedule, risk, and cost mitigation activities as well as lessons learned such that the products of this report can be used to support future investments in utility scale gasification and carbon capture and sequestration. Collectively, the FutureGen project enabled the comprehensive site specific evaluation and determination of the economic viability of IGCC-CCS. The project report is bound at that determination when DOE formally proposed the FutureGen 2.0 project which focuses on repowering a pulverized coal power plant with oxy-combustion technology including CCS.

  8. Physics Needs for Future Accelerators

    E-Print Network [OSTI]

    Lykken, J D

    2000-01-01T23:59:59.000Z

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  9. Physics Needs for Future Accelerators

    E-Print Network [OSTI]

    Joseph D. Lykken

    2000-01-30T23:59:59.000Z

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  10. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  11. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01T23:59:59.000Z

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  12. Excitonic properties of strained wurtzite and zinc-blende GaNAlxGa1xN quantum dots

    E-Print Network [OSTI]

    Fonoberov, Vladimir

    Excitonic properties of strained wurtzite and zinc-blende GaNÕAlxGa1ÀxN quantum dots Vladimir A 2003 We investigate exciton states theoretically in strained GaN/AlN quantum dots with wurtzite WZ of GaN QDs.1­8 Molecu- lar beam epitaxial growth in the Stranski­Krastanov mode of wurtzite WZ Ga

  13. Optical properties of wurtzite and zinc-blende GaNAlN quantum dots Vladimir A. Fonoberova)

    E-Print Network [OSTI]

    Fonoberov, Vladimir

    Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots Vladimir A. Fonoberova; published 20 August 2004 We investigate theoretically and compare optical properties of wurtzite and zincN/AlN interface governs optical properties of wurtzite quantum dots while having a small effect on zinc

  14. Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy

    E-Print Network [OSTI]

    As, Donat Josef

    -assembled wurtzite GaN QDs1 and up to 300 K in site-controlled wurtzite nanowire QDs.2 Less mature than their wurtzite counterparts, single self-assembled zinc- blende (ZB) GaN QDs already show good prospects in terms to 100 K.5 They even present several advantages over self-assembled wurtzite GaN QDs: shorter radiative

  15. Universality of electron accumulation at wurtzite c-and a-plane and zinc-blende InN surfaces

    E-Print Network [OSTI]

    As, Donat Josef

    Universality of electron accumulation at wurtzite c- and a-plane and zinc- blende InN surfaces P. D 27 August 2007 Electron accumulation is found to occur at the surface of wurtzite 112¯0 , 0001.6 Experimental studies to date have focused on wurtzite c-plane surfaces,1­3,7 although pre- vious

  16. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect (OSTI)

    Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Fisher, Galen [University of Michigan] [University of Michigan; West, Brian H [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  17. Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

  18. Physical and chemical characteristics of an interesterified blend of butterfat and cottonseed oil with possible industrial applications

    E-Print Network [OSTI]

    Rashidi, Nabil

    1988-01-01T23:59:59.000Z

    interest in milkfat research in other parts of the world. In 1984, a symposium was held in Sweden that dealt exclusively with milkfat and its modification. Emphasis was placed on milkfat-vegetable oil blends. These products are legally sold now in some...

  19. Future of the Lakes Scenarios for the Future of

    E-Print Network [OSTI]

    about what to do today. We try to anticipate the future when making decisions, but plans are always as a type of war game analysis. Scenario planning later became a part of business planning. The oil company Royal Dutch/Shell further developed scenario planning, which played a role in that company's success

  20. FUTURE POWER GRID INITIATIVE Decision Support for Future

    E-Print Network [OSTI]

    data to generate and share mission-critical analysis and insights. November 2012 PNNL-SA-90020 Gariann Gelston Pacific Northwest National Laboratory (509) 372-4480 gariann.gelston@pnnl.gov Angie Dalton Pacific Northwest National Laboratory (509) 371-6607 angela.dalton@pnnl.gov ABOUT FPGI The Future Power Grid

  1. Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and Methane |science

  2. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect (OSTI)

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-01-01T23:59:59.000Z

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  3. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21T23:59:59.000Z

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  4. Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

    2007-01-01T23:59:59.000Z

    The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

  5. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  6. Future Directions for Magnetic Sensors

    E-Print Network [OSTI]

    and Engineering Laboratory Magnetic tunnel junction (MTJ) sensors are rapidly becoming the technology of choiceFuture Directions for Magnetic Sensors: HYBRIDMATERIALS Our goal is to develop the scientific expertise needed to allow modeling and simulation to become the driving force in improving magnetic sensors

  7. Envision your future in engineering

    E-Print Network [OSTI]

    Dyer, Bill

    , or construction or to persist in your program As you read about a woman's experience of overcoming health issues and construction, and on the future of our society cannot be overstated With great pride, Heidi Sherick Assistant various national laboratories, including the Gran Sasso Laboratory. After traveling, we went to Princeton

  8. Future Prospects of Synthetic Fuels 

    E-Print Network [OSTI]

    Fryback, M. G.

    1982-01-01T23:59:59.000Z

    It is important for the future of this nation to reach the goal of demonstrated definition and quantification of the parameters which influence the ability to use this country's vast resources of coal and oil shale for production of synthetic fuels...

  9. Future Prospects of Synthetic Fuels

    E-Print Network [OSTI]

    Fryback, M. G.

    1982-01-01T23:59:59.000Z

    It is important for the future of this nation to reach the goal of demonstrated definition and quantification of the parameters which influence the ability to use this country's vast resources of coal and oil shale for production of synthetic fuels...

  10. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01T23:59:59.000Z

    FOR FUTURE ENERGY PRODUCTION STATE'S PERSPECTIVE. CALIFORNIAREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIAREQUIREMENTS POR FUTURE ENERGY PRODUCTION IN CALIFORNIA

  11. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Ritschard, R.L.

    1977-01-01T23:59:59.000Z

    FOR FUTURE ENERGY PRODUCTION STATE'S PERSPECTIVE. CALIFORNIAREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIAREQUIREMENTS POR FUTURE ENERGY PRODUCTION IN CALIFORNIA

  12. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties

    SciTech Connect (OSTI)

    Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

    2002-08-30T23:59:59.000Z

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the latest state-of-the-art for thermodynamic properties of HFC refrigerant blends. These models were incorporated into version 7 of NIST REFPROP database.

  13. Bright Future NW Energy Coalition

    E-Print Network [OSTI]

    quickly set CO2 emission limits and establish mechanisms to meet them. But the Northwest must not waitAs Usual We have two choices for providing our electrical needs by 2050. We can either develop more of ourCoal Energy Efficiency/CHP 6¢/kWh With this extra 1,500 aMW in Bright Future we can power more electric

  14. Maps of crude oil futures

    SciTech Connect (OSTI)

    Masters, C.D.

    1986-05-01T23:59:59.000Z

    The Crude Oil Futures presentation shows their concept of the quantity of oil possibly present (the combination of conventional demonstrated reserves plus undiscovered recoverable resources) within the areas outlined. The Crude Oil Futures is not as an exploration map but as a perspective on the distribution of world oil. The occurrence of oil is, after all, a function of particular geologic factors that are not everywhere present. Furthermore, large amounts of oil can occur only where the several necessary independent variables (geologic factors) combine optimally. In the Western Hemisphere, similar minimal crude oil futures are shown for North America and South America. This similarity is a reflection not of similar geology but rather of the fact that most of the oil has already been produced from North America, whereas South America as a whole (except for Venezuela) possesses a geology less likely to produce oil. In Europe, Africa, and Asia, four regions are dominant: the Middle East, Libya, North Sea, and west Siberia. Paleogeography and source rock distribution were keys to this distribution - the Middle East and Libya reflecting the Tethyan association, and the North Sea and west Siberia benefitting from the Late Jurassic marine transgression into geographic environments where ocean circulation was restricted by tectonic events.

  15. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004

    SciTech Connect (OSTI)

    Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

    2005-11-01T23:59:59.000Z

    The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

  16. Valence band density of states of zinc-blende and wurtzite InN from x-ray photoemission spectroscopy and first-principles calculations

    E-Print Network [OSTI]

    As, Donat Josef

    Valence band density of states of zinc-blende and wurtzite InN from x-ray photoemission for wurtzite InN 112¯0 are shown to yield a VB-DOS similar to that of zinc-blende InN, although the nonzero the thermodynamically stable phase is the wurtzite 2H polymorph4 wz-InN , judicious choice of substrate material

  17. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect (OSTI)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29T23:59:59.000Z

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

  18. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27T23:59:59.000Z

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  19. Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors

    SciTech Connect (OSTI)

    Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M., E-mail: d.m.taylor@bangor.ac.uk [School of Electronic Engineering, Bangor University, Dean Street, Bangor, Gwynedd LL57 1UT (United Kingdom)

    2014-11-03T23:59:59.000Z

    Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

  20. Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001)

    E-Print Network [OSTI]

    Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001) Wenzhi Lin, Jeongihm], but not hexagonal (wurtzite) GaN, a fast-developing semiconductor material with important technological applicationsN on wurtzite GaN(0001), by employing e-beam evaporation in an ultra-high vacuum MBE cham- ber. The FeN films

  1. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.

    2011-03-10T23:59:59.000Z

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  2. PLANS FOR FUTURE MEGAWATT FACILITIES.

    SciTech Connect (OSTI)

    ROSER,T.

    2004-10-13T23:59:59.000Z

    Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and accelerator-driven sub-critical reactors. Each of these applications has additional requirements on beam energy and duty cycle. This paper will review how present designs for future Multi-Megawatt facilities meet these requirements and will also review the experience with present high power facilities.

  3. Future Heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarmFundicion Nodular del NorteFuture

  4. The Future of Home Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe Facts on Gas Prices:The FirstThe Future

  5. Market characteristics of future oil tanker operations

    E-Print Network [OSTI]

    Willemann, Simmy Dhawan

    2014-01-01T23:59:59.000Z

    This work analyzes the market characteristics of future oil tanker operations with a particular emphasis on those aspects which will have a potential impact on the design of future vessels. The market analysis model used ...

  6. Hedging Milk with BFP Futures and Options

    E-Print Network [OSTI]

    Anderson, David P.; McCorkle, Dean; Schwart Jr., Robert B.; Jones, Rodney

    1999-06-23T23:59:59.000Z

    Basic Formula Price (BFP) milk futures and options can be used to hedge, or lock in, milk prices in order to manage milk price fluctuations. This publication offers information on futures contracts, basis, cash settlement and margin call. There also...

  7. National Engineers Week: Future City Competition

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    2011 Future Cities Competition inspires students all across South Carolina to pursue careers in environmental protection and engineering.

  8. European Strategy for Future Neutrino Physics

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    A workshop to discuss the possibilities for future neutrino investigations in Europe and the links to CERN.

  9. National Engineers Week: Future City Competition

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    2011 Future Cities Competition inspires students all across South Carolina to pursue careers in environmental protection and engineering.

  10. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01T23:59:59.000Z

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  11. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOE Patents [OSTI]

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02T23:59:59.000Z

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  12. Correlations of Polyimides and Blended Polyimides for High Temperature Gas Separations

    SciTech Connect (OSTI)

    John R. Klaehn; Christopher J. Orme; Thomas A. Luther; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2002-03-01T23:59:59.000Z

    High performance polymers are of interest for high temperature gas separations, especially for the sequestration of carbon dioxide. A new family of high performance imide polymers has been identified as a successful membrane capture material. VTEC polyimides possess desired thermal properties (up to 500 °C) along with being robust and flexible even after multiple thermal cycles (up to 400 °C). Polyimides (PI) are excellent materials for high selectivity for smaller kinetic diameter gases such as H2 and CO2; however, they have low fluxes. We blended small amounts of different polymers with VTEC polyimide, which changes the fluxes. Another critical problem when working with glassy polymers is their moisture content. It has been found that water entrapped within the polymer matrix (left over from the solvent, or physisorbed) can also cause the polymer to change dramatically. Additionally presence of molecular water in the polymer’s void volume has been validated through Positron Annihilation Lifetime (PAL) spectroscopy. In this presentation, polymer characterization and gas-separation testing results will be discussed.

  13. Urologic robots and future directions

    E-Print Network [OSTI]

    Mozer, Pierre; Stoianovici, Dan; 10.1097/MOU.0b013e32831cc1ba

    2008-01-01T23:59:59.000Z

    PURPOSE OF REVIEW: Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. RECENT FINDINGS: Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. SUMMARY: The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-use...

  14. Coal: Energy for the future

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  15. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

    2005-10-01T23:59:59.000Z

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  16. People Strategy Fit for Our Future

    E-Print Network [OSTI]

    People Strategy Fit for Our Future People Strategy 2011-2016 #12;#12;Fit for Our Future Tim. The implications of the Comprehensive Spending Review settlements in each country will mean big changes for many of our people. Fit for Our Future: People Strategy 2011-2016 | 1 The Executive Board and the rest of my

  17. Control and Protection Paradigms of the Future

    E-Print Network [OSTI]

    a strong foundation of practice in system regulation and protective relaying on which to build; howeverControl and Protection Paradigms of the Future Future Grid Thrust Area 2 White Paper Power Systems White Paper Control and Protection Paradigms of the Future Project Team C.L. DeMarco, C.A. Baone, B

  18. ENERGY WHITE PAPER Our energy future -

    E-Print Network [OSTI]

    ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

  19. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect (OSTI)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Environmental geophysics - fad or future?

    SciTech Connect (OSTI)

    Romig, P.R. [Colorado School of Mines, Golden, CO (United States)

    1994-12-31T23:59:59.000Z

    For ten years, the oil industry has suffered cycles of downsizing, out-sourcing, and reorganization. As layoffs and early retirement have become widespread, an increasing number of geophysicists have seen the environmental business as an opportunity to stay in their chosen professions. There have been predictions that the use of geophysics for environmental mapping and characterization could spawn an industry larger than oil exploration. These predictions have come from serious financial analysts as well as from hopeful geophysicists, so they cannot be ignored. There also are reputable professionals who believe that environmentalism is a fad which will die out as soon as the next oil shortage occurs. They point to recent publicity about excessive expenditures for waste remediation as a signal of the beginning of the end. These conflicting views raise serious questions about the form and function of, and the future for, environmental geophysics. This paper reviews these views.

  1. Overview progress and future planOverview progress and future plan EAST project

    E-Print Network [OSTI]

    Overview progress and future planOverview progress and future plan ofof EAST project Yuanxi WanUnique CharacteristicCharacteristic III.III. Future planFuture plan Conten t #12;1997 The project approved by government;workshops with good quality; All magnets has been tested successfully by cooling and charging,All magnets has been

  2. While future changes in emission are the largest uncertainty on future climate change, another

    E-Print Network [OSTI]

    Allan, Richard P.

    specify concentrations and that lead to varying degrees of heating (or cooling) in the future and work outWhile future changes in emission are the largest uncertainty on future climate change, another. Above, the thick lines show different possible future scenarios (Representative Concentration Pathways

  3. Saving for the future self: Neural measures of future self-continuity predict temporal discounting

    E-Print Network [OSTI]

    Knutson, Brian

    Saving for the future self: Neural measures of future self-continuity predict temporal discounting not increased their rate of saving. In a phenomenon known as `temporal discounting', people value immediate and treat the future self differently from the present self, and so might fail to save for their future

  4. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

    2010-01-01T23:59:59.000Z

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  5. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy An error occurred. Unable to execute Javascript. Bioenergy: America's Energy Future is a...

  6. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01T23:59:59.000Z

    would future urban therefore Cooling and agricultural waterwater a higher than of future power cooling in 1975. WATERa larger portion the cooling of the future requirements.

  7. Multi-Path Transportation Futures Study - Lessons for the Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study Multi-Path Transportation Futures Study - Lessons for the Transportation Energy...

  8. The house of the future

    SciTech Connect (OSTI)

    2010-05-13T23:59:59.000Z

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  9. The house of the future

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  10. Foundation futures: Energy saving opportunities

    SciTech Connect (OSTI)

    Christian, J.E.

    1988-01-01T23:59:59.000Z

    Significant energy savings will result from compliance to the foundation insulation recommendations in ASHRAE Standard 90.2P, /open quotes/Energy Efficient Design of New, Low-Rise Residential Buildings/close quotes/ (ASHRAE 1987). This paper summarizes an assessment of current US energy savings from foundation insulation and estimates future savings resulting from broad-scale adoption of ASHRAE 90.2P. The assessment is based on the premise that the detailed analysis behind ASHRAE 90.2P and its systematic method of determining insulation levels in a balanced manner will allow it to become the accepted base energy performance standard for all residential construction. The total energy currently being saved by foundation insulation (30% of 1.7 million new units) in one year's worth of new housing starts in the United States is estimated at 9.6 /times/ 10/sup 12/ Btu/yr (10.1 PJ/yr (petajoule = 10/sup 15/ joule)). The full compliance with ASHRAE 90.2P leads to more than a doubling of current foundation insulation energy savings. The extrapolation of existing practice and the addition of other contributions resulting from compliance with ASHRAE 90.2 lead to an estimated energy savings by the year 2010 between 0.38 and 0.45 quad/yr (400 and 475 PJ/yr (quad = 10/sup 15/ Btu)). 11 refs., 14 tabs., 7 figs.

  11. The future of nuclear deterrence

    SciTech Connect (OSTI)

    Quester, G.H.

    1986-01-01T23:59:59.000Z

    Nuclear deterrence has been in existence for almost four decades. Yet, analysts from the left and the right keep reemphasizing the dangers and problems with deterrence without always remembering its purpose-the prevention of nuclear war or the prevention of all war. In this book. George Quester analyzes the future of nuclear deterrence in light of its past, and discovers that the fundamental tenets of nuclear deterrence remain unchanged. George Quester considers the overwhelming tensions present in a society threatened by the prospect of a nuclear holocaust and a lingering nuclear winter. But he also acknowledges that nuclear deterrence has prevented a great deal of global and local warfare that otherwise would have occurred. He spotlights the basic military problems facing the world today, including the shadow cast on all levels of strategic planning by the threat of nuclear war. Quester warns against charging forth with radical new alternatives, such as the Strategic Defense Initiative and deep-cut disarmament. He argues that initiatives such as these reflect a return to traditional military thinking about waging and winning wars that pose serious possibilities for a breakdown in deterrence policy.

  12. Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution In Thermoplastic-Natural Rubber Blend Composites

    SciTech Connect (OSTI)

    Ahmad, Sahrim; Rasid, Rozaidi; Mouad, A. T. [Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Aziz Mohamed, A.; Abdullah, Jaafar; Dahlan, M.; Mohamad, Mahathir; Jamro, Rafhayudi; Hamzah Harun, M. [Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia); Yazid, Hafizal [Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Hafizal Yazid, Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Abdullah, W. Saffiey W.

    2010-01-05T23:59:59.000Z

    X-ray microtomography and ImageJ 1.39 u is used as a tool to quantify volume percentage of B{sub 4}C as fillers in thermoplastic-natural rubber blend composites. The use of percentage of area occupied by fillers as obtain from ImageJ from the microtomography sliced images enables the proposed technique to easily obtain the amount volume percentage of B{sub 4}C in the composite non-destructively. Comparison with other technique such as density measurement and chemical analysis proves the proposed technique as one of the promising approach.

  13. Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study

    SciTech Connect (OSTI)

    Haas, Francis M.; Chaos, Marcos; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-12-15T23:59:59.000Z

    In this brief communication, we present new experimental species profile measurements for the low and intermediate temperature oxidation of ethanol under knock-prone conditions. These experiments show that ethanol exhibits no global low temperature reactivity at these conditions, although we note the heterogeneous decomposition of ethanol to ethylene and water. Similar behavior is reported for an E85 blend in n-heptane. Kinetic modeling results are presented to complement these experiments and elucidate the interaction of ethanol and primary reference fuels undergoing cooxidation. (author)

  14. Future Computing Needs for Innovative Confinement Concepts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Washington, Seattle August 3, 2010 Large Scale Computing Needs for Fusion Energy Science Workshop Rockville, MD Charlson C. Kim, PSI-Center Future Computing Needs of...

  15. Presentation to EAC: Renewable Electricity Futures Activities...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation to the Electricity Advisory Committee, October 29, 2010, on Renewable Electricity Futures Activities & Status. The presentation provides a high-level overview of the...

  16. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases...

  17. The Future of Bioenergy Feedstock Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Bioenergy Feedstock Production Cornell University June, 2013 John Ferrell Feedstock Technology Lead Bioenergy Technologies Office US Department of Energy 2...

  18. Eau Canada: The Future of Canada's Water

    E-Print Network [OSTI]

    Laberge, Yves

    2012-01-01T23:59:59.000Z

    Review : Eau Canada: TheFuture of Canada's Water Karen Bakker (Ed. )by Yves Laberge Quebec, Canada Bakker, Karen (Ed. ). Eau

  19. Fueling the Future with Fungal Genomics

    E-Print Network [OSTI]

    Grigoriev, Igor V.

    2011-01-01T23:59:59.000Z

    Saccharomyces cerevisiae. Biofuels. 108:147-177. Harman GE,or future hydrocarbon biofuels, fungi are involved. Researchtopic areas that impact biofuels production. In this review,

  20. Neutrinoless Double Beta Decay: Present and Future

    E-Print Network [OSTI]

    Oliviero Cremonesi

    2002-10-04T23:59:59.000Z

    Present status, and future plans for Double Beta Decay searches are reviewed. Given the recent observations of neutrino oscillations, a possibility to observe $\\beta\\beta(0\

  1. Future Forests Program Plan 2013 2016

    E-Print Network [OSTI]

    for biodiversity conservation, water protection, recreational needs, climate change mitigation management of forests in a future characterized by change. Our vision; · Communication of ne

  2. Future Directions in Engines and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    parties Future Directions in Engines and Fuels 9 HP-EGR Cooler: Shell and tubes heat exchanger with optimised gas tube design High thermal exchange and resistance to...

  3. Aftertreatment Modeling Status, Futur Potential, and Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Model-Based Transient Calibration Optimization for Next Generation Diesel Engines...

  4. Superconducting Magnet Technology for Future Hadron Colliders

    E-Print Network [OSTI]

    Scanlan, R.M.

    2011-01-01T23:59:59.000Z

    I. Superconducting Magnet Technology for Future Hadl"On1994. M.N. Wilson, Superconducting Magnets (Clarendon Press,The application of superconducting magnets to large-scale

  5. Evolution of crystalline structures of poly([epsilon]-caprolactone)/polycarbonate blends; 1: Isothermal crystallization kinetics as probed by synchrotron small-angle x-ray scattering

    SciTech Connect (OSTI)

    Cheung, Y.W.; Stein, R.S. (Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering); Chu, B.; Wu, G. (State Univ. of New York at Stony Brook, Long Island, NY (United States))

    1994-06-20T23:59:59.000Z

    Evolution of the poly([epsilon]-caprolactone) (PCL) lamellae in blends of PCL/PC (polycarbonate) was monitored by synchrotron small-angle X-ray scattering (SAXS). The effects of crystallization temperature, PC concentration, and PC crystallinity on the PCL lamellar growth in the PCL-rich blends were investigated. The half-crystallization time derived from the temporal change of the peak intensity increased with crystallization temperature and generally increased with the addition of PC. For a given blend composition, the lamellar growth rate increased with increasing PC crystallinity. The interlamellar spacing initially varied with time and then approached a plateau value at the later stage of crystallization. An insertion mechanism is proposed in which the PCL is crystallized in the amorphous intralamellar phase. This model is also consistent with the quantitative SAXS results, which suggested that random mixing of PCL and PC lamellae occurred in the semicrystalline (PCL)/semicrystalline (PC) state.

  6. Study of the Crystalline Morphology Evolution of PET and PET/PC Blends by Time-resolved Synchrotron Small Angle X-ray Scattering (SAXS) and DSC

    SciTech Connect (OSTI)

    Barbosa, Irineu; Larocca, Nelson M.; Hage, Elias [Dep. de Engenharia de Materiais, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Plivelic, Tomas S.; Torriani, Iris L. [Laboratorio Nacional de Luz Sincrotron, Campinas, SP (Brazil); Mantovani, Gerson L. [Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas, Universidade Federal do ABC, 09090-400 Santo Andre, SP (Brazil)

    2009-01-29T23:59:59.000Z

    Isothermal melt crystallization of poly(ethylene terephthalate)(PET) and PET/PC (polycarbonate) blend, with and without a transesterification catalyst, was studied by time-resolved small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) in order to achieve the variation of the morphological parameters throughout the whole crystallization time. For neat PET, the catalyst promotes a decrease of the crystal lamellar thickness but for the blend no variations were observed. The effect of incorporation of catalyst in crystallization kinetics was very distinct in PET pure and the blend: in the former the catalyst leads to an increase of this kinetics while for the latter it was observed a decreasing.

  7. The future of FRMAC assessment.

    SciTech Connect (OSTI)

    Laiche, Thomas P.

    2010-03-01T23:59:59.000Z

    FRMAC was born out of circumstances 25 years ago when 17 federal agencies descended on the states with good intention during the Three-Mile Island nuclear power plant incident. At that time it quickly became evident that a better way was needed to support state and local governments in their time of emergency and recovery process. FRMAC's single voice of Federal support coordinates the multiple agencies that respond to a radiological event. Over the years, FRMAC has exercised, evaluated, and honed its ability to quickly respond to the needs of our communities. As the times have changed, FRMAC has expanded its focus from nuclear power plant incidents, to threats of a terrorist radiological dispersal device (RDD), to the unthinkable - an Improvised nuclear device (IND). And just as having the right tools are part of any trade, FRMAC's tool set has and is evolving to meet contemporary challenges - not just to improve the time it takes to collect data and assess the situation, but to provide a quality and comprehensive product that supports a stressed decision maker, responsible for the protection of the public. Innovations in the movement of data and information have changed our everyday lives. So too, FRMAC is capitalizing on industry innovations to improve the flow of information: from the early predictive models, to streamlining the process of getting data out of the field; to improving the time it takes to get assessed products in to the hands of the decision makers. FRMAC is focusing on the future through the digital age of electronic data processing. Public protective action and dose avoidance is the challenge.

  8. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry

    SciTech Connect (OSTI)

    Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-12-01T23:59:59.000Z

    High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

  9. Combustion properties of coal-char blends: NO{sub x} emission characteristics. Interim final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Khan, L.; Khan, S. [Illinois State Geological Survey, Champaign, IL (United States); Smoot, L.D.; Germane, G.J.; Eatough, C.N. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1993-12-31T23:59:59.000Z

    Under pulverized coal combustion conditions, NO{sub x} formed during the release of volatile matter far exceed NO{sub x} formed from combustion of the resulting char. It is believed that interactions of NO{sub x} with char is responsible for the reduced NO{sub x} formation from the combustion of char. The goal of this research is to assess the potential technical and economical benefits of co-firing coal-char blends in pulverized coal boilers to reduce NO{sub x}. The rationale for the proposed research is that the presence of char in the flame during the initial stages of combustion may provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. This project is a cooperative effort between the Illinois State Geological Survey (ISGS) and BYU/ACERC. Seven hundred and fifty pounds of three coal-char blends containing 12.5%, 25%, and 50% char and 125 pounds of a coal-activated carbon blend containing 12.5% activated carbon were prepared. The volatile matter contents of the blends ranged from 27.3 to 35.6% (dry basis). Char (16.2 wt% volatile matter) was made from an Illinois No. 6 coal (Peabody Coal Company) in a continuous feed charring oven under mild gasification conditions. Nine combustion tests will be performed with the coal and blends in a 0.5--1.0 MBtu/hr combustor located at BYU. Combustion data will be analyzed to determine the effect of blend type, stoichiometry, and flame temperature on NO{sub x} formation, ignition characteristics, flame stability, and combustion efficiency. A four month no-cost extension has been requested for the project. The results of the combustion tests will be reported in the final technical report in December 1993.

  10. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10T23:59:59.000Z

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  11. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation sources are likely to be intermittent, requiring storage capacity energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all

  12. Chirac calls ITER essential for planet's future

    E-Print Network [OSTI]

    fusion reactor. "Today, our energy consumption has put us in danger. It's mainly based on oil, gasChirac calls ITER essential for planet's future CADARACHE, France, June 30 (AFP) - French President in southern France as vital to the planet's future, praising European solidarity in sealing the deal. "This

  13. The Future of Materials Science and Engineering

    E-Print Network [OSTI]

    Li, Mo

    The Future of Materials Science and Engineering: An Industry Perspective May 14-15, 2013 #12;Proceedings of the Symposium on "The Future of Materials Science and Engineering: An Industry Perspective requirements and applications. Materials science and engineering (MSE) programs at universities across

  14. Future Prospects for Nuclear Power after Fukushima

    E-Print Network [OSTI]

    Goldberg, Bennett

    at the FukushimaDaiichi nuclear power plant in Japan has changed the perception of nuclear as a safe energy sourceFuture Prospects for Nuclear Power after Fukushima Nuclear is a highintensity energy source as the next generation of Light Water Reactors. We will also discuss the future prospects of nuclear power

  15. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: IMPROVED DAYLIGHT PERFORMANCE OF TUBULAR of the camera systems used for luminance mapping. The Western Cooling Efficiency Center kindly agreed to allow. Lighting California's Future: Improved Daylight Performance of Tubular Daylighting Devices. California

  16. Wired for the future JOHN CLARKE1

    E-Print Network [OSTI]

    Loss, Daniel

    Wired for the future JOHN CLARKE1 AND DAVID C. LARBALESTIER2 1 Department of Physics, University temperatures Tc of the order of 100 K -- Time magazine ran the coverline "Wiring the Future at the fabric of these HTS compounds gives an indication of where the difficulties lie: the materials

  17. A Once and Future Gulf of Mexico

    E-Print Network [OSTI]

    Osenberg, Craig W.

    and repair damage from the oil spill and other stresses on the Gulf of Mexico. 2. Protect existing habitatsA Once and Future Gulf of Mexico Ecosystem Restoration Recommendations of an Expert Working Group, Stanley Senner, John M. Teal and Ping Wang #12;1 A Once and Future Gulf of Mexico Ecosystem, Executive

  18. Future Electron-Hadron Colliders

    SciTech Connect (OSTI)

    Litvinenko, V.

    2010-05-23T23:59:59.000Z

    Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy {approx}100 GeV. One of these meetings was held at GSI, where ENC topic was in the center of discussions. First dedicated LHeC workshop was held in 2008, with a number of dedicated workshops following it. Intense accelerator R&D program is needed to address the challenges posed by the EIC.

  19. Dry cooling: Perspectives on future needs

    SciTech Connect (OSTI)

    Guyer, E.C. (Yankee Scientific, Inc., Ashland, MA (United States))

    1991-08-01T23:59:59.000Z

    The factors that can be expected to determine the future role of dry cooling in the United States electric power generation industry are identified and characterized. Focus is primarily on the issues of water availability for the electric power industry and the environmental impacts of evaporative cooling systems. The question of future water availability is addressed in terms of both limitations and opportunities facing the industry. A brief review of the status of dry cooling applications is provided. Included is a summary of an extensive survey of electric utility industry perspectives on the future requirements and role for dry cooling. Some regional assessments of the expected future requirements for this technology are also provided. Conclusions are a qualitative characterization of the expected future role of dry cooling in the electric power industry. 72 refs., 7 figs., 13 tabs.

  20. Nuclear Futures Analysis and Scenario Building

    SciTech Connect (OSTI)

    Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

    1999-07-09T23:59:59.000Z

    This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios.

  1. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30T23:59:59.000Z

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  2. Future Agricultural Science Teachers (FAST) Constitution Page 1 Future Agricultural Science Teachers (FAST)

    E-Print Network [OSTI]

    Future Agricultural Science Teachers (FAST) Constitution Page 1 Future Agricultural Science&M University, shall be the Future Agricultural Science Teachers (FAST). Article II- Purpose The purpose Membership will be open to students who have an interest in agricultural science teacher certification

  3. IBM and the Future of Energy 1 IBM AND THE FUTURE OF ENERGY

    E-Print Network [OSTI]

    in efficiency. Climate change and then, lastly, and maybe as importantly, the need for energy independence. IIBM and the Future of Energy 1 IBM AND THE FUTURE OF ENERGY FREEMAN: Welcome to an IBM podcast on the Future of Energy. I'm Tod Freeman. The next five years will be pivotal for the energy and utility

  4. National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future nation but the world #12;National Renewable Energy Laboratory Innovation for Our Energy Future Campus facilities · Carbon neutral · Net zero energy · Living Laboratory #12;National Renewable Energy Laboratory

  5. Timber shapes the future | This is London Timber shapes the future

    E-Print Network [OSTI]

    Timber shapes the future | This is London Timber shapes the future By David Spittles 02.10.03 Add Fire of London, but nearly 350 years later, a refined version is staging a comeback. Increasingly, wood;Timber shapes the future | This is London Until a few years ago, timber-frame construction was a cottage

  6. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  7. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10| Departmentin theIssues |

  8. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OF ENERGY'Elise FoxEnergyStatement of

  9. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartmentCAIRSPlanningLaboratory,|CNG Exports by TruckCNG|

  10. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA FewAJanuaryDepartmentMotors

  11. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01T23:59:59.000Z

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  12. Factors shaping the future of Cloud Computing

    E-Print Network [OSTI]

    Francis, Steven (Steven Douglas)

    2011-01-01T23:59:59.000Z

    Many different forces are currently shaping the future of the Cloud Computing Market. End user demand and end user investment in existing technology are important drivers. Vendor innovation and competitive strategy are ...

  13. Price distortions in the commodity futures markets

    E-Print Network [OSTI]

    Helfrich, Devin B

    2012-01-01T23:59:59.000Z

    Speculation is not monolithic; it comes in many forms. A certain level of speculation is required for commodity futures markets to function. On the other hand, certain types of trading activities by speculators may damage ...

  14. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    carbon capture and storage, especially as a technology thatCarbon capture and sequestration CCST California Council on Science and Technologytechnology California’s Energy Future - The View to 2050 becomes available. ? ? Fossil fuel with carbon capture

  15. Addressing an Uncertain Future Using Scenario Analysis

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris

    2008-01-01T23:59:59.000Z

    a scenario may be an oil price hike in a future year, whichon the impact of high oil prices on the global economy (seethe scenario of a high oil price (of US$35/barrel, which is

  16. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01T23:59:59.000Z

    probe. The development of CW SCRF technology, also used inCW superconducting RF (SCRF) linac provides high repetitionThe great attractions of CW SCRF for future FEL facilities

  17. What future does the universe have?

    E-Print Network [OSTI]

    B. Hoeneisen

    2002-10-23T23:59:59.000Z

    We discuss the future evolution of the universe in the light of recent observations. The apparent luminosity vs. redshift of supernovae favor an accelerating universe. However an Einstein-de Sitter critical universe should not be ruled out yet.

  18. Biomass 2014: Growing the Future Bioeconomy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Register for Biomass 2014 today and don’t miss your chance to take part in this important event that will help move the nation to a more secure, sustainable, and economically sound future.

  19. Future characteristics of Offshore Support Vessels

    E-Print Network [OSTI]

    Rose, Robin Sebastian Koske

    2011-01-01T23:59:59.000Z

    The objective of this thesis is to examine trends in Offshore Support Vessel (OSV) design and determine the future characteristics of OSVs based on industry insight and supply chain models. Specifically, this thesis focuses ...

  20. FUTURE POWER GRID INITIATIVE Intelligent Networked Sensors

    E-Print Network [OSTI]

    , demand- response, and plug-in electric vehicles. It: » Lays the software platform groundwork and planning and ensure a more secure, efficient and reliable future grid. Building on the Electricity

  1. Future Directions in Engines and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    essentially zero after LEV III, Tier 3 finalized and phased-in * Future focus in on CO2 reduction, energy security * Still significant CO2 reduction possible from combustion...

  2. EIS-0394: FutureGen Project

    Broader source: Energy.gov [DOE]

    The EIS provides information about the potential environmental impacts of the DOE's proposal to provide federal funding to FutureGen Alliance, Inc. for the FutureGen Project. The project would include the planning, design, construction, and operation by the Alliance of a coal-fueled electric power and hydrogen gas production plant integrated with carbon dioxide capture and geologic sequestration of the captured gas.

  3. Primer on electricity futures and other derivatives

    SciTech Connect (OSTI)

    Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

    1998-01-01T23:59:59.000Z

    Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

  4. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Foster, Prof. Dave [University of Wisconsin] [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  5. Biodiesel Production From Animal Fats And Its Impact On The Diesel Engine With Ethanol-Diesel Blends: A Review

    E-Print Network [OSTI]

    Darunde Dhiraj S; Prof Deshmukh Mangesh M

    Abstract — Mainly animal fats and vegetable oils are used for the production of biodiesel. Several types of fuels can be derived from triacylglycerol-containing feedstock. Biodiesel which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol (methanol/ethanol) under mild conditions in the presence of a base catalyst. This paper discuses fuel production, fuel properties, environmental effects including exhaust emissions and co-products. This also describes the use of glycerol which is the by-product in esterification process along with biodiesel. The impact of blending of biodiesel with ethanol and diesel on the diesel engine has described.

  6. Technology Challenges in Designing the Future Grid to Enable

    E-Print Network [OSTI]

    Technology Challenges in Designing the Future Grid to Enable Sustainable Energy Systems Future Grid the Future Electric Energy System #12;Technology Challenges in Designing the Future Grid to Enable Summary This white paper synthesizes technology challenges for reaching a vision of the future grid that

  7. Computation and Information Hierarchy for a Future Grid

    E-Print Network [OSTI]

    Computation and Information Hierarchy for a Future Grid Future Grid Initiative White Paper Power;#12;Computation and Information Hierarchy for a Future Grid Prepared for the Project "The Future Grid to Enable This white paper was developed as one of nine white papers in the project "The Future Grid to Enable

  8. Using Maps to Predict Solar Futures | Department of Energy

    Office of Environmental Management (EM)

    Using Maps to Predict Solar Futures Using Maps to Predict Solar Futures June 19, 2015 - 1:43pm Addthis Using Maps to Predict Solar Futures Dr. Lidija Sekaric Dr. Lidija Sekaric...

  9. The future steelmaking industry and its technologies

    SciTech Connect (OSTI)

    Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

    1995-01-01T23:59:59.000Z

    The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

  10. Goal Practice & Experience : Status Quo and Future for Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy...

  11. Code Gaps and Future Research Needs of Combustion Safety: Building...

    Energy Savers [EERE]

    Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update Code Gaps and Future Research Needs of Combustion Safety: Building America Expert...

  12. 3-D Combustion Simulation Strategy Status, Future Potential,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel...

  13. Winning the Future: Chaninik Wind Group Pursues Innovative Solutions...

    Energy Savers [EERE]

    Winning the Future: Chaninik Wind Group Pursues Innovative Solutions to Native Alaska Energy Challenges Winning the Future: Chaninik Wind Group Pursues Innovative Solutions to...

  14. ITP Mining: Mining Industry of the Future Mineral Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

  15. Concept for Management of the Future Electricity System (Smart...

    Open Energy Info (EERE)

    Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System Country Denmark...

  16. Critical Materials and Rare Futures: Ames Laboratory Signs a...

    Energy Savers [EERE]

    Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on...

  17. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

  18. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...

    Office of Environmental Management (EM)

    Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

  19. DOE Announces Restructured FutureGen Approach to Demonstrate...

    Energy Savers [EERE]

    Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple...

  20. Future Power Systems 20: The Smart Enterprise, its Objective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise,...

  1. Cost Effectiveness of Technology Solutions for Future Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Effectiveness of Technology Solutions for Future Vehicle Systems Cost Effectiveness of Technology Solutions for Future Vehicle Systems Explores the economics of CO2 emission...

  2. Better Buildings for a Brighter Future | Department of Energy

    Energy Savers [EERE]

    Better Buildings for a Brighter Future Better Buildings for a Brighter Future This program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the...

  3. Buildings of the Future Research Project Launch and Virtual Panel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends Buildings of the Future Research Project Launch and Virtual Panel...

  4. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in...

  5. The Future is Here: Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here: Smart Home Technology The Future is Here: Smart Home Technology April 9, 2015 3:00PM to 4:30PM EDT...

  6. The Future of Absorption Technology in America: A Critical Look...

    Broader source: Energy.gov (indexed) [DOE]

    The Future of Absorption Technology in America: A Critical Look at the Impact of Building, Cooling, Heating, and Power (BCHP) and Innovation, June 2000 The Future of Absorption...

  7. Fueling the Future with Fungal Genomics

    SciTech Connect (OSTI)

    Grigoriev, Igor V.; Cullen, Daniel; Hibbett, David; Goodwin, Stephen B.; Jeffries, Thomas W.; Kubicek, Christian P.; Kuske, Cheryl; Magnuson, Jon K.; Martin, Francis; Spatafora, Joey; Tsang, Adrian; Baker, Scott E.

    2011-04-29T23:59:59.000Z

    Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes and improve them to make bioenergy production efficient on an industrial scale. Genomics is the foundation of the systems biology approach that is being used to accelerate the research and development efforts across the spectrum of topic areas that impact biofuels production. In this review, we discuss past, current and future advances made possible by genomic analyses of the fungi that impact plant/feedstock health, degradation of lignocellulosic biomass and fermentation of sugars to ethanol, hydrocarbon biofuels and renewable chemicals.

  8. Nuclear Waste and the Distant Future Nuclear Waste and the Distant Future

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Nuclear Waste and the Distant Future 1 Nuclear Waste and the Distant Future PER F. PETERSON WILLIAM://www.issues.org/22.4/peterson.html Regulation of nuclear hazards must be consistent with rules governing other of the radioactive material generated by nuclear energy decays away over short times ranging from minutes to several

  9. Remembering a Future Caribbean Gender, Generation and Memory: Remembering a Future Caribbean1

    E-Print Network [OSTI]

    Toronto, University of

    Remembering a Future Caribbean Gender, Generation and Memory: Remembering a Future Caribbean1 by D, in the dusk of her life, there was little that was memorable in the contemporary Caribbean. This is a provocatively harsh opening, one that a glance at any Human Development Report ­ which notes that the Caribbean

  10. Kansas Labor Unions: Past, Present and Future

    E-Print Network [OSTI]

    Shulenburger, David E.; Johnson, Nancy Brown

    1983-06-01T23:59:59.000Z

    Labor Unions: Past, Present and Future,” Kansas Business Review, with N.B. Johnson, Volume 6 (May-June, 1983), pp. 13-17. Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml and N. B. Johnson Kansas Labor Unions: Past, Present, and Future... that the strikers were " . . . sober, in­ telligent, orderly men" and encouraged the railroad to "arrange terms for an amicable settlement."6 Governor Martin's stalwart stand not to intervene with troops represented one of the earliest occasions in which a state...

  11. Optical Technology Needs for Future Space Telescopes

    E-Print Network [OSTI]

    Van Stryland, Eric

    Optical Technology Needs for Future Space Telescopes H. Philip Stahl, Ph.D. #12;Prelude systems. Synergistic integration of Earth observations & models. #12;Sun-Solar System Connection - investigate dark energy Structure and Evolution: Pathways to Life Program How Did we Get Here - follow

  12. Nonresidential Construction: Past, Present, and Future

    E-Print Network [OSTI]

    Nonresidential Construction: Past, Present, and Future James Wood, Director Over the past 15 years permit-authorized nonresidential construction in Utah has averaged $1.54 billion per year (in constant 2009 dollars); almost exactly half of the $3.16 billion average for residential construction.1

  13. The Future of Financial Risk Management: Lessons

    E-Print Network [OSTI]

    Aronov, Boris

    The Future of Financial Risk Management: Lessons Charles S. Tapiero, Topfer Chair Distinguished Professor of Financial Engineering and Technology Management Department of Finance and Risk Engineering NYU, leading risk managers to turn to qualitative stress testingto turn to qualitative stresstesting, 4

  14. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

  15. Business Honors Program A Bright Business Future

    E-Print Network [OSTI]

    de Lijser, Peter

    Business Honors Program Achieve! #12;2page A Bright Business Future If you are a talented no further. The Business Honors Program at Mihaylo College of Business and Economics provides a socially and professionally stimulating academic environment to a select group of business administration students. As you

  16. Building a Sustainable Future FACILITIES & OPERATIONS

    E-Print Network [OSTI]

    Building a Sustainable Future FACILITIES & OPERATIONS #12;A Laboratory on a Mission ...to meet: The Environmental Technology Building and National Security Building house more than 650 staff members. #12;Pacific capacity "The Facilities & Operations organization is dedicated to safely and sustainably building

  17. Capping of Water Wells for Future Use 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin

    2007-09-04T23:59:59.000Z

    Water wells that are not being used, but that might be needed in the future, can be sealed with a cap that covers the top of the well casing pipe to prevent unauthorized access and contamination of the well. This publication explains how to cap a...

  18. Energy Implications of Alternative Water Futures

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

  19. Thermodynamics -Past, Present and Future Werner Ebeling

    E-Print Network [OSTI]

    Ebeling, Werner

    Thermodynamics - Past, Present and Future Werner Ebeling Institute of Physics, Humboldt, Clausius, Nernst and Einstein. We underline the key role of thermodynamic ideas in the scientific fundamental laws Thermodynamics as a branch of science was established in the 19th century by Sadi Carnot

  20. Future Cooling Experiments R. B. Palmer (BNL)

    E-Print Network [OSTI]

    McDonald, Kirk

    Future Cooling Experiments R. B. Palmer (BNL) FNAL June 13 2008 1 #12;Short Term 6D cooling Experiments Demonstrate 6D cooling without acceleration using a wedge at MICE Tracks can be selected off lineH or polyethylene wedge will show 6D cooling Later re-acceleration can be included 2 #12;Long Term 6D Cooling

  1. SOLAR ENERGY AND OUR ELECTRICITY FUTURE

    E-Print Network [OSTI]

    SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia;Outline of Today's Discussion Background Solar Cells and the Photoelectric Effect From Cells to PV Systems Modeling PV Performance Concentrating Solar Power (CSP) Some things not addressed in this presentation

  2. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  3. Sustainability protects resources for future generations

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This publication by the National Renewable Energy Laboratory addresses the steps necessary to provide livable urban centers for future generations through sustainable development, or sustainability. To illustrate this concept, nonsustainable cities and sustainable cities are compared. Sustainable city projects for several major US cites are reviewed.

  4. COMPUTER SECURITY EDUCATION Past, Present and Future

    E-Print Network [OSTI]

    information. Computer security researchers and practitioners were few in number, worked primarilyCOMPUTER SECURITY EDUCATION Past, Present and Future Carol Taylor, Rose Shumba, and James Walden: This paper presents an overview of computer security education in academia. We examine security education

  5. ucsf sustainability healthy environment, sustainable future

    E-Print Network [OSTI]

    Yamamoto, Keith

    ucsf sustainability healthy environment, sustainable future UC SAN FRANCISCO ANNUAL REPORT FY 2009-2010 Annual Report of the Chancellor's Advisory Committee on Sustainability #12;TABLE OF CONTENTS Executive Summary 1 UCSF Sustainability Governance 3 Table 1: CACS Members 4 Figure 1: UCSF Sustainability

  6. A Once and Future Gulf of Mexico

    E-Print Network [OSTI]

    Florida, University of

    Stressors on the Gulf of Mexico Before and After the DWH Oil Spill 37 Recommendations for ResilientA Once and Future Gulf of Mexico Ecosystem Restoration Recommendations of an Expert Working Group of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group. Pew Environment Group

  7. LIHD biofuels: toward a sustainable future

    E-Print Network [OSTI]

    Palmer, Michael W.

    LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

  8. Union Training Future Electricians in Solar Power

    Broader source: Energy.gov [DOE]

    Electricians in Indiana believe solar power is the future, and they are preparing for it. The International Brotherhood of Electrical Workers Local 725 (IBEW 725) in Terre Haute, Ind., purchased 60 solar panels and plans to train its members in solar installation.

  9. Current Status and Future Assumptions INTRODUCTION

    E-Print Network [OSTI]

    structure, higher electricity prices, and regional and national conservation efforts. 0 5000 10000 15000 of the region's electricity system, some relevant historical trends leading to that status, and the Council's projections of how that status might change in the future. An understanding of our current situation and how

  10. Photovoltaics: Helping Power Our Clean Energy Future

    E-Print Network [OSTI]

    Firestone, Jeremy

    Photovoltaics: Helping Power Our Clean Energy Future Dick Swanson #12;Safe Harbor Statement Certain of efficiency ­ Improved efficiency leverages entire value chain 2. Reduce manufacturing cost at all points: 50% by 2012 10 $/Watt 2006 Downstream Panel Cell Silicon Efficiency 2012 25% 5 % 5 % 10% 15% Target

  11. CLIMATE CHANGE: Past, Present and Future: Introduction

    E-Print Network [OSTI]

    Allan, Richard P.

    CLIMATE CHANGE: Past, Present and Future: Introduction Richard Allan, Department of Meteorology r.p.allan@reading.ac.uk #12;Text Books and References · Henson, B., Rough Guide to Climate Change http://www.amazon.co.uk/Climate-Change-Guides-Reference- Titles/dp/1858281059 · Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007, www

  12. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Knowles, David William

    Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL Berkeley, CA 94720 SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park, CA 94025 Editors. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U

  13. Shape the future Internship program / IT

    E-Print Network [OSTI]

    Kasparian, Azniv

    Shape the future Internship program / IT (Support office) Ref No IP IT 01 The main goal of our Internship program is to put well prepared young specialists into real-life business environment where of a mentor. Now we are looking for a motivated person to join our internship program as part

  14. HVDC transmission: a path to the future?

    SciTech Connect (OSTI)

    Teichler, Stephen L.; Levitine, Ilia

    2010-05-15T23:59:59.000Z

    Direct current transmission has been the poor stepchild of the U.S. electric industry. Although early-generation plants were based on DC technology, it was soon deemed uneconomical to transmit electricity over long distances, but it now appears poised for a change. Both the increasing technical potential and changing economics of HVDC lines promise a growing role in the future. (author)

  15. EXPLORING EARTH'S MYSTERIES ...PROTECTING ITS FUTURE

    E-Print Network [OSTI]

    2002 BNL Groundwater Status Report TABLE OF CONTENTS EXECUTIVE SUMMARY 1.0 INTRODUCTION AND OBJECTIVES ............................................................................................3-1 3.0.1 Model Assessment of BNL Groundwater Pump and Treat System Performance#12;EXPLORING EARTH'S MYSTERIES ...PROTECTING ITS FUTURE 2002 BNL GROUNDWATER STATUS REPORT July 29

  16. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  17. Fact Sheet # 1 to future updates.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Fact Sheet # 1 t to future updates. The StormTreat system is a unique stormwater treatment. The system includes sedimentation chambers and a biological filter capable of supporting wetland plants. The StormTreat system has the potential to provide enhanced treatment of stormwater compared to conventional

  18. Miscibility of blends of poly(methyl methacrylate) and oligodiols based on a bisphenol A nucleus and ethylene oxide or propylene oxide branches

    E-Print Network [OSTI]

    B. Jaffrennou; E. R. Soule; F. Mechin; J. Borrajo; J. P. Pascault; R. J. J. Williams

    2013-11-21T23:59:59.000Z

    Cloud-point curves of blends of poly(methyl methacrylate) (PMMA) with a series of oligodiols based on a bisphenol A nucleus and short branches of poly(ethylene oxide) or poly(propylene oxide) (BPA-EO or BPA-PO), and with PEO and PPO oligomers, were obtained using a light transmission device. Experimental results were fitted with the Flory- Huggins model using an interaction parameter depending on both temperature and composition. For PMMA/PEO and PMMA/PPO blends, the miscibility increased when increasing the size of the diol, due to the significant decrease in the entropic and enthalpic terms contributing to the interaction parameter. This reflected the decrease in the selfassociation of solvent molecules and in the contribution of terminal OH groups to the mismatching of solubility parameters. For PMMA/BPA-EO blends, a decrease of the entropic contribution to the interaction parameter when increasing the size of the oligodiol was also found. However, the effect was counterbalanced by the opposite contribution of combinatorial terms leading to cloud-point curves located in approximately the same temperature range. For PMMA/BPA-PO blends, the interaction parameter exhibited a very low value. In this case, the effect of solvent size was much more important on combinatorial terms than on the interaction parameter, leading to an increase in miscibility when decreasing the oligodiol size. For short BPA-PO oligodiols no phase separation was observed. The entropic contribution of the interaction parameter exhibited an inverse relationship with the size of the oligodiols, independent of the nature of the chains bearing the hydroxyls and the type of OH groups (primary or secondary). This indicates that the degree of self-association of solvent molecules through their OH terminal groups, was mainly determined by their relative sizes.

  19. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; Thomas, John F [ORNL; Parks, II, James E [ORNL; West, Brian H [ORNL

    2015-01-01T23:59:59.000Z

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  20. Ambipolar blends of CuPc and C60: charge carrier mobility, electronic structure and its implications for solar cell applications

    E-Print Network [OSTI]

    W. Bruetting; M. Bronner; M. Goetzenbrugger; A. Opitz

    2007-09-25T23:59:59.000Z

    Ambipolar transport has been realised in blends of the molecular hole conductor Cu-phthalocyanine (CuPc) and the electron conducting fullerene C60. Charge carrier mobilities and the occupied electronic levels have been analyzed as a function of the mixing ratio using field-effect transistor measurements and photoelectron spectroscopy. These results are discussed in the context of photovoltaic cells based on these materials.

  1. Preserving the Past. Promoting the Future. JACKSON. COOL. CONNECTED.

    E-Print Network [OSTI]

    Baskaran, Mark

    Preserving the Past. Promoting the Future. JACKSON. COOL. CONNECTED. JACKSON. COOL. CONNECTED. Preserving the Past. Promoting the Future. #12;Preserving the Past. Promoting the Future. 2 JACKSON. COOL the Past. Promoting the Future. 3 JACKSON. COOL. CONNECTED. Table of Contents Acknowledgements 4 Forward 5

  2. Color tuning of Y{sub 3}Al{sub 5}O{sub 12}:Ce phosphor and their blend for white LEDs

    SciTech Connect (OSTI)

    Kottaisamy, M. [Materials Research Laboratory, Kalasalingam University, Krishnankoil 626 190 (India)], E-mail: mmksamy66@yahoo.com; Thiyagarajan, P.; Mishra, J.; Ramachandra Rao, M.S. [Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600 036 (India); Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2008-07-01T23:59:59.000Z

    Gadolinium or lanthanum co-doped (0.5 mole) yttrium aluminum garnet doped with cerium phosphors were synthesized by a citric acid gel method and the effect of co-dopants on the structural and luminescent properties were studied. A significant peak shift in the photoluminescence spectra of yttrium aluminum garnet doped cerium was observed from 535 to 556 and 576 nm for gadolinium or lanthanum co-doped phosphors, respectively. The color tuned phosphor were blended with yttrium aluminum garnet doped cerium which showed a considerable improvement in the Commission International De Eclairage chromaticity co-ordinate values of gallium nitride based blue light emitting diode pumped white light. White light emitted from yttrium aluminum garnet doped cerium shows a Commission International De Eclairage value of (0.229, 0.182) whereas the yttrium aluminum garnet doped cerium phosphor blended with gadolinium or lanthanum co-doped phosphor shows (0.262, 0.243) and (0.295, 0.282), respectively. These results demonstrate the possibility to use these phosphor blends to enhance the white light generation in the field of white-light emitting diode solid-state lighting.

  3. Hardgrove grindability study of Powder River Basin and Appalachian coal components in the blend to a midwestern power station

    SciTech Connect (OSTI)

    Padgett, P.L.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31T23:59:59.000Z

    Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3 coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.

  4. Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films

    SciTech Connect (OSTI)

    Kanemoto, Katsuichi, E-mail: kkane@sci.osaka-cu.ac.jp; Nakatani, Hitomi; Domoto, Shinya [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2014-10-28T23:59:59.000Z

    We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5?×?10{sup 16?}cm{sup ?3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

  5. Webinar: Buildings of the Future: The Role of Nature in our Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18 - The Role of Nature in our Future Built Environment. In the webinar, the DOE and PNNL project team will host a virtual panel discussion featuring architects from HOK and...

  6. please recycle. To secure their future,we must secure the future of water.

    E-Print Network [OSTI]

    Reif, John H.

    gained national attention for their research on the impact of hydraulic fracturing and shale-gas drilling future Advancing Environmental Science and Solutions Nicholas School River Scientist Martin Doyle Ph

  7. Neutron sources: Present practice and future potential

    SciTech Connect (OSTI)

    Cierjacks, S.; Smith, A.B.

    1988-01-01T23:59:59.000Z

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs.

  8. Economics of Current and Future Biofuels

    SciTech Connect (OSTI)

    Tao, L.; Aden, A.

    2009-06-01T23:59:59.000Z

    This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

  9. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14T23:59:59.000Z

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  10. Jefferson Lab Science, Past and Future

    E-Print Network [OSTI]

    R. D. McKeown

    2014-12-03T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  11. FIRST STEPS INTO AN ENERGY EFFECIENT FUTURE

    SciTech Connect (OSTI)

    BARRETT, JANE L.

    2009-04-02T23:59:59.000Z

    Red Lake Band of Chippewa Indians proposes to develop a more sustainable, affordable and autonomous energy future for Tribal Members. The Band will develop the capacity to conduct energy audits, to implement energy efficiency measures in tribal homes, and to build more energy efficient housing. This will be done by providing direct classroom and on the job training for Tribal members to conduct the energy audits and the installation of insulation.

  12. Jefferson Lab Science, Past and Future

    E-Print Network [OSTI]

    McKeown, R D

    2014-01-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  13. Future possibilities with Fermilab neutrino beams

    SciTech Connect (OSTI)

    Saoulidou, Niki

    2008-01-01T23:59:59.000Z

    We will start with a brief overview of neutrino oscillation physics with emphasis on the remaining unanswered questions. Next, after mentioning near future reactor and accelerator experiments searching for a non zero {theta}{sub 13}, we will introduce the plans for the next generation of long-baseline accelerator neutrino oscillation experiments. We will focus on experiments utilizing powerful (0.7-2.1 MW) Fermilab neutrino beams, either existing or in the design phase.

  14. Sustainable Energy Future in China's Building Sector 

    E-Print Network [OSTI]

    Li, J.

    2007-01-01T23:59:59.000Z

    policies; this will generate significantly benefits given the fast- growing urbanization process and the number of buildings that will be constructed in the next 20 years in Chinese cities. ENERGY USE HISTORY AND OUTLOOK IN CHINA China...://www.energy.gov/ EIA. International Energy Outlook.2006. DOE, Washington. 2006. ERI. 2003. China’s Sustainable Energy Future. European Commission Directorate General for Energy and Transport. 2001. Information and Communication. Fisher-Vanden et al...

  15. A Renewable Energy Future: Innovation and Beyond

    Broader source: Energy.gov [DOE]

    This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is needed to make it happen. The presentation also includes a discussion of the integration challenges that affect solar energy systems.

  16. Optimisation of future long baseline neutrino experiments

    E-Print Network [OSTI]

    Olga Mena

    2008-09-28T23:59:59.000Z

    The aim of this talk is to review near and far future long baseline neutrino experiments as superbeams, beta-Beams and neutrino factories, comparing their sensitivities to the unknown parameters in the neutrino oscillation sector. We focus on the extraction of the neutrino mass hierarchy, exploring alternatives to the commonly used neutrino-antineutrino comparison. Special attention to a new concept of neutrino factory design, the low energy neutrino factory, is given.

  17. Muon Cooling and Future Muon Facilities

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2006-11-24T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for achieving the highest lepton-antilepton collision energies and the most precise measurements of the parameters of the neutrino mixing matrix. The performance and cost of these future facilities depends sensitively on how well a beam of muons can be cooled. The recent progress of muon-cooling prototype tests and design studies nourishes the hope that such facilities can be built during the next decade.

  18. Present and Future Computing Requirements for PETSc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARD ACCOUNTINGQuantitativeComputationaland Future

  19. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01T23:59:59.000Z

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  20. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

    2012-07-01T23:59:59.000Z

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

  1. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect (OSTI)

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13T23:59:59.000Z

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  2. MI high power operation and future plans

    SciTech Connect (OSTI)

    Kourbanis, Ioanis; /Fermilab

    2008-09-01T23:59:59.000Z

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  3. Nuclear materials safeguards for the future

    SciTech Connect (OSTI)

    Tape, J.W.

    1995-12-31T23:59:59.000Z

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

  4. Future high energy colliders. Formal report

    SciTech Connect (OSTI)

    Parsa, Z. [ed.] [ed.

    1996-12-31T23:59:59.000Z

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on Future High Energy Colliders, October 21-25, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  5. Internal dosimetry monitoring equipment: Present and future

    SciTech Connect (OSTI)

    Selby, J. [M.H. Chew and Associates, Inc., Richland, WA (United States); Carbaugh, E.H.; Lynch, T.P.; Strom, D.J. [Pacific Northwest Lab., Richland, WA (United States); Lardy, M.M. [International Technology Corp., Richland, WA (United States)

    1993-09-01T23:59:59.000Z

    We have attempted to characterize the current and future status of in vivo and in vitro measurement programs coupled with the associated radioanalytical methods and workplace monitoring. Developments in these areas must be carefully integrated by internal dosimetrists, radiochemists and field health physicists. Their goal should be uniform improvement rather than to focus on one specific area (e.g., dose modeling) to the neglect of other areas where the measurement capabilities are substantially less sophisticated and, therefore, the potential source of error is greatest.

  6. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  7. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12T23:59:59.000Z

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  8. Illinois Turning Landfill Trash into Future Cash

    Broader source: Energy.gov [DOE]

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  9. Greenhouse of the future. Final report

    SciTech Connect (OSTI)

    Cavin, B. III

    1998-07-03T23:59:59.000Z

    This greenhouse of the future is located at the Center for Regenerative Studies (CRS) at Cal Poly Pomona. The building design was driven by desired environmental conditions. The primary objective was to keep the interior space warm during winter for the breeding of fish and other greenhouse activities, especially in the winter. To do this, a highly insulating envelope was needed. Straw bales provide excellent insulation with an R-value of approximately 50 and also help solve the environmental problems associated with this agricultural waste product. A summary of the construction progress, construction costs and operating costs are included.

  10. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect (OSTI)

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03T23:59:59.000Z

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  11. Keynote Address: Future Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM to 2:05PM PDT PacificFuture Vision Keynote

  12. GreenFuture Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUKHydrogen Company Jump to:SolarGreenFuture

  13. Better Buildings for a Brighter Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage Presentation3 DATE: March 14,6 (Annual

  14. Future scientists advance to national level

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunitiesThe Future of

  15. Summary and Future Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety Goals Strategicthe Department of EnergyReport:and Future

  16. Future Yield Growth: What Evidence from Historical Data?

    E-Print Network [OSTI]

    Gitiaux, Xavier

    The potential future role of biofuels has become an important topic in energy legislation as it is seen as a potential low carbon alternative to conventional fuels. Hence, future yield growth is an important topic from ...

  17. 5 ways McGill researchers are BUILDING YOUR FUTURE

    E-Print Network [OSTI]

    Fabry, Frederic

    -engineering projects 25 Future Engines Getting more bang out of biofuels 28 Future Farms A five-point plan for growing efficient. A few years from now, the cars zipping past may be propelled by Earth-friendly biofuels, thanks

  18. Winning the Future: Grand Ronde Solar Projects Reduce Pollution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm...

  19. Oil futures prices in a production economy with investment constraints

    E-Print Network [OSTI]

    Kogan, Leonid

    2008-01-01T23:59:59.000Z

    We document a new stylized fact regarding the term structure of futures volatility. We show that the relationship between the volatility of futures prices and the slope of the term structure of prices is non-monotone and ...

  20. Perspective on the Future Development of Diesel Emission Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective on the Future Development of Diesel Emission Standards in Europe - Euro 5 for LDV, amendment of EURO 5 for HDV Perspective on the Future Development of Diesel Emission...

  1. Water and Gold: A Promising Mix for Future Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

  2. Partnering with Industry to Shape the Future (Presentation)

    SciTech Connect (OSTI)

    Pacheco, M. A.

    2013-02-01T23:59:59.000Z

    Keynote presentation given at the 2013 NTEA Green Truck Summit titled Partnering with Industry to Shape the Future.

  3. Library Residency Programs: Investing in the Future of Libraries

    E-Print Network [OSTI]

    Im, Suzanne; Boyd, Angela; Blue, Yolanda

    2013-01-01T23:59:59.000Z

    Library Residency Programs: Investingin the Future of Libraries Suzanne Im, Angela Boyd, Yolandaof California Santa Barbara Library Introduction and Scope

  4. Summary of JD 9 supernovae: Past, present, and future

    E-Print Network [OSTI]

    Trimble, VL

    2006-01-01T23:59:59.000Z

    Summary of JD 9 Supernovae: past, present, and futureZwicky (separately! ) that supernovae could serve as better

  5. Non-lethal weapons and the future of war

    SciTech Connect (OSTI)

    Alexander, J.B.

    1995-03-09T23:59:59.000Z

    This presentation provides a discussion of the expanding role of non-lethal weapons as envisioned necessary in future warfare.

  6. BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL

    SciTech Connect (OSTI)

    Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

    2003-02-27T23:59:59.000Z

    Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

  7. Future radioactive liquid waste streams study

    SciTech Connect (OSTI)

    Rey, A.S.

    1993-11-01T23:59:59.000Z

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  8. NRC policy on future reactor designs

    SciTech Connect (OSTI)

    none,

    1985-07-01T23:59:59.000Z

    On April 13, 1983, the US Nuclear Regulatory Commission issued for public comment a ''Proposed Commission Policy Statement on Severe Accidents and Related Views on Nuclear Reactor Regulation'' (48 FR 16014). This report presents and discusses the Commission's final version of that policy statement now entitled, ''Policy Statement on Severe Reactor Accidents Regarding Future Designs and Existing Plants.'' It provides an overview of comments received from the public and the Advisory Committee on Reactor Safeguards and the staff response to these. In addition to the Policy Statement, the report discusses how the policies of this statement relate to other NRC programs including the Severe Accident Research Program; the implementation of safety measures resulting from lessons learned in the accident at Three Mile Island; safety goal development; the resolution of Unresolved Safety Issues and other Generic Safety Issues; and possible revisions of rules or regulatory requirements resulting from the Severe Accident Source Term Program. Also discussed are the main features of a generic decision strategy for resolving Regulatory Questions and Technical Issues relating to severe accidents; the development and regulatory use of new safety information; the treatment of uncertainty in severe accident decision making; and the development and implementation of a Systems Reliability Program for both existing and future plants to ensure that the realized level of safety is commensurate with the safety analyses used in regulatory decisions.

  9. Back to the FutureGen?

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-04-15T23:59:59.000Z

    After years of political wrangling, Democrats may green-light the experimental clean coal power plants. The article relates how the project came to be curtailed, how Senator Dick Durbin managed to protect $134 million in funding for FutureGen in Mattoon, and how once Obama was in office a $2 billion line item to fund a 'near zero emissions power plant(s)' was placed in the Senate version of the Stimulus Bill. The final version of the legislation cut the funding to $1 billion for 'fossil energy research and development'. In December 2008 the FutureGen Alliance and the City of Mattoon spent $6.5 billion to purchase the plants eventual 440 acre site. A report by the Government Accountability Office (GAO) said that Bush's inaction may have set back clean coal technology in the US by as much as a decade. If additional funding comes through construction of the plant could start in 2010. 1 fig., 1 photo.

  10. Prediction of future fifteen solar cycles

    E-Print Network [OSTI]

    K. M. Hiremath

    2007-04-11T23:59:59.000Z

    In the previous study (Hiremath 2006a), the solar cycle is modeled as a forced and damped harmonic oscillator and from all the 22 cycles (1755-1996), long-term amplitudes, frequencies, phases and decay factor are obtained. Using these physical parameters of the previous 22 solar cycles and by an {\\em autoregressive model}, we predict the amplitude and period of the future fifteen solar cycles. Predicted amplitude of the present solar cycle (23) matches very well with the observations. The period of the present cycle is found to be 11.73 years. With these encouraging results, we also predict the profiles of future 15 solar cycles. Important predictions are : (i) the period and amplitude of the cycle 24 are 9.34 years and 110 ($\\pm 11$), (ii) the period and amplitude of the cycle 25 are 12.49 years and 110 ($\\pm$ 11), (iii) during the cycles 26 (2030-2042 AD), 27 (2042-2054 AD), 34 (2118-2127 AD), 37 (2152-2163 AD) and 38 (2163-2176 AD), the sun might experience a very high sunspot activity, (iv) the sun might also experience a very low (around 60) sunspot activity during cycle 31 (2089-2100 AD) and, (v) length of the solar cycles vary from 8.65 yrs for the cycle 33 to maximum of 13.07 yrs for the cycle 35.

  11. Commission on the Future of the University Introduction

    E-Print Network [OSTI]

    Acton, Scott

    Commission on the Future of the University Introduction The Commission on the Future the University community in the process of envisioning and planning the University's future. The Commission recognizing the Provost's leadership. Mr. Leonard Sandridge and Dr. Tim Garson will chair the Commission. Two

  12. for a Sustainable Energy Future Sossina M. Haile

    E-Print Network [OSTI]

    a Sustainable Energy Future World Energy Consumption 2005 totals: 490 Q-Btu, 515 EJ, 16TW 2030 projections: 720 Energy Future Environmental Outlook year 1000 1200 1400 1600 1800 2000 atmosphericCO2[ppm] 270 280 290;Towards a Sustainable Energy Future Environmental Outlook Intergovernmental Panel on Climate Change, 2001

  13. Past and future conditions for polar stratospheric cloud formation simulated

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    . In the future, radiative cooling in the Arctic winter due to climate change is more than compensated by an inPast and future conditions for polar stratospheric cloud formation simulated by the Canadian Middle Chemistry and Physics Past and future conditions for polar stratospheric cloud formation simulated

  14. Architecture Progress Future Work RFC Architecture and Implementation of SAFE

    E-Print Network [OSTI]

    Perrone, Luiz Felipe

    ;Architecture Progress Future Work RFC Run Length Detection EEM responsible for run length detection. User must Progress Future Work RFC IPC Overview #12;Architecture Progress Future Work RFC EEM - Client IPC Communicates with the EEM via a TCP socket. Notify the EEM at startup of system information. Notify the EEM

  15. First Class Futures: Specification and implementation of Update Strategies

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    useful in some design patterns for concurrency, such as master-worker and pipeline. inria-00544594 languages, futures, update strategies 1 Introduction Futures are language constructs that improve, specific language constructs are necessary to create the futures and to fetch the result. Transparent

  16. Invitation/Program Technology Watch Day on Future Biofuels

    E-Print Network [OSTI]

    Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

  17. Wood Fuel Future: The Potential Web Text December 2010

    E-Print Network [OSTI]

    Wood Fuel Future: The Potential Web Text 31st December 2010 Wood Fuel Future: The Potential Wood Fuel Future : The Potential Renewable Energy is a key part of our Energy Policy. This UK Government by 2020. This should reduce carbon emissions from fossil fuel by 60% by the year 2050. The Welsh Assembly

  18. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil

    E-Print Network [OSTI]

    Wang, Fei; Wang, Hailing; Jin, Fei; Al-Tabbaa, Abir

    2014-11-06T23:59:59.000Z

    RESPONSE: Thank you for your comment. [9, 43] was added in page 3 line 49. [44] was added in page 3 line 54. “[43] D. G. Snelsona, S. Wilda, M. O'Farrellb, Heat of hydration of Portland Cement–Metakaolin–Fly ash (PC–MK–PFA) blends, Cem. Concr. Res. 38... ] . In -situ S/S has three main advantages: 1) it is well established as efficient and cost-effective; 2) it produces no spoil and, hence no landfill waste and 3) there is no risk to site workers of exposure to contamination. Portland cement (PC) and lime...

  19. The future of financial markets and regulation: What Strategy for Europe? The Future of Financial Markets and Regulation

    E-Print Network [OSTI]

    Boyer, Edmond

    The future of financial markets and regulation: What Strategy for Europe? 1 The Future of Financial Markets and Regulation: What Strategy for Europe? Jean-Baptiste Gossé1 Dominique Plihon2 Abstract This article provides insight into the future of financial markets and regulation in order to define what would

  20. DFT --Das Future Tool ``Das Future Tool'' was the title of the group T-shirt1 that we

    E-Print Network [OSTI]

    Ziegler, Tom

    TRIBUTE DFT -- Das Future Tool ``Das Future Tool'' was the title of the group T-shirt1 that we had article ``Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics and considered it just another semi-empirical method.2 Tom, however, realized that DFT was ``Das Future Tool