Powered by Deep Web Technologies
Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stocks of Motor Gasoline RBOB with Alcohol Blending Components  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

2

Prompt-Month Energy Futures  

Gasoline and Diesel Fuel Update (EIA)

Prompt-Month Energy Futures Prompt-Month Energy Futures Prices and trading activity shown are for prompt-month (see definition below) futures contracts for the energy commodities listed in the table below. Note that trading for prompt-month futures contracts ends on different dates at the end of the month for the various commodities; therefore, some commodity prices may reference delivery for the next month sooner than other commodity prices. Product Description Listed With Crude Oil ($/barrel) West Texas Intermediate (WTI) light sweet crude oil delivered to Cushing, Oklahoma More details | Contract specifications New York Mercantile Exchange (Nymex) Gasoline-RBOB ($/gallon) Reformulated gasoline blendstock for oxygenate blending (RBOB) gasoline delivered to New York Harbor More details | Contract specifications Nymex

3

U.S. Reformulated RBOB Gasoline Blending Components Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

4

Rocky Mountain (PADD 4) Reformulated Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

5

Motor Gasoline Blending Components Movements by Tanker and ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

6

Blender Net Input of Reformulated GTAB Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

7

HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE  

SciTech Connect

The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.

Magoulas, V; Charles Goergen, C; Ronald Oprea, R

2008-06-05T23:59:59.000Z

8

Blended learning and pure e-learning concepts for information retrieval: experiences and future directions  

Science Conference Proceedings (OSTI)

Today, teaching and learning are mostly supported by digital material and electronic communication ranging from the provision of slides or scripts in digital form to elaborate, interactive learning environments. This article describes the prospects and ... Keywords: Blended learning, Interaction, Teaching information retrieval, e-Learning

Andreas Henrich; Stefanie Sieber

2009-04-01T23:59:59.000Z

9

Biodiesel Blends  

DOE Green Energy (OSTI)

A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

Not Available

2005-04-01T23:59:59.000Z

10

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

11

Stocks of Total Crude Oil and Petroleum Products (Including SPR)  

U.S. Energy Information Administration (EIA)

Weekly data for RBOB with Ether, RBOB with Alcohol, and Reformulated GTAB Motor Gasoline Blending Components are discontinued as of the week ending June 4, ...

12

Stocks of SPR Crude Oil  

U.S. Energy Information Administration (EIA)

Weekly data for RBOB with Ether, RBOB with Alcohol, and Reformulated GTAB Motor Gasoline Blending Components are discontinued as of the week ending June 4, ...

13

Stocks of Finished Motor Gasoline - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Weekly data for RBOB with Ether, RBOB with Alcohol, and Reformulated GTAB Motor Gasoline Blending Components are discontinued as of the week ending June 4, ...

14

Stocks of SPR Crude Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Weekly data for RBOB with Ether, RBOB with Alcohol, and Reformulated GTAB Motor Gasoline Blending Components are discontinued as of the week ending June 4, ...

15

NYMEX Futures Prices  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Futures Prices NYMEX Futures Prices (Crude Oil in Dollars per Barrel, All Others in Dollars per Gallon) Period: Daily Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/ Contract 12/10/13 12/11/13 12/12/13 12/13/13 12/16/13 12/17/13 View History Crude Oil (Light-Sweet, Cushing, Oklahoma) Contract 1 98.51 97.44 97.5 96.6 97.48 97.22 1983-2013 Contract 2 98.66 97.72 97.82 96.93 97.77 97.47 1985-2013 Contract 3 98.58 97.72 97.77 96.91 97.7 97.36 1983-2013 Contract 4 98.19 97.39 97.42 96.55 97.28 96.92 1985-2013 Reformulated Regular Gasoline (New York Harbor) Contract 1 1985-2006 Contract 2 1994-2006 Contract 3 1984-2006 Contract 4 1994-2006 RBOB Regular Gasoline (New York Harbor)

16

U.S. Refinery & Blender Net Input - Energy Information Administration  

U.S. Energy Information Administration (EIA)

413: 353: 340: 289: 2008-2013: RBOB for Blending with Alcohol : 2005-2009: RBOB for Blending with Ether : 2005-2009: GTAB : 2005-2009: Conventional: 173: 117: 246 ...

17

Availability and Price of Non-Iranian Petroleum - Energy ...  

U.S. Energy Information Administration (EIA)

Coal. Reserves, production, prices, employ- ment and productivity, ... RBOB refers to reformulated blendstock for oxygenate blending traded on the ...

18

BLENDING OF LOW-LEVEL RADIOACTIVE WASTE  

E-Print Network (OSTI)

To provide the Commission with the results of the staff’s analysis of issues associated with the blending of low-level radioactive waste (LLRW), as directed in Chairman Jaczko’s October 8, 2009, memorandum to the staff. The closure of the Barnwell waste disposal facility to most U.S. generators of Class B and C LLRW has caused industry to examine methods for reducing the amount of these wastes, including the blending of some types of Class B and C waste with similar Class A wastes to produce a Class A mixture that can be disposed of at a currently licensed facility. This paper identifies policy, safety, and regulatory issues associated with LLRW blending, provides options for a U. S. Nuclear Regulatory Commission (NRC) blending position, and makes a recommendation for a future blending policy. This paper does not address any new commitments. SUMMARY: In this paper, the staff examines the blending or mixing of LLRW with higher concentrations of radionuclides with LLRW with lower concentrations of radionuclides to form a final homogeneous mixture. While recognizing that some mixing of waste is unavoidable, and may even be necessary and appropriate for efficiency or dose reduction purposes, NRC has historically discouraged mixing LLRW to lower the classification of waste in other circumstances.

R. W. Borchardt; Contacts James; E. Kennedy

2010-01-01T23:59:59.000Z

19

Alternative Fuels Data Center: Biodiesel Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Blends Biodiesel can be blended and used in many different concentrations, including B100 (pure biodiesel), B20 (20% biodiesel, 80% petroleum diesel),

20

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix A. A table is included in Appendix A which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. This Revision of the Blend Plan adds items of lesser dose rate to lower the exposure of the workers until additional shielding can be added to the gloveboxes.

RISENMAY, H.R.

2000-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Assessment of Summer RBOB Supply for NY & CT  

Gasoline and Diesel Fuel Update (EIA)

Update of Summer Reformulated Gasoline Supply Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut May 5, 2004 In October 2003, EIA published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) 1 that noted significant uncertainties in gasoline supply for those States for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two States over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline. As discussed on our earlier report, the NY and CT bans on MTBE mainly affect reformulated gasoline (RFG), which in recent years has been provided by domestic refineries on the East Coast (PADD 1) and imports. Our recent findings indicate that

22

Ethanol-blended Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

23

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

24

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

... power plants, fuel use, stocks ... RBOB Gasoline is a kind of gasoline based on a reformulated blendstock for oxygenate blending ... western coal ...

25

Tropexx – Blending System - Home - Energy Innovation Portal  

• Process gas-blending system • Blending of volatile liquids or gases PATENTS AND AWARDS The Y-12 National Security Complex has

26

Tropexx – Blending System - Energy Innovation Portal  

The Tropexx Blending System is a high-resolution blending system that works with gases, vapors and volatile (readily vaporizable) liquids in addition ...

27

Low-Level Ethanol Fuel Blends  

DOE Green Energy (OSTI)

This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

Not Available

2005-04-01T23:59:59.000Z

28

South Texas Blending | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon South Texas Blending Jump to: navigation, search Name South Texas Blending Place Laredo, Texas Zip...

29

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

30

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix B. A table is included in Appendix B which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. There is no chance of exceeding the 15 watt limit with items starting with the designations ''LAO'' or ''PBO.'' All items starting with the designations ''BO,'' ''BLO,'' and ''DZ0'' are at risk of exceeding the 15 watt specification if the can were to be filled.

RISENMAY, H.R.

1999-08-19T23:59:59.000Z

31

Thermal Stabilization Blend Plan  

SciTech Connect

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

32

Vehicle Technologies Office: Intermediate Ethanol Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

33

Alternative Fuels Data Center: Biodiesel Blend Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Standards to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Standards on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Standards on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Standards on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Standards Biodiesel blends are considered compliant with Texas Low Emissions Diesel Fuel (TxLED) regulations if the diesel fuel is compliant with TxLED

34

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

35

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

36

Method to blend separator powders  

DOE Patents (OSTI)

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

37

Alternative Fuels Data Center: Biofuel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Mandate All Gasoline sold or offered for sale in Minnesota must contain at least: 10% corn-based ethanol by volume or the maximum percent by volume of corn-based ethanol authorized in a waiver issued by the U.S. Environmental

38

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate All diesel fuel sold to state agencies, political subdivisions of the state, and public schools for use in on-road motor vehicles must contain at

39

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

40

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate In September 2013, the commissioners of the Minnesota Department of Agriculture, Department of Commerce, and Pollution Control Agency determined that all conditions had been satisfied to implement a 10%

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate Pursuant to state law, all diesel motor vehicle fuel and all other liquid fuel used to operate motor vehicle diesel engines in Massachusetts must

42

Biodiesel Production and Blending Tax Credit (Kentucky) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biodiesel Production and Blending Tax Credit (Kentucky) Biodiesel Production and Blending Tax Credit (Kentucky) Eligibility Commercial Industrial Program Information Kentucky...

43

Intrinsically safe moisture blending system  

DOE Patents (OSTI)

A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

Hallman Jr., Russell L.; Vanatta, Paul D.

2012-09-11T23:59:59.000Z

44

EIA Report 9/22/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

22, 4:00 pm See current 22, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/22/2008 Pre-Gustav 8/29/2008 change Week Ago 9/15/2008 Year Ago 9/21/2007 WTI Crude Oil ($/Bbl) 120.92 115.46 5.46 95.71 81.62 Gasoline RBOB* (c/gal) 270.38 285.42 -15.04 256.14 211.45 Heating Oil (c/gal) 304.30 319.19 -14.89 279.12 225.62 Natural Gas ($/MMBtu) 7.66 7.94 -0.28 7.37 6.08 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 22, the Minerals Management

45

EIA Report 9/24/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4, 4:00 pm 4, 4:00 pm U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/24/2008 Pre-Gustav 8/29/2008 change Week Ago 9/17/2008 Year Ago 9/24/2007 WTI Crude Oil ($/Bbl) 105.73 115.46 -9.73 91.16 80.95 Gasoline RBOB* (c/gal) 259.47 285.42 -25.95 246.30 208.34 Heating Oil (c/gal) 301.33 319.19 -17.86 282.47 223.06 Natural Gas ($/MMBtu) 7.68 7.94 -0.26 7.91 6.37 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 24, the Minerals Management

46

EIA Report 9/3/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

3, 4:00 pm See current 3, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/3/2008 8/29/2008 change Week Ago 8/27/2008 Year Ago 9/4/2007 WTI Crude Oil ($/Bbl) 109.35 115.46 -6.11 118.15 75.08 Gasoline RBOB* (c/gal) 276.68 285.42 -8.74 291.72 199.10 Heating Oil (c/gal) 307.88 319.19 -11.31 328.15 207.95 Natural Gas ($/MMBtu) 7.26 7.94 -0.68 8.61 5.63 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 3, the Minerals Management

47

EIA Report 9/4/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4, 4:00 pm See current 4, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/4/2008 8/29/2008 change Week Ago 8/28/2008 Year Ago 9/4/2007 WTI Crude Oil ($/Bbl) 107.89 115.46 -7.57 115.59 75.08 Gasoline RBOB* (c/gal) 274.04 285.42 -11.38 286.44 199.10 Heating Oil (c/gal) 302.37 319.19 -16.82 320.21 207.95 Natural Gas ($/MMBtu) 7.32 7.94 -0.62 8.05 5.63 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 4, the Minerals Management

48

EIA Report 9/16/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Tuesday, September 16, 4:00 pm See current Tuesday, September 16, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/16/2008 Pre-Gustav 8/29/2008 change Week Ago 9/9/2008 Year Ago 9/17/2007 WTI Crude Oil ($/Bbl) 91.15 115.46 -24.31 103.26 80.57 Gasoline RBOB* (c/gal) 240.08 285.42 -45.34 265.26 204.42 Heating Oil (c/gal) 271.97 319.19 -47.22 292.47 222.87 Natural Gas ($/MMBtu) 7.28 7.94 -0.66 7.54 6.65 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 16, the Minerals Management

49

EIA Report 9/17/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

7, 4:00 pm See current 7, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/17/2008 Pre-Gustav 8/29/2008 change Week Ago 9/10/2008 Year Ago 9/17/2007 WTI Crude Oil ($/Bbl) 97.16 115.46 -18.30 102.58 80.57 Gasoline RBOB* (c/gal) 246.30 285.42 -39.12 266.16 204.42 Heating Oil (c/gal) 282.47 319.19 -36.72 290.24 222.87 Natural Gas ($/MMBtu) 7.91 7.94 -0.03 7.39 6.65 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 17, the Minerals Management

50

EIA Report 9/8/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8, 4:00 pm See current 8, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/8/2008 Pre-Gustav 8/29/2008 change Week Ago 9/2/2008 Year Ago 9/7/2007 WTI Crude Oil ($/Bbl) 106.34 115.46 -9.12 109.71 76.70 Gasoline RBOB* (c/gal) 275.03 285.42 -10.39 273.37 198.64 Heating Oil (c/gal) 301.31 319.19 -17.88 307.36 214.32 Natural Gas ($/MMBtu) 7.53 7.94 -0.41 7.26 5.50 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 8, the Minerals Management

51

EIA Report 9/5/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5, 4:00 pm See current 5, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/5/2008 Pre-Gustav 8/29/2008 change Week Ago 8/29/2008 Year Ago 9/5/2007 WTI Crude Oil ($/Bbl) 106.23 115.46 -9.23 115.46 75.73 Gasoline RBOB* (c/gal) 268.61 285.42 -16.81 285.42 199.65 Heating Oil (c/gal) 298.28 319.19 -20.91 319.19 209.99 Natural Gas ($/MMBtu) 7.45 7.94 -0.49 7.94 5.81 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 5, the Minerals Management

52

EIA Report 9/26/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

26, 4:00 pm 26, 4:00 pm U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/26/2008 Pre-Gustav 8/29/2008 change Week Ago 9/19/2008 Year Ago 9/26/2007 WTI Crude Oil ($/Bbl) 108.89 115.46 -8.57 104.55 80.30 Gasoline RBOB* (c/gal) 266.51 285.42 -18.91 259.97 202.74 Heating Oil (c/gal) 299.49 319.19 -19.70 289.78 218.26 Natural Gas ($/MMBtu) 7.47 7.94 -0.47 7.53 6.40 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 26, the Minerals Management

53

EIA Report 9/23/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

3, 4:00 pm See current 3, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/23/2008 Pre-Gustav 8/29/2008 change Week Ago 9/16/2008 Year Ago 9/21/2007 WTI Crude Oil ($/Bbl) 106.61 115.46 -8.85 91.15 81.62 Gasoline RBOB* (c/gal) 259.50 285.42 -25.92 240.08 211.45 Heating Oil (c/gal) 299.63 319.19 -19.56 271.97 225.62 Natural Gas ($/MMBtu) 7.93 7.94 -0.01 7.28 6.08 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 23, the Minerals Management

54

EIA Report 9/14/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Sunday, September 14, 3:00 pm See current Sunday, September 14, 3:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 2:30pm 9/14/2008 Pre-Gustav 8/29/2008 change Week Ago 9/5/2008 Year Ago 9/12/2007 WTI Crude Oil ($/Bbl) 99.17 115.46 -16.29 106.23 79.91 Gasoline RBOB* (c/gal) 264.65 285.42 -20.77 268.61 201.60 Heating Oil (c/gal) 284.80 319.19 -34.39 298.28 221.91 Natural Gas ($/MMBtu) 7.43 7.94 -0.51 7.45 6.44 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum

55

EIA Report 9/19/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

19, 4:00 pm See current 19, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/19/2008 Pre-Gustav 8/29/2008 change Week Ago 9/12/2008 Year Ago 9/18/2007 WTI Crude Oil ($/Bbl) 104.55 115.46 -10.91 101.18 81.93 Gasoline RBOB* (c/gal) 259.97 285.42 -25.45 276.96 209.34 Heating Oil (c/gal) 289.78 319.19 -29.41 293.91 224.53 Natural Gas ($/MMBtu) 7.53 7.94 -0.41 7.37 6.18 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 19, the Minerals Management

56

EIA Report 9/15/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

15, 4:00 pm See current 15, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/15/2008 Pre-Gustav 8/29/2008 change Week Ago 9/8/2008 Year Ago 9/14/2007 WTI Crude Oil ($/Bbl) 95.71 115.46 -19.75 106.34 79.10 Gasoline RBOB* (c/gal) 256.14 285.42 -29.28 275.03 203.64 Heating Oil (c/gal) 279.12 319.19 -40.07 301.31 220.78 Natural Gas ($/MMBtu) 7.37 7.94 -0.57 7.53 6.28 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 15, the Minerals Management

57

EIA Report 9/18/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

18, 4:00 pm See current 18, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/18/2008 Pre-Gustav 8/29/2008 change Week Ago 9/11/2008 Year Ago 9/18/2007 WTI Crude Oil ($/Bbl) 97.88 115.46 -17.58 100.87 81.51 Gasoline RBOB* (c/gal) 248.24 285.42 -37.18 274.88 206.03 Heating Oil (c/gal) 278.24 319.19 -40.95 291.55 224.23 Natural Gas ($/MMBtu) 7.62 7.94 -0.32 7.25 6.57 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 18, the Minerals Management

58

EIA Report 9/13/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Saturday, September 13, 4:00 pm See current Saturday, September 13, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/12/2008 Pre-Gustav 8/29/2008 change Week Ago 9/5/2008 Year Ago 9/12/2007 WTI Crude Oil ($/Bbl) 101.18 115.46 -14.28 106.23 79.91 Gasoline RBOB* (c/gal) 276.96 285.42 -8.46 268.61 201.60 Heating Oil (c/gal) 293.91 319.19 -25.28 298.28 221.91 Natural Gas ($/MMBtu) 7.37 7.94 -0.57 7.45 6.44 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 13, the Minerals Management

59

EIA Report 9/12/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2, 4:00 pm See current 2, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/12/2008 Pre-Gustav 8/29/2008 change Week Ago 9/5/2008 Year Ago 9/12/2007 WTI Crude Oil ($/Bbl) 101.18 115.46 -14.28 106.23 79.91 Gasoline RBOB* (c/gal) 276.96 285.42 -8.46 268.61 201.60 Heating Oil (c/gal) 293.91 319.19 -25.28 298.28 221.91 Natural Gas ($/MMBtu) 7.37 7.94 -0.57 7.45 6.44 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 12, the Minerals Management

60

EIA Report 9/9/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9, 4:00 pm See current 9, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/9/2008 Pre-Gustav 8/29/2008 change Week Ago 9/2/2008 Year Ago 9/10/2007 WTI Crude Oil ($/Bbl) 103.26 115.46 -12.20 109.71 77.49 Gasoline RBOB* (c/gal) 265.26 285.42 -20.16 273.37 197.86 Heating Oil (c/gal) 292.47 319.19 -26.72 307.36 217.16 Natural Gas ($/MMBtu) 7.54 7.94 -0.40 7.26 5.89 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 9, the Minerals Management

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIA Report 9/11/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1, 4:00 pm See current 1, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/11/2008 Pre-Gustav 8/29/2008 change Week Ago 9/4/2008 Year Ago 9/11/2007 WTI Crude Oil ($/Bbl) 100.87 115.46 -14.59 107.89 78.23 Gasoline RBOB* (c/gal) 274.88 285.42 -10.54 274.04 198.11 Heating Oil (c/gal) 291.55 319.19 -27.64 302.37 218.27 Natural Gas ($/MMBtu) 7.25 7.94 -0.69 7.32 5.93 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 11, the Minerals Management

62

EIA Report 9/1/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

, 4:00 pm See current , 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) (2pm) 9/1/2008 8/29/2008 change Week Ago 8/25/2008 Year Ago 8/31/2007 WTI Crude Oil ($/Bbl) 111.16 115.46 -4.30 115.11 73.98 Gasoline RBOB* (c/gal) 275.10 285.42 -10.32 280.69 196.45 Heating Oil (c/gal) 309.24 319.19 -9.95 317.90 205.74 Natural Gas ($/MMBtu) 7.98 8.36 -0.38 7.94 6.46 OPEC Basket ($Bbl) NA 111.23 NA 110.61 69.60 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), August 31, the Minerals Management

63

EIA Report 9/25/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

25, 4:00 pm See current 25, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/25/2008 Pre-Gustav 8/29/2008 change Week Ago 9/18/2008 Year Ago 9/25/2007 WTI Crude Oil ($/Bbl) 108.02 115.46 -7.44 97.88 79.53 Gasoline RBOB* (c/gal) 269.73 285.42 -15.69 248.24 203.79 Heating Oil (c/gal) 302.58 319.19 -16.61 278.24 218.13 Natural Gas ($/MMBtu) 7.64 7.94 -0.30 7.62 6.36 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 25, the Minerals Management

64

Fuel blending with PRB coal  

Science Conference Proceedings (OSTI)

Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

2009-03-15T23:59:59.000Z

65

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

66

Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Purchase Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Purchase Requirement Diesel fuel that the New Hampshire Department of Transportation

67

Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blend Biofuel Blend Dispenser Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Dispenser Labeling Requirement

68

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

69

The effects of blending hydrogen with methane on engine operation, efficiency, and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

-01-0474 -01-0474 The effects of blending hydrogen with methane on engine operation, efficiency, and emissions Thomas Wallner and Henry K. Ng Argonne National Laboratory Robert W. Peters University of Alabama at Birmingham Copyright © 2007 SAE International ABSTRACT Hydrogen is considered one of the most promising future energy carriers and transportation fuels. Because of the lack of a hydrogen infrastructure and refueling stations, widespread introduction of vehicles powered by pure hydrogen is not likely in the near future. Blending hydrogen with methane could be one solution. Such blends take advantage of the unique combustion properties of hydrogen and, at the same time, reduce the demand for pure hydrogen. In this paper, the authors analyze the combustion properties of hydrogen/methane

70

Spinodal decomposition in multicomponent polymer blends  

Science Conference Proceedings (OSTI)

... 10091, Ref. 28. 53 In previous studies by the Exxon/Princeton group on blends of ethylene– butene copolymers, Ref. 54 it ...

2011-03-01T23:59:59.000Z

71

Alternative Fuels Data Center: Biofuel Blending Capability Requirements and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blending Biofuel Blending Capability Requirements and Regulations to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on AddThis.com... More in this section...

72

Characteristics of Engine Emissions from Different Biodiesel Blends.  

E-Print Network (OSTI)

??Engine exhaust characteristics from two different biodiesel blends, formulated from soy and animal fat biodiesel blended with ultra-low sulphur diesel, were tested during two different… (more)

Wan, Curtis

2012-01-01T23:59:59.000Z

73

Impact of Ethanol Blending on U.S. Gasoline Prices  

DOE Green Energy (OSTI)

This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

Not Available

2008-11-01T23:59:59.000Z

74

Green emitting phosphors and blends thereof  

DOE Patents (OSTI)

Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

2010-12-28T23:59:59.000Z

75

PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)  

Science Conference Proceedings (OSTI)

The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

CERTA, P.J.

2006-02-22T23:59:59.000Z

76

Geometric skinning with approximate dual quaternion blending  

Science Conference Proceedings (OSTI)

Skinning of skeletally deformable models is extensively used for real-time animation of characters, creatures and similar objects. The standard solution, linear blend skinning, has some serious drawbacks that require artist intervention. Therefore, a ... Keywords: Skinning, dual quaternions, linear combinations, rigid transformations, transformation blending

Ladislav Kavan; Steven Collins; Ji?í Žára; Carol O'Sullivan

2008-10-01T23:59:59.000Z

77

Alternative Fuels Data Center: Biodiesel Blend Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Tax Biodiesel Blend Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Tax Credit Licensed biodiesel blenders are eligible for a tax credit for special fuel, including diesel, blended with biodiesel to create a biodiesel blend. The

78

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

79

Emissions with butane/propane blends  

Science Conference Proceedings (OSTI)

This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

NONE

1996-11-01T23:59:59.000Z

80

Alternative Fuels Data Center: Biodiesel Production and Blending Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Production Biodiesel Production and Blending Equipment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on AddThis.com... More in this section... Federal State

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Biofuels Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Blend Use Biofuels Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuels Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuels Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuels Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuels Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuels Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuels Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Blend Use Requirement Whenever possible, governmental entities and state educational institutions must fuel diesel vehicles with biodiesel blends containing at least 2%

82

Alternative Fuels Data Center: Biodiesel Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Tax Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Tax Credit A biodiesel blender located in Indiana may receive a credit of $0.02 per gallon of blended biodiesel produced at a facility located in Indiana. The

83

Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Fuel Blend Tax Diesel Fuel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel

84

Alternative Fuels Data Center: Biodiesel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Tax Biodiesel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Tax Exemption Biodiesel blends of at least 20% (B20) that are used for personal, noncommercial use by the individual that produced the biodiesel portion of

85

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement An ethanol retailer selling a blend of 10% ethanol by volume or higher must

86

Alternative Fuels Data Center: Biodiesel Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Tax Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Tax Credit Businesses and individuals are eligible for a tax credit of up to 15% of the cost of qualified equipment used for storing or blending biodiesel with

87

Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Retailer Tax Credit Retailers whose total diesel sales consist of at least 50% biodiesel blends

88

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

89

Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Blending Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with

90

Imaginative play with blended reality characters  

E-Print Network (OSTI)

The idea and formative design of a blended reality character, a new class of character able to maintain visual and kinetic continuity between the fully physical and fully virtual; the technical underpinnings of its unique ...

Robert, David Yann

2011-01-01T23:59:59.000Z

91

Continuous blending of dry pharmaceutical powders  

E-Print Network (OSTI)

Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

Pernenkil, Lakshman

2008-01-01T23:59:59.000Z

92

Blending a Substation into its Environment  

Science Conference Proceedings (OSTI)

This report provides information about public acceptance issues as well as technical approaches available to make substations acceptable within their environments. Case studies were used to examine substation acceptance experience from utilities in different countries and areas. This is the second report in a multi-year effort to build a multi-volume library on Blending a Substation into its Environment. Volume 1 examined available literature, standards, guides, and regulations that affect the blending o...

2006-12-12T23:59:59.000Z

93

Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Retailer Ethanol Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Retailer Tax Credit The Ethanol Promotion Tax Credit is available to any fuel retailer for up

94

Alternative Fuels Data Center: Biofuel Blending Contract Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blending Biofuel Blending Contract Regulation to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Contract Regulation Any provision in a contract between a fuel wholesaler and a refiner or

95

Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Use Ethanol Fuel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Use Requirement State government agencies and universities owning or operating motor

96

Alternative Fuels Data Center: Biodiesel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Use Biodiesel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Use Requirement Any diesel-powered vehicle the state, county or local government, school district, community college, public college or university, or mass transit

97

Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Distribution Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Distribution Mandate All state-owned diesel fueling facilities must provide fuel containing at

98

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

99

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

100

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10%

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blending Biodiesel Blending Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Facility Tax Credit A tax credit is available for up to 30% of the cost of purchasing or

102

Phase Segregation in Polystyrene?Polylactide Blends  

SciTech Connect

Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

2010-06-09T23:59:59.000Z

103

Exploration of parameters for the continuous blending of pharmaceutical powders  

E-Print Network (OSTI)

The transition from traditional batch blending to continuous blending is an opportunity for the pharmaceutical industry to reduce costs and improve quality control. This operational shift necessitates a deeper understanding ...

Lin, Ben Chien Pang

2011-01-01T23:59:59.000Z

104

Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Production Biodiesel Production and Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Production and Blending Tax Credit

105

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

106

Designing and upgrading plants to blend coal  

SciTech Connect

Fuel flexibility isn't free. Whether you are equipping a new power plant to burn more than one type of coal or retrofitting an existing plant to handle coal blends, you will have to spend time and money to ensure that all three functions performed by its coal-handling system, unloading, stockout, and reclaim, are up to the task. The first half of this article lays out the available options for configuring each subsystem to support blending. The second half describes, in words and pictures, how 12 power plants in the USA, both new and old, address the issue. 9 figs., 1 tab.

McCartney, R.H. [Roberts and Schaefer Co. (United States)

2006-10-15T23:59:59.000Z

107

An evolutionary optimization approach for bulk material blending systems  

Science Conference Proceedings (OSTI)

Bulk material blending systems still mostly implement static and non-reactive material blending methods like the well-known Chevron stacking. The optimization potential in the existing systems which can be made available using quality analyzing methods ... Keywords: bulk material blending, chevron stacking, multi-objective evolutionary algorithms

Michael P. Cipold; Pradyumn Kumar Shukla; Claus C. Bachmann; Kaibin Bao; Hartmut Schmeck

2012-09-01T23:59:59.000Z

108

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

109

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

1995-09-01T23:59:59.000Z

110

Blending implicit shapes using fuzzy set operations  

Science Conference Proceedings (OSTI)

Implicit modelling is a powerful technique to design geometric shapes, where a geometric object is described by a real function. In general, the real functions used in implicit modelling are unbounded and can take any values in space R. In general, ... Keywords: blending operations, fuzzy sets, generalized algebraic operations, implicit curves and surfaces, isosurfaces, piecewise algebraic operations, soft computing

Qingde Li; Jie Tian

2008-07-01T23:59:59.000Z

111

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

DOE Green Energy (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

112

BLENDING OF CEPHEIDS IN M33  

SciTech Connect

A precise and accurate determination of the Hubble constant based on Cepheid variables requires proper characterization of many sources of systematic error. One of these is stellar blending, which biases the measured fluxes of Cepheids and the resulting distance estimates. We study the blending of 149 Cepheid variables in M33 by matching archival Hubble Space Telescope data with images obtained at the Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5 m telescope, which differ by a factor of 10 in angular resolution. We find that 55% {+-} 4% of the Cepheids have no detectable nearby companions that could bias the WIYN V-band photometry, while the fraction of Cepheids affected below the 10% level is 73% {+-} 4%. The corresponding values for the I band are 60% {+-} 4% and 72% {+-} 4%, respectively. We find no statistically significant difference in blending statistics as a function of period or surface brightness. Additionally, we report all the detected companions within 2'' of the Cepheids (equivalent to 9 pc at the distance of M33) which may be used to derive empirical blending corrections for Cepheids at larger distances.

Chavez, Joy M. [Current address: Gemini Observatory, Northern Operations Center, Hilo, HI 96720, USA. (United States); Macri, Lucas M. [George P. and Cynthia Woods Mitchell Institute in Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, 4242 TAMU, College Station, TX 77843-4242 (United States); Pellerin, Anne, E-mail: jchavez@gemini.edu [Current address: Department of Physics, Mount Allison University, Sackville NB E4L 1E6, Canada. (Canada)

2012-10-01T23:59:59.000Z

113

HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal  

SciTech Connect

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

1995-09-01T23:59:59.000Z

114

Intermediate Ethanol Blends Catalyst Durability Program  

Science Conference Proceedings (OSTI)

In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

2012-02-01T23:59:59.000Z

115

Alternative Fuels Data Center: Supply of Petroleum Products for Blending  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Supply of Petroleum Supply of Petroleum Products for Blending with Biofuels to someone by E-mail Share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Facebook Tweet about Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Twitter Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Google Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Delicious Rank Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Digg Find More places to share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on AddThis.com... More in this section... Federal

116

TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS  

Science Conference Proceedings (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

Lee, S.; Leishear, R.; Poirier, M.

2012-05-31T23:59:59.000Z

117

Future Healthcare  

E-Print Network (OSTI)

Patients want answers, not numbers. Evidence-based medicine must have numbers to generate answers. Therefore, analysis of numbers to provide answers is the Holy Grail of healthcare professionals and its future systems. ...

Datta, Shoumen

2010-12-15T23:59:59.000Z

118

Future tense  

Science Conference Proceedings (OSTI)

Future Tense, one of the revolving features on this page, presents stories and essays from the intersection of computational science and technological speculation, their boundaries limited only by our ability to imagine what will and could be.

Rudy Rucker

2011-07-01T23:59:59.000Z

119

Tough Blends of Polylactide and Castor Oil  

Science Conference Proceedings (OSTI)

Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A. (UMM)

2012-10-10T23:59:59.000Z

120

Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Intermediate Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 to someone by E-mail Share Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Facebook Tweet about Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Twitter Bookmark Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Google Bookmark Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Delicious Rank Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Digg

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fact Sheet: Effects of Intermediate Ethanol Blends | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Effects of Intermediate Ethanol Blends Effects of Intermediate Ethanol Blends Fact Sheet: Effects of Intermediate Ethanol Blends October 7, 2008 - 4:14pm Addthis In August 2007, the U.S. Department of Energy (DOE) initiated a test program to assess the potential impacts of higher intermediate ethanol blends on conventional vehicles and other engines that rely on gasoline. The test program focuses specifically on the effects of intermediate blends of E15 and E20-gasoline blended with 15 and 20 percent ethanol, respectively-on emissions, catalyst and engine durability, drivability or operability, and materials associated with these vehicles and engines. This DOE test program includes technical expertise from DOE's National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory.

122

Development of High-Volume Fly Ash Blended Cements  

Science Conference Proceedings (OSTI)

High-volume fly ash (HVFA) blended cement can be produced either by intergrinding fly ash with portland cement clinker or by blending dry fly ash with portland cement. Production of HVFA cement using the intergrinding method may be the most cost-effective and practical of the two approaches. This report documents the results of commercial-scale production of HVFA blended cements using up to 55 percent fly ash to replace the portland cement.

2001-10-11T23:59:59.000Z

123

Process for blending coal with water immiscible liquid  

DOE Patents (OSTI)

A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

1982-10-26T23:59:59.000Z

124

Combustion Characterization and Modelling of Fuel Blends for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Value (405,990 DOE) COMBUSTION CHARACTERIZATION AND MODELLING OF FUEL BLENDS FOR POWER GENERATION GAS TURBINES University of Central Florida Presentation-Petersen, 1013...

125

Conductive Polymer/Fullerene Blend Thin Films with Honeycomb Framework  

This composite conductive polymer/fullerene blend material can be fabricated to exhibit regular, micrometer-sized pores. The pores allow the material ...

126

Coping with the Decline in Coke Quality – Using Onsite Blending ...  

Science Conference Proceedings (OSTI)

... coke (CPC), the blending of non-traditional cokes (NTAC's) has increased. ... Prebaked Anode from Coal - Utilization of Coal Extract as a Coke Feedstock-.

127

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant ...  

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant Use in N0x Catalytic Reduction Note: The technology described above is an early stage opportunity.

128

Biodiesel Production and Blending Tax Credit (Kentucky) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eligibility Commercial Industrial Program Information Kentucky Program Type Corporate Tax Incentive blended biodiesel does not qualify. The biodiesel tax credit is applied against...

129

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

DOE Green Energy (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

130

TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS  

SciTech Connect

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

Lee, S.; Leishear, R.; Poirier, M.

2012-05-31T23:59:59.000Z

131

SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE  

SciTech Connect

For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

Magoulas, V.

2013-05-27T23:59:59.000Z

132

Crystallization, mechanical, rheological and degradation behavior of polytrimethylene terephthalate, polybutylene terephthalate and polycarbonate blend.  

E-Print Network (OSTI)

??Blends of polycarbonate (PC), polytrimethylene terephthalate (PTT) and poly butylene terephthalate (PBT) are an important class of commercial blends with numerous applications providing good chemical… (more)

Al-Omairi, L

2010-01-01T23:59:59.000Z

133

Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials  

E-Print Network (OSTI)

Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials Barzin Mobasher1 or water with high SO3 content. External sulfate 2007 World of Coal Ash (WOCA), May 7-10, 2007, Covington, the effect of curing (especially in the case of blended cements) and the effect of the pH change during

Mobasher, Barzin

134

Deferred blending: Image composition for single-pass point rendering  

Science Conference Proceedings (OSTI)

In this paper, we propose novel GPU accelerated algorithms for interactive point-based rendering (PBR) and high-quality shading of transparent point surfaces. By introducing the concept of deferred blending we are able to formulate the smooth point interpolation ... Keywords: Alpha blending, GPU processing, Hardware acceleration, Point based rendering, Transparency

Yanci Zhang; Renato Pajarola

2007-04-01T23:59:59.000Z

135

PultrusionPultrusion of Fabric Reinforced Highof Fabric Reinforced High Flyash Blended Cement CompositesFlyash Blended Cement Composites  

E-Print Network (OSTI)

PultrusionPultrusion of Fabric Reinforced Highof Fabric Reinforced High Flyash Blended Cement CompositesFlyash Blended Cement Composites Barzin Mobasher1, Alva Peled 2, Jitendra Pahalijani1 1 Department Engineering Ben-Gurion University, Israel The World of Coal Ash 2005 International Ash Utilization Symposium

Mobasher, Barzin

136

RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY  

SciTech Connect

Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

SHUFORD DH; STEGEN G

2010-04-19T23:59:59.000Z

137

Battery separators based on polyphenylquinoxaline polymer blends. Final report  

Science Conference Proceedings (OSTI)

This document is a final report on battery separators based on polyphenylquinoxaline (PPQ) polymer blends. The report describes the preparation of the polymer blends and their extrusion into membranes, reports a series of quality assurance tests for the membranes, and reports cycle life testing of the new membranes. The test results for the PPQ blend membranes are compared with the results obtained for standard separator membranes. It is concluded that PPQ/Cellulose Acetate is a good candidate material for alkaline battery separators; however, because of cost considerations, it is not competative with similar state-of-the-art materials.

Angres, I.; Kowalchik, L.; Parkhurst, W.

1981-04-01T23:59:59.000Z

138

Phosphor blends for high-CRI fluorescent lamps  

DOE Patents (OSTI)

A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

Setlur, Anant Achyut (Niskayuna, NY); Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY); Beers, William Winder (Chesterland, OH); Toth, Katalin (Pomaz, HU); Balazs, Laszlo D. (Budapest, HU)

2008-06-24T23:59:59.000Z

139

Safety and Performance Assessment of Ethanol/Diesel Blends (E-Diesel)  

DOE Green Energy (OSTI)

Subcontract report discussing safety concerns of ethanol-diesel blends and pathways to reducing risks.

Waterland, L. R.; Venkatesh, S.; Unnasch, S.

2003-09-01T23:59:59.000Z

140

Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) to someone by E-mail Share Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Facebook Tweet about Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Twitter Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Google Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

142

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

143

Biodiesel Production and Blending Tax Credit (Kentucky) | Open Energy  

Open Energy Info (EERE)

Production and Blending Tax Credit (Kentucky) Production and Blending Tax Credit (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name Biodiesel Production and Blending Tax Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies Biomass/Biogas Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/biofuels/Pages/biofuelsIncentives.aspx Summary blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS 141.0401. The amount

144

Time phased alternate blending of feed coals for liquefaction  

DOE Patents (OSTI)

The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

Schweigharett, Frank (Allentown, PA); Hoover, David S. (New Tripoli, PA); Garg, Diwaker (Macungie, PA)

1985-01-01T23:59:59.000Z

145

CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

5-192009; 1 Sandia National Laboratories CNG, H 2 , CNG-H 2 Blends - Critical Fuel Properties and Behavior Jay Keller, Sandia National Laboratories Keynote Lecture presented at:...

146

West Coast (PADD 5) Imports from Spain of Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Imports from Spain of Gasoline Blending Components (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9;

147

Eco-Friendly Complex Blends into Desert | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eco-Friendly Complex Blends into Desert Eco-Friendly Complex Blends into Desert Eco-Friendly Complex Blends into Desert October 7, 2010 - 11:58am Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy What does this project do? Rooftop solar panels provide 27 percent of the facility's energy. Maricopa County officials estimate the complex is 42 percent more energy efficient than many modern day buildings. Next month, hikers marveling at the sun bathed canyons and ridges of White Tank Mountain in the Sonoran Desert will see something on the horizon - if they look hard. Built to blend into the desert landscape, the new 29,000 square-foot White Tank Library and Nature Center in Surprise, Ariz., is set to open on Nov. 13. Rooftop solar panels provide 27 percent of the facility's energy.

148

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10T23:59:59.000Z

149

Coal Blending for NOx Reductions and Performance Improvements  

Science Conference Proceedings (OSTI)

Following its formation and initial meeting in 1995, the Alabama Fuels Development Consortium (AFDC) identified its highest priority as mitigating the adverse effects of burning low-volatile Alabama coals. These adverse effects included increased NOx emissions and flame instability. A pilot-scale AFDC study in 1995 and larger-scale projects conducted in partnership with EPRI in 1996 (Shoal Creek/Mina Pribbenow Blend Firing Demonstration) and 1997 (Shoal Creek/Mina Pribbenow Blend Milling Demonstration) m...

2004-09-20T23:59:59.000Z

150

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

151

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

152

Thermal stabilization FY 1999 blend plan  

SciTech Connect

This Blend Plan documents the alternate feed material items for the thermal stabilization process that will be used in place of the metal items that were originally planned to be processed. Problems with resolution of the safety basis for the metal items resulted in the decision to run material that already had an established safety basis. Various in process and scrap recovery items stored in gloveboxes, plutonium oxide and plutonium oxide mixed with uranium oxide stored in 2736-2 vaults will be processed through the stabilization furnaces until the safety basis for the metal items has been resolved. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all volatile materials and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI). The stabilized material must meet LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-94 specifications. Out of specification material will be recycled through the furnaces until the LOI limits are met.

RISENMAY, H.R.

1999-06-01T23:59:59.000Z

153

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

DOE Green Energy (OSTI)

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

154

BLENDING OF RADIOACTIVE SALT SOLUTIONS IN MILLION GALLON TANKS  

SciTech Connect

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 – 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, “One good experiment fixes a lot of good theory”. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

Leishear, R.

2012-12-10T23:59:59.000Z

155

Blending Of Radioactive Salt Solutions In Million Gallon Tanks  

Science Conference Proceedings (OSTI)

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

2012-12-10T23:59:59.000Z

156

Controlled differential pressure system for an enhanced fluid blending apparatus  

DOE Patents (OSTI)

A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

Hallman, Jr., Russell Louis (Knoxville, TN)

2009-02-24T23:59:59.000Z

157

Certification of alternative aviation fuels and blend components  

SciTech Connect

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

158

Blending scheduling under uncertainty based on particle swarm optimization with hypothesis test  

Science Conference Proceedings (OSTI)

Blending is an important unit operation in process industry. As a nonlinear optimization problem with constraints, it is difficult to obtain optimal solution for blending scheduling, especially under uncertainty. As a novel evolutionary computing technique, ...

Hui Pan; Ling Wang

2006-08-01T23:59:59.000Z

159

Theoretical and experimental investigation of particle interactions in pharmaceutical powder blending  

E-Print Network (OSTI)

In pharmaceutical manufacturing practices, blending of active pharmaceutical ingredient (API) with excipients is a crucial step in that homogeneity of active ingredient after blending is a key issue for the quality assurance ...

Pu, Yu, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

160

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High Volume Fly Ash Blended Cements: Status Report  

Science Conference Proceedings (OSTI)

At present, the production of high-volume fly ash (HVFA) concrete involves the addition of large volumes of fly ash as a separate ingredient at a ready-mixed concrete batch plant. This necessitates additional storage silos and quality control at the job site. In order to resolve these issues, CANMET, in partnership with Electric Power Research Institute, U.S.A., undertook a major research project to develop blended cements incorporating high volumes of ASTM Class fly ash. The blended cements are made by ...

1999-10-28T23:59:59.000Z

162

Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001  

DOE Green Energy (OSTI)

This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

Krishna, C. R.

2004-05-01T23:59:59.000Z

163

Brief paper: Multi-frequency disturbance rejection via blending control technique for hard disk drives  

Science Conference Proceedings (OSTI)

This paper is concerned with the rejection of multiple narrowband disturbances in hard disk drives (HDDs). Inspired by a control blending idea, the multi-frequency disturbance rejection is formulated as a blending control problem. Each disturbance rejection ... Keywords: Blending control, H2 control, Hard disk drives, Servo control, Vibration rejection

Chunling Du; Lihua Xie; F. L. Lewis; Youyi Wang

2009-10-01T23:59:59.000Z

164

Combinatorial Optimization of Pulverizers for Blended-Coal-Fired Power Plant  

Science Conference Proceedings (OSTI)

Coal blending has become an important way to ease the tension of coal purchase for many Chinese power plants. Mixed by pulverizers which has been widely used, is considered the most reasonable and convenient approach of coal blending. The implementation ... Keywords: power plant, coal blending, combinatorial optimization, pulverizer, NSGA-II

Xia Ji; Peng Peng; Hua Zhigang; Lu Pan; Chen Gang

2011-02-01T23:59:59.000Z

165

HEU to LEU Conversion and Blending Facility: UNH blending alternative to produce LEU UNH for commercial use  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form that is more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed. This document provides data to be used in the environmental impact analysis for the UNH blending HEU disposition option. Process requirements, resource needs, employment needs, waste/emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

1995-09-01T23:59:59.000Z

166

A Blended Satellite Total Precipitable Water Product for Operational Forecasting  

Science Conference Proceedings (OSTI)

Total precipitable water (TPW), the amount of water vapor in a column from the surface of the earth to space, is used by forecasters to predict heavy precipitation. In this paper, a process for blending TPW values retrieved from two satellite ...

Stanley Q. Kidder; Andrew S. Jones

2007-01-01T23:59:59.000Z

167

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

168

NOx, SOx & CO{sub 2} mitigation using blended coals  

Science Conference Proceedings (OSTI)

Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

Labbe, D.

2009-11-15T23:59:59.000Z

169

U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants  

SciTech Connect

The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

Leich, D., LLNL

1998-07-27T23:59:59.000Z

170

HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use  

SciTech Connect

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U{sub 3} O{sub 8}) per year to produce 177 MT of 4% U235 assay U{sub 3} O{sub 8}, for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

1995-09-01T23:59:59.000Z

171

Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends  

DOE Patents (OSTI)

There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

Skotheim, Terje (East Patchogue, NY)

1984-01-01T23:59:59.000Z

172

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

173

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

174

REVIEW OF RHEOLOGY MODELS FOR HANFORD WASTE BLENDING  

Science Conference Proceedings (OSTI)

The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste ? waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ?One System Evaluation of Waste Transferred to the Waste Treatment Plant? that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes.. The equations described in Meacham?s report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 ?m diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 ?m in diameter. The following are recommendations for the Hanford tank farms: ? Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations. ? Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction ? Collect and characterize samples during the waste feed qualification process for each campaign. o From single source tanks that feed the qualification tanks o Blends from the qualification tanks ? Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation expe

Koopman, D.; Stone, M.

2013-09-26T23:59:59.000Z

175

REVIEW OF RHEOLOGY MODELS FOR HANFORD WASTE BLENDING  

SciTech Connect

The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste ? waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ?One System Evaluation of Waste Transferred to the Waste Treatment Plant? that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes.. The equations described in Meacham?s report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 μm diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 μm in diameter. The following are recommendations for the Hanford tank farms: ? Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations. ? Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction ? Collect and characterize samples during the waste feed qualification process for each campaign. o From single source tanks that feed the qualification tanks o Blends from the qualification tanks ? Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation expe

Koopman, D.; Stone, M.

2013-09-26T23:59:59.000Z

176

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

177

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

178

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

179

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

180

Future Electronics in CNST  

Science Conference Proceedings (OSTI)

... Electronic Transport in Nanoscale Organic/Inorganic Devices. ... for graphene, nanophotonic, nanoplasmonic, spintronic, and other future electronics. ...

2013-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

182

Development of By-Pass Blending Station System  

E-Print Network (OSTI)

A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can significantly reduce building pump power for a typical cooling system when constant water flow is maintained in the building side. When differential pressure reset is applied in the building side, more pump energy can be saved. The BBS also reduces the pump size and therefore results in lower initial system cost. A case study was also performed and demonstrated 42% of annual chilled water pump energy savings for constant building water flow, and 82% of annual chilled water pump savings for differential pressure resetting at Omaha, Nebraska.

Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

2003-01-01T23:59:59.000Z

183

Coal Blending for the Reduction of Acid Gas Emissions: A Characterization of the Milling and Combustion Blends of Powder River Basin Coal and Bituminous Coal  

Science Conference Proceedings (OSTI)

This report describes a systematic study of performance and emission parameters from the combustion of Eastern bituminous coal, a Powder River Basin (PRB) coal, and various blends of these two coals. This study also investigated the effects of coal blending on mill performance, combustion, particulate emissions, and various emissions.

2004-09-21T23:59:59.000Z

184

Utilization of Renewable Oxygenates as Gasoline Blending Components  

SciTech Connect

This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

Yanowitz, J.; Christensen, E.; McCormick, R. L.

2011-08-01T23:59:59.000Z

185

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

186

April 2013 Short-Term Energy and Summer Fuels Outlook  

Gasoline and Diesel Fuel Update (EIA)

and Summer Fuels Outlook and Summer Fuels Outlook (STEO) Highlights ď‚· During the April-through-September summer driving season this year, regular gasoline retail prices are forecast to average $3.63 per gallon. The projected monthly average regular retail gasoline price falls from $3.69 per gallon in May to $3.57 per gallon in September. EIA expects regular gasoline retail prices to average $3.56 per gallon in 2013 and $3.39 per gallon in 2014, compared with $3.63 per gallon in 2012. The July 2013 New York harbor reformulated blendstock for oxygenate blending (RBOB) futures contract averaged $2.97 per gallon for the five trading days ending April 4, 2013. Based on the market value of

187

Impact of Alternative Fuels and Blends: Simple Tool for Ranking Coal and Blends Based on Slagging Potential  

Science Conference Proceedings (OSTI)

This report provides a summary of ongoing work to identify, develop, and validate advanced tools to assess the impact of fuel quality on boiler performance.BackgroundThe deposition of ash particles during the combustion of coal—or blends of coals—is one of the major issues associated with power companies’ lost generation. The ash deposition process, driven by accumulation of molten/sticky, sintered, or loosely condensed deposits on ...

2012-12-31T23:59:59.000Z

188

Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends  

DOE Green Energy (OSTI)

Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for gasoline, which is knock-prone at these high CR, in order to maintain compatibility. By using EIVC and LIVC strategies, good efficiency is maintained with gasoline, but power is reduced by about 34%.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Wagner, Robert M [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2010-01-01T23:59:59.000Z

189

Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1  

SciTech Connect

This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

1995-07-05T23:59:59.000Z

190

Source: Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol Blends.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

A1: Tank Manufacturer Compatibility with Ethanol Blends. September 2013. A1: Tank Manufacturer Compatibility with Ethanol Blends. September 2013. Tank Manufacturer Compatibility with Ethanol Blends Manufacturer Compatibility Statement Fiberglass 1 Containment Solutions Tanks manufactured after January 1, 1995 are all compatible with ethanol blends up to 100% (E100) (UL Listed) Owens Corning Single Wall Tanks Tanks manufactured between 1965 and 1994 are approved to store up to 10% ethanol (E10) Double Wall Tanks Tanks manufactured between 1965 and July 1, 1990 are approved to store up to 10% ethanol (E10) Tanks manufactured between July 2, 1990 and December 31, 1994 were warrantied to store any ethanol blend Xerxes Single Wall Tanks Tanks manufactured prior to 1981 are not compatible with ethanol blends Tanks manufactured from February 1981 through June 2005 are

191

U.S. Uranium Down-blending Activities: Fact Sheet | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Down-blending Activities: Fact Sheet Mar 23, 2012 The permanent disposition of Highly Enriched Uranium (HEU) permanently reduces nuclear security vulnerabilities. In 1996, the...

192

DOE News Release - DOE Completes Hydrogen/CNG Blended Fuels Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2004 DOE Completes HydrogenCNG Blended Fuels Performance and Emissions Vehicle Testing The U.S. Department of Energy, through its Advanced Vehicle Testing Activity, has...

193

Evaluation of Leachate Chemistry from Coal Refuse Blended and Layered with Fly Ash.  

E-Print Network (OSTI)

??Alkaline fly ash has been studied as a liming agent within coal refuse fills to reclaim acid-forming refuse. Previous studies focused on bulk blending ash… (more)

Hunt, Joseph Edward

2008-01-01T23:59:59.000Z

194

Effect of PCI blending on combustion characteristics for iron-making.  

E-Print Network (OSTI)

??The PCI technology is well established for reducing the consumption of economic and environmentally expensive coke in blast furnace iron-making. Often, coal blends show unexpected… (more)

Gill, Trilochan Singh

2009-01-01T23:59:59.000Z

195

Catalytic conversion of C3+ alcohols to hydrocarbon blend-stock  

Catalytic conversion of C3+ alcohols to hydrocarbon blend-stock Note: The technology described above is an early stage opportunity. Licensing rights to this ...

196

U.S. Uranium Down-blending Activities: Fact Sheet | National...  

National Nuclear Security Administration (NNSA)

(HEU) permanently reduces nuclear security vulnerabilities. In 1996, the Department of Energy (DOE) announced plans to reduce stockpiles of surplus HEU by down-blending, or...

197

An Improved Technique for Increasing the Accuracy of Photometrically Determined Redshifts for ___Blended___ Galaxies  

SciTech Connect

The redshift of a galaxy can be determined by one of two methods; photometric or spectroscopic. Photometric is a term for any redshift determination made using the magnitudes of light in different filters. Spectroscopic redshifts are determined by measuring the absorption spectra of the object then determining the difference in wavelength between the 'standard' absorption lines and the measured ones, making it the most accurate of the two methods. The data for this research was collected from SDSS DR8 and then separated into blended and non-blended galaxy sets; the definition of 'blended' is discussed in the Introduction section. The current SDSS photometric redshift determination method does not discriminate between blended and non-blended data when it determines the photometric redshift of a given galaxy. The focus of this research was to utilize machine learning techniques to determine if a considerably more accurate photometric redshift determination method could be found, for the case of the blended and non-blended data being treated separately. The results show a reduction of 0.00496 in the RMS error of photometric redshift determinations for blended galaxies and a more significant reduction of 0.00827 for non-blended galaxies, illustrated in Table 2.

Parker, Ashley Marie; /Marietta Coll. /SLAC

2012-08-24T23:59:59.000Z

198

Effect of Blending HDPE with Coke on the Reduction Behavior of a ...  

Science Conference Proceedings (OSTI)

This has led to the exploration of the possibility of using polymer/coke blends in the production of ferro-alloys, particularly High Carbon Ferromanganese (HC ...

199

BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2  

DOE Green Energy (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

Leishear, R.; Poirier, M.; Fowley, M.

2011-05-26T23:59:59.000Z

200

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends  

E-Print Network (OSTI)

New regulations like the Clean Air Interstate Rule (CAIR) will pose greater challenges for Coal fired power plants with regards to pollution reduction. These new regulations plan to impose stricter limits on NOX reduction. The current regulations by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously at the Coal and Biomass energy lab at Texas A&M reported that dairy biomass can be an effective Reburn fuel with NOX reduction of up to 95%; however little work has been done to model such a process with Feedlot Biomass as a blend with the main burner fuel. The present work concerns with development of a zero dimensional for a low NOx burner (LNB) model in order to predict NOX emissions while firing a blend of Coal and dairy biomass. Two models were developed. Model I assumes that the main burner fuel is completely oxidized to CO,CO2,H20 and fuel bound nitrogen is released as HCN, NH3, N2; these partially burnt product mixes with tertiary air, undergoes chemical reactions specified by kinetics and burns to complete combustion. Model II assumes that the main burner solid fuel along with primary and secondary air mixes gradually with recirculated gases, burn partially and the products from the main burner include partially burnt solid particles and fuel bound nitrogen partially converted to N2, HCN and NH3. These products mix gradually with tertiary air, undergo further oxidation-reduction reactions in order to complete the combustion. The results are based on model I. Results from the model were compared with experimental findings to validate it. Results from the model recommend the following conditions for optimal reduction of NOx: Equivalence Ratio should be above 0.95; mixing time should be below 100ms. Based on Model I, results indicate that increasing percentage of dairy biomass in the blend increases the NOx formation due to the assumption that fuel N compounds ( HCN, NH3) do not undergo oxidation in the main burner zone. Thus it is suggested that model II must be adopted in the future work.

Uggini, Hari

2012-05-01T23:59:59.000Z

202

The Future of LAB  

Science Conference Proceedings (OSTI)

The global linear alkylbenzene (LAB) industry has experienced depressed margins and feedstock shortages during the past few years. The following is an analysis of the industry’s current state and its most likely future. The Future of LAB inform Ma

203

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

204

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

205

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

206

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

207

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

208

Fermilab | Plan for the Future | Fermilab's Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab's Future Fermilab's Future 2013-2015 Next Fermilab's research program for 2015 and beyond New facilities at Fermilab, the nation's dedicated particle physics laboratory, would provide thousands of scientists from across the United States and around the world with world-class scientific opportunities. In collaboration with the Department of Energy and the particle physics community, Fermilab is pursuing a strategic plan that addresses fundamental questions about the physical laws that govern matter, energy, space and time. Fermilab is advancing plans for the best facilities in the world for the exploration of neutrinos and rare subatomic processes, far beyond current global capabilities. The proposed construction of a two-megawatt high-intensity proton accelerator, Project X, would enable a comprehensive

209

Emissions mitigation of blended coals through systems optimization  

Science Conference Proceedings (OSTI)

For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

Don Labbe [IOM Invensys Operations Management (United States)

2009-10-15T23:59:59.000Z

210

INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS  

SciTech Connect

Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

Ahsan R. Choudhuri

2005-02-01T23:59:59.000Z

211

Future Communications Needs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs Future Communications Needs More Documents & Publications...

212

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

213

Synergistic Effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement  

SciTech Connect

To maximize the conversion of low-quality coal into good coke, we investigated the thermoplasticity of various binary blends of caking coals with slightly or noncaking coals using a dynamic viscoelastic technique with a temperature-variable rheometer. Coal blend samples were prepared by mixing two coals (1:1 by weight), which were heated from room temperature to 600 C at a rate of 3-80{sup o}C/min. At the slow rate of 3{sup o}C/min, the blends had a tan {delta} that was generally lower than the calculated value, showing that a negative interaction caused a loss of thermoplasticity. In contrast, at the rapid heating rate of 80{sup o}C/min, the tan {delta} of some blends was higher than the calculated value, indicating a positive interaction that enhanced the thermoplasticity. With rapid heating, the thermoplasticity of each coal itself increased, and their thermoplastic temperature ranges widened with rapid heating. Therefore, rapid heating was effective at converting these coal blends into good cokes. Moreover, even with slow heating, when a combination of coals (Gregory:Enshu, 1:1) showing some thermoplasticity in nearly the same temperature range was blended, a desirable synergistic effect of the blend was obtained. This suggests that blending coal with an overlapping thermoplastic temperature range is important for the synergistic effect, regardless of the heating rate. 15 refs., 9 figs., 2 tabs.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Kensuke Masaki; Atsushi Dobashi; Kiyoshi Fukada [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

2006-12-15T23:59:59.000Z

214

Problems and Solutions for Multi-coals Blending in Thermal Plant  

Science Conference Proceedings (OSTI)

Multi-coals blending is an applicable method for energy-saving and pollutant reduction in thermal plants. However, the utilizations have been hampered by problems such as complexities of practical implements, risks against safety during operation, difficulties ... Keywords: multi-coals blending, whole process, global optimization, expert system

Peng Peng; Xia Ji; Yang Tao

2011-02-01T23:59:59.000Z

215

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

216

Combustion Characteristics of Coal and Biomass Blends and Thermal Dynamic Analysis  

Science Conference Proceedings (OSTI)

By using TGA technology, the combustion characteristics under different conditions of hard coal and biomass blends has been discussed. The combustion curves of blends exhibited the characteristics with two peaks. Results also exhibited that there was ... Keywords: coal, biomass, thermal analysis, combustion characteristics

Haizhen Huang; Haibo Chen; Guohua Wang; Jun Liu

2009-10-01T23:59:59.000Z

217

Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)  

DOE Green Energy (OSTI)

This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

Moriarty, K.

2013-09-01T23:59:59.000Z

218

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

219

Future fuels from Montana  

SciTech Connect

To make America less dependent on foreign oil, Montana Governor Brain Schweitzer pushes for investment in synfuel technology. He advocates coal as the 'new fuel' for cars and believes synfuels from coal can bridge the gap between the petroleum economy of the past and the hydrogen economy of the future. He is pushing for a 'Future Fuels' project to form a public-private partnership to build 20 coal conversion, synfuel manufacturing plants. This could contribute to making the USA energy self-sufficient, more quickly than the FutureGen project, he believes.

Buchsbaum, L.

2006-04-15T23:59:59.000Z

220

JV Task 112-Optimal Ethanol Blend-Level Investigation  

SciTech Connect

Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

2008-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Composition dependence of the interaction parameter in isotopic polymer blends  

SciTech Connect

Isotopic polymer mixtures lack the structural asymmetries and specific interactions encountered in blends of chemically distinct species. In this respect, they form ideal model systems for exploring the limitations of the widely-used Flory-Huggins (FH) lattice model and for testing and improving new theories of polymer thermodynamics. The FH interaction parameter between deuterium-labeled and unlabeled segments of the same species ([sub [chi]HD]) should in principle be independent of concentration ([phi]), through previous small-angle neutron scattering (SANS) experiments have shown that it exhibits a minimum at [phi] [approximately] 0.5 for poly(vinylethylene) (PVE) and poly(ethylethylene) (PEE). The authors report new data on polyethylene (PE) as a function of molecular weight, temperature (T), and [phi], which show qualitatively similar behavior. However, measurements on [sub [chi]HD]([phi]) for polystyrene (PS) show a maximum at [phi] [approximately]0.5, in contrast to PVE, PEE, and PE. Reproducing the concentration dependence of [phi] in different model isotopic systems should serve as a sensitive test of the way in which theories of polymer thermodynamics can account for the details of the local packing and also the effects of noncombinatorial entropy, which appear to be the main cause of the variation of [sub [chi]HD]([phi]) for PE. These data also serve to quantify the effects of isotopic substitution in SANS experiments on polyolefin blends and thus lay the ground work for definitive studies of the compatibility of branched and linear polyethylenes.

Londono, J.D.; Narten, A.H.; Wignall, G.D. (Oak Ridge National Lab., TN (United States)); Honnell, K.G.; Hsieh, E.T.; Johnson, T.W. (Phillips Petroleum Co., Bartlesville, OK (United States). Research and Development); Bates, F.S. (Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering)

1994-05-09T23:59:59.000Z

222

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

223

Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model  

SciTech Connect

There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

2011-01-01T23:59:59.000Z

224

Hydrogen & Our Energy Future  

Fuel Cell Technologies Publication and Product Library (EERE)

Hydrogen & Our Energy Future (40 pages) expands on DOE's series of one-page fact sheets to provide an in-depth look at hydrogen and fuel cell technologies. It provides additional information on the sc

225

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

226

Quantitative characterization of pulverized coal and biomasscoal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques  

E-Print Network (OSTI)

Quantitative characterization of pulverized coal and biomass­coal blends in pneumatic conveying.1088/0957-0233/23/8/085307 Quantitative characterization of pulverized coal and biomass­coal blends in pneumatic conveying pipelines using Quantitative data about the dynamic behaviour of pulverized coal and biomass­coal blends in fuel injection

Yan, Yong

227

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 5, MAY 2012 1343 Flow Measurement of Biomass and Blended Biomass  

E-Print Network (OSTI)

to those in the horizontal pipe. Index Terms--Biomass­coal flow, blended biomass, cross- correlation. It is expected that biomass­coal mixture or blended biomass flow is significantly more complex than and between different biomass fuels. Quantitative data about biomass­coal mixture flow and blended biomass

Yan, Yong

228

Future land use plan  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

NONE

1995-08-31T23:59:59.000Z

229

Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Back to the Future": Flex-Fuel Vehicle Awareness "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, these flex fuel vehicles help to decrease our reliance on imported oil and reduce carbon pollution. The "Big Three" U.S. auto makers (Ford, General Motors, and Chrysler) recently announced that half of their entire 2012 vehicle line will be FFVs-including the

230

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

231

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

232

Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.  

DOE Green Energy (OSTI)

The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

2009-11-01T23:59:59.000Z

233

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

234

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

235

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

236

Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1  

SciTech Connect

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

237

IM Future | Open Energy Information  

Open Energy Info (EERE)

IM Future Jump to: navigation, search Name IM Future Place Spain Sector Services, Wind energy Product Spain-based firm that provides operation and maintenance services for wind...

238

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Evgeny G. Fateev

2013-01-20T23:59:59.000Z

239

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Fateev, Evgeny G

2013-01-01T23:59:59.000Z

240

HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use  

Science Conference Proceedings (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Role of Leadership in Starting and Operating Blended Learning Charter Schools: A Multisite Case Study.  

E-Print Network (OSTI)

??Heavily utilizing both instructional technology and face-to-face instruction within a bricks-and-mortar school environment, blended learning charter schools are gaining attention as a cost-effective school design.… (more)

Agostini, Michael

2013-01-01T23:59:59.000Z

242

ESS 2012 Peer Review - Acid Based Blend Membranes for Redox Flow...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acid Based Blend Membranes for Redox Flow Batteries DOE Grant No: DE-SC0006306 Alan Cisar* and Chris Rhodes Lynntech, Inc., 2501 Earl Rudder Freeway South, College Station, TX...

243

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

244

Optimal handling of Highly Active Pharmaceutical Ingredients during milling and blending operations  

E-Print Network (OSTI)

This thesis investigates best practices for Highly Active Pharmaceutical Ingredient (HAPI) milling and blending. We utilize a qualitative analysis centering on a benchmarking study and quantitative analyses using a ...

Setty, Prashant (Prashant Neelappanavara)

2013-01-01T23:59:59.000Z

245

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network (OSTI)

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

246

Durable and Non-Toxic Topical Flame Retardants for Cotton and Cotton Blends.  

E-Print Network (OSTI)

??Flame retardant chemicals were used as topical finishes on cotton and cotton blended fabric. Comparison of flame resistance and durability of non-bromine/non-antimony flame retardants were… (more)

Mathews, Marc Christopher

2008-01-01T23:59:59.000Z

247

Coal Combustion and Organic By-Product Blends as Soil Substitutes / Amendments for Horticulture  

Science Conference Proceedings (OSTI)

This report provides a field assessment of the use of blends of coal combustion by-products with biosolids in horticultural applications such as potting mixes for ornamentals and turf production.

2001-11-30T23:59:59.000Z

248

Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends  

E-Print Network (OSTI)

In recent years, the development and use of biofuels have received considerable attention due to the high demand for environmentally acceptable (green) fuels. Most of the recent studies have looked at the processes of converting vegetable oils into biodiesel. It is well known vegetable oil to biodiesel conversion involves many processes including transesterification, which makes biodiesel costly and time-consuming to produce. In this study, the effects of blending high-viscosity fresh and used corn oils with low-viscosity diesel and jet fuel mixed with butanol and ethanol were studied. Several corn oil-based blends were formulated and characterized to understand the effect of composition on viscosity, fuel stability and energy content. The formulated corn oil blends were combusted in a 30 kW modified combustion chamber to determine the corresponding NOx and CO emission levels, along with CO? levels. Used corn oil was made by simply heating fresh corn oil for a fixed period of time (about 44 hours), and was characterized by quantifying its total polar material (TPM), iodine value, free fatty acid content, and peroxide value. The combustion experiments were conducted at a constant heat output of 68,620 kJ/hr (19 kW), to observe and study the effects of equivalence ratio, swirl number, and fuel composition on emissions. Used corn oil blends exhibited better combustion performance than fresh corn oil blends, due in part to the higher unsaturation levels in fresh corn oil. NOx emissions for used corn oil increased with swirl number. Among all the blends, the one with the higher amount of diesel (lower amount of corn oil) showed higher NOx emissions. The blend with fresh corn oil showed decreasing NOx with increasing equivalence ratio at swirl number 1.4. All blends showed generally decreasing CO trends at both swirl numbers at very lean conditions. The diesel fuel component as well as the alcohols in the blends were also important in the production of pollutants. Compared to the diesel-based blends mixed with used corn oil, butanol, and ethanol, the jet fuel-based blends showed higher NOx levels and lower CO levels at both swirl numbers.

Savant, Gautam Sandesh

2012-05-01T23:59:59.000Z

249

Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetics and Mathematical Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Background Significant progress has been made in recent years in controlling emissions resulting from coal-fired electricity generation in the United States through the research, development, and deployment of innovative technologies such as gasification. Gasification is a process that converts solid feedstocks such as coal, biomass, or blends

250

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, James Edward

2003-01-01T23:59:59.000Z

251

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

252

Business Plan for Utilization of Coal Combustion By-Products (CCBP) -- Biosolids Blends in Horticultural Markets  

Science Conference Proceedings (OSTI)

This report presents a marketing plan for coal combustion by-products (CCBP)-biosolids blends which summarizes the business opportunity (potential demand for CCBP-biosolids blends) and defines conditions necessary to seize and execute the opportunity identified. The plan places a hypothetical business in a specific location (Austell, GA) to make the cost-profit analysis as realistic as possible. It should be remembered, however, that the marketing plan for a business venture is not "the business." This h...

1999-12-03T23:59:59.000Z

253

Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent  

Science Conference Proceedings (OSTI)

The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

Delmau, Laetitia Helene [ORNL; Moyer, Bruce A [ORNL

2012-12-01T23:59:59.000Z

254

Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report  

DOE Green Energy (OSTI)

The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

McCormick, R. L.; Westbrook, S. R.

2007-05-01T23:59:59.000Z

255

Driving the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future the Future A r g o n n e ' s v e h i c l e s ys t e m s r e s e A r c h 3 2 v e h i c l e s y s t e m s r e s e a r c h At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help reduce our nation's petroleum consumption and greenhouse gas emissions. Our Vehicle Systems research focuses on maximizing vehicle performance and efficiency through in-depth studies of the interactions and integration of components and controls in a large, complex vehicle system. Working with the U.S. Department of Energy (DOE) and the automotive industry, we investigate the potential of vehicle technologies ranging from alternative fuels to advanced powertrains, such as plug-in hybrids and electric vehicles. Funding

256

Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase Windows  

Science Conference Proceedings (OSTI)

The phase behavior of poly(isoprene-b-styrene-b-methyl methacrylate) (ISM) copolymers near the styrene-rich network phase window was examined through the use of neat triblock copolymers and copolymer/homopolymer blends. Both end-block and middle-block blending protocols were employed using poly(isoprene) (PI), poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) homopolymers. Blended specimens exhibited phase transformations to well-ordered nanostructures (at homopolymer loadings up to 26 vol % of the total blend volume). Morphological consistency between neat and blended specimens was established at various locations in the ISM phase space. Copolymer/homopolymer blending permitted the refinement of lamellar, hexagonally packed cylinder, and disordered melt phase boundaries as well as the identification of double gyroid (Q{sup 230}), alternating gyroid (Q{sup 214}), and orthorhombic (O{sup 70}) network regimes. Additionally, the experimental phase diagram exhibited similar trends to those found in a theoretical ABC triblock copolymer phase diagram with symmetric interactions and statistical segments lengths generated by Tyler et al.

M Tureau; L Rong; B Hsiao; T Epps

2011-12-31T23:59:59.000Z

257

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

258

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

259

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

260

Hybrid Dynamic Density Functional Theory for Polymer Melts and Blends  

E-Print Network (OSTI)

We propose a high-speed and accurate hybrid dynamic density functional theory for the computer simulations of the phase separation processes of polymer melts and blends. The proposed theory is a combination of the dynamic self-consistent field (SCF) theory and a time-dependent Ginzburg-Landau type theory with the random phase approximation (GRPA). The SCF theory is known to be accurate in evaluating the free energy of the polymer systems in both weak and strong segregation regions although it has a disadvantage of the requirement of a considerable amount of computational cost. On the other hand, the GRPA theory has an advantage of much smaller amount of required computational cost than the SCF theory while its applicability is limited to the weak segregation region. To make the accuracy of the SCF theory and the high-performance of the GRPA theory compatible, we adjust the chemical potential of the GRPA theory by using the SCF theory every constant time steps in the dynamic simulations. The performance of the GRPA and the hybrid theories is tested by using several systems composed of an A/B homopolymer, an AB diblock copolymer, or an ABC triblock copolymer. Using the hybrid theory, we succeeded in reproducing the metastable complex phase-separated domain structures of an ABC triblock copolymer observed by experiments.

Takashi Honda; Toshihiro Kawakatsu

2006-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PastPresentFuture_page1  

NLE Websites -- All DOE Office Websites (Extended Search)

plutonium. SRS will continue the critical work to down-blend weapons-usable highly enriched uranium into a low-enrichment form usable as fuel in commercial power reactors....

262

A Study of the Use of Jatropha Oil Blends in Boilers  

DOE Green Energy (OSTI)

Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

Krishna, C.R.

2010-10-01T23:59:59.000Z

263

Securing Our Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Energy Our Energy Securing Our Energy Future Future World Energy Demand Growing Dramatically 12 1400 1200 10 1000 2000 2050 2100 Population of Population of Industrialized Countries Industrialized Countries Wo W rl r d o ld Po P pu p la l ti t on o o u a i n Wo W rl r d E d ne n rg r y o l E e gy Co C ns n um u pt p io i n o s m t on Population (Billions) Energy Consumption (Qbtu / yr) 8 800 6 600 4 400 2 200 0 0 1900 1950 Year U.S. Electricity Generation by Fue U.S. Electricity Generation by Fuel Electric Generation by Fuel 1980 - 2030 (billion kilowatt-hours) 0 1000 2000 3000 4000 5000 6000 1980 1990 2000 2010 2020 2030 Renewables/Other Nuclear Natural Gas Petroleum Coal Source: EIA Annual Energy Outlook 2008 Why Do We Keep Coal in the Mix? Why Do We Keep Coal in the Mix? World Energy Reserves World Energy Reserves Source: Energy Information Administration/ International Reserves Data

264

Blending Study of MgO-Based Separator Materials for Thermal Batteries  

Science Conference Proceedings (OSTI)

The development and testing of a new technique for blending of electrolyte-binder (separator) mixes for use in thermal batteries is described. The original method of blending such materials at Sandia involved liquid Freon TF' as a medium. The ban on the use of halogenated solvents throughout much of the Department of Energy complex required the development of an alternative liquid medium as a replacement. The use of liquid nitrogen (LN) was explored and developed into a viable quality process. For comparison, a limited number of dry-blending tests were also conducted using a Turbula mixer. The characterization of pellets made from LN-blended separators involved deformation properties at 530 C and electrolyte-leakage behavior at 400 or 500 C, as well as performance in single-cells and five-cell batteries under several loads. Stack-relaxation tests were also conducted using 10-cell batteries. One objective of this work was to observe if correlations could be obtained between the mechanical properties of the separators and the performance in single cells and batteries. Separators made using three different electrolytes were examined in this study. These included the LiCl-KCl eutectic, the all-Li LiCl-LiBr-LiF electrolyte, and the low-melting LiBr-KBr-LiF eutectic. The electrochemical performance of separator pellets made with LN-blended materials was compared to that for those made with Freon T P and, in some cases, those that were dry blended. A satisfactory replacement MgO (Marinco 'OL', now manufactured by Morton) was qualified as a replacement for the standard Maglite 'S' MgO that has been used for years but is no longer commercially available. The separator compositions with the new MgO were optimized and included in the blending and electrochemical characterization tests.

GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.; ANDAZOLA, ARTHUR H.

2002-06-01T23:59:59.000Z

265

COMPARISON OF EXPERIMENTAL RESULTS TO CFD MODELS FOR BLENDING IN A TANK USING DUAL OPPOSING JETS  

Science Conference Proceedings (OSTI)

Research has been completed in a pilot scale, eight foot diameter tank to investigate blending, using a pump with dual opposing jets. The jets re-circulate fluids in the tank to promote blending when fluids are added to the tank. Different jet diameters and different horizontal and vertical orientations of the jets were investigated. In all, eighty five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of several miles of two inch diameter, serpentine, vertical cooling coils below the liquid surface for a full scale, 1.3 million gallon, liquid radioactive waste storage tank. Two types of tests were performed. One type of test used a tracer fluid, which was homogeneously blended into solution. Data were statistically evaluated to determine blending times for solutions of different density and viscosity, and the blending times were successfully compared to computational fluid dynamics (CFD) models. The other type of test blended solutions of different viscosity. For example, in one test a half tank of water was added to a half tank of a more viscous, concentrated salt solution. In this case, the fluid mechanics of the blending process was noted to significantly change due to stratification of fluids. CFD models for stratification were not investigated. This paper is the fourth in a series of papers resulting from this research (Leishear, et.al. [1- 4]), and this paper documents final test results, statistical analysis of the data, a comparison of experimental results to CFD models, and scale-up of the results to a full scale tank.

Leishear, R.

2011-08-07T23:59:59.000Z

266

Process simulation, integration and optimization of blending of petrodiesel with biodiesel  

E-Print Network (OSTI)

With the increasing stringency on sulfur content in petrodiesel, there is a growing tendency of broader usage of ultra low sulfur diesel (ULSD) with sulfur content of 15 ppm. Refineries around the world should develop cost-effective and sustainable strategies to meet these requirements. The primary objective of this work is to analyze alternatives for producing ULSD. In addition to the conventional approach of revamping existing hydrotreating facilities, the option of blending petrodiesel with biodiesel is investigated. Blending petrodiesel with biodiesel is a potentially attractive option because it is naturally low in sulfur, enhances the lubricity of petrodiesel, and is a sustainable energy resource. In order to investigate alternatives for producing ULSD, several research tasks were undertaken in this work. Firstly, base-case designs of petrodiesel and biodiesel production processes were developed using computer-aided tools ASPEN Plus. The simulations were adjusted until the technical criteria and specifications of petrodiesel and biodiesel production were met. Next, process integration techniques were employed to optimize the synthesized processes. Heat integration for petrodiesel and biodiesel was carried out using algebraic, graphical and optimization methods to maximize the integrated heat exchange and minimize the heating and cooling utilities. Additionally, mass integration was applied to conserve material resources. Cost estimation was carried out for both processes. The capital investments were obtained from ASPEN ICARUS Process Evaluator, while operating costs were calculated based on the updated chemical market prices. The total operating costs before and after process integration were calculated and compared. Next, blending optimization was performed for three blending options with the optimum blend for each option identified. Economic comparison (total annualized cost, breakeven analysis, return on investment, and payback period) of the three options indicated that the blending of ULSD with chemical additives was the most profitable. However, the subsequent life-cycle greenhouse gas (GHG) emission and safety comparisons demonstrated that the blending of ULSD with biodiesel was superior.

Wang, Ting

2008-08-01T23:59:59.000Z

267

Emissions characterization and particle size distribution from a DPF-equipped diesel truck fueled with biodiesel blends.  

E-Print Network (OSTI)

??Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel… (more)

Olatunji, Idowu O.

2010-01-01T23:59:59.000Z

268

The EC bioethanol blend mandate policy: its effect on ACP sugar trade and potential interaction with EPA policies.  

E-Print Network (OSTI)

??The study aim was to determine effects of the EC bioethanol blend mandate policy and its potential interaction with the EPA policies on EU/ACP countries.… (more)

Sukati, M.A.

2013-01-01T23:59:59.000Z

269

Study of comfort properties of natural and synthetic knitted fabrics in different blend ratios for winter active sportswear.  

E-Print Network (OSTI)

??The objective of the present study is to produce base layer winter active sportswear fabrics using natural and synthetic fibres and their blends which will… (more)

Wardiningsih, W

2009-01-01T23:59:59.000Z

270

Hydrogen & Our Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

271

future science group 255ISSN 1759-726910.4155/BFS.09.20 2010 Future Science Ltd The US Energy Independence and Security Act (EISA)  

E-Print Network (OSTI)

, Ethanol Blended Fuels, Bioethanol. #12;6-025 (O) The Joint International Conference on "Sustainable Energy

Alvarez, Pedro J.

272

The semantics of the future  

E-Print Network (OSTI)

Natural languages use a number of different methods to refer to future eventualities: among them are futurates, as in (la), and futures, as in (lb) and (c). (1) a. The Red Sox (are) play(ing) the Yankees tomorrow. b. We'll ...

Copley, Bridget, Lynn, 1974-

2002-01-01T23:59:59.000Z

273

Leaching and standing water characteristics of bottom ash and composted manure blends  

E-Print Network (OSTI)

Coal burning electrical generating facilities produce roughly 91 million metric tons of ash byproducts annually. Typically, this ash is retained at the power plant sites, adding to the cost of managing wastes at the plants. Another waste material requiring significant management efforts and costs is manure. Repeated application of manure on small parcels of land can contribute to environmental problems such as impaired water quality due to nitrate (NO?) leaching into the groundwater and phosphorus (P) runoff into surface water bodies. Alternative uses of bottom ash (BA) and composted manure (CM) such as a soil amendment for landscapes or potting media need to be explored. Before an alternative is adopted at a large scale, however, it must be evaluated for its effectiveness and environmental integrity. Two column studies were conducted to evaluate three blends of acidic and alkaline BA and CM, namely B1 (95:5%), B2 (90:10%), and B3 (80:20%). Samples from standing water (top) and leachate (bottom) were collected at weekly intervals to evaluate the effects of different blend ratios and time on chemical and physical properties. It was found that higher CM content in acidic and alkaline raw blends (no-de-ionized water added) resulted in significantly higher concentrations of total Kjeldahl nitrogen (TKN), P, and potassium (K). Generally, a higher CM content in acidic and alkaline blends resulted in higher leachate concentrations for total solids (TS), total dissolved solids (TDS), total volatile solids (TVS), total suspended solids (TSS), chemical oxygen demand (COD), TKN, NO?-N, ammonium (NH?-N), P, and K. Concentrations of nearly all chemicals were lower in standing water (top) compared to leachate (bottom) for acidic and alkaline blends. Alkaline blends had higher leachate and standing water TKN, NH?-N, N0?-N, P, and K compared to the acidic blends. After day 28, standing water TDS concentrations for all acidic blends were below the USEPA drinking water standard for TDS. Standing water for alkaline blends remained below the USEPA drinking water standard for TDS for the entire duration of the study. Leachate and standing water concentrations for all blends were below the USEPA drinking water standard for NO?-N for acidic blends. Standing water and leachate for alkaline blends B1 and B2 were below the USEPA drinking water standard for NO?-N while standing water was well below the standard for the entire duration of the study. P concentrations were low in leachate and nonexistent in standing water for both acidic and alkaline blends. Based on these findings, it is concluded that acidic and alkaline B1 (95:5%) and B2 (90:10%) may be considered as a soil amendment substitute.

Mathis, James Gregory

2001-01-01T23:59:59.000Z

274

FAQ : Future Scientists  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ How do I get started as a school volunteer? You can talk with program coordinator, Rick Diamond, or any of the EETD staff who have already participated in the Future Scientist program. To contact Rick Diamond, please call (510) 486-4459 or enable JavaScript within your browser's preferences. When you are ready to plan a classroom visit, call the Community Resources for Science (CRS) and ask about school and grade availability for your topic. CRS staff will place you with a K-6 grade teacher in the East Bay. CRS can also provide excellent advise on classroom guidance and materials, and handle all the contact logistics. All you do is give them a call. Community Resources for Science 1375 Ada Street Berkeley, CA 94702 (510) 654-6433 http://www.crscience.org/

275

future science group  

NLE Websites -- All DOE Office Websites (Extended Search)

35 35 ISSN 1759-7269 10.4155/BFS.13.56 © 2013 Future Science Ltd While lignocellulosic feedstocks represent a promising renewable and sustainable alternative to petroleum- based fuels, high production costs associated with con- version processes currently prevent them from being economically viable for large-scale implementation [1]. The production of biofuels from lignocellulosic feedstocks requires the depolymerization of cell wall carbohydrates into simple sugars that can be utilized during fermentation. However, the desired cellulose microfibrils are surrounded by a matrix of lignin and hemicellulose, which greatly inhibits their accessibility to hydrolytic enzymes [1,2]. Lignin is a phenolic polymer that reinforces the secondary cell wall, confers struc-

276

future science group  

NLE Websites -- All DOE Office Websites (Extended Search)

61 61 ISSN 1759-7269 10.4155/BFS.11.150 © 2012 Future Science Ltd In 1950 Reese et al. proposed a mechanism for cel- lulose hydrolysis, which involved two general com- ponents, C 1 and C x , acting in sequence [1]. According to the model, the C 1 component first disrupted and swelled the crystalline cellulose, possibly releasing soluble oligo saccharides into solution. The C x compo- nent, which was shown to have endoglucanase activity, was then able to effectively hydrolyze the previously inaccessible substrate along with the soluble oligo- saccharides. Furthermore, the activity of the mixture was found to be higher than the activity of each com- ponent acting alone, indicating that the components were acting synergistically. In the following years, a number of groups began to identify and characterize

277

Future power supply  

Science Conference Proceedings (OSTI)

This article is a review of the U.S. needs for new generating capacity during the next decade. Considering regulatory and technical issues and assuming a modest annual load growth of 1.9%, it is anticipated that there will be a 90 GWe deficit by the year 2000. Likely sources to provide this additional capacity are reviewed, and it is concluded that most new plants will be gas-fired simple-cycle combustion turbines. This will occur mainly because the country has excess baseload capacity and needs to add a considerable amount of peaking capacity to bring the generation mix into balance. It is also concluded that fossil-fueled plants will provide the country`s baseload for the foreseeable future.

Campbell, N.A.; Harris, K. [Burns & McDonnell Engineering Co., Kansas City, MO (United States)

1993-03-01T23:59:59.000Z

278

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

DOE Green Energy (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

279

Pilot plant assessment of blend properties and their impact on critical power plant components  

Science Conference Proceedings (OSTI)

A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

NONE

1996-10-01T23:59:59.000Z

280

NO reduction in decoupling combustion of biomass and biomass-coal blend  

SciTech Connect

Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu [Chinese Academy of Sciences, Beijing (China). State Key Laboratory of Multi-Phase Complex Systems

2009-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

282

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

283

NREL: Energy Storage - A Vision of Our Transportation Future - The Next 30  

NLE Websites -- All DOE Office Websites (Extended Search)

A Vision of Our Transportation Future - The Next 30 Years A Vision of Our Transportation Future - The Next 30 Years In the next 30 years, the future of light-duty vehicle transportation includes several powertrains and several fuel choices, but advanced vehicle batteries will play the most significant role. This diagram shows how various powertrain and fuel choices evolve in the next 30 years. The chart/illustration is titled, 'Vision of Future Transportation.' The byline lists concept by Ahmad Pesaran and illustration by Dean Armstrong. The NREL publication number is NREL/GR-540-40698. It presents a roadmap of how the advancement of batteries and fuels can propel our transportation future. Paved roads are used to illustrate the history and impact of battery advancement on vehicle technologies. The road begins with the following in order: electric vehicles; HEVs: early adopters of HEVs; and consumers asking for plug for plug-in HEV capabilities. The road then splits. The road to the right lists the following in order: HEVs major consumer adoption, and then this road splits with fuel cell vehicles on one road and hybrid electric vehicles on the other. The road to the left lists the following in order: plug-in HEV early adopters; PHEVs: major consumer adoption; and then this road splits with battery electric vehicles heading left, and plug-in hybrid vehicles heading right. Internal combustion engines has its own straight road appearing below these roads. For fuel advancement, the following fuels are listed in a bar chart, with the bars becoming shorter as the list proceeds (shorter shows increased time for advancement): gasoline, natural gas, ethanol blends; diesel, biodiesel blends; B20, biodiesel; E85, cellulosic ethanol; electricity; and hydrogen.

284

ESS 2012 Peer Review - Acid Based Blend Membranes for Redox Flow Batteries - Alan Cisar, Lynntech  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acid Based Blend Membranes for Redox Flow Batteries Acid Based Blend Membranes for Redox Flow Batteries DOE Grant No: DE-SC0006306 Alan Cisar* and Chris Rhodes Lynntech, Inc., 2501 Earl Rudder Freeway South, College Station, TX 77845 *E-mail: alan.cisar@lynntech.com, Phone: 979.764.2311 Prof. Arumugam Manthiram University of Texas, Austin, TX 78712 Prof. Fuqiang Liu University of Texas Arlington, Arlington, TX 76019 Conclusions Lynntech, in conjunction with the University of Texas and the University of Texas at Arlington, developed a new series of low-cost polymer blend membranes with high proton conductivity and ultralow vanadium ion permeability. The proton conductivity and physical properties of these membranes are tunable by adjusting the ratio of acid and base components. Membrane conductivity was found to be more critical to

285

Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Citizens Advisory Board's Eco Fair Blends Fun and Facts for Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren near Paducah Site Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren near Paducah Site June 1, 2012 - 12:00pm Addthis Lone Oak Middle School sixth-graders pet a mallard hen at the third annual Eco Fair May 15 in West Kentucky Wildlife Management Area. Lone Oak Middle School sixth-graders pet a mallard hen at the third annual Eco Fair May 15 in West Kentucky Wildlife Management Area. Ralph Young of Recycle Now! explains to Eco Fair attendees the value of recycling. Young is chairman of the Paducah Citizens Advisory Board, which advises the Department of Energy regarding cleanup issues at the Paducah site. Ralph Young of Recycle Now! explains to Eco Fair attendees the value of

286

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Blending Hydrogen into Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Technical Report NREL/TP-5600-51995 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 Technical Report NREL/TP-5600-51995 March 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

287

Calcination of Fluorinel-sodium waste blends using sugar as a feed additive (formerly WINCO-11879)  

SciTech Connect

Methods were studied for using sugar as a feed additive for converting the sodium-bearing wastes stored at the Idaho Chemical Processing Plant into granular, free flowing solids by fluidized-bed calcination at 500{degrees}C. All methods studied blended sodium-bearing wastes with Fluorinel wastes but differed in the types of sugar (sucrose or dextrose) that were added to the blend. The most promising sugar additive was determined to be sucrose, since it is converted more completely to inorganic carbon than is dextrose. The effect of the feed aluminum-to-alkali metal mole ratio on calcination of these blends with sugar was also investigated. Increasing the aluminum-to-alkali metal ratio from 0.6 to 1.0 decreased the calcine product-to-fines ratio from 3.0 to 1.0 and the attrition index from 80 to 15%. Further increasing the ratio to 1.25 had no effect.

Newby, B.J.; Thomson, T.D.; O`Brien, B.H.

1992-06-01T23:59:59.000Z

288

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

Science Conference Proceedings (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

289

Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Citizens Advisory Board's Eco Fair Blends Fun and Facts for Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren near Paducah Site Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren near Paducah Site June 1, 2012 - 12:00pm Addthis Lone Oak Middle School sixth-graders pet a mallard hen at the third annual Eco Fair May 15 in West Kentucky Wildlife Management Area. Lone Oak Middle School sixth-graders pet a mallard hen at the third annual Eco Fair May 15 in West Kentucky Wildlife Management Area. Ralph Young of Recycle Now! explains to Eco Fair attendees the value of recycling. Young is chairman of the Paducah Citizens Advisory Board, which advises the Department of Energy regarding cleanup issues at the Paducah site. Ralph Young of Recycle Now! explains to Eco Fair attendees the value of

290

Blending of hydrogen in natural gas distribution systems. Volume I. Gas blends flow in distribution system, mixing points, and regulatory standards. Final report, June 1, 1976--August 30, 1977. [10 and 20% hydrogen  

DOE Green Energy (OSTI)

This volume of the subject study ''Blending of Hydrogen in Natural Gas Distribution Systems'' describes studies on the determination of gas distribution system flows with hydrogen - natural gas blends, potential hydrogen admission points to gas distribution systems, and the impact of hydrogen - natural gas blends on regulatory standards for gas distribution systems. The studies resulted in the following principal findings: (1) Most existing natural gas distribution systems could adequately transport 20% blends of hydrogen by volume with little or no modification. (2) The best point of admission of the hydrogen into a natural gas distribution system would be at the meter and regulating stations supplying a particular distribution system. (3) The impact of hydrogen - natural gas blends on state regulatory standards appears to be minimal for PSE and G, but requires further study for various National Codes and for other states.

None

1977-09-01T23:59:59.000Z

291

Design and Application of Coal Blending Control System Based on HOLLiAS-LK Large-Scale PLC  

Science Conference Proceedings (OSTI)

To make full use of coal combustion heat energy, and for the purposes of energy savings and pollutant reductions, more than two different coal needs to optimize the preparation of coal. This article describes design and application of coal blending control ... Keywords: coal blending system, PLC, cascade control, kingview

Hong Zhu; Haitao Li; Sheng Fu; Yinhua Pang

2010-06-01T23:59:59.000Z

292

Dry Blending to Achieve Isotopic Dilution of Highly Enriched Uranium Oxide Materials  

SciTech Connect

The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology of dry blending as applied to free flowing oxide materials.

Henry, Roger Neil; Chipman, Nathan Alan; Rajamani, R. K.

2001-04-01T23:59:59.000Z

293

A review of chromatographic characterization techniques for biodiesel and biodiesel blends.  

Science Conference Proceedings (OSTI)

This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

Pauls, R. E. (Chemical Sciences and Engineering Division)

2011-05-01T23:59:59.000Z

294

Brazilian experience with self-adjusting fuel system for variable alcohol-gasoline blends  

DOE Green Energy (OSTI)

A fuel control system has been developed which allows fuels of various stoichiometries to be used interchangeably without suffering a fuel consumption penalty, allowing a more efficient use of the combustion energy. This Adaptive Lean Limit Control system uses a single, digital sensor and an electronic circuit to detect lean limit engine operation, and feeds back information to the fuel system to maintain the best economy mixture, regardless of the fuel blend being used. The hardware is described, and the results of extensive vehicle testing, using 20% and 50% ethanol-gasoline blends, are included.

Leshner, M.D.; Luengo, C.A.; Calandra, F.

1980-01-01T23:59:59.000Z

295

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

Science Conference Proceedings (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

296

Hydrogen: Fueling the Future  

DOE Green Energy (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

297

Future of Voting System Symposium  

Science Conference Proceedings (OSTI)

... for the poster and demonstration session can be submitted to future-voting@ nist ... NIST Visitor Information airports, directions, public transportation.

2013-03-04T23:59:59.000Z

298

Central Appalachian Coal Futures Overview  

U.S. Energy Information Administration (EIA)

Central Appalachian Coal Futures Overview In 1996, the New York Mercantile Exchange (NYMEX) began providing companies in the electric power industry with secure and ...

299

Development and experimental evaluation of a high temperature mechanism for blended n-heptane-isooctane-ethanol-air-mixtures and gasoline-ethanol-air-mixtures  

Science Conference Proceedings (OSTI)

Laminar burning velocity measurements using the closed vessel bomb method have been done for fuel-blend-air-mixtures at 373 K initial temperature and up to 20 bar initial pressure. The two experimentally investigated fuel blends consist, on the one hand, ... Keywords: ethanol-gasoline-blends, laminar burning velocity

S. Jerzembeck; C. Glawe; N. Peters

2009-02-01T23:59:59.000Z

300

Conformal formulation of cosmological futures  

E-Print Network (OSTI)

We summarise the new conformal framework of an Anisotropic Future Endless Universe and an Anisotropic Future Singularity. Both new definitions are motivated by, but not restricted to quiescent cosmology and the Weyl curvature hypothesis, which previously only possessed a framework for a classical initial state of the universe, namely the Isotropic Singularity. Some of the features of the framework are briefly discussed.

Philipp A Hoehn; Susan M Scott

2010-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Selection of best neural network for estimating properties of diesel-biodiesel blends  

Science Conference Proceedings (OSTI)

Soybean oil was transesterified with methanol in the presence of alkaline catalyst to produce methyl esters commonly known as biodiesel. Biodiesel and diesel blends were prepared and tested in laboratory for flash point, fire point, viscosity and density. ... Keywords: artificial neural network, biodiesel, density, fire point, flash point, transesterification, viscosity

Jatinder Kumar; Ajay Bansal

2007-02-01T23:59:59.000Z

302

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network (OSTI)

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here of coal and biomass fuels are presented. Different classes of co-firing methods are identified

Wooldridge, Margaret S.

303

TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS  

E-Print Network (OSTI)

TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS of Mathematics Texas A&M University College Station, TX 77843 ABSTRACT A combustion model using three mixture fractions has been developed for accurate simulation of coal:manure combustion. This model treats coal

Daripa, Prabir

304

Understanding Polymorphism Formation in Electrospun Fibers of Immiscible Poly(vinylidene fluoride) Blends  

SciTech Connect

Effects of electric poling, mechanical stretching, and dipolar interaction on the formation of ferroelectric ({beta} and/or {gamma}) phases in poly(vinylidene fluoride) (PVDF) have been studied in electrospun fibers of PVDF/polyacrylonitrile (PAN) and PVDF/polysulfone (PSF) blends with PVDF as the minor component, using wide-angle X-ray diffraction and Fourier transform infrared techniques. Experimental results of as-electrospun neat PVDF fibers (beaded vs. bead-free) showed that mechanical stretching during electrospinning, rather than electric poling, was effective to induce ferroelectric phases. For as-electrospun PVDF blend fibers with the non-polar PSF matrix, mechanical stretching during electrospinning again was capable of inducing some ferroelectric phases in addition to the major paraelectric ({alpha}) phase. However, after removing the mechanical stretching in a confined melt-recrystallization process, only the paraelectric phase was obtained. For as-electrospun PVDF blend fibers with the polar (or ferroelectric) PAN matrix, strong intermolecular interactions between polar PAN and PVDF played an important role in the ferroelectric phase formation in addition to the mechanical stretching effect during electrospinning. Even after the removal of mechanical stretching through the confined melt-recrystallization process, a significant amount of ferroelectric phases persisted. Comparing the ferroelectric phase formation between PVDF/PSF and PVDF/PAN blend fibers, we concluded that the local electric field-dipole interactions were the determining factor for the nucleation and growth of polar PVDF phases.

G Zhong; L Zhang; R Su; K Wang; H Fong; L Zhu

2011-12-31T23:59:59.000Z

305

Combustion characterization of the blend of plant coal and recovered coal fines  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples' combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter's progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

Singh, Shyam.

1991-01-01T23:59:59.000Z

306

Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity  

DOE Patents (OSTI)

There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

Skotheim, Terje (East Patchogue, NY)

1986-01-01T23:59:59.000Z

307

Program Pu Futures 2006  

SciTech Connect

The coordination chemistry of plutonium remains relatively unexplored. Thus, the fundamental coordination chemistry of plutonium is being studied using simple multi-dentate ligands with the intention that the information gleaned from these studies may be used in the future to develop plutonium-specific sequestering agents. Towards this goal, hard Lewis-base donors are used as model ligands. Maltol, an inexpensive natural product used in the commercial food industry, is an ideal ligand because it is an all-oxygen bidentate donor, has a rigid structure, and is of small enough size to impose little steric strain, allowing the coordination preferences of plutonium to be the deciding geometric factor. Additionally, maltol is the synthetic precursor of 3,4-HOPO, a siderophore-inspired bidentate moiety tested by us previously as a possible sequestering agent for plutonium under acidic conditions. As comparisons to the plutonium structure, Ce(IV) complexes of the same and related ligands were examined as well. Cerium(IV) complexes serve as good models for plutonium(IV) structures because Ce(IV) has the same ionic radius as Pu(IV) (0.94 {angstrom}). Plutonium(IV) maltol crystals were grown out of a methanol/water solution by slow evaporation to afford red crystals that were evaluated at the Advanced Light Source at Lawrence Berkeley National Laboratory using single crystal X-ray diffraction. Cerium(IV) complexes with maltol and bromomaltol were crystallized via slow evaporation of the mother liquor to afford tetragonal, black crystals. All three complexes crystallize in space group I4{sub 1}/a. The Ce(IV) complex is isostructural with the Pu(IV) complex, in which donating oxygens adopt a trigonal dodecahedral geometry around the metal with the maltol rings parallel to the crystallographic S{sub 4} axis and lying in a non-crystallographic mirror plane of D{sub 2d} molecular symmetry (Fig 1). The metal-oxygen bonds in both maltol complexes are equal to within 0.04 {angstrom} for each oxygen type. In contrast to the maltol structures, the cerium(IV) bromomaltol complex arranges the maltol rings in a drastically different manner while maintaining the S{sub 4} crystallographic symmetry (Fig 2). The coordination geometry around the cerium remains a trigonal dodecahedron, but the chelating ligands span a different set of edges as in the maltol structures; the two-fold related bromomaltol ligands twist away from planarity, breaking the D{sub 2d} molecular symmetry. It is unlikely that steric interaction with a bromine on the same molecule would have caused the observed rearrangement, as there would be sufficient separation between them to accommodate their bulk in the geometry of the plutonium and cerium maltol complexes. The extended packing in the unit cell of both the plutonium and cerium maltol crystals indicates that pi stacking occurs throughout the lattice via the maltol rings with close contacts between rings of approximately 3.6 {angstrom}. Introduction of the bromine to this structure would disrupt the packing that would allow these interactions, causing the molecule to adopt the geometry present in the bromomaltol structure. In this unexpected arrangement the complex is still able to maintain some pi stacking with the maltol rings of adjacent molecules with a close contact of approximately 3.3 {angstrom}. Additionally, the bromine on each ligand is arranged such that its next closest contact is with a bromine 3.64 {angstrom} away on another molecule. Despite the different ligand geometry, the bromomaltol structure exhibits metal-oxygen bond distances that are within 0.06 {angstrom} of those in the maltol complexes.

Fluss, M

2006-06-12T23:59:59.000Z

308

The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization  

SciTech Connect

Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

Szybist, James P [ORNL; West, Brian H [ORNL

2013-01-01T23:59:59.000Z

309

NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY  

SciTech Connect

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

2003-08-01T23:59:59.000Z

310

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

& Blender Net Production & Blender Net Production Definitions Key Terms Definition Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Conventional Gasoline, Ed55 and Lower Finished conventional motor gasoline blended with a maximum of 55 volume percent denatured fuel ethanol.

311

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Imports & Exports Imports & Exports Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

312

Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends  

Science Conference Proceedings (OSTI)

The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2009-05-15T23:59:59.000Z

313

AUTO ID FUTURE - FREQUENCY AGNOSTIC  

E-Print Network (OSTI)

Identification of information is one key to the development of intelligent decision systems of the future. Frequency agnostic automatic identification is only one step in the physical world to make physical objects identify ...

DATTA, SHOUMEN

314

FutureGen_factsheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gasification plant and the receiving geologic formation. Sequester at least 90 percent of CO2 emissions from the plant with the future potential to capture and sequester nearly 100...

315

CURRENT AND FUTURE IGCC TECHNOLOGIES:  

NLE Websites -- All DOE Office Websites (Extended Search)

future. On the other hand, the projected demand for electricity coupled with high fuel costs (particularly high oil prices and volatile natural gas prices) presents a near-term...

316

The Future of Housing - TMS  

Science Conference Proceedings (OSTI)

May 20, 2008 ... From climate change to power deregulation and suburban sprawl to the rapid ... This presentation speaks directly to our future housing needs and ... using the 2007 Carnegie Mellon Solar Decathlon house as a case study.

317

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

318

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network (OSTI)

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

319

Measurement of Selected Physical and Chemical Properties of Blends of Coaal-Based Jet fuel with Dodecane and Norpar-13.  

E-Print Network (OSTI)

??The aim of this work was to investigate the impact of blending a coal-based fuel, JP-900, with two model paraffinic fuels, dodecane and Norpar-13, on… (more)

Guiadem, Sidonie

2009-01-01T23:59:59.000Z

320

Effects of blending, staging and furnace temperature on co-firing of coal and biomass-bagasse.  

E-Print Network (OSTI)

??This manuscript reports on emissions generated from laboratory-scale batch combustion of a high-volatile content bituminous coal, sugar-cane bagasse, and blends thereof. The average bulk equivalence… (more)

Arvind, Joshi Kulbhushan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wear, durability, and lubricating oil performance of a straight vegetable oil (Karanja) blend fueled direct injection compression ignition engine  

Science Conference Proceedings (OSTI)

Depletion of fossil fuel resources and resulting associated environmental degradation has motivated search for alternative transportation fuels. Blending small quantity of Karanja oil (straight vegetable oil) with mineral diesel is one of the simplest available alternatives

Avinash Kumar Agarwal; Atul Dhar

2012-01-01T23:59:59.000Z

322

Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated  

DOE Green Energy (OSTI)

Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

2009-02-01T23:59:59.000Z

323

Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen  

DOE Green Energy (OSTI)

The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

None

1977-10-01T23:59:59.000Z

324

Future risks of satellite-based tracking  

Science Conference Proceedings (OSTI)

This study finds out if in the future, some special risks concerning satellite-based tracking and navigation occur. To find out possible future risks, future research methods such as scenarios were being used. Forecasting the future is impossible, but ... Keywords: future research, risk management, satellite-base tracking, satellite-based navigation, tracking

Miikka Ohisalo; Otto Tiuri; Tatu Urpila; Jyri Rajamäki

2011-03-01T23:59:59.000Z

325

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

0 0 December 2011 Table 59. Movements of Crude Oil and Petroleum Products by Tanker, and Barge Between PAD Districts, December 2011 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ................................................................. 374 533 - 294 1,445 - Petroleum Products ............................................... 143 6 0 1,165 3,822 0 Liquified Petroleum Gases ................................... - - - - - - Unfinished Oils ..................................................... 65 0 - 0 317 - Motor Gasoline Blending Components ................. 41 0 - 643 183 - Reformulated - RBOB ....................................... - - - - - - Conventional ..................................................... 41 0 - 643 183 - CBOB ...........................................................

326

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

327

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

328

Multiple boiler steam blending control system for an electric power plant  

SciTech Connect

A steam blending control is provided for two or more boilers in an electric power plant. To blend an oncoming boiler with an online boiler, the oncoming boiler is fired to a pressure ramp setpoint and outlet steam is isolated from the plant turbine and directed through position controlled bypass valve means. When steam temperature and pressure conditions are matched, the oncoming boiler isolation valve is opened and the bypass flow then existing is stored in a memory. The oncoming boiler bypass flow is cut back with total oncoming boiler steam flow controlled to the memorized flow valve as a setpoint. Flow from the on-line boiler is cut back under load control as the oncoming boiler flow to the plant turbine is increased. Deblending is implemented in a similar manner.

Binstock, M.H.; Criswell, R.L.

1981-12-22T23:59:59.000Z

329

Impact of Biofuel Blending on Diesel Soot Oxidation: Implications for Aftertreatment  

SciTech Connect

Control strategies for diesel particulate filters (DPFs) remain one of the most important aspects of aftertreatment research and understanding the soot oxidation mechanism is key to controlling regeneration. Currently, most DPF models contain simple, first order heterogeneous reactions oxidation models with empirically fit parameters. This work improves the understanding of fundamental oxidation kinetics necessary to advance the capabilities of predictive modeling, by leading to better control over regeneration of the device. This study investigated the effects of blending soybean-derived biodiesel fuel on diesel particulate emissions under conventional combustion from a 1.7L direct injection, common rail diesel engine. Five biofuel blend levels were investigated and compared to conventional certification diesel for the nanostructure, surface chemistry and major constituents of the soluble organic fraction (SOF) of diesel particulate matter (PM), and the relationship between these properties and the particulate oxidation kinetics.

Strzelec, Andrea [ORNL; Toops, Todd J [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, David [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Vander Wal, Dr. Randy [NASA-Glenn Research Center, Cleveland

2009-01-01T23:59:59.000Z

330

Pilot Plant Assessment of Blend Properties and Their Impact on Critical Power Plant Components  

Science Conference Proceedings (OSTI)

Low-sulfur subbituminous coals, currently in demand to meet regulated SO2 emission standards, are very different in composition from bituminous coal and affect many operating characteristics when fired in boilers designed for bituminous coal. This report documents a pilot-scale study of the relative impacts of a subbituminous coal or blend containing subbituminous coal on unit operating characteristics such as mill performance, furnace wall slagging, convective pass fouling, and electrostatic precipitato...

1999-02-02T23:59:59.000Z

331

Laboratory Studies on Rendering Remediation Wastes Nonhazardous: Blending of Tar and Tarry Materials  

Science Conference Proceedings (OSTI)

Some remediation wastes and tarry soils from former manufactured gas plant (MGP) sites will be classified as hazardous waste based on the results of Toxicity Characteristic Leaching Procedure (TCLP) tests. This report presents the results of bench-scale mixing tests of nine blending agents on several former MGP tars and tarry soils known to exceed the toxicity characteristic (TC) for benzene. These mixing studies were designed to measure the dilution, loss by volatilization, or fixation by adsorption of ...

2000-09-15T23:59:59.000Z

332

Use of Savannah River Site facilities for blend down of highly enriched uranium  

SciTech Connect

Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO{sub 3}) powder, uranyl nitrate [UO{sub 2}(NO{sub 3}){sub 2}] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO{sub 2}) or uranium hexafluoride (UF{sub 3}), the normal inputs for commercial fuel fabrication. This study`s scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO{sub 2} or UF{sub 6}, blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM).

Bickford, W.E.; McKibben, J.M.

1994-02-01T23:59:59.000Z

333

Formulation Efforts for Direct Vitrification of INEEL Blend Calcine Waste Simulate: Fiscal Year 2000  

SciTech Connect

This report documents the results of glass formulation efforts for Idaho National Engineering and Environmental Laboratory (INEEL) high level waste (HWL) calcine. Two waste compositions were used during testing. Testing started by using the Run 78 calcine composition and switched to simulated Blend calcine composition when it became available. The goal of the glass formulation efforts was to develop a frit composition that will accept higher waste loading that satisfies the glass processing and product acceptance constraints. 1. Melting temperature of 1125 ? 25?C 2. Viscosity between 2 and 10 Pa?s at the melting temperature 3. Liquidus temperature at least 100?C below the melting temperature 4. Normalized release of B, Li and Na each below 1 g/m2 (per ASTM C 1285-97) Glass formulation efforts tested several frit compositions with variable waste loadings of Run 78 calcine waste simulant. Frit 107 was selected as the primary candidate for processing since it met all process and performance criteria up to 45 mass% waste loading. When the simulated Blend calcine waste composition became available Frits 107 and 108 compositions were retested and again Frit 107 remained the primary candidate. However, both frits suffered a decrease in waste loading when switching from the Run 78 calcine to simulated Blend calcine waste composition. This was due to increase concentrations of both F and Al2O3 along with a decrease in CaO and Na2O in the simulate Blend calcine waste all of which have strong impacts on the glass properties that limit waste loading of this type of waste.

Crum, Jarrod V.; Vienna, John D.; Peeler, David K.; Reamer, I. A.

2001-03-30T23:59:59.000Z

334

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

Science Conference Proceedings (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

335

Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines  

DOE Green Energy (OSTI)

Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

1999-05-05T23:59:59.000Z

336

Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing  

DOE Green Energy (OSTI)

Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}. Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.

Cheng, A S; Mueller, C J; Buchholz, B A; Dibble, R W

2004-02-10T23:59:59.000Z

337

50,000 mile methanol/gasoline blend fleet study: a progress report  

DOE Green Energy (OSTI)

Seven current production automobiles are being used in a fleet study to obtain operational experience in using 10% methanol/90% gasoline blends as an automotive fuel. Data from chassis dynamometer tests (run according to the 1975--1978 Federal test procedure) have been obtained, showing fuel economy and exhaust emissions of carbon monoxide, oxides of nitrogen, unburned fuel, methanol, and aldehydes. These data are shown for each of the vehicles when operated on the 10% methanol blend, and on unleaded low octane Indolene. Chassis dynamometer tests were run at 5,000-mile intervals during the 35,000 miles accumulated on each of the four 1977 model-year vehicles and at 5,000 and 10,000 mile accumulation levels for each of the three 1978 model-year vehicles. These data show an average decrease in volumetric fuel economy (approx. = 5%) and a reduction in carbon monoxide emissions associated with the use of the 10% methanol blend. Exhaust emission deterioration factors are projected from the Federal test procedure urban cycle data. The most severe driveability problems that have been encountered thus far into the program are related to operating on a phase separated fuel and materials compatibility problems with an elastomer in the air-fuel control hardware of one vehicle.

Stamper, K R

1979-01-01T23:59:59.000Z

338

Source: Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol Blends.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

A2: Manufacturer Compatibility with Ethanol Blends (Other Equipment). September 2013. A2: Manufacturer Compatibility with Ethanol Blends (Other Equipment). September 2013. Manufacturer Compatibility with Ethanol Blends (Other Equipment) Manufacturer Product Model Ethanol Compatibility Bravo Systems Fiberglass Fittings Series F, FF, FPE, FR, F Retrofit- S, RPE Retrofit-Si, F BLR, F D-BLR-S, TBF E0-E100 Bravo Systems Spill Buckets B3XX E0-E100 Bravo Systems Tank Sumps & Covers B4XX E0-E100 Bravo Systems Transition Sumps (planter, walkover, H-20 rated) B5XX, B6XX, B7XX, B8XX E0-E100 Bravo Systems Transition Sumps B8XX E0-E100 Bravo Systems Under Dispenser Contain- ment Sumps B7XXX, B8XXX, B9XXX E0-E100 Brugg Pipes FLEXWELL-HL, SECON-X, NIROFLEX, LPG E0-E100 KPS Petrol Pipe Systems Pipes and Associated Products All single- and double-wall plastic pipes, flexible

339

Energy Options for the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Options for the Future * John Sheffield, 1 Stephen Obenschain, 2,12 David Conover, 3 Rita Bajura, 4 David Greene, 5 Marilyn Brown, 6 Eldon Boes, 7 Kathyrn McCarthy, 8 David Christian, 9 Stephen Dean, 10 Gerald Kulcinski, 11 and P.L. Denholm 11 This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geo- thermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion. KEY WORDS: Energy; fuels; nuclear; fusion; efficiency; renewables.

340

Water for future Mars astronauts?  

NLE Websites -- All DOE Office Websites (Extended Search)

Water for future Mars astronauts? Water for future Mars astronauts? Water for future Mars astronauts? Within its first three months on Mars, NASA's Curiosity Rover saw a surprising diversity of soils and sediments along a half-kilometer route that tell a complex story about the gradual desiccation of the Red Planet. September 26, 2013 This image shows two areas on Mars in a location named Rocknest that were scooped out by the Curiosity Rover last year. Researchers took samples of the areas to determine whether they were wetter underneath or whether they dried out after scooping. Researchers found that soil moisture was consistent at the surface and underneath. Nevertheless, there is a small amount of water in the soil that astronauts might be able to use to sustain themselves. These finding and others are outlined in a series of papers appearing today in the Journal "Science." (Image credit: NASA)

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen Future Act of 1996  

NLE Websites -- All DOE Office Websites (Extended Search)

4-271-OCT. 9, 1996 4-271-OCT. 9, 1996 HYDROGEN FUTURE ACT OF 1996 110 STAT. 3304 PUBLIC LAW 104-271-OCT. 9, 1996 Oct. 9, 1996 [H.R. 4138] Hydrogen Future Act of 1996. 42 USC 12401 note. 42 USC 7238 note. Public Law 104-271 104th Congress An Act To authorize the hydrogen research, development, and demonstration programs of the Department of Energy, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Hydrogen Future Act of 1996''. SEC. 2. DEFINITIONS. For purposes of titles II and III- (1) the term ''Department'' means the Department of Energy; and (2) the term ''Secretary'' means the Secretary of Energy. TITLE I-HYDROGEN SEC. 101. PURPOSES AND DEFINITIONS.

342

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. The bottom line for Texas industry is savings in energy and materials, cost-effective environmental compliance, increased productivity, reduced waste, and enhanced product quality. The state program leverages the programs and tools of the federal Department of Energy's Industries of the Future. At the federal level, there are nine Industries of the Future: refining, chemicals, aluminum, steel, metal casting, glass, mining, agriculture, and forest products. These industries were selected nationally because they supply over 90% of the U.S. economy's material needs and account for 75% of all energy use by U.S. industry. In Texas, three IOF sectors, chemicals, refining and forest products, account for 86% of the energy used by industry in this state.

Ferland, K.

2002-04-01T23:59:59.000Z

343

Rethinking the Car of the Future  

E-Print Network (OSTI)

Rethinking the Car of the Future Darnel Sperhng Reprint UCTC~flaUon or Rethinking the Car of the Future Daniel SperlingSPERLING Rethinking the Car of the Future I I The governmen>

Sperling, Daniel

2001-01-01T23:59:59.000Z

344

Rethinking the Car of the Future  

E-Print Network (OSTI)

Rethinking the Car of the Future Darnel Sperhng Reprint UCTC~flaUon or Rethinking the Car of the Future Daniel SperlingSPERLING Rethinking the Car of the Future I I The governmen>

Sperling, Daniel

1996-01-01T23:59:59.000Z

345

FUTURE POWER GRID INITIATIVE Decision Support for Future  

E-Print Network (OSTI)

data to generate and share mission-critical analysis and insights. November 2012 PNNL-SA-90020 Gariann Gelston Pacific Northwest National Laboratory (509) 372-4480 gariann.gelston@pnnl.gov Angie Dalton Pacific Northwest National Laboratory (509) 371-6607 angela.dalton@pnnl.gov ABOUT FPGI The Future Power Grid

346

Future Energy Yorkshire | Open Energy Information  

Open Energy Info (EERE)

Future Energy Yorkshire Jump to: navigation, search Name Future Energy Yorkshire Place Leeds, United Kingdom Zip LS11 5AE Sector Services Product Leeds-based, wholly owned...

347

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Future Science & Technology Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs...

348

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

DOE Green Energy (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

349

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

Science Conference Proceedings (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

350

Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)  

DOE Green Energy (OSTI)

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

Not Available

2012-02-01T23:59:59.000Z

351

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

352

Options for Kentucky's Energy Future  

Science Conference Proceedings (OSTI)

Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

Larry Demick

2012-11-01T23:59:59.000Z

353

Debris and Future Space Activities  

E-Print Network (OSTI)

Debris and Future Space Activities Prof. Joel R. Primack Physics Department University eleven year cycle, it heats the upper atmosphere and makes it expand so that debris and spacecraft in low which overflows occasionally and washes only the lowest hillsides clear of debris. Debris in orbit

California at Santa Cruz, University of

354

Pheromones, probabilities, and multiple futures  

Science Conference Proceedings (OSTI)

Most agent-based modeling techniques generate only a single trajectory in each run, greatly undersampling the space of possible trajectories. Swarming agents can explore many alternative futures in parallel, particularly when they interact through digital ... Keywords: Markov decision process, Monte Carlo tree search, agent-based modeling, polyagent, probability distributions, swarming

H. Van Dyke Parunak

2010-05-01T23:59:59.000Z

355

Natural Gas Futures Prices (NYMEX)  

U.S. Energy Information Administration (EIA) Indexed Site

120313 View History Spot Price Henry Hub 3.871 3.871 3.871 3.853 1997-2013 Futures Prices Contract 1 3.818 3.895 3.895 3.954 3.988 3.976 1994-2013 Contract 2 3.864 3.899 3.899...

356

Status and Future of TRANSCOM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steve Casey Steve Casey U.S. Dept. of Energy Carlsbad Field Office  Current Program status g  Upcoming Changes  Glimpse at future options  DOE Commitments 2 6/3/2010 2  Current Program status g * Computer Based Training * User Support Site * Program Support * Program Accomplishments U i Ch  Upcoming Changes  Glimpse at future options  DOE Commitments 3  1 st release - December 2009 9  Covers general user training  Allows organizations access to training without waiting for a traditional class  Computer security module to be added Autumn 2010 Autumn 2010  Shipper/Scheduler training - being considered 4 6/3/2010 3  Completely overhauled in p y 2009  Features are user friendly  Layout more intuitive

357

Brookhaven Physics: Into the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics: Into the Future Physics: Into the Future To remain at the frontier of science, Brookhaven is continually evaluating its research programs and planning new or revised investigations in areas that the U.S. Department of Energy identifies as national science priorities and that make use of Brookhaven scientists' interests and strengths. STAR detector (L) and PHENIX detector After discovering quark-gluon plasma, physicists will proceed to measure details of its many intriguing characteristics and properties, and continue to investigate many other aspects of heavy ion physics and spin physics. To undertake these tasks, Brookhaven is planning to upgrade RHIC to RHIC-II by increasing the facility's luminosity, or collision rate, by a factor of ten, thereby increasing the rate of plasma production and the ability to

358

Issues and Future Research Directions  

E-Print Network (OSTI)

RFID technology is currently considered as a key enabler of supply chain transformation. However, very little has been written about the deployment and use of RFID in the dairy industry. Drawing on an extensive literature review and a case example, this exploratory study seeks to present current applications and issues related to RFID’s adoption in the dairy industry and discuss future research directions.

S. F. Wamba; Alison Wicks; Samuel Fosso Wamba, Ph.D.; Alison Wicks Ph. D

2010-01-01T23:59:59.000Z

359

Why Time is Future Oriented  

E-Print Network (OSTI)

We assume that the universe consists of clusters which in turns have sub-clusters and the sub-clusters have sub-subclusters and so on. Confining to three-dimensional space, it is shown that the universe is expanding if entropy of the universe increases. It is also shown that clocks slow down when time progresses towards future. Our model also justifies the big bang theory.

Shahid N. Afridi; M. Khalid Khan

2004-12-09T23:59:59.000Z

360

The future of nuclear power  

SciTech Connect

Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs. (DWL)

Zeile, H.J.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas Futures Prices (NYMEX)  

U.S. Energy Information Administration (EIA) Indexed Site

4.0 2.75 1997-2012 NGL Composite 12.91 15.20 8.99 11.83 15.12 10.98 2007-2012 Futures Prices Contract 1 7.114 8.899 4.159 4.382 4.03 2.83 1994-2012 Contract 2 7.359 9.014 4.428...

362

Natural Gas Futures Prices (NYMEX)  

U.S. Energy Information Administration (EIA) Indexed Site

13 View History Spot Price Henry Hub 3.69 3.55 3.47 3.62 3.68 3.87 1997-2013 Futures Prices Contract 1 3.64 3.56 3.50 3.60 3.66 3.87 1994-2013 Contract 2 3.76 3.65 3.57 3.65 3.71...

363

Natural Gas Futures Prices (NYMEX)  

U.S. Energy Information Administration (EIA) Indexed Site

3.62 3.43 3.62 3.68 1997-2013 NGL Composite 9.48 9.06 9.57 10.21 2009-2013 Futures Prices Contract 1 4.07 3.81 3.64 3.41 3.62 3.65 1994-2013 Contract 2 4.11 3.82 3.64 3.45 3.70...

364

Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet  

DOE Green Energy (OSTI)

The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

Rich, Bechtold [Alliance Technical Services; Thomas, John F [ORNL; Huff, Shean P [ORNL; Szybist, James P [ORNL; West, Brian H [ORNL; Theiss, Timothy J [ORNL; Timbario, Tom [Alliance Technical Services; Goodman, Marc [Alliance Technical Services

2007-08-01T23:59:59.000Z

365

Economic Growth in Urban Regions: Implications for Future Transportation  

E-Print Network (OSTI)

Implications for Future Transportation Robert Cervero,implications for future transportation policy. The collapseimplications for future transportation policy. Smart

Cervero, Robert

2006-01-01T23:59:59.000Z

366

Results of Aging Tests of Vendor-Produced Blended Feed Simulant  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is procuring through Pacific Northwest National Laboratory (PNNL) a minimum of five 3,500 gallon batches of waste simulant for Phase 1 testing in the Pretreatment Engineering Platform (PEP). To make sure that the quality of the simulant is acceptable, the production method was scaled up starting from laboratory-prepared simulant through 15-gallon vendor prepared simulant and 250-gallon vendor prepared simulant before embarking on the production of the 3500-gallon simulant batch by the vendor. The 3500-gallon PEP simulant batches were packaged in 250-gallon high molecular weight polyethylene totes at NOAH Technologies. The simulant was stored in an environmentally controlled environment at NOAH Technologies within their warehouse before blending or shipping. For the 15-gallon, 250-gallon, and 3500-gallon batch 0, the simulant was shipped in ambient temperature trucks with shipment requiring nominally 3 days. The 3500-gallon batch 1 traveled in a 70-75°F temperature controlled truck. Typically the simulant was uploaded in a PEP receiving tank within 24-hours of receipt. The first uploading required longer with it stored outside. Physical and chemical characterization of the 250-gallon batch was necessary to determine the effect of aging on the simulant in transit from the vendor and in storage before its use in the PEP. Therefore, aging tests were conducted on the 250-gallon batch of the vendor-produced PEP blended feed simulant to identify and determine any changes to the physical characteristics of the simulant when in storage. The supernate was also chemically characterized. Four aging scenarios for the vendor-produced blended simulant were studied: 1) stored outside in a 250-gallon tote, 2) stored inside in a gallon plastic bottle, 3) stored inside in a well mixed 5-L tank, and 4) subject to extended temperature cycling under summer temperature conditions in a gallon plastic bottle. The following series of aging tests were conducted to accomplish these objectives.

Russell, Renee L.; Buchmiller, William C.; Cantrell, Kirk J.; Peterson, Reid A.; Rinehart, Donald E.

2009-04-21T23:59:59.000Z

367

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2003-06-01T23:59:59.000Z

368

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2002-07-01T23:59:59.000Z

369

Characterization of mutagenic activity in grain-based coffee-substitute blends and instant coffees  

SciTech Connect

Several grain-based coffee-substitute blends and instant coffees showed a mutagenic response in the Ames/Salmonella test using TA98, YG1024 and YG1O29 with metabolic activation. The beverage powders contained 150 to 500 TA98 and 1150 to 4050 YG1024 revertant colonies/gram, respectively. The mutagenic activity in the beverage powders was shown to be stable to heat and the products varied in resistance to acid nitrite treatment. Characterization of the mutagenic activity, using HPLC-and the Ames test of the collected fractions, showed the coffee-substitutes and instant coffees contain several mutagenic compounds, which are most likely aromatic amines.

Johansson, M.A.E.; Knize, M.G.; Felton, J.S.; Jagerstad, M.

1994-06-01T23:59:59.000Z

370

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

DOE Green Energy (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL; Barone, Teresa L [ORNL; Thomas, John F [ORNL; Huff, Shean P [ORNL

2012-01-01T23:59:59.000Z

371

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2004-04-01T23:59:59.000Z

372

Charge Separation of Wurtzite/Zinc-blende Heterojunction GaN Nanowires  

DOE Green Energy (OSTI)

The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterostructure GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results should have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.

Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

2010-08-27T23:59:59.000Z

373

Investment Busts, Reputation, and the Temptation to Blend in with the Crowd ?  

E-Print Network (OSTI)

We provide a real-options model of an industry in which agents time abandonment of their projects in an effort to protect their reputations. Agents delay abandonment attempting to signal their quality. When a public common shock forces abandonment of a small fraction of projects irrespective of agents ’ quality, many agents abandon their projects strategically even if they are unaffected by the shock. Such “blending in with the crowd ” effect creates an additional incentive to delay abandonment ahead of the shock, leading to accumulation of “living dead ” projects, which further amplifies the shock. The potential for moderate public common shocks often improves agents’values.

Steven R. Grenadier; Andrey Malenko; Ilya A. Strebulaev; Marc Martos-vila; Erwan Morellec; Kelly Shue; Youchang Wu (discussant

2013-01-01T23:59:59.000Z

374

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

DOE Green Energy (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

375

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Production Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Conventional Gasoline, Ed 55 and Lower Finished conventional motor gasoline blended with a maximum of 55 volume percent denatured fuel ethanol. Conventional Gasoline, Greater than Ed 55 Finished conventional motor gasoline blended with denatured fuel ethanol where the volume percent of denatured fuel ethanol exceeds 55%.

376

FAQs for Survey Forms 804 and 814  

Gasoline and Diesel Fuel Update (EIA)

4 and 814 4 and 814 How are different types of naphtha cargoes classified for reporting purposes? Naphtha to be used as reformer feed is classified as unfinished oils, naphtha and lighter (EIA product code 820). Naphtha intended for gasoline blending is classified as motor gasoline blending components. If the naphtha is intended for gasoline blending but it's not already blended to form RBOB (EIA product codes 122 and 123), CBOB (EIA product code 139), or GTAB (EIA product codes 120 and 121), then classify the product as "All Other Motor Gasoline Blending Components" (EIA product code 138). Naphtha classified as unfinished oils or motor gasoline blending components requires reporting of a processing facility. Traders will probably be able to tell the difference between reformer feed

377

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Blender Net Production Blender Net Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Conventional Gasoline, Ed55 and Lower Finished conventional motor gasoline blended with a maximum of 55 volume percent denatured fuel ethanol. Conventional Gasoline, Greater than Ed55 Finished conventional motor gasoline blended with denatured fuel ethanol where the volume percent of denatured fuel ethanol exceeds 55%.

378

Nanostructured Electrodes For Organic Bulk Heterojunction Solar Cells: Model Study Using Carbon Nanotube Dispersed Polythiophene-fullerene Blend Devices  

Science Conference Proceedings (OSTI)

We test the feasibility of using nanostructured electrodes in organic bulk heterojunction solar cells to improve their photovoltaic performance by enhancing their charge collection efficiency and thereby increasing the optimal active blend layer thickness. As a model system, small concentrations of single wall carbon nanotubes are added to blends of poly(3-hexylthiophene): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester in order to create networks of efficient hole conduction pathways in the device active layer without affecting the light absorption. The nanotube addition leads to a 22% increase in the optimal blend layer thickness from 90 nm to 110 nm, enhancing the short circuit current density and photovoltaic device efficiency by as much as {approx}10%. The associated incident-photon-to-current conversion efficiency for the given thickness also increases by {approx}10% uniformly across the device optical absorption spectrum, corroborating the enhanced charge carrier collection by nanostructured electrodes.

Nam, C.Y.; Wu, Q.; Su, D.; Chiu, C.-y; Tremblay, N.J.; Nuckolls, C,; Black, C.T.

2011-09-19T23:59:59.000Z

379

Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-08-01T23:59:59.000Z

380

Recapitalizing EMSL: Meeting Future Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Recapitalizing EMSL: Recapitalizing EMSL: Meeting Future Science and Technology Challenges Environmental Molecular Sciences Laboratory 2008 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Superconductivity: Past, present, and future  

DOE Green Energy (OSTI)

This paper provides an overview of superconductor research and development activities, with emphasis on the potential of high-{Tc} materials for future applications. Superconductor applications are grouped under the following categories: electronics/instrumentation, bulk material/castings, research devices, industrial/commercial, electric power, and transportation/propulsion. Near-term applications are typically based on thin film and cast forms of high-{Tc} materials, while large-scale applications requiring long lengths of wire are considered intermediate to long term. As a major side benefit of high-{Tc} superconductor research, renewed interest is being focused on the use of low-{Tc} materials for large-scale applications.

Uherka, K.L.

1992-01-01T23:59:59.000Z

382

Superconductivity: Past, present, and future  

DOE Green Energy (OSTI)

This paper provides an overview of superconductor research and development activities, with emphasis on the potential of high-{Tc} materials for future applications. Superconductor applications are grouped under the following categories: electronics/instrumentation, bulk material/castings, research devices, industrial/commercial, electric power, and transportation/propulsion. Near-term applications are typically based on thin film and cast forms of high-{Tc} materials, while large-scale applications requiring long lengths of wire are considered intermediate to long term. As a major side benefit of high-{Tc} superconductor research, renewed interest is being focused on the use of low-{Tc} materials for large-scale applications.

Uherka, K.L.

1992-06-01T23:59:59.000Z

383

Toward an acceptable nuclear future  

SciTech Connect

The nuclear option is in danger of being foreclosed. The trend toward antinuclearism may be reversed if concerns about low-level radiation insult can be shown ultimately to be without foundation; evidence for this speculation is presented. Nevertheless it is suggested that the nuclear enterprise itself must propose new initiatives to increase the acceptability of nuclear energy. A key element of an acceptable nuclear future is cluster siting of reactors. This siting plan might be achieved by confining new reactors essentially to existing sites.

Weinberg, A.M.

1977-11-01T23:59:59.000Z

384

Building a Sustainable Energy Future  

E-Print Network (OSTI)

Board provides oversight for, and establishes the policies of, NSF within the framework of applicable national policies set forth by the President and the Congress. In this capacity, the Board identifies issues that are critical to NSF’s future, approves NSF’s strategic budget directions, approves annual budget submissions to the Office of Management and Budget, approves new programs and major awards, analyzes NSF’s budget to ensure progress and consistency along the strategic direction set for NSF, and ensures balance between initiatives and core programs. The Board also serves as an independent policy advisory body to the President

Barry C. Barish; Maxine Linde; Professor Physics; Emeritus Director; Camilla P. Benbow; Rodes Hart; Dean Education; Human Development

2009-01-01T23:59:59.000Z

385

Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions  

Science Conference Proceedings (OSTI)

Spark ignition (SI) engines with direct injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle emissions such that SI exhaust may be subject to future particle emissions regulations. Challenges in controlling particle emissions arise as engines encounter varied fuel composition such as intermediate ethanol blends. Furthermore, modern engines are operated using unconventional breathing strategies with advanced cam-based variable valve actuation systems. In this study, we investigate particle emissions from a multi-cylinder DI engine operated with three different breathing strategies, fueling strategies and fuels. The breathing strategies are conventional throttled operation, early intake valve closing (EIVC) and late intake valve closing (LIVC); the fueling strategies are single injection DI (sDI), multi-injection DI (mDI), and PFI; and the fuels are emissions certification gasoline, E20 and E85. The results indicate the dominant factor influencing particle number concentration emissions for the sDI and mDI strategies is the fuel injection timing. Overly advanced injection timing results in particle formation due to fuel spray impingement on the piston, and overly retarded injection timing results in particle formation due to poor fuel and air mixing. In addition, fuel type has a significant effect on particle emissions for the DI fueling strategies. Gasoline and E20 fuels generate comparable levels of particle emissions, but E85 produces dramatically lower particle number concentration. The particle emissions for E85 are near the detection limit for the FSN instrument, and particle number emissions are one to two orders of magnitude lower for E85 relative to gasoline and E20. We found PFI fueling produces very low levels of particle emissions under all conditions and is much less sensitive to engine breathing strategy and fuel type than the DI fueling strategies. The particle number-size distributions for PFI fueling are of the same order for all of the breathing strategies and fuel types and are one to two orders lower than for the sDI fuel injection strategy with gasoline and E20. Remarkably, the particle emissions for E85 under the sDI fueling strategy are similar to particle emissions with a PFI fueling strategy. Thus by using E85, the efficiency and power advantages of DI fueling can be gained without generating high particle emissions.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2011-01-01T23:59:59.000Z

386

A blended learning Approach to teaching foreign policy: Student experiences of learning through face-to-face and online discussion and their relationship to academic performance  

Science Conference Proceedings (OSTI)

This article presents research on students' experiences of learning through a blend of face-to-face and online discussion. The participants in our study were students enrolled in a foreign policy course at a major Australian university. Students' conceptions ... Keywords: Blended learning, Computer mediated communication, Learning through discussion, Phenomenography, Teaching/learning strategies

Ana-Maria Bliuc; Robert A. Ellis; Peter Goodyear; Leanne Piggott

2011-04-01T23:59:59.000Z

387

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

DOE Green Energy (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

388

Toward an energy surety future.  

SciTech Connect

Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

2005-10-01T23:59:59.000Z

389

Coal: Energy for the future  

SciTech Connect

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

1995-05-01T23:59:59.000Z

390

Engineering Education - A Future Management Of The Future  

E-Print Network (OSTI)

Processes and structures of current engineering praxis, as well as those of the present university engineering education, are closely related to progress and stasis of modern nation state, and modernity as such. In the current post-modern knowledge society, the engineering education needs to redefine its priorities and find a new footing. In the knowledge society, the higher education has become of supreme importance for the functioning of its structures rooted in learning. Structural rigidity of higher education based on the authority and financial resources of the nation state in stasis does not correspond to dynamics of present culture development. Institutions of higher education need to be de-nationalised, as they need freedom for employment of their resources in an effort to reach goals set by regional and global standards. Contemporary societies are characterised by self generated structures and the capacity to determine their own future. Knowledge is a fundamental organisational principle of the way we live. Generation, reproduction, distribution, and realisation of knowledge, i.e. education, represent corner stones of contemporary social order. This has been especially apparent since the violence and intimidation of the 11 September 2001 in the United States. An access to education per se does not guarantee that the education will be accomplished. Education is primarily a cultural phenomenon. The post-modern engineering education should aim at teaching a flexible, target oriented, and responsible individual who is able to distinguish in the chaos of data generated by the Net. Future oriented engineering education means not only the development of rational thinking, logical analysis, and action directed conclusion making but also facilitating of unders...

Borek Sousedik

2002-01-01T23:59:59.000Z

391

Noncommercial Trading in the Energy Futures Market  

Reports and Publications (EIA)

How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

Information Center

1996-05-01T23:59:59.000Z

392

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

393

ENERGY WHITE PAPER Our energy future -  

E-Print Network (OSTI)

ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

394

FutureGen_factsheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vision Vision for Tomorrow's Clean Energy FutureGen - A Sequestration and Hydrogen Research Initiative Responding to the President's Initiatives The Technology The Integrated Sequestration and Hydrogen Research Initiative is a $1 billion government/ industry partnership to design, build and operate a nearly emission-free, coal-fired electric and hydrogen production plant. The 275-megawatt prototype plant will serve as a large scale engineering laboratory for testing new clean power, carbon capture, and coal-to-hydrogen technologies. It will be the cleanest fossil fuel-fired power plant in the world. The project is a direct response to the President's Climate Change and Hydrogen Fuels Initiatives. President Bush emphasized the importance of technology in stabilizing greenhouse gas concentrations in the atmosphere with two major policy announcements: the National Climate

395

Catalyzing a cleaner Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

11 11 Catalyzing a Cleaner Energy Future When asked about catalysts, most people probably remember a simple definition copied from the chalkboard in an early chemistry class: a substance that accelerates or modifies a chemical reaction without itself being affected. Or certain personalities may spring to mind; the term is routinely borrowed from chemistry to refer, in social and professional contexts, to a person or team whose energetic, efficient work quickly creates change in a given field. Or the first thought may be of the car in one's driveway and its catalytic converter, which chemically grabs some of the worst pollutants from exhaust and makes them harmless before they reach the tailpipe. In a way, continuing work by scientists at the Environmental Molecular

396

CURRENT AND FUTURE IGCC TECHNOLOGIES:  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 DOE/NETL-2008/1337 A Pathway Study Focused on Non-Carbon Capture Advanced Power Systems R&D Using Bituminous Coal - Volume 1 Current and Future IGCC Technologies Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

397

Future Heating | Open Energy Information  

Open Energy Info (EERE)

Heating Heating Jump to: navigation, search Name Future Heating Place London, England, United Kingdom Sector Solar Product Designs and installs solar passive water heating systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions  

Science Conference Proceedings (OSTI)

Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Barone, Teresa L [ORNL

2010-01-01T23:59:59.000Z

399

Prediction of early heat of hydration of plain and blended cements using neuro-fuzzy modelling techniques  

Science Conference Proceedings (OSTI)

In this study, a new approach based on an adaptive neuro-fuzzy inference system (ANFIS) was presented for the prediction of early heat of hydration of plain and blended cements. Two different type of model is trained and tested using these data. The ... Keywords: ANFIS, Cement, Fuzzy logic, Hydration heat, Neural networks

Abdulhamit Subasi; Ahmet Serdar Yilmaz; Hanifi Binici

2009-04-01T23:59:59.000Z

400

Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, September 1--November 30, 1991  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter`s progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

Singh, Shyam

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

402

Isotopic Tracing of Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-in-Diesel Blends  

DOE Green Energy (OSTI)

Accelerator Mass Spectrometry (AMS) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuels along with a diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol (>400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMS analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0% ethanol fuels, respectively).

Cheng, A.S.; Dibble, R.W.; Buchholz, B.

1999-11-22T23:59:59.000Z

403

Renewable Electricity Futures Study. Executive Summary  

Science Conference Proceedings (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

2012-12-01T23:59:59.000Z

404

Economics and regulation of petroleum futures markets  

SciTech Connect

Because the futures market in petroleum products is a relatively recent phenomenon, the implications of public policies formulated for that market have not yet been fully explored. To provide the Office of Competition of the Department of Energy (DOE) with sufficient information to assess policy alternatives, Resource Planning Associates, Inc. (RPA) was asked to analyze the development of the futures market in No. 2 oil, assess the potential for futures markets in other petroleum products, and identify policy alternatives available to DOE. To perform this analysis, the criteria for a viable futures market was established first. Then, the experience to date with the 18-month-old futures market in No. 2 oil was examined, and the potential for viable futures markets in No. 6 oil, gasoline, jet fuel, and crude oil was assessed. Finally, how existing DOE regulations and prospective actions might affect petroleum futures market development was investigated.

Not Available

1980-08-01T23:59:59.000Z

405

Future Prospects of Synthetic Fuels  

E-Print Network (OSTI)

It is important for the future of this nation to reach the goal of demonstrated definition and quantification of the parameters which influence the ability to use this country's vast resources of coal and oil shale for production of synthetic fuels which can contribute to the nation's future energy needs. Those parameters are: technical, environmental, and economic viability. In the final analysis, the key word is economics; can, or when can synthetic fuels compete in the marketplace? A commercial synthetic fuels plant requires a multi-billion dollar capital investment. It is the purpose of this paper to discuss the risk elements of a synthetic fuels venture and to speculate on what impact the current environment, e.g. governmental policy, world crude market prices, and general economic climate may have on the timetable for achievement of the aforementioned goal. In June 1980 the author presented a paper at the AIChE Meeting in Philadelphia, Pa. entitled 'Synthetic Fuels - Their Problems and Their Promises.' The opening paragraph of that paper started as follows: 'For three decades, since the days of World War II, a U.S. synthetic fuels industry has several times verged on becoming a reality but never succeeding, the ups and downs resembling a sine wave of variable frequency. As of this writing we are at the crest of the wave. Is this the time it will happen? For the good of the nation hopefully the answer will be yes.' It is the purpose of this paper, some 20 months later, to examine what has transpired in that time interval and to speculate, in the light of those events, about their impact on the likelihood of the answer still being 'yes' and on the timing as to when it may occur. To set the stage for consideration of the importance of recent events and to put them in perspective, it is necessary to return again to the earlier paper where some of the impediments to the establishment of a U.S. synfuels industry were discussed. In essence what was said was that the principal impediments were: economic, environmental, and regulatory, and since both the economic and regulatory aspects exert some direct and/or indirect influence on cost, the problem really reduced to the single most important factor--project economics. Synthetic fuels simply are expensive to produce!

Fryback, M. G.

1982-01-01T23:59:59.000Z

406

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

Office of Scientific and Technical Information (OSTI)

Annual Technical Progress Report for Project Entitled "Impact Annual Technical Progress Report for Project Entitled "Impact of DME-Diesel Fuel Blend Properties on Diesel Fuel Injection Systems" May 16, 2002 - May 15, 2003 Elana M. Chapman, Andre Boehman, Kimberly Wain, Wallis Lloyd, Joseph M. Perez, Donald Stiver, Joseph Conway Report Issue Date: June 2003 DOE Award Number: DE-FC26-01NT41115 The Pennsylvania State University The Energy Institute University Park, PA 16802 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

407

Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of Research Engine and Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation Thomas Wallner, Henning Lohse-Busch, Henry Ng Argonne National Laboratory Robert Peters University of Alabama at Birmingham NHA Annual Hydrogen Conference 2007 San Antonio/Texas March 19 th - 22 nd 2007 DOE-Sponsors: Lee Slezak, Gurpreet Singh Government license The submitted manuscript was developed by the UChicago Argonne LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC-02-06CH11357 with DOE. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on

408

Estimation of Physical Properties of AN-107 Cesium and Technetium Eluate Blend  

SciTech Connect

The objective of this study, as defined in the associated test specifications and task technical and quality assurance plan, was to estimate all the physical properties that are required to design the storage and transport facilities for the concentrated cesium and technetium eluates. Specifically, the scope of this study included: (1) modeling of the aqueous electrolyte chemistry of Tank 241-AN-107 Cs and Tc eluate evaporators, (2) process modeling of semi-batch and continuous evaporation operations, (3) determination of the operating vacuum and target endpoint of each evaporator, (4) calculation of the physical properties of the concentrated Cs and Tc eluate blend, and (5) development of the empirical correlations for the physical properties thus estimated.

Choi, A.S.

2001-06-12T23:59:59.000Z

409

Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.  

DOE Green Energy (OSTI)

Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

Herbinet, O; Pitz, W J; Westbrook, C K

2009-07-21T23:59:59.000Z

410

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

Science Conference Proceedings (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

411

Performance of a small scale boiler burner in the firing of fuel blends  

E-Print Network (OSTI)

Power plants spend nearly 50 billion dollars a year on fuel cost. Presently coal accounts for over 75% of the electricity generated in this country. Due to increasingly harsh environmental regulations, the demand for low sulfur (S) coal has dramatically increased. This increase in demand is expected to cause the price of coal to rise. Such a senario has caused the utilities to explore the possibilities of supplementing coal with fuel alternatives such as the byproducts of process industries. The supplemental fuel for utilities located near feedlots (e.g. Northwest Texas) happens to be feedlot manure. Feedlot manure is attractive because it is nearly ten times cheaper than coal and is relatively inexpensive to transport. There exists nearly six million head of cattle in Northwest Texas which produce 25,000 tons of manure each day. Feedlot manure presents water and air pollution concerns if not disposed of properly. As such, the feedlot operators are eager to find methods of safely disposing of the feedlot manure. A small scale boiler burner facility has been constructed to simulate a utility class boiler. Experiments were conducted with coal only and then for coal/feedlot manure. Three types of feedlot manure are examined; raw feedlot manure, partially composted feedlot manure, and finished composted feedlot manure. Performance characteristics and emission data were taken for each case. A summary of the results is as follows: (I) sulfur Wyoming coal was fired and a gasification efficiency of 66% was measured. (i I) Emissions measurements were recorded and it was seen that emissions of NO,, and S02 increased as the burnt mass fraction increased. However, all emissions were within NSPS guidelines. (iii) The successful firing of coal and feedlot manure was achieved, a gasification efficiency in the range of 86% was measured, which is higher than 66% obtained when firing coal alone. (iv) When the fuel blend is fully burnt, the NO,, emissions with the blend firing was lower than the firing of coal alone.

Frazzitta, Stephen

1993-01-01T23:59:59.000Z

412

PUBLIC AND REGULATORY ACCEPTANCE OF BLENDING OF RADIOACTIVE WASTE VS DILUTION  

SciTech Connect

On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and then dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.

Goldston, W.

2010-11-30T23:59:59.000Z

413

Exports of Finished Motor Gasoline - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

414

Imports of Total Motor Gasoline  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

415

Imports of Distillate Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

416

Exports of Total Crude Oil and Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

417

Imports of Total Motor Gasoline - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

418

Exports of Crude Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

419

Imports of Crude Oil, Commercial  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

420

Imports of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Texas Gulf Coast Refinery Net Input  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

422

Rocky Mountain (PADD 4) Petrochemical Feedstocks Net Receipts ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

423

Refinery & Blenders Net Input of Methyl Tertiary Butyl Ether ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

424

Refinery Net Input of All Other Oxygenates  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

425

Imports of Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

426

Refinery & Blenders Net Input of Natural Gas Plant Liquids and ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

427

Alaskan Crude Oil Receipts  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

428

Refinery & Blenders Net Input of Renewable Diesel Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

429

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

430

Refinery & Blenders Net Input of Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

431

Refinery Net Input of Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

432

Refinery & Blenders Net Input of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

433

Refinery & Blenders Net Input of Ethane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

434

Exports of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

435

Exports of Crude Oil  

U.S. Energy Information Administration (EIA)

Imports and stocks of RBOB with Ether and RBOB with Alcohol are discontinued as of the week ending June 4, 2010 reporting period. Due to independent ...

436

Kerosene-Type Jet Fuel Movements by Pipeline between PAD Districts  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

437

Kerosene-Type Jet Fuel Movements by Tanker and Barge between PAD ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

438

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Tanker and Barge Between PADDs Tanker and Barge Between PADDs Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

439

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

GHG emissions of future transportation modes. These resultsVehicle Manufacturing Futures in Transportation Life-cycleVehicle Manufacturing Futures in Transportation Life-cycle

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

440

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

California’s Energy Future - Transportation Energy Use inCalifornia’s Energy Future - Transportation Energy Use inCalifornia’s Energy Future - Transportation Energy Use in

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels," UCB-Press plc THE TRANSPORTATION FUTURE? FUEL OF THE DANIELPurdue University, "Transportation Energy Futures; Paths of

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

442

Moving Towards a More Secure Energy Future  

Nuclear Energy Wind Solar Energy Clean Coal BES related basic research activities. The President’s Advanced Energy Initiative Accelerating Future ...

443

Time Series Prediction Forecasting the Future and ...  

Science Conference Proceedings (OSTI)

Time Series Prediction Forecasting the Future and Understanding the Past Santa Fe Institute Proceedings on the Studies in the Sciences of ...

2012-10-01T23:59:59.000Z

444

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pledge? Conversation on the Future of the Wind Industry Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela Bill Gates and Deputy Secretary Poneman Discuss the...

445

Probing Higgs Boson Interactions At Future Colliders.  

E-Print Network (OSTI)

??We present in this thesis a detailed analysis of Higgs boson interactions at future colliders. In particular we examine, in a model independent way, the… (more)

Biswal, Sudhansu Sekhar

2009-01-01T23:59:59.000Z

446

Advanced Materials for Our Energy Future - TMS  

Science Conference Proceedings (OSTI)

May 21, 2010 ... TMS has joined forces with four other materials societies to develop “Advanced Materials for Our Energy Future,” a publication that underscores ...

447

Future Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Pty Ltd Jump to: navigation, search Name Future Energy Pty Ltd Place Victoria, Australia Zip 3121 Sector Wind energy Product Victoria based community wind project developer....

448

Fueling the Future with Fungal Genomics  

E-Print Network (OSTI)

Saccharomyces cerevisiae. Biofuels. 108:147-177. Harman GE,or future hydrocarbon biofuels, fungi are involved. Researchtopic areas that impact biofuels production. In this review,

Grigoriev, Igor V.

2011-01-01T23:59:59.000Z

449

The Future of Food in Suburbia.  

E-Print Network (OSTI)

??This thesis addresses resilience for the future of Canadian suburbs, through the lens of buildings and food, particularly against the backdrop of peak oil and… (more)

Khalid, Sarah

2012-01-01T23:59:59.000Z

450

Is nanoelectronics the future of microelectronics?  

Science Conference Proceedings (OSTI)

We examine current research in nanoelectronics and discuss the role it may play in future electronic systems. Keywords: Moore's Law, molecular electronics, nanoelectronics

Mark Lundstrom

2002-08-01T23:59:59.000Z

451

Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

1982-12-01T23:59:59.000Z

452

Blend Down Monitoring System Fissile Mass Flow Monitor and its Implementation at the Siberian Chemical Enterprise, Seversk, Russia  

SciTech Connect

In this paper the implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the Siberian Chemical Enterprise (SChE), Seversk, Russia, are presented. The FMFM, developed by Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS) for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower assay ({approx}4%) product low enriched uranium (PLEU) to the United States from down-blended weapon-grade HEU are meeting the nonproliferation goals of the government-to-government HEU purchase agreement signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999. The second BDMS has been operational at Electro Chemical Plant, Zelenogorsk, since March 2003. These systems are successfully providing HEU transparency data to the United States. The third BDMS was successfully installed on the HEU down-blending tee in the SChE Enrichment Plant in October 2004. The FMFM makes use of a set of thermalized {sup 252}Cf spontaneous neutron sources for modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments retained in the flow. The FMFM provides unattended nonintrusive measurements of the {sup 235}U mass flow of the UF{sub 6} gas in the blending tee legs of HEU, the LEU blend stock, and the resulting P-LEU. The FMFM also confirms that highly enriched UF{sub 6} gas identified in the HEU leg flows through the blending tee into the P-LEU leg. This report contains details of the SChE FMFM equipment characteristics as well as the technical installation requirements and the latest measurement results.

Uckan, T

2005-07-28T23:59:59.000Z

453

Mechanical Properties and Durability of Concrete Made with High-Volume Fly Ash Blended Cement Produced in a Cement Plant: Commercial -Scale Trial Results  

Science Conference Proceedings (OSTI)

This interim report documents the preliminary results of the commercial-scale production of a high-volume fly ash (HVFA) blended cement, using up to 55 percent fly ash to replace the portland cement.

2000-12-12T23:59:59.000Z

454

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

DOE Green Energy (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

455

Crystallization and Solidification Properties Chapter 4 Effects of Tempering on Physical Properties of Shortenings Based on BinaryBlends of Palm Oil & Anhydrous Milk Fat During Storage  

Science Conference Proceedings (OSTI)

Crystallization and Solidification Properties Chapter 4 Effects of Tempering on Physical Properties of Shortenings Based on BinaryBlends of Palm Oil & Anhydrous Milk Fat During Storage Health Nutrition Biochemistry eChapters Health - Nu

456

Cocoa Butter and Related CompoundsChapter 16 Molecular Interactions of Triacylglycerides in Blends of Cocoa Butter with trans-free Vegetable Oils  

Science Conference Proceedings (OSTI)

Cocoa Butter and Related Compounds Chapter 16 Molecular Interactions of Triacylglycerides in Blends of Cocoa Butter with trans-free Vegetable Oils Food Science Health Nutrition eChapters Food Science & Technology Health - Nutrition - Bioc

457

ChronoSeeker: Future Opinion Extraction  

Science Conference Proceedings (OSTI)

In this paper, we will propose a novel technique for Future Opinion Extraction, a new task of Information Extraction. The system we built can extract automatically future opinions, building automatic queries for the Search API. We obtained an F-Measure ... Keywords: Data Mining, Information Extraction, Machine Learning

Pierre Brun; Hideki Kawai; Kazuo Kunieda; Keiji Yamada

2009-09-01T23:59:59.000Z

458

Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE  

E-Print Network (OSTI)

Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER. For the Smart Light emitting Diode Lighting in Residential Fans Project, the California Lighting Technology

459

Future Contracts and Options Commodity markets  

E-Print Network (OSTI)

the concurrent use of both cash and futures markets · Consider the case of a flour mill which has made heavy forward sales of flour, that requires more uncommitted wheat that the mill owns. ­ to hedge these flour sales, the mill needs to secure more wheat contracts in future when there is enough resources from

Boisvert, Jeff

460

A Once and Future Gulf of Mexico  

E-Print Network (OSTI)

A Once and Future Gulf of Mexico Ecosystem Restoration Recommendations of an Expert Working Group. Washington, DC. 112 pp. #12;A Once and Future Gulf of Mexico Ecosystem Restoration Recommendations Introduction 9 Precedents and Principles for Restoring the Gulf of Mexico Ecosystem 15 Acute and Chronic

Florida, University of

Note: This page contains sample records for the topic "blending rbob futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Once and Future Gulf of Mexico  

E-Print Network (OSTI)

A Once and Future Gulf of Mexico Ecosystem Restoration Recommendations of an Expert Working Group, Stanley Senner, John M. Teal and Ping Wang #12;1 A Once and Future Gulf of Mexico Ecosystem, Executive deep-sea and shoreline habitats and closing economically valuable fisheries in the Gulf of Mexico

Osenberg, Craig W.

462

Renewable Energy Futures to 2050: Current Perspectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Futures to 2050: Current Perspectives Renewable Energy Futures to 2050: Current Perspectives Speaker(s): Eric Martinot Date: April 4, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ryan Wiser The future of renewable energy is fundamentally a choice, not a foregone conclusion given technology and economic trends. The new REN21 Renewables Global Futures Report illuminates that choice by showing the range of credible possibilities for the future of renewable energy. The report is not one scenario or viewpoint, but a synthesis of the contemporary thinking of many, as compiled from 170 interviews with leading experts from around the world, including CEOs and parliamentarians, and from 50 recently published energy scenarios by a range of organizations. Conservative projections show 15-20% global energy shares from renewables in the

463

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

464

Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends  

E-Print Network (OSTI)

Increases in demand, lower emission standards, and reduced fuel supplies have fueled the recent effort to find new and better fuels to power the necessary equipment for society’s needs. Often, the fuels chosen for research are renewable fuels derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis and ignition behavior characteristics, combustion modeling, emissions modeling, small scale combustion experiments, pilot scale commercial combustion experiments, and cost analysis of the