Powered by Deep Web Technologies
Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Impact of Low Octane Hydrocarbon Blending Streams on "E85...  

Broader source: Energy.gov (indexed) [DOE]

The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization...

2

The Impact of Low Octane Hydrocarbon Blending Streams on "E85...  

Broader source: Energy.gov (indexed) [DOE]

IMPACT OF LOW OCTANE HYDROCARBON BLENDING STREAMS ON "E85" ENGINE OPTIMIZATION Jim Szybist and Brian West Oak Ridge National Laboratory October 19, 2012 Acknowledgement This...

3

The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization  

SciTech Connect (OSTI)

Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

Szybist, James P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL

2013-01-01T23:59:59.000Z

4

High Octane Fuels Can Make Better Use of Renewable Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Octane Fuels Can Make Better Use of Renewable Transportation Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Breakout Session 1C-Fostering...

5

High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus’ process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

None

2009-12-01T23:59:59.000Z

6

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

7

High octane ethers from synthesis gas-derived alcohols  

SciTech Connect (OSTI)

The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H[sub 2]/CO/CO[sub 2] coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-l-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been demonstrated by us to occur over superacid catalysts to yield methyl isobutyl ether (MIBE) at moderate pressures and a mixture of methanol and isobutene at low pressures. MIBE is an isomer of MTBE and a process is proposed whereby MTBE from the two alcohols is maximized and MIBE is minimized. This will be achieved by the proper choice of reaction conditions, i.e. intermediate pressures, and of inorganic acid catalysts that are stable at temperatures higher than 200[degree]C, at which the carbonium ion reaction coupling of the two alcohols to MTBE is more effective than the oxonium ion or ester reaction coupling to MIBE. Both organic and inorganic catalysts will be investigated, and the better catalysts of these classes will be subjected to long term performance studies. The long term performance studies of the combined process will extend to 1000 hr and detailed analytical data for all products will be provided.

Klier, K.; Herman, R.G.; Feeley, O.C.; Johansson, M.A.

1992-07-01T23:59:59.000Z

8

A near infrared regression model for octane measurements in gasolines which contain MTBE  

SciTech Connect (OSTI)

Near infrared (NIR) spectroscopy has emerged as a superior technique for the on-line determination of octane during the blending of gasoline. This results from the numerous advantages that NIR spectroscopy has over conventional on-line instrumentation. Methyl t-butyl ether (MTBE) is currently the oxygenated blending component of choice. MTBE is advantageous because it has a high blending octane, a low Reid vapor pressure, is relatively cheap, and does not form peroxides (1). The goal of this project was to develop a NIR regression model that could be used to predict pump octanes regardless of whether they contained MTBE.

Maggard, S.M. (Ashland Petroleum Co., KY (USA))

1990-01-01T23:59:59.000Z

9

PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)  

SciTech Connect (OSTI)

The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

CERTA, P.J.

2006-02-22T23:59:59.000Z

10

Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed  

SciTech Connect (OSTI)

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external-cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to that of 87AKI, up to 20 bar IMEPg (indicating mean effective pressure gross) at = 1. The results demonstrate that for all fuels, EGR is a key enabler for increasing engine efficiency but is less useful for knock mitigation with E30 than for 87AKI gasoline or IB24. Under knocking conditions, 15% EGR is found to offer 1 CA of CA50 timing advance with E30, whereas up to 5 CA of CA50 advance is possible with knock-limited 87AKI gasoline. Compared to 87AKI, both E30 and IB24 are found to have reduced adiabatic flame temperature and shorter combustion durations, which reduce knocking propensity beyond that indicated by the octane number. However, E30+0% EGR is found to exhibit the better antiknock properties than either 87AKI+15% EGR or IB24+15% EGR, expanding the knock limited operating range and engine stoichiometric torque capability at high compression ratio. Furthermore, the fuel sensitivity (S) of E30 was attributed to reduced speed sensitivity of E30, expanding the low-speed stoichiometric torque capability at high compression ratio. The results illustrate that intermediate alcohol gasoline blends exhibit exceptional antiknock properties and performance beyond that indicated by the octane number tests, particularly E30.

Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2013-01-01T23:59:59.000Z

11

Estimate octane numbers using an enhanced method  

SciTech Connect (OSTI)

An improved model, based on the Twu-Coon method, is not only internally consistent, but also retains the same level of accuracy as the previous model in predicting octanes of gasoline blends. The enhanced model applies the same binary interaction parameters to components in each gasoline cut and their blends. Thus, the enhanced model can blend gasoline cuts in any order, in any combination or from any splitting of gasoline cuts and still yield the identical value of octane number for blending the same number of gasoline cuts. Setting binary interaction parameters to zero for identical gasoline cuts during the blending process is not required. The new model changes the old model`s methodology so that the same binary interaction parameters can be applied between components inside a gasoline cut as are applied to the same components between gasoline cuts. The enhanced model is more consistent in methodology than the original model, but it has equal accuracy for predicting octane numbers of gasoline blends, and it has the same number of binary interaction parameters. The paper discusses background, enhancement of the Twu-Coon interaction model, and three examples: blend of 2 identical gasoline cuts, blend of 3 gasoline cuts, and blend of the same 3 gasoline cuts in a different order.

Twu, C.H.; Coon, J.E. [Simulation Sciences Inc., Brea, CA (United States)

1997-03-01T23:59:59.000Z

12

Phosphor blends for high-CRI fluorescent lamps  

DOE Patents [OSTI]

A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

Setlur, Anant Achyut (Niskayuna, NY); Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY); Beers, William Winder (Chesterland, OH); Toth, Katalin (Pomaz, HU); Balazs, Laszlo D. (Budapest, HU)

2008-06-24T23:59:59.000Z

13

High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1992  

SciTech Connect (OSTI)

The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H{sub 2}/CO/CO{sub 2} coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-l-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been demonstrated by us to occur over superacid catalysts to yield methyl isobutyl ether (MIBE) at moderate pressures and a mixture of methanol and isobutene at low pressures. MIBE is an isomer of MTBE and a process is proposed whereby MTBE from the two alcohols is maximized and MIBE is minimized. This will be achieved by the proper choice of reaction conditions, i.e. intermediate pressures, and of inorganic acid catalysts that are stable at temperatures higher than 200{degree}C, at which the carbonium ion reaction coupling of the two alcohols to MTBE is more effective than the oxonium ion or ester reaction coupling to MIBE. Both organic and inorganic catalysts will be investigated, and the better catalysts of these classes will be subjected to long term performance studies. The long term performance studies of the combined process will extend to 1000 hr and detailed analytical data for all products will be provided.

Klier, K.; Herman, R.G.; Feeley, O.C.; Johansson, M.A.

1992-07-01T23:59:59.000Z

14

Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity  

SciTech Connect (OSTI)

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2013-01-01T23:59:59.000Z

15

High Octane Fuels Can Make Better Use of Renewable Transportation Fuels |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHighMetal Removalcost

16

Predict octane numbers using a generalized interaction method  

SciTech Connect (OSTI)

An interaction-based correlation using a new approach can be used to predict research and motor octane numbers of gasoline blends. An ultimately detailed analysis of the gasoline cut is not necessary. This correlation can describe blending behavior over the entire composition range of gasoline cuts. The component-oriented interaction approach is general and will accurately predict, without performing additional blending studies, blending behavior for new gasoline cuts. The proposed correlation fits the data quite closely for blends of many gasoline cuts. The regression gives realistic values for binary interaction parameters between components. A unique set of binary interaction parameters was found for the equation for predicting octane number of any gasoline blend. The binary interaction parameters between components contained in gasoline cuts have been converted to binary interaction parameters between gasoline cuts through a general equation to simplify the calculations. Because of the proposed method`s accuracy, optimum allocation of components among gasoline grades can be obtained and predicted values can be used for quality control of the octane number of marketed gasolines.

Twu, C.H.; Coon, J.E. [Simulation Sciences, Inc., Brea, CA (United States)

1996-02-01T23:59:59.000Z

17

Pool octanes via oxygenates  

SciTech Connect (OSTI)

Increasingly stringent antipollution regulations placed on automobile exhaust gases with consequent reduction or complete lead ban from motor gasoline result in octane shortage at many manufacturing sites. Attractive solutions to this problem, especially in conjunction with abundant methanol supplies, are the hydration and etherification of olefins contained in light product streams from cracking unit or produced by field gas dehydrogenation. A comparison is made between oxygenates octane-volume pool contributions and established refinery technologies. Process reviews for bulk manufacture of fuel-grade isopropanol (IPA), secondary butanol (SBA), tertiary butanol (TBA), methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME) are presented together with the characteristic investment and operating data. The implantation of these processes into a typical FCCU refinery complex with the resulting octane-pool improvement possibilities is descried.

Prezelj, M.

1987-09-01T23:59:59.000Z

18

A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

19

Insight into the Molecular Arrangement of High-Density Polyethylene Polymer Chains in Blends of Polystyrene/High-  

E-Print Network [OSTI]

Insight into the Molecular Arrangement of High-Density Polyethylene Polymer Chains in Blends of Polystyrene/High- Density Polyethylene from Differential Scanning Calorimetry and Raman Techniques JAYANT/high-density polyethylene (PS/HDPE) blends were synthe- sized by melt blending in a single screw extruder. Co

20

HIGH PERFORMANCE BLENDS AND COMPOSITES: PART (I) CLAY AEROGEL/POLYMER COMPOSITES PART (II) MECHANISTIC INVESTIGATION OF COLOR GENERATION IN PET/MXD6 BARRIER BLENDS.  

E-Print Network [OSTI]

??High performance in polymer blends and composites can be achieved through the addition of a strong filler component into a polymer matrix. The overall physical… (more)

Bandi, Suneel A

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes  

SciTech Connect (OSTI)

Experimental octane measurements are presented for a standard gasoline to which has been added various quantities of nitromethane, nitroethane and 1-nitropropane. The addition of nitroalkanes was found to suppress the Motor Octane Number to a much greater extent than the Research Octane Number. In other words addition of nitroalkanes increases the octane sensitivity of gasoline. Density Functional Theory was used to model the equilibrium thermodynamics and the barrier heights for reactions leading to the break-up of nitroethane. These results were used to develop a chemical kinetic scheme for nitroalkanes combined with a surrogate gasoline (for which a mechanism has been developed previously). Finally the chemical kinetic simulations were combined with a quasi-dimensional engine model in order to predict autoignition in octane rating tests. Our results suggest that the chemical origin of octane sensitivity in gasoline/nitroalkane blends cannot be fully explained on the conventional basis of the extent to which NTC behaviour is absent. Instead we have shown that the contribution of the two pathways leading to autoignition in gasoline containing nitroalkanes becomes much more significant under the more severe conditions of the Motor Octane method than the Research Octane method. (author)

Cracknell, R.F.; McAllister, L.J.; Norton, M.; Walmsley, H.L. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Andrae, J.C.G. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

2009-05-15T23:59:59.000Z

22

Achieving High Chilled Water Delta T Without Blending Station  

E-Print Network [OSTI]

on the blending station performance. The results show that the blending station is not necessary in the building chilled water systems with 2-way modulation valves at end users. Actually the end user valve configuration and control mainly impacts building chilled...

Wang, Z.; Wang, G.; Xu, K.; Yu, Y.; Liu, M.

2007-01-01T23:59:59.000Z

23

HIGH-TEMPERATURE STEAM-TREATMENT OF PEEK, PEKK, PBI, AND THEIR BLENDS  

E-Print Network [OSTI]

1 HIGH-TEMPERATURE STEAM-TREATMENT OF PEEK, PEKK, PBI, AND THEIR BLENDS: A SOLID-STATE NMR AND IR and their pure components after treating them with liquid water and steam at elevated temperatures and pressures. The pure polymer components and the PAEK-PBI (50 : 50 wt%) blends are steam-treated at 150 °C (302 °F

Bluemel, Janet

24

Optimal handling of Highly Active Pharmaceutical Ingredients during milling and blending operations  

E-Print Network [OSTI]

This thesis investigates best practices for Highly Active Pharmaceutical Ingredient (HAPI) milling and blending. We utilize a qualitative analysis centering on a benchmarking study and quantitative analyses using a ...

Setty, Prashant (Prashant Neelappanavara)

2013-01-01T23:59:59.000Z

25

Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate)  

E-Print Network [OSTI]

Wood plastic composites based on microfibrillar blends of high density polyethylene January 2010 Keywords: Wood plastic composites Poly(ethylene terephthalate) Polyethylene Extrusion a b into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre

26

Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend  

E-Print Network [OSTI]

Associated with High-Ethanol Blend Releases Jie Ma, Hong Luo, George E. DeVaull,§ William G. Rixey, and Pedro ABSTRACT: Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could conditions exist. Ethanol- derived methane may also increase the vapor intrusion potential of toxic fuel

Alvarez, Pedro J.

27

An Experimental Investigation of Low Octane Gasoline in Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and...

28

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect (OSTI)

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

29

CRC fuel rating program: road octane performance of oxygenates in 1982 model cars  

SciTech Connect (OSTI)

Because of the widespread interest in the use of alcohols and ethers as gasoline blending components, this program was conducted to evaluate the effects of several oxygenates on gasoline octane performance and to evaluate the effects of car design features such as engine and transmission type. Five oxygenates were evaluated at two nominal concentrations, 5 and 10 volume%, at both regular- and premium-grade octane levels: methanol (MeOH), ethanol (ETOH), isopropanol (IPA), tertiary butanol (TBA), and methyl tertiary butyl ether (MTBE). A blend of 5% MeOH and 5 percent TBA was also tested at both octane levels. Twenty-eight unleaded fuels, including four hydrocarbon fuels, two hydrocarbon fuels plus toluene, and twenty-two oxygenated fuels, were rated in duplicate in thirty-eight cars using the Modified Uniontown Technique (CRC Designation F-28-75 described in Appendix C), plus some additional instructions. All testing was done on chassis dynamometers. Ratings were obtained at full throttle with all thirty-eight cars, and at the most critical part-throttle condition (occurring with manifold vacuum of 4 in. Hg (13.5 kPa) or greater above the full-throttle vacuum) with nine cars.

Not Available

1985-07-01T23:59:59.000Z

30

Liquid-liquid equilibria for the ternary systems sulfolane + octane + benzene, sulfolane + octane + toluene and sulfolane + octane + p-xylene  

SciTech Connect (OSTI)

Sulfolane is widely used as a solvent for the extraction of aromatic hydrocarbons. Ternary phase equilibrium data are essential for the proper understanding of the solvent extraction process. Liquid-liquid equilibrium data for the systems sulfolane + octane + benzene, sulfolane + octane + toluene and sulfolane + octane + p-xylene were determined at 298.15, 308.15, and 318.15 K. Tie line data were satisfactorily correlated by the Othmer and Tobias method. The experimental data were compared with the values calculated by the UNIQUAC and NRTL models. Good quantitative agreement was obtained with these models. However, the calculated values based on the NRTL model were found to be better than those based on the UNIQUAC model.

Lee, S.; Kim, H. [Seoul National Univ. (Korea, Republic of). Dept. of Chemical Engineering

1995-03-01T23:59:59.000Z

31

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect (OSTI)

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

32

An Experimental Investigation of Low Octane Gasoline in Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Mixture Preparation Chemical Properties Pressure & Temperature (air preheating, Turbo charging, EGR & compression ratio) Octane rating, cetane rating (Fuels & Additives)...

33

A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production: a distillation tower, which  

E-Print Network [OSTI]

A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production **" means "**% octane".) Once crude oil enters the system, it goes fully through the process. The refinery

Galvin, David

34

Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1  

SciTech Connect (OSTI)

This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

NONE

1995-07-05T23:59:59.000Z

35

Relationship between MTBE-blended gasoline properties and warm-up driveability  

SciTech Connect (OSTI)

The relationship between MBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100 C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio ({lambda}) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated. The results indicate that the new DI worsen when heavy reformate containing large amounts of aromatics or MTBE, an oxygen-containing compound, is used for the octane improver, leaving the balance of the volatility out of consideration.

Suzawa, Takumi; Yamaguchi, Kazunori; Kashiwabara, Kimito [Mitsubishi Motors Corp., Tokyo (Japan); Fujisawa, Norihiro; Matsubara, Michiro

1995-12-31T23:59:59.000Z

36

Biodiesel Blends  

SciTech Connect (OSTI)

A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

Not Available

2005-04-01T23:59:59.000Z

37

Compact reaction cell for homogenizing and down-blending highly enriched uranium metal  

DOE Patents [OSTI]

The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

McLean, W. II; Miller, P.E.; Horton, J.A.

1995-05-02T23:59:59.000Z

38

The MTBE solution: Octanes, technology, and refinery profitability  

SciTech Connect (OSTI)

This paper has been developed to provide refiners with business decision insight regarding the production of methyl tertiary butyl ether (MTBE) from refinery - (FCC) produced isobutylene. The driving forces making MTBE an attractive investment are examined with regard to the increasing demand for higher octane unleaded gasolines. The decision to proceed with MTBE production depends on the profitability of such an investment and the refiner's ability to meet market demands using available processing equipment, refinery produced streams and external feedstocks. The factors affecting this decision are analyzed in this paper and include: industry ability to meet rising octane demand; profit potential realized by diverting isobutylene to MTBE; availability of technology for producing MTBE; and investment and operating costs required to produce MTBE. Chemical Research and Licensing and NEOCHEM have developed a simple, low cost process to produce MTBE, reducing the excessive equipment and high operating costs that were associated with conventional MTBE designs. The economics and process benefits of installing a CRandL/NEOCHEM MTBE process are examined within the framework of a generalized medium-sized refinery configuration.

Lander, E.P.; Hubbard, J.N.; Smith, L.A.

1983-03-01T23:59:59.000Z

39

Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities  

SciTech Connect (OSTI)

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

40

NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY  

SciTech Connect (OSTI)

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Feed specification for the double-shell tank/single shell tank waste blend for high-level waste vitrification process and melter testing  

SciTech Connect (OSTI)

The High-Level Waste (HLW) Vitrification Program is developing technology for the Department of Energy to immobilize high-level and transuranic waste as glass for permanent disposal. In support of the program, Pacific Northwest Laboratory (PNL) is conducting laboratory-scale melter feed preparation studies and HLW melter testing which require a simulated HLW feed. The simulant HLW feed represents a blend of the waste from 177 single shell and double shell tanks. The waste blend composition is based on normalized track radionuclide components (TRAC), historical tank data, and assumptions on the pretreatment of the waste. The HLW simulant feed specification for the waste blend composition provides direction for the preparation of laboratory-scale and large-scale HLW blend simulant to be used in melter feed preparation studies and melter testing.

Tracey, E.M.; Merz, M.D.; Patello, G.K.; Wiemers, K.D.

1996-02-01T23:59:59.000Z

42

Process for reforming naphthene and paraffin-containing hydrocarbons in the naphtha boiling range and isomerizing C sub 5 -C sub 6 normal paraffin feedstock to produce a high octane gasoline  

SciTech Connect (OSTI)

This patent describes a process for reforming a naphthenic and paraffin-containing hydrocarbon feedstock to produce a reformate product having an increased octane rating by contacting the feedstock with a reforming catalyst in the presence of hydrogen at reforming conditions in a reforming zone, the reforming zone including a naphtha dehydrogenation zone and a paraffin dehydrocyclization zone wherein heated, pressurized hydrogen is added to the effluent stream from the naphtha dehydrogenation zone prior to charging the effluent stream to the paraffin dehydrocyclization zone to produce a first product stream comprising a gasoline range reformate product having an RON octane rating of at least about 90 and hydrogen wherein the reformate product is separated from the hydrogen in a reformate separation zone. It comprises: charging at least a portion of the heated, pressurized hydrogen with a C{sub 5}-C{sub 6} n-paraffin feedstock to an isomerization zone containing an isomerization catalyst at isomerization conditions to produce a second product stream containing an isomerized C{sub 5}-C{sub 6} product and passing the second product stream to the reformate separation zone and recovering at least a major portion of the isomerized C{sub 5}-C{sub 6} product with the reformate product.

Dalson, M.H.

1990-05-08T23:59:59.000Z

43

Effect of Blending on High-Pressure Laminar Flame Speed Measurements, Markstein Lengths, and Flame Stability of Hydrocarbons  

E-Print Network [OSTI]

for pure fuels and their blends for laminar flame speed and high-temperature shock-tube and low-temperature RCM ignition target data (Lowry et al., 2010a; Petersen et al., 2007; Healy et al., 2008a, 2008b), for the laminar flame speed of pure DME... enthalpy (KJ/kg) Le Lewis Number g1865g4662 " Mass burning rate per unit area (kg/m2-s) g1839g3050 Molecular weight (kg/kmol) X Mole fraction (kmol/kmol) g1851 Mass fraction (kg/kg) Subscripts b Burned condition i For species i L Laminar flame u...

Lowry, William Baugh

2012-02-14T23:59:59.000Z

44

Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1  

SciTech Connect (OSTI)

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

45

Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry  

SciTech Connect (OSTI)

High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2005-12-01T23:59:59.000Z

46

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

47

An experimental investigation of low octane gasoline in diesel engines.  

SciTech Connect (OSTI)

Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

Ciatti, S. A.; Subramanian, S. (Energy Systems)

2011-09-01T23:59:59.000Z

48

Data reconciliation and optimal operation of a catalytic naphtha reformer  

E-Print Network [OSTI]

-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high process converts low-octane gasoline blending compo- nents to high-octane components for use in high-octane components for use in high-performance gasoline fuels. The reformer also has a important function

Skogestad, Sigurd

49

Review of market for octane enhancers: Final report  

SciTech Connect (OSTI)

Crude oil is easily separated into its principal products by simple distillation. However, neither the amounts nor the quality of these natural products matches demand. Today, octane requirements must be achieved by changing the chemical composition of the straight-run gasoline fraction.

J. E. Sinor Consultants, Inc.

2000-06-20T23:59:59.000Z

50

Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement  

SciTech Connect (OSTI)

Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

1995-04-01T23:59:59.000Z

51

The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11, 2008 ThePerformance |

52

By Earle B. Amey Tungsten's unique high-temperature in Metal Bulletin (London). ferrotungsten, carbide powder blends, and  

E-Print Network [OSTI]

). ferrotungsten, carbide powder blends, and properties can be utilized advantageously in the As a result properties of its carbide continue to scrap, and sodium tungstate and away from the provide important items increased in all imported tungsten materials. the cemented carbide end-use sectors that A summary

53

Optimal Blending Quality  

SciTech Connect (OSTI)

This paper discusses a functional program developed for product blending. The program is installed at a Savannah River Plant production site on their VAX computer. A wide range of blending choices is available. The program can be easily changed or expanded. The technology can be applied at other areas where mixing or blending is done.

Harris, S.P.

2001-03-28T23:59:59.000Z

54

Exploring the use of a higher octane gasoline for the U.S. light-duty vehicle fleet  

E-Print Network [OSTI]

This thesis explores the possible benefits that can be achieved if U.S. oil companies produced and offered a grade of higher-octane gasoline to the consumer market. The octane number of a fuel represents how resistant the ...

Chow, Eric W

2013-01-01T23:59:59.000Z

55

Vapor-liquid equilibria and excess enthalpies for octane + N-methylacetamide, cyclooctane + N-methylacetamide, and octane + acetic acid anhydride at 125 C  

SciTech Connect (OSTI)

Isothermal P-x data and excess enthalpies have been measured at approximately 125 C for the binary mixtures of octane + N-methylacetamide, cyclooctane + N-methylacetamide, and octane + acetic anhydride. For each binary system linear temperature dependent interaction parameters were fitted to experimental data using the NRTL model. Activity coefficients at infinite dilution were derived from the P-x data at low concentrations using a flexible Legendre polynomial.

Haan, A.B. de [DSM-Research, Geleen (Netherlands); Heine, A.; Fischer, K.; Gmehling, J. [Univ. Oldenburg (Germany)

1995-11-01T23:59:59.000Z

56

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and  

E-Print Network [OSTI]

reforming process converts low-octane gasoline blending components to high-octane components for use in high. Introduction The naphtha reforming process converts low-octane gasoline blending components to high-per- formance gasoline fuels. The reformer also has an important function as the producer of hydrogen

Skogestad, Sigurd

57

Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein  

DOE Patents [OSTI]

A method is described for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries. 3 figs.

Sinha, D.N.; Anthony, B.W.

1997-02-25T23:59:59.000Z

58

Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein  

DOE Patents [OSTI]

A method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries.

Sinha, Dipen N. (Los Alamos, NM); Anthony, Brian W. (Clearfield, PA)

1997-01-01T23:59:59.000Z

59

Data reconciliation and optimal operation of a catalytic naphtha reformer  

E-Print Network [OSTI]

-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high cases. #12;1 Introduction The naphtha reforming process converts low-octane gasoline blending compo-octane components for use in high-performance gasoline fuels. The reformer also has an important function

Skogestad, Sigurd

60

Utilization of Renewable Oxygenates as Gasoline Blending Components  

SciTech Connect (OSTI)

This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

Yanowitz, J.; Christensen, E.; McCormick, R. L.

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Proton NMR analysis of octane number for motor gasoline: Part V  

SciTech Connect (OSTI)

A method to predict the octane number of automobile gasoline containing methyl tert-butyl ether (MTBE) by proton magnetic resonance (PMR) spectrometry was studied. Samples of gasoline whose octane numbers had been identified according to the ASTM standards (commercially available premium gasoline to which MTBE was added at rates of 7 vol % and 14 vol %) were used in this investigation of the effect of MTBE on the octane number. The findings were utilized to introduce a term regarding MTBE into the previously reported linear regression equation for estimating the octane number from the PMR spectrum, and the appropriateness of the linear regression equation was assessed. As a result the MTBE contents in the sample were determined with satisfactory accuracy by using a standard addition method, and a linear regression equation reflecting the effect of MTBE was obtained. These achievements are reported. 11 refs., 3 figs., 5 tabs.

Ichikawa, M.; Nonaka, N.; Amano, H.; Takada, I.; Ishimori, S. [Suzuki Motor Corp., Hamamatsu (Japan); Andoh, H.; Kumamoto, K. [Showa Shell Sikiyu Tokyo (Japan)

1992-10-01T23:59:59.000Z

62

ETBE as a gasoline blending component. The experience of Elf Aquitaine  

SciTech Connect (OSTI)

This study, led by Elf Aquitaine for several years, shows the possibility to use ETBE instead of MTBE as a gasoline component and compares properties of these two ethers regarding different parameters like octanes, volatility, engine cleanliness, stability of the ethers themselves and of gasoline blends, lubricant compatibility and toxicological data. ETBE appears at least as good as MTBE and sometimes better, as ETBE is chemically more similar to hydrocarbons than MTBE and can be used advantageously as a gasoline oxygenated component. 9 refs., 4 figs., 8 tabs.

Chatin, L.; Fombarlet, C.; Bernasconi, C.; Gauthier, A.; Schmelzle, P.

1994-10-01T23:59:59.000Z

63

YOUNG STARS NEAR EARTH: THE OCTANS-NEAR ASSOCIATION AND CASTOR MOVING GROUP  

SciTech Connect (OSTI)

All cataloged stellar moving groups and associations with ages ?100 Myr and within 100 pc of Earth have Galactic space motions (UVW) situated in a 'good box' with dimensions ?20 km s{sup –1} on a side. Torres et al. defined the Octans Association as a group of 15 stars with age '20 Myr?' and located ?140 pc from Earth, but with average V space velocity –3.6 km s{sup –1} that is well outside of the good box. We present a list of 14 Hipparcos star systems within 100 pc of Earth that we call {sup O}ctans-Near{sup ;} these systems have UVW similar to those of the much more distant Octans Association. The Octans-Near stars have apparent ages between about 30 and 100 Myr and their relationship to the Octans Association stars is unclear. Six additional star systems have UVW similar to those of Octans-Near stars and likely ages ?200 Myr. These six systems include the late-type binary star EQ Peg—6.2 pc from Earth with likely age ?100 Myr and thus likely to be the nearest known pre-main sequence star system. The UVW of stars in a previously proposed ?200 Myr old Castor moving group are not too dissimilar from the UVW of Octans-Near stars. However, stars in the Castor group—if it exists at all—are mostly substantially older than 200 Myr and thus generally can readily be distinguished from the much younger Octans-Near stars.

Zuckerman, B.; Vican, Laura [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Song, Inseok [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451 (United States); Schneider, Adam, E-mail: ben@astro.ucla.edu, E-mail: lvican@ucla.edu, E-mail: song@uga.edu, E-mail: Adam.Schneider@Utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

2013-11-20T23:59:59.000Z

64

Detailed Chemical Kinetic Modeling of Iso-octane SI-HCCI Transition  

SciTech Connect (OSTI)

We describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (SI) combustion to homogenous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study we assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scenario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. We find that the model captures many of the important experimental trends, including stable SI combustion at low EGR (-0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR (-0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

Havstad, Mark A [Lawrence Livermore National Laboratory (LLNL); Aceves, Salvador M [Lawrence Livermore National Laboratory (LLNL); McNenly, Matthew J [Lawrence Livermore National Laboratory (LLNL); Piggott, William T [Lawrence Livermore National Laboratory (LLNL); Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL

2010-01-01T23:59:59.000Z

65

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

NONE

1995-09-01T23:59:59.000Z

66

Meet changing fuel requirements with online blend optimization  

SciTech Connect (OSTI)

Compania Espanola de Petroleos (CEPSA) embarked on an overall refinery automation program, with state-of-the-art gasoline blending being one of the highest priorities. The result of this effort is a sophisticated computerized gasoline blending system using offline LPs for initial optimal recipe calculation, an online LP for real-time blend recipe reformulation using online analyzers for blending model adjustment, complete automation of blending sequence startup and shutdown, generation of end of blend quality performance reports, and real-time integration between lab, tank gauging, plant information, and blending systems. The entry of Spain in the EEC brought with it the need to quickly adapt to the requirements of an openly competitive marketplace emphasizing no lead, oxygenated, high performance gasolines and ISO 9000 quality standards. The blending system allowed CEPSA to produce lowest cost, minimum giveaway gasolines, while having the flexibility to produce a wide variety of modern gasolines serving the Western European market. The paper describes the blender architecture, optimizer linear programming, man machine interface, and results from the blending system.

Diaz, A. [Compania Espanola de Petroleos, S.A., Cadiz (Spain). Algeciras Refinery; Barsamian, J.A. [ABB Simcon Inc., Bloomfield, NJ (United States)

1996-02-01T23:59:59.000Z

67

Anomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical  

E-Print Network [OSTI]

, as well as interpenetrating and bicontinu- ous networks.7,8 Phase inversion occurs when the mi- norityAnomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical Alloying Archie P strategies for producing highly dis- persed multicomponent polymer blends. By their very nature

68

First International Conference on E-Learning and Blended Education  

E-Print Network [OSTI]

at the conference will appear in its proceedings. The Conference's academic committee will also select some highFirst International Conference on E-Learning and Blended Education as a Strategic Choice for Arab Universities ICELBE 2012 : 13­11 ()2112 #12;First International Conference on E-Learning and Blended

69

Impact of high energy ball milling on the nanostructure of magnetite–graphite and magnetite–graphite–molybdenum disulphide blends  

SciTech Connect (OSTI)

Different, partly complementary and partly redundant characterization methods were applied to study the transition of magnetite, graphite and MoS{sub 2} powders to mechanically alloyed nanostructures. The applied methods were: Transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), Raman spectroscopy (RS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The main objective was to prepare a model material providing the essential features of a typical tribofilm forming during automotive braking, and to assess the impact of different constituents on sliding behaviour and friction level. Irrespective of the initial grain size, the raw materials were transferred to a nanocrystalline structure and mixed on a nanoscopic scale during high energy ball milling. Whereas magnetite remained almost unchanged, graphite and molybdenum disulphide were transformed to a nanocrystalline and highly disordered structure. The observed increase of the coefficient of friction was attributed to a loss of lubricity of the latter ingredient due to this transformation and subsequent oxidation. - Highlights: • Characterization of microstructural changes induced by high energy ball milling • Assessment of the potential of different characterization methods • Impact of mechanical alloying on tribological performance revealed by tests • Preparation of an artificial third body resembling the one formed during braking.

Österle, W., E-mail: Werner.oesterle@bam.de [BAM Federal Institute for Materials Research and Testing, 12200 Berlin (Germany); Orts-Gil, G.; Gross, T.; Deutsch, C. [BAM Federal Institute for Materials Research and Testing, 12200 Berlin (Germany); Hinrichs, R. [Instituto de Geociências, UFRGS, P.O. Box 15001, 91501-970 Porto Alegre (Brazil); Vasconcellos, M.A.Z. [Instituto de Física, UFRGS, P.O. Box 15051, 91501-970 Porto Alegre (Brazil); Zoz, H.; Yigit, D.; Sun, X. [Zoz Group, 57482 Wenden (Germany)

2013-12-15T23:59:59.000Z

70

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect (OSTI)

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

71

Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains  

E-Print Network [OSTI]

1 Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains N. K. Roy1 potential candidates for blending using Neural Networks. Generally the parent polymers of the blend need systems like branched polymers, high molecular weight polymer mixtures, block copolymers, interpenetrating

Potter, Don

72

HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-09-01T23:59:59.000Z

73

High-Temperature Steam-Treatment of PBI, PEKK, and a PEKK-PBI Blend: A Solid-State NMR and IR Spectroscopic Study  

E-Print Network [OSTI]

and PAEK components in a melt or dry blend systems. In this initial investigation, focus is placed or morphological transformations of the polymers. All changes detectable by 13 C cross-polarization with magic with the PBI component. In this study, the traditional Celazole-type PBI (poly[2,20 -(

Bluemel, Janet

74

Topology of cyclo-octane energy landscape Shawn Martin,1,a  

E-Print Network [OSTI]

. While this is a very mild assumption, we have discovered an example of an energy landscape whichTopology of cyclo-octane energy landscape Shawn Martin,1,a Aidan Thompson,2 Evangelos A. Coutsias,3 2010 Understanding energy landscapes is a major challenge in chemistry and biology. Although a wide

Coutsias, Evangelos

75

DPF Performance with Biodiesel Blends  

Broader source: Energy.gov (indexed) [DOE]

DPF Performance with Biodiesel Blends Aaron Williams, Bob McCormick, Bob Hayes, John Ireland National Renewable Energy Laboratory Howard L. Fang Cummins, Inc. Diesel Engine...

76

Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures  

SciTech Connect (OSTI)

Ignition times were determined in high-pressure shock-tube experiments for various stoichiometric mixtures of two multicomponent model fuels in air for the validation of ignition delay simulations based on chemical kinetic models. The fuel blends were n-heptane (18%)/isooctane (62%)/ethanol (20%) by liquid volume (14.5%/44.5%/41% by mole fraction) and n-heptane (20%)/toluene (45%)/isooctane (25%)/diisobutylene (10%) by liquid volume (17.5%/55%/19.5%/8.0% by mole fraction). These fuels have octane numbers comparable to a standard European gasoline of 95 RON and 85 MON. The experimental conditions cover temperatures from 690 to 1200 K and pressures at 10, 30, and 50 bar. The obtained ignition time data are scaled with respect to pressure and compared to previous results reported in the literature. (author)

Fikri, M.; Herzler, J.; Starke, R.; Schulz, C.; Roth, P. [IVG, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Kalghatgi, G.T. [Shell Global Solutions U.K., P.O. Box 1, Chester CH1 3SH (United Kingdom)

2008-01-15T23:59:59.000Z

77

A study of the physics and chemistry of knock in modern SI engines and their relationship to the octane tests  

E-Print Network [OSTI]

Avoiding knock is the major design constraint for spark ignition engines because of the unacceptable noise and engine damage associated with it. Hence, the Research and Motor Octane Number (RON and MON) tests were established ...

Mittal, Vikram

2009-01-01T23:59:59.000Z

78

RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY  

SciTech Connect (OSTI)

Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

SHUFORD DH; STEGEN G

2010-04-19T23:59:59.000Z

79

Ethanol-blended Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton StanatAccepted forEstimationEthanol-Blended

80

E-Print Network 3.0 - alternatives blending private Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for mixing as polymer feedstock. This feedstock was melt-blended with high- density polyethylene... mechanical properties and thermal properties of paintHDPE and paintPMMA...

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

E-Print Network 3.0 - administration blending initiative Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for mixing as polymer feedstock. This feedstock was melt-blended with high- density polyethylene... mechanical properties and thermal properties of paintHDPE and paintPMMA...

82

E-Print Network 3.0 - anhydride ternary blend Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

13 Phase Structure and Properties of Poly(ethylene terephthalate)High-Density Polyethylene Based on Summary: 1 (NCO stretching) disappeared in the blends,...

83

Morphological studies on block copolymer modified PA 6 blends  

SciTech Connect (OSTI)

Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

2014-05-15T23:59:59.000Z

84

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

SciTech Connect (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

85

Thermal Stabilization Blend Plan  

SciTech Connect (OSTI)

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

86

A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons From n-Octane to n-Hexadecane  

SciTech Connect (OSTI)

Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on our previous mechanisms for the primary reference fuels n-heptane and iso-octane, using the reaction class mechanism construction first developed for n-heptane. Individual reaction class rules are as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms, and these mechanisms will be refined further in the future to incorporate greater levels of accuracy and predictive capability. These mechanisms are validated through extensive comparisons between computed and experimental data from a wide variety of different sources. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare reactivities of different n-alkane fuels. The mechanisms for all of these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, will be available for download from our web page.

Westbrook, C K; Pitz, W J; Herbinet, O; Curran, H J; Silke, E J

2008-02-08T23:59:59.000Z

87

Synthesis of grafted polyamide/polyglutarimide blends  

SciTech Connect (OSTI)

Polyglutarimides are high Tg thermoplastics, prepared by a reactive extrusion process involving polymethylmethacrylate and primary amines in a plasticating extruder at high pressures and temperatures. The resulting polymers can be synthesized with various levels of carboxylic acid and/or anhydride functionality as part of the polyglutarimide polymer. In a recent discovery, these polymers can be grafted to polyamides in a highly efficient manner by means of a reactive extrusion process. This talk will discuss the synthesis of these blends and techniques for their analysis. Partial fractionation, and spectroscopic analysis of these materials was used to monitor the reaction. The effects of extrusion temperature and catalyst level will be presented.

Hallden-Abberton, M. [Rohm and Haas Corp., Bristol, PA (United States)

1993-12-31T23:59:59.000Z

88

A shock tube study of iso-octane ignition at elevated pressures: The influence of diluent gases  

SciTech Connect (OSTI)

The ignition of iso-octane/air and iso-octane/O{sub 2}/Ar ({proportional_to}20% O{sub 2}) mixtures was studied in a shock tube at temperatures of 868-1300 K, pressures of 7-58 atm, and equivalence ratios {phi}=1.0, 0.5, and 0.25. Ignition times were determined using endwall OH* emission and sidewall piezoelectric pressure measurements. Measured iso-octane/air ignition times agreed well with the previously published results. Mixtures with argon as the diluent exhibited ignition times 20% shorter, for most conditions, than those with nitrogen as the diluent (iso-octane/air mixtures). The difference in measured ignition times for mixtures containing argon and nitrogen as the diluent gas can be attributed to the differing heat capacities of the two diluent species and the level of induction period heat release prior to ignition. Kinetic model predictions of ignition time from three mechanisms are compared to the experimental data. The mechanisms overpredict the ignition times but accurately capture the influence of diluent gas on iso-octane ignition time, indicating that the mechanisms predict an appropriate amount of induction period heat release. (author)

Shen, Hsi-Ping S.; Vanderover, Jeremy; Oehlschlaeger, Matthew A. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, JEC 2049, Troy, NY 12180 (United States)

2008-12-15T23:59:59.000Z

89

Sandia National Laboratories: Biofuels Blend Right In: Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends...

90

Interaction blending equations enhance reformulated gasoline profitability  

SciTech Connect (OSTI)

The interaction approach to gasoline blending gives refiners an accurate, simple means of re-evaluating blending equations and increasing profitability. With reformulated gasoline specifications drawing near, a detailed description of this approach, in the context of reformulated gasoline is in order. Simple mathematics compute blending values from interaction equations and interaction coefficients between mixtures. A timely example of such interactions is: blending a mixture of catalytically cracked gasoline plus light straight run (LSR) from one tank with alkylate plus reformate from another. This paper discusses blending equations, using interactions, mixture interactions, other blending problems, and obtaining equations.

Snee, R.D. (Joiner Associates, Madison, WI (United States)); Morris, W.E.; Smith, W.E.

1994-01-17T23:59:59.000Z

91

Aerodynamically Optimal Regional Aircraft Concepts: Conventional and Blended Wing-Body Designs  

E-Print Network [OSTI]

Aerodynamically Optimal Regional Aircraft Concepts: Conventional and Blended Wing-Body Designs aircraft such as those that serve regional routes. We thus explore the optimal aerodynamic shape of both a blended wing-body and conventional tube-and-wing regional aircraft through high-fidelity aerodynamic shape

Zingg, David W.

92

Intrinsically safe moisture blending system  

DOE Patents [OSTI]

A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

Hallman Jr., Russell L.; Vanatta, Paul D.

2012-09-11T23:59:59.000Z

93

Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends  

DOE Patents [OSTI]

There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

Skotheim, Terje (East Patchogue, NY)

1984-01-01T23:59:59.000Z

94

HEU to LEU Conversion and Blending Facility: UNH blending alternative to produce LEU UNH for commercial use  

SciTech Connect (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form that is more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed. This document provides data to be used in the environmental impact analysis for the UNH blending HEU disposition option. Process requirements, resource needs, employment needs, waste/emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

NONE

1995-09-01T23:59:59.000Z

95

Combustion behavior of gasoline and gasoline/ethanol blends in a modern direct-injection 4-cylinder engine.  

SciTech Connect (OSTI)

Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range.

Wallner, T.; Miers, S. A. (Energy Systems)

2008-04-01T23:59:59.000Z

96

Use of a thermodynamic cycle simulation to determine the difference between a propane-fuelled engine and an iso-octane-fuelled engine  

E-Print Network [OSTI]

the engine cycle simulation to determine the difference between a propane-fuelled and an iso-octane-fuelled engine for the same operating conditions and engine specifications. A comprehensive parametric investigation was conducted to examine the effects...

Pathak, Dushyant

2006-04-12T23:59:59.000Z

97

An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions  

SciTech Connect (OSTI)

Autoignition of iso-octane was examined using a rapid compression facility (RCF) with iso-octane, oxygen, nitrogen, and argon mixtures. The effects of typical homogeneous charge compression ignition (HCCI) conditions on the iso-octane ignition characteristics were studied. Experimental results for ignition delay times, t{sub ign}, were obtained from pressure time-histories. The experiments were conducted over a range of equivalence ratios (f=0.25-1.0), pressures (P=5.12-23 atm), temperatures (T=943-1027 K), and oxygen mole fractions ({chi}{sub O{sub 2}}=9-21%), and with the addition of trace amounts of combustion product gases (CO{sub 2} and H{sub 2}O). It was found that the ignition delay times were well represented by the expression t{sub ign}=1.3x10{sup -4}P{sup -1.05}f{sup -0.77}{chi}{sub O{sub 2}}{sup -1.41}exp(33,700/R{sub (c} {sub al/mol/K)}T), where P is pressure (atm), T is temperature (K), f is the equivalence ratio (based on iso-octane to O{sub 2} molar ratios), {chi}{sub O{sub 2}} is the oxygen mole percent (%), and t{sub ign} is the ignition delay time (ms). Carbon dioxide was found to have no chemical effect on t{sub ign}. Water was found to systematically decrease t{sub ign} by a small amount (less than 14% for the range of conditions studied). The maximum uncertainty in the measured t{sub ign} is +/-12% with an average uncertainty of +/-6%. The performance of several proposed chemical reaction mechanisms (including detailed, reduced, and skeletal mechanisms) was evaluated in the context of the current experimental results.

He, X.; Donovan, M.T.; Zigler, B.T.; Palmer, T.R.; Walton, S.M.; Wooldridge, M.S.; Atreya, A. [Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States)

2005-08-01T23:59:59.000Z

98

Vapor-liquid equilibria of ethanol with 2,2,4-trimethylpentane or octane at 101. 3 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibria (VLE) are required for engineering use such as in the design and operation of separation processes. Isobaric vapor-liquid equilibria were measured for ethanol with 2,2,4-trimethylpentane or octane at 101.3 kPa in an equilibrium still with circulation of both the vapor and liquid phases. The results were correlated with the Wilson and nonrandom two-liquid (NRTL) equations.

Hiaki, Toshihiko; Takahashi, Kenji; Tsuji, Tomoya; Hongo, Masaru (Nihon Univ., Chiba (Japan). Dept. of Industrial Chemistry); Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

1994-10-01T23:59:59.000Z

99

Mid-Blend Ethanol Fuels ? Implementation Perspectives  

Broader source: Energy.gov (indexed) [DOE]

Blend Ethanol Fuels - Implementation Perspectives William Woebkenberg - US Fuels Technical and Regulatory Affairs Mercedes-Benz Research & Development North America July 25, 2013...

100

Phase Segregation in Polystyrene?Polylactide Blends  

E-Print Network [OSTI]

chemically segregated PS—PLA surface. Acknowledgment. ThisPS) blended with polylactide (PLA) were visualized andthe continuous phase with PLA existing in discrete domains

Leung, Bonnie

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Octane Selling Coffee Shop Strategy That Gets the Job Done  

E-Print Network [OSTI]

, and meet informally. They are also superior to other options in their brand image and their appeal

Boyce, Richard L.

102

FT-IR spectroscopy of nitric acid in TBP/octane solution.  

SciTech Connect (OSTI)

Infrared studies for the HNO{sub 3}/0.73 M TBP n-octane system are reported. Two extracted species, TBP {center_dot} HNO{sub 3} and TBP {center_dot} 2HNO{sub 3}, were identified in the organic phase. The concentration of the individual species was determined by the analysis of the vibrational band at {approx}1650 cm{sup -1}. The band at 1648 cm{sup -1} was assigned to the monosolvate TBP {center_dot} HNO{sub 3} and the band at 1672 cm{sup -1} to the hemisolvate TBP {center_dot} 2HNO{sub 3}. The infrared spectra revealed that with respect to the P{double_bond}O bond, as well to each other, the HNO{sub 3} molecules in the hemisolvate are spectrally non-equivalent. The predominant structure of TBP {center_dot} 2HNO{sub 3} involves the chain HNO{sub 3} dimer. Some ionic NO{sub 3}{sup -} and hydronium ions were identified in this system but only during formation of the monosolvate. The analyses performed in this system can serve for the characterization of HNO{sub 3} in related systems in the presence of metal species.

Ferraro, J. R.; Borkowski, M.; Chiarizia, R.; McAlister, D. R.; Chemistry; Loyola Univ. Chicago

2001-01-01T23:59:59.000Z

103

A Computer Generated Reduced Iso-Octane Chemical Kinetic Mechanism Applied to Simulation of HCCI Combustion  

SciTech Connect (OSTI)

This paper shows how a computer can systematically remove non-essential chemical reactions from a large chemical kinetic mechanism. The computer removes the reactions based upon a single solution using a detailed mechanism. The resulting reduced chemical mechanism produces similar numerical predictions significantly faster than predictions that use the detailed mechanism. Specifically, a reduced chemical kinetics mechanism for iso-octane has been derived from a detailed mechanism by eliminating unimportant reaction steps and species. The reduced mechanism has been developed for the specific purpose of fast and accurate prediction of ignition timing in an HCCI engine. The reduced mechanism contains 199 species and 383 reactions, while the detailed mechanism contains 859 species and 3606 reactions. Both mechanisms have been used in numerical simulation of HCCI combustion. The simulations show that the reduced mechanism predicts pressure traces and heat release with good accuracy, similar to the accuracy obtained with the detailed mechanism. As may be expected, emissions of hydrocarbon and carbon monoxide are not as well predicted with the reduced mechanism as with the detailed mechanism, since the reduced mechanism was targeted for predicting HCCI ignition and not HC and CO emissions. Considering that the reduced mechanism requires about 25 times less computational time than the detailed mechanism (2 hours vs. 2 days), the ability to automatically generate a problem specific reduced mechanism is an important new tool for combustion research in general.

Aceves, S M; Martinez-Frias, J; Flowers, D; Smith, J R; Dibble, R; Chen, J Y

2002-08-12T23:59:59.000Z

104

HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U{sub 3} O{sub 8}) per year to produce 177 MT of 4% U235 assay U{sub 3} O{sub 8}, for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

NONE

1995-09-01T23:59:59.000Z

105

Effects of Intermediate Ethanol Blends on Legacy Vehicles and...  

Energy Savers [EERE]

Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

106

Impact of Ethanol Blending on U.S. Gasoline Prices  

SciTech Connect (OSTI)

This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

Not Available

2008-11-01T23:59:59.000Z

107

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

108

Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.  

SciTech Connect (OSTI)

The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

2009-11-01T23:59:59.000Z

109

Green emitting phosphors and blends thereof  

DOE Patents [OSTI]

Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

2010-12-28T23:59:59.000Z

110

A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons from n-Octane to n-Hexadecane  

SciTech Connect (OSTI)

Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of the n-alkanes, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on previous mechanisms for n-heptane, using the same reaction class mechanism construction developed initially for n-heptane. Individual reaction class rules are as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms, and there is an intent to develop these mechanisms further in the future to incorporate greater levels of accuracy and predictive capability. Several of these areas for improvement are identified and explained in detail. These mechanisms are validated through comparisons between computed and experimental data from as many different sources as possible. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare processes in all of the n-alkane fuels. The mechanisms for all of these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, will be available on our web page when the paper is accepted for publication.

Westbrook, C K; Pitz, W J; Herbinet, O; Silke, E J; Curran, H J

2007-09-25T23:59:59.000Z

111

A Blended Space for Tourism: Genesee Village Country & Museum  

E-Print Network [OSTI]

A Blended Space for Tourism: Genesee Village Country & Museum Abstract Blended spaces are spaces on this enables us to provide general guidance and framework on the design of blended spaces for digital tourism. Author Keywords Design, Tourism, Blended Spaces, User Experience ACM Classification Keywords H.5.2 User

Deussen, Oliver

112

Review Of Rheology Models For Hanford Waste Blending  

SciTech Connect (OSTI)

The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 ?m diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 ?m in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation experience). As experience is ga

Koopman, D. C.; Stone, M.

2013-09-26T23:59:59.000Z

113

BLENDING PROBLEM A refinery blends four petroleum components into three grades of  

E-Print Network [OSTI]

BLENDING PROBLEM A refinery blends four petroleum components into three grades of gasoline/day $/barrel #1 5,000 $9.00 #2 2,400 7.00 #3 4,000 12.00 #4 1,500 6.00 Blending formulas and selling price 4,000 x4R + x4P + x4L 1,500 #12;blending: (1) x1R / (x1R + x2R + x3R + x4R) .40 or x1R .40(x1R

Shier, Douglas R.

114

Continuous blending of dry pharmaceutical powders  

E-Print Network [OSTI]

Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

Pernenkil, Lakshman

2008-01-01T23:59:59.000Z

115

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: Energy.gov [DOE]

Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

116

Imaginative play with blended reality characters  

E-Print Network [OSTI]

The idea and formative design of a blended reality character, a new class of character able to maintain visual and kinetic continuity between the fully physical and fully virtual; the technical underpinnings of its unique ...

Robert, David Yann

2011-01-01T23:59:59.000Z

117

Biodiesel Production and Blending Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS...

118

Viscoelastic properties of bidisperse homopolymer blends  

E-Print Network [OSTI]

VISCOELASTIC PROPERTIES OF BIDISPKRSE HOMOPOLYMER BLENDS A Thesis by JULIANI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2000... Major Subject. Chemical Engineering VISCOELASTIC PROPERTIES OF BIDISPERSE HOMOPOLYMER BLENDS A Thesis by JULIANI Submitted to Texas A&M University m partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style...

Juliani

2000-01-01T23:59:59.000Z

119

WI Biodiesel Blending Progream Final Report  

SciTech Connect (OSTI)

The Wisconsin State Energy Office�¢����s (SEO) primary mission is to implement cost�¢���effective, reliable, balanced, and environmentally�¢���friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

Redmond, Maria E; Levy, Megan M

2013-04-01T23:59:59.000Z

120

Cracking blends of gas oil and residual oil  

SciTech Connect (OSTI)

In a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking zone at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regeneration zone by burning coke of the catalyst, and catalyst is circulated between the cracking zone and the regeneration zone. The improvement is described for obtaining a naphtha product of improved octane number comprising introducing sufficient of a nickel and vanadium metals-containing heavy feedstock with the gas oil feed introduced into the cracking zone to deposit nickel and vanadium metals on the catalyst and raise the nickel and metals-content of the catalyst to a level ranging from about 1500 to about 6000 parts per million of the metals expressed as equivalent nickel, based on the weight of the catalyst, and maintaining the nickel and vanadium metals level on the catalyst by withdrawing high nickel and vanadium metals containing catalyst and adding low nickel and vanadium metals-containing catalyst to the regeneration zone.

Myers, G.D.

1988-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New low-mass members of the Octans stellar association and an updated 30-40 Myr lithium age  

E-Print Network [OSTI]

The Octans association is one of several young stellar moving groups recently discovered in the Solar neighbourhood, and hence a valuable laboratory for studies of stellar, circumstellar disc and planetary evolution. However, a lack of low-mass members or any members with trigonometric parallaxes means the age, distance and space motion of the group are poorly constrained. To better determine its membership and age, we present the first spectroscopic survey for new K and M-type Octans members, resulting in the discovery of 29 UV-bright K5-M4 stars with kinematics, photometry and distances consistent with existing members. Nine new members possess strong Li I absorption, which allow us to estimate a lithium age of 30-40 Myr, similar to that of the Tucana-Horologium association and bracketed by the firm lithium depletion boundary ages of the Beta Pictoris (20 Myr) and Argus/IC 2391 (50 Myr) associations. Several stars also show hints in our medium-resolution spectra of fast rotation or spectroscopic binarity. M...

Murphy, Simon J

2014-01-01T23:59:59.000Z

122

HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use  

SciTech Connect (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

NONE

1995-09-01T23:59:59.000Z

123

Phase Segregation in Polystyrene?Polylactide Blends  

SciTech Connect (OSTI)

Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

2010-06-09T23:59:59.000Z

124

Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity  

DOE Patents [OSTI]

There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

Skotheim, T.

1984-09-28T23:59:59.000Z

125

Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity  

DOE Patents [OSTI]

There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

Skotheim, Terje (East Patchogue, NY)

1986-01-01T23:59:59.000Z

126

Measurement of Turbulent Flame Speeds of Hydrogen and Natural Gas Blends (C1-C5 Alkanes) using a Newly Developed Fan-Stirred Vessel  

E-Print Network [OSTI]

in displacement speeds were observed for blends of NG2/H_(2) and CH_(4)/H_(2), thus validating the newly established experimental technique. Additionally, turbulent flame speeds of hydrogen and a generic, high-hydrogen-content syngas blend (50:50 H_(2):CO) were...

Ravi, Sankaranarayana

2014-05-06T23:59:59.000Z

127

Development of By-Pass Blending Station System  

E-Print Network [OSTI]

A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can...

Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

2003-01-01T23:59:59.000Z

128

Exploration of parameters for the continuous blending of pharmaceutical powders  

E-Print Network [OSTI]

The transition from traditional batch blending to continuous blending is an opportunity for the pharmaceutical industry to reduce costs and improve quality control. This operational shift necessitates a deeper understanding ...

Lin, Ben Chien Pang

2011-01-01T23:59:59.000Z

129

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

130

The viscoelastic properties of linear-star blends  

E-Print Network [OSTI]

In order to understand the nature of polydispersity and characterize the effect of branching architecture, the model blend of linear and star polymer, which is the simplest branched polymer, is contrived. In this blend system, chain dynamics...

Lee, Jung Hun

2000-01-01T23:59:59.000Z

131

Effects of fuel octane number and inlet air temperature on knock characteristics of a single cylinder engine  

SciTech Connect (OSTI)

A dual sample rate technique has been developed and applied to measuring in-cylinder pressure and its oscillations due to autoignition. The harmonics of in-cylinder oscillations were found in good agreement with those obtained from the solutions of wave equation in a cylindrical container. The time of knock relative to spark timing was almost independent of the knock intensity, fuel octane number, and inlet air temperature. The knock intensity was almost constant up to the spark advance when about 100% of the cycles were knocking, further spark advance resulted in higher knock intensity. The mass fraction of unburned fuel at the time of knock was about 10% and was independent of the frequency of the cycles knocking. These observations indicated that the phenomenon of knock is a single-site autoignition for intermittent knock and multi-site autoignition for severe knocking.

Haghgooie, M.

1990-01-01T23:59:59.000Z

132

A Study of the Use of Jatropha Oil Blends in Boilers  

SciTech Connect (OSTI)

Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

Krishna, C.R.

2010-10-01T23:59:59.000Z

133

Lyapunov-based Optimizing Control of Nonlinear Blending Process  

E-Print Network [OSTI]

. I. INTRODUCTION Blending processes arise in a wide range of industries, for example gasoline1 Lyapunov-based Optimizing Control of Nonlinear Blending Process Tor A. Johansen£ , Daniel Sb. ££ Department of Electrical Engineering, University of Concepci´on, Concepci´on, Chile. Abstract Blending

Johansen, Tor Arne

134

Lyapunov-based Optimizing Control of Nonlinear Blending Processes  

E-Print Network [OSTI]

processes arise in a wide range of industries, for example gasoline blending [1], [2], [3], [4], food1 Lyapunov-based Optimizing Control of Nonlinear Blending Processes Tor A. Johansen , Daniel Sb. Department of Electrical Engineering, University of Concepci´on, Concepci´on, Chile. Abstract Blending

Johansen, Tor Arne

135

Phase Segregation in Polystyrene-Polylactide Blends Bonnie O. Leung,  

E-Print Network [OSTI]

ReceiVed January 13, 2009 ABSTRACT: Spun-cast films of polystyrene (PS) blended with polylactide (PLA of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt % loading) were annealed

Hitchcock, Adam P.

136

Pilot plant assessment of blend properties and their impact on critical power plant components  

SciTech Connect (OSTI)

A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

NONE

1996-10-01T23:59:59.000Z

137

Decomposition method for the Multiperiod Blending Problem  

E-Print Network [OSTI]

· Flows between which tanks in which time periods · Inventories/concentrations for tanks in each period for many applications 4 · Gasoline and crude oil blending · Raw material feed scheduling · Storage. "no bounds" on concentration total inventory mass balance in tanks inventory mass balance by component

Grossmann, Ignacio E.

138

Decomposition method for the Multiperiod Blending Problem  

E-Print Network [OSTI]

problem is a general model for many applications, and it is difficult to solve · Gasoline and crude oil tanks in which time periods · Inventories/concentrations for tanks in each period · Maximum total profit total inventory mass balance in tanks inventory mass balance by component in blending tanks

Grossmann, Ignacio E.

139

Exciting careers blending engineering, science, and ecology  

E-Print Network [OSTI]

Exciting careers blending engineering, science, and ecology New Opportunities Making the world://bee.oregonstate.edu/ecoe Ecological Engineering is: · Ecosystem restoration and habitat design at multiple scales · Watershed · Phytoremediation and bioremediation · Industrial ecology · Constructed wetlands and tidal marshlands · Mitigation

Tullos, Desiree

140

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2  

E-Print Network [OSTI]

58 45 51 H Content (% mass) 13.6 14.5 15.5 14.3 15.1 Heat of Combust. (MJ/kg) 43.3 43.8 44.4 43.8 441 Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2 Feedstock Petroleum Petroleum & Natural Gas Natural Gas Petroleum & Coal Coal Sulfur (ppm by mass) 1148 699 19 658 22 Alkanes (% vol.) 50

Meskhidze, Nicholas

142

Intermediate Ethanol Blends Catalyst Durability Program  

SciTech Connect (OSTI)

In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

2012-02-01T23:59:59.000Z

143

A complex chemical kinetic mechanism for the oxidation of gasoline surrogate fuels: n heptane, iso octane and toluene - Mechanism development and validation  

E-Print Network [OSTI]

The development and validation against experimental results of a new gasoline surrogate complex kinetic mechanism is presented in this paper. The surrogate fuel is a ternary mixture of n heptane, iso octane and toluene. The full three components mechanism is based on existing n heptane/iso octane (gasoline PRF) and toluene mechanisms which were modified and coupled for the purpose of this work. Mechanism results are compared against available experimental data from the literature. Simulations with the PRF plus toluene mechanism show that its behavior is in agreement with experimental results for most of the tested settings. These include a wide variety of thermodynamic conditions and fuel proportions in experimental configurations such as HCCI engine experiments, rapid compression machines, a shock tube and a jet stirred reactor.

Da Cruz, A Pires; Anderlohr, Jörg; Bounaceur, Roda; Battin-Leclerc, Frédérique

2009-01-01T23:59:59.000Z

144

A novel reactive processing technique: using telechelic polymers to reactively compatibilize polymer blends  

SciTech Connect (OSTI)

Difunctional reactive polymers, telechelics, were used to reactively form multiblock copolymers in situ when melt-blended with a blend of polystyrene and polyisoprene. To quantify the ability of the copolymer to compatibilize the blends, the time evolution of the domain size upon annealing was analyzed by SEM. It was found that the most effective parameter to quantify the ability of the copolymer to inhibit droplet coalescence is Kreltstable, the relative coarsening constant multiplied by the stabilization time. These results indicate that intermediate-molecular-weight telechelic pairs of both highly reactive Anhydride-PS-Anhydride/NH2-PI-NH2 and slower reacting Epoxy-PS-Epoxy/COOH-PI-COOH both effectively suppress coalescence, with the optimal molecular weight being slightly above the critical molecular weight of the homopolymer,Mc. The effects of telechelic loading were also investigated, where the optimal loading concentration for this system was 0.5 wt %, as higher concentrations exhibited a plasticizing effect due to the presence of unreacted low-molecular-weight telechelics present in the blend. A determination of the interfacial coverage of the copolymer shows that a conversion of 1.5-3.0% was required for 20% surface coverage at 5.0 wt % telechelic loading, indicating a large excess of telechelics in this system. At the optimal loading level of 0.5 wt %, a conversion of 15% was required for 20% surface coverage. The results of these experiments provide a clear understanding of the role of telechelic loading and molecular weight on its ability to reactively form interfacial modifiers in phase-separated polymer blends and provide guidelines for the development of similar reactive processing schemes that can use telechelic polymers to reactively compatibilize a broad range of polymer blends.

Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

2009-01-01T23:59:59.000Z

145

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticut InformationEthanol Blends to

146

Tough Blends of Polylactide and Castor Oil  

SciTech Connect (OSTI)

Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A. (UMM)

2012-10-10T23:59:59.000Z

147

Properties, performance and emissions of biofuels in blends with gasoline.  

E-Print Network [OSTI]

??The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding… (more)

Eslami, Farshad

2013-01-01T23:59:59.000Z

148

Heavy Alcohols as a Fuel Blending Agent for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Applications Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations p-21ramirez.pdf More Documents & Publications HD...

149

HASKELL & WHITE CORPORATEREPORTING & GOVERNANCE CONFERENCE SERIES Blending Theory with Practice  

E-Print Network [OSTI]

HASKELL & WHITE CORPORATEREPORTING & GOVERNANCE CONFERENCE SERIES Blending Theory with Practice The 13th Haskell & White Corporate Reporting & Governance conference is intended to provide opportunities

de Lijser, Peter

150

Process for blending coal with water immiscible liquid  

DOE Patents [OSTI]

A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

1982-10-26T23:59:59.000Z

151

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

SciTech Connect (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

152

Clean Transportation Program | 919-515-3480 | www.cleantransportation.org I www.ncsc.ncsu.edu North Carolina State University, Campus Box 7401, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 3/16/12  

E-Print Network [OSTI]

corn, grains, and crop and forestry waste materials. Ethanol is usually blended with gasoline on either E85 or gasoline, of any blend in between allow vehicle operators the ability to obtain fuel at different levels. E10 is a premium high- octane gasoline for cars and E85 (85% ethanol / 15% gasoline

153

High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1993  

SciTech Connect (OSTI)

The results shown in Figures 10 and 11 demonstrate that the formation of butenes was very sensitive to the alcohol partial pressure. A small elevation of the alcohol pressure suppressed the formation of butenes rather drastically at both 90 and 117{degree}C. The synthesis rates of DME, MIBE, and MTBE ethers were not significantly affected at 90{degree}C, although there was a trend to increase the space time yield of DME as the alcohol pressure was increased. At the reaction temperature of 117{degree}C, all of the ethers showed increasing productivities as the pressure of the reactants was increased (Figure 11). An isotope labelling experiment was carried out to provide mechanistic insight into the manner in which methanol and isobutanol react together to form DME, MIBE, and MTBE ethers and to determine if MTBE were derived from MIBE.

Klier, K.; Herman, R.G.; Menszak, J.; Johansson, M.A.; Feeley, O.C.; Kim, D.

1993-07-01T23:59:59.000Z

154

Interface modification in an immiscible rod-coil polymer blend using functionalized copolymers and polyelectrolytes  

E-Print Network [OSTI]

-polymer specific interactions on interfacial properties and mechanical performance of the blend. Specifi cally, in uncompatibilized blends, the effect of vectra concentration and domain size on shear modulus is studied. While, in blends compatibilized with small...

Passinault, Robbie J

1996-01-01T23:59:59.000Z

155

E-Print Network 3.0 - aluminate cement blended Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

predicting the setting times of Type I cement concrete and blended... -29, 1980. 20. Tay, J. .H., Properties of Pulverized Sludge Ash Blended Cement. ACI Materials Journals... OF...

156

E-Print Network 3.0 - aluminate blend phosphate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Sciences Collection: Physics 42 Formation of Biomimetic Porous Calcium Phosphate Coatings on Surfaces of PolyethyleneZinc Stearate Blends Summary: -zinc stearate blends...

157

CASIMIR EFFECT IN CROSSLINKED POLYMER BLENDS M. Benhamou  

E-Print Network [OSTI]

-potential. I. INTRODUCTION Interpenetrated polymer networks (IPNs) or crosslinked polymer blends constitute new interpenetrating networks used as electronic device encapsulants [3]. For certain practical realizations, the IPNsCASIMIR EFFECT IN CROSSLINKED POLYMER BLENDS M. Benhamou , M. Boughou, H. Ka¨idi M. El Yaznasni, H

Boyer, Edmond

158

Fewer Steps to Higher Octane Gasoline in Petroleum Refining | U.S. DOE  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane SJuly 2007Fermi

159

Morphological origin for the stratification of P3HT:PCBM blend film studied by neutron reflectometry  

SciTech Connect (OSTI)

Understanding the origin for the film stratification of electron donor/acceptor blend is crucial for high efficiency organic photovoltaic cell. In this study, P3HT:PCBM blend is deposited onto hydrophilic and hydrophobic substrate to examine the film stratifications. The neutron reflectivity results show that, on the different surfaces, PCBM diffuses toward the two interfacial regions in an identical fashion during thermal annealing. This evidences that the film stratification is not affected by the substrates. Instead, since P3HT remains more amorphous in the interfacial regions and PCBM is miscible with amorphous P3HT, PCBM preferentially diffuses to the interfacial regions, resulting in the stratification.

Keum, Jong Kahk [Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States) [Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Browning, James F.; Halbert, Candice E. [Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Xiao, Kai; Shao, Ming; Hong, Kunlun [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2013-11-25T23:59:59.000Z

160

Mode-of-Action of Self-Extinguishing Polymer Blends Containing Organoclays  

SciTech Connect (OSTI)

We have shown that the addition of nanoclays is an effective means for enhancing the flame retardant properties of polymer blends. Polymer blends are difficult to render flame retardant even with the addition of flame retardant agents due to dispersion and phase segregation during the heating process. We show that the addition of 5% functionalized Cloisite 20A clays in combination with 15% decabromodiphenyl ether and 4% antimony trioxide to a polystyrene/poly(methyl methacrylate) blend can render the compound flame resistant within the UL-94-V0 standard. Using a variety of micro-characterization methods, we show that the clays are concentrated at the interfaces between the polymers in this blend and completely suppress phase segregation. The flame retardant (FR) is absorbed onto the clay surfaces, and the exfoliation of the clays also distributes the FR agent uniformly within the matrix. TGA of the nanocomposite indicates that prior to the addition of clay, the dissociation times of the individual components varied by more than 20 C, which complicated the gas-phase kinetics. Addition of the clays causes all the components to have a single dissociation temperature, which enhanced the efficacy of the FR formula in the gas phase. Cone calorimetry also indicated that the clays decreased the heat release rate (HRR) and the mass loss rate (MLR), due to the formation of a robust char. In contrast, minimal charring occurred in blends containing just the FR. SEM examination of the chars showed that the clay platelets were curved and in some cases tightly folded into nanotube-like structures. These features were only apparent in blends, indicating that they might be associated with thermal gradients across the polymer phase interface. SEM and SAXS examinations of the nanocomposites after partial exposure to the flame indicated that the clays aggregated into ribbon-like structures, approximately microns in length, after the surfactant thermally decomposed. Thermal modeling indicated that these ribbons might partially explain the synergy due to better distribution of the heat and improve the mechanical properties of the melt at high temperatures, in a manner similar to the one reported for carbon nanotubes.

Pack, S.; Si, M; Koo, J; Sokolov, J; Koga, T; Kashiwagi, T; Rafailovich, M

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Time phased alternate blending of feed coals for liquefaction  

DOE Patents [OSTI]

The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

Schweigharett, Frank (Allentown, PA); Hoover, David S. (New Tripoli, PA); Garg, Diwaker (Macungie, PA)

1985-01-01T23:59:59.000Z

162

Quality, Performance, and Emission Impacts of Biodiesel Blends  

Broader source: Energy.gov (indexed) [DOE]

Impacts of Biodiesel Blends Bob McCormick (PI) With Teresa Alleman, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon Luecke, Dan Pedersen, Ken Proc, Matt Ratcliff, Matt...

163

Hybrid Dynamic Density Functional Theory for Polymer Melts and Blends  

E-Print Network [OSTI]

We propose a high-speed and accurate hybrid dynamic density functional theory for the computer simulations of the phase separation processes of polymer melts and blends. The proposed theory is a combination of the dynamic self-consistent field (SCF) theory and a time-dependent Ginzburg-Landau type theory with the random phase approximation (GRPA). The SCF theory is known to be accurate in evaluating the free energy of the polymer systems in both weak and strong segregation regions although it has a disadvantage of the requirement of a considerable amount of computational cost. On the other hand, the GRPA theory has an advantage of much smaller amount of required computational cost than the SCF theory while its applicability is limited to the weak segregation region. To make the accuracy of the SCF theory and the high-performance of the GRPA theory compatible, we adjust the chemical potential of the GRPA theory by using the SCF theory every constant time steps in the dynamic simulations. The performance of the GRPA and the hybrid theories is tested by using several systems composed of an A/B homopolymer, an AB diblock copolymer, or an ABC triblock copolymer. Using the hybrid theory, we succeeded in reproducing the metastable complex phase-separated domain structures of an ABC triblock copolymer observed by experiments.

Takashi Honda; Toshihiro Kawakatsu

2006-09-05T23:59:59.000Z

164

Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373  

SciTech Connect (OSTI)

In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

165

Vapor-liquid equilibria of binary and ternary mixtures of cyclohexane, 3-methyl-2-butanone, and octane at 101.3 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibria were measured at 101.3 kPa for the three binary and one ternary mixtures of cyclohexane, 3-methyl-2-butanone, and octane. The isobaric T-x-y data were reported, including an azeotropic point for the binary mixture cyclohexane + 3-methyl-2-butanone. The virial equation of state truncated after the second coefficient was used to calculate the vapor-phase fugacity coefficients. The Tsonopoulos correlation equation was applied to determine the second virial coefficients. Various activity coefficient models of the Wilson, the NRTL, and the UNIQUAC equations were used to correlate the binary experimental vapor-liquid equilibrium results. Optimally-fitted binary parameters of the activity coefficient models were obtained and those parameters of the NRTL model were employed to predict the ternary vapor-liquid equilibria. Satisfactory results were presented for the correlation and prediction of the vapor-liquid equilibrium data on binary and ternary mixtures.

Chen, C.C.; Tang, M.; Chen, Y.P. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Chemical Engineering] [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Chemical Engineering

1996-05-01T23:59:59.000Z

166

Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002  

SciTech Connect (OSTI)

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

2013-07-01T23:59:59.000Z

167

Blending Of Radioactive Salt Solutions In Million Gallon Tanks  

SciTech Connect (OSTI)

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

2012-12-10T23:59:59.000Z

168

Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst  

SciTech Connect (OSTI)

Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Fisher, Galen [University of Michigan] [University of Michigan; West, Brian H [ORNL] [ORNL

2014-01-01T23:59:59.000Z

169

Evaluation of bitumen by realization of bitumen/polymer blends  

SciTech Connect (OSTI)

Today, if we want to guarantee the durability of bitumen/polymer blends and membranes, characterization of bitumen by penetration hardness and softening point is not enough. Bitumen which is a {open_quotes}residue{close_quotes} of distillation is a poor relation of the petrochemistry. It will tend to become more so in view of the more sophisticated treatment units of the heavy components coming from refining. This paper will present the correlation existing between generic composition of bitumen and the characteristics of the bitumen/polymers (atatic polypropylene) blends. The generic composition of the bitumen is determined by thin layer chromatography associated with a detection flame ionization (Iatroscan method). More than 20 bitumens of different origins have been studied. The quality of the blends done with an EPP batch for each of these bitumens is acquired by using determination trials of viscosity, cold bending (new state and after aging), segregation, and morphological analyses.

Cogneau, P.; Goosse, S. [Parc Industriel, Perwez (Belgium)

1995-12-31T23:59:59.000Z

170

Certification of alternative aviation fuels and blend components  

SciTech Connect (OSTI)

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

171

Theoretical and experimental investigation of particle interactions in pharmaceutical powder blending  

E-Print Network [OSTI]

In pharmaceutical manufacturing practices, blending of active pharmaceutical ingredient (API) with excipients is a crucial step in that homogeneity of active ingredient after blending is a key issue for the quality assurance ...

Pu, Yu, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

172

Blended learning through the eyes of Malagasy students Hoby ANDRIANIRINA Anne-Laure FOUCHER  

E-Print Network [OSTI]

Clermont-Ferrand, France Keywords: blended learning ; experience of students ; didactics French in a blended learning environment. This is part of a wider action research study in the Didactics of Languages

Boyer, Edmond

173

On-line RVP analysis improves gas blending  

SciTech Connect (OSTI)

New government regulations on gasoline quality are making gasoline blending an increasingly important aspect of refining. The Environmental Protection Agency volatility regulations that establish maximum summertime commercial gasoline volatility levels provide that gasoline Reid Vapor Pressor starting in 1989 may not exceed 10.5, or 9.0 psi. Additionally, beginning in 1992, it may not exceed either 9.0 or 7.8 psi, depending on the area of the country and the month. This article discusses the on-line analysis of gas blending to minimize the volatile organic compounds released to the air.

Lo, P.T. [BP Oil Alliance Refinery, Belle Chasse, LA (United States)

1994-09-01T23:59:59.000Z

174

An Experimental Investigation of Microexplosion in Emulsified Vegetable-Methanol Blend  

E-Print Network [OSTI]

high speed imaging. When large droplets microexploded, lower frequencies were detected in all the blends. v DEDICATION This thesis is dedicated to my family, Mr. Ki-Woo Nam, Mrs. Jung-Hee Park, Mrs. Myung-Ok Won, Mrs. Ji-Hye Han, Mr... Boltzmann?s constant [1.3808 ?10-23 J/K] h Plank?s constant [6.6261?10-34 J?s] rcr Critical diameter of a vapor embryo [m] nT Number of potential nucleation sites per unit volume ellipseV Volume of ellipse [m 3] spherer Radius of sphere [m] u (x...

Nam, Hyungseok

2012-07-16T23:59:59.000Z

175

Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in  

E-Print Network [OSTI]

1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

Stefanopoulou, Anna

176

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*  

E-Print Network [OSTI]

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

Stefanopoulou, Anna

177

Solid State Blending of Poly(ethylene terephthalate) with Polystyrene: Extent of PET Amorphization and  

E-Print Network [OSTI]

Solid State Blending of Poly(ethylene terephthalate) with Polystyrene: Extent of PET Amorphization.interscience.wiley.com). ABSTRACT: Polystyrene (PS) and poly(ethylene terephthalate) (PET) were blended to- gether in the solid. CMA PS/PET blend morphologies were characterized both qualitatively and quantitatively through

Mitchell, Brian S.

178

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

179

Blending world map projections with Flex Projector Bernhard Jennya  

E-Print Network [OSTI]

Projector and then documents the new approaches to projection blending. The integration of the three methods into Flex Projector makes creating new projections simple and easy to control and allows the user.flexprojector.com) is a free, open- source, cross-platform application with a graphical user interface for designing world map

Jenny, Bernhard

180

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties  

SciTech Connect (OSTI)

The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the latest state-of-the-art for thermodynamic properties of HFC refrigerant blends. These models were incorporated into version 7 of NIST REFPROP database.

Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

2002-08-30T23:59:59.000Z

182

Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.  

SciTech Connect (OSTI)

Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

Hoffman, E. A.; Nuclear Engineering Division

2005-04-29T23:59:59.000Z

183

Effect of temperature on the hydration of Portland cement blended with siliceous fly ash  

SciTech Connect (OSTI)

The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)] [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

2013-10-15T23:59:59.000Z

184

Sulfur meter for blending coal at Plant Monroe: Final report  

SciTech Connect (OSTI)

An on-line sulfur analyzer, installed at the Detroit Edison, Monroe Power station, was placed into service and evaluated for coal blending optimization to minimize the cost of complying with changing stack gas sulfur dioxide regulations. The project involved debugging the system which consisted of an /open quotes/as-fired/close quotes/ sampler and nuclear source sulfur analyzer. The system was initially plagued with mechanical and electronic problems ranging from coal flow pluggages to calibration drifts in the analyzer. Considerable efforts were successfully made to make the system reliable and accurate. On-line testing showed a major improvement in control of sulfur dioxide emission rates and fuel blending optimization equivalent to as much as $6 million in fuel costs at the time of the evaluation. 7 refs., 14 figs., 12 tabs.

Trentacosta, S.D.; Yurko, J.O.

1988-04-01T23:59:59.000Z

185

BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING  

SciTech Connect (OSTI)

The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

Langton, C.; Stefanko, D.

2011-03-10T23:59:59.000Z

186

A new blending agent and its effects on methanol-gasoline fuels  

SciTech Connect (OSTI)

The major difficulty encountered with the use of methanol-gasoline blends as SI engine fuel is their tendency to phase separation due to the hydrophilic properties of methanol. Phase separation can lead to some utilization problems. Using a blending agent for the methanol-gasoline system is the common approach taken towards solving the phase separation problem. In this study introduces fraction of molasses fuel oil as an effective new blending agent for methanol-gasoline fuel.

Karaosmanoglu, F.; Isigiguer-Erguedenler, A.; Aksoy, H.A.

2000-04-01T23:59:59.000Z

187

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

188

Multi-scale analysis and simulation of powder blending in pharmaceutical manufacturing  

E-Print Network [OSTI]

A Multi-Scale Analysis methodology was developed and carried out for gaining fundamental understanding of the pharmaceutical powder blending process. Through experiment, analysis and computer simulations, microscopic ...

Ngai, Samuel S. H

2005-01-01T23:59:59.000Z

189

E-Print Network 3.0 - anti-d rh1 blend Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Metallocene Summary: -Natta and Metallocene Hexene Linear Low-Density Polyethylene Blends with Low-Density Polyethylene Ibnelwaleed A. Hussein... and mechanical...

190

HASKELL & WHITE CORPORATE REPORTING & GOVERNANCE CONFERENCE SERIES Blending Theory with Practice  

E-Print Network [OSTI]

HASKELL & WHITE CORPORATE REPORTING & GOVERNANCE CONFERENCE SERIES Blending Theory with Practice Pinnell, Managing Partner of Haskell & White. GUIDELINES FOR PAPER SUBMISSION Papers are invited from

de Lijser, Peter

191

BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2  

SciTech Connect (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

Leishear, R.; Poirier, M.; Fowley, M.

2011-05-26T23:59:59.000Z

192

Single Stage Contactor Testing Of The Next Generation Solvent Blend  

SciTech Connect (OSTI)

The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

2014-01-06T23:59:59.000Z

193

Hydrogen effects on materials for CNG/H2 blends.  

SciTech Connect (OSTI)

No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

Farese, David (Air Products, USA); Keller, Jay O.; Somerday, Brian P.

2010-09-01T23:59:59.000Z

194

INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS  

SciTech Connect (OSTI)

Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

Ahsan R. Choudhuri

2005-02-01T23:59:59.000Z

195

Emissions mitigation of blended coals through systems optimization  

SciTech Connect (OSTI)

For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

Don Labbe [IOM Invensys Operations Management (United States)

2009-10-15T23:59:59.000Z

196

Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process  

E-Print Network [OSTI]

Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process J. Z. Lu,1 Q. Wu,1 I. I parameters for the wood-fiber/high-density-polyethylene blends at 60 rpm were a temperature of 180°C

197

A model of reduced oxidation kinetics using constituents and species: Iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane  

SciTech Connect (OSTI)

A previously described methodology for deriving a reduced kinetic mechanism for alkane oxidation and tested for n-heptane is here shown to be valid, in a slightly modified version, for iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane. The model is still based on partitioning the species into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement in the species ensemble, and mathematically decomposing the heavy species into constituents which are radicals. For the same similarity variable found from examining the n-heptane LLNL mechanism in conjunction with CHEMKIN II, the appropriately scaled total constituent molar density still exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures in the cold ignition regime. When extended to larger initial temperatures than for cold ignition, the self-similar behavior becomes initial temperature dependent, which indicates that rather than using functional fits for the enthalpy generation due to the heavy species' oxidation, an ideal model based on tabular information extracted from the complete LLNL kinetics should be used instead. Similarly to n-heptane, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable, but here their slope variation is no longer fitted and instead, their rate equations are used with the ideal model to calculate them. As in the original model, the light species ensemble is partitioned into quasi-steady and unsteady species; the quasi-steady light species mole fractions are computed using the ideal model and the unsteady species are calculated as progress variables using rates extracted from the ideal model. Results are presented comparing the performance of the model with that of the LLNL mechanism using CHEMKIN II. The model reproduces excellently the temperature and species evolution versus time or versus the similarity variable, with the exception of very rich mixtures, where the predictions are still very good but the multivalued aspect of these functions at the end of oxidation is not captured in the reduction. The ignition time is predicted within percentages of the LLNL values over a wide range of equivalence ratios, initial pressures and initial temperatures. (author)

Harstad, Kenneth; Bellan, Josette [California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 125-109, Pasadena, CA 91109-8099 (United States)

2010-11-15T23:59:59.000Z

198

Synergistic Effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement  

SciTech Connect (OSTI)

To maximize the conversion of low-quality coal into good coke, we investigated the thermoplasticity of various binary blends of caking coals with slightly or noncaking coals using a dynamic viscoelastic technique with a temperature-variable rheometer. Coal blend samples were prepared by mixing two coals (1:1 by weight), which were heated from room temperature to 600 C at a rate of 3-80{sup o}C/min. At the slow rate of 3{sup o}C/min, the blends had a tan {delta} that was generally lower than the calculated value, showing that a negative interaction caused a loss of thermoplasticity. In contrast, at the rapid heating rate of 80{sup o}C/min, the tan {delta} of some blends was higher than the calculated value, indicating a positive interaction that enhanced the thermoplasticity. With rapid heating, the thermoplasticity of each coal itself increased, and their thermoplastic temperature ranges widened with rapid heating. Therefore, rapid heating was effective at converting these coal blends into good cokes. Moreover, even with slow heating, when a combination of coals (Gregory:Enshu, 1:1) showing some thermoplasticity in nearly the same temperature range was blended, a desirable synergistic effect of the blend was obtained. This suggests that blending coal with an overlapping thermoplastic temperature range is important for the synergistic effect, regardless of the heating rate. 15 refs., 9 figs., 2 tabs.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Kensuke Masaki; Atsushi Dobashi; Kiyoshi Fukada [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

2006-12-15T23:59:59.000Z

199

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect (OSTI)

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

200

PLA-PHA BLENDS: MORPHOLOGY, THERMAL AND MECHANICAL T. Grard, T. Budtova  

E-Print Network [OSTI]

PLA-PHA BLENDS: MORPHOLOGY, THERMAL AND MECHANICAL PROPERTIES T. Gérard, T. Budtova Mines Paris such as polylactides (PLA) and polyhydoxyalkanoates (PHA) are alternatives to petroleum-based polymers and represent polymers, varying the composition of the blend and preparation conditions. Most of the studies on PLA

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)  

SciTech Connect (OSTI)

This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

Moriarty, K.

2013-09-01T23:59:59.000Z

202

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

203

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.  

E-Print Network [OSTI]

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being

204

JV Task 112-Optimal Ethanol Blend-Level Investigation  

SciTech Connect (OSTI)

Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

2008-01-31T23:59:59.000Z

205

Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model  

SciTech Connect (OSTI)

There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

2011-01-01T23:59:59.000Z

206

Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine  

SciTech Connect (OSTI)

The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

2007-01-01T23:59:59.000Z

207

Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability  

E-Print Network [OSTI]

Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is a variable star, simply because most variable stars are systematically eliminated from microlensing studies. Using observational data for this event, we show that the intrinsic variability of a microlensed star is a powerful tool to constrain the nature of the lens by breaking the degeneracy between the microlens parallax and the blended light. We also present a statistical test for discriminating the location of the lens based on the \\chi^2 contours of the vector \\Lambda, the inverse of the projected velocity. We find that while SMC self lensing is somewhat favored, neither location can be ruled out with good confidence.

Assef, R J; Afonso, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Beaulieu, J P; Charlot, X; Coutures, C; Ferlet, R; Fouqué, P; Glicenstein, J F; Goldman, B; Graff, D; Gros, M; Haïssinski, J; Hamadache, C; De Kat, J; Le Guillou, Laurent; Lesquoy, E; Loup, C; Magneville, C; Marquette, J B; Maurice, E; Maury, A; Milsztajn, A; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Rahal, Y R; Rich, J; Spiro, M; Tisserand, P; Vidal-Madjar, A; Vigroux, L; Zylberajch, S; Bennett, D P; Becker, A C; Griest, K; Vandehei, T; Welch, D L; Udalski, A; Szymanski, M K; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Wyrzykowski, L

2006-01-01T23:59:59.000Z

208

POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS  

SciTech Connect (OSTI)

High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

2007-03-29T23:59:59.000Z

209

VALIDATION OF FIRESIDE PERFORMANCE INDICES: FOULING/CORROSION EVALUATION OF MDF PARTICLEBOARD AND BLENDS WITH WHEAT STRAW BOARD  

SciTech Connect (OSTI)

Sauder Woodworking currently fires a large portion of all wood wastes in a boiler producing process steam. It is investigating using particleboard made from wheat straw in its manufacturing process and is concerned with the effects of the inorganics on its boiler. Wheat straw board contains higher ash contents and increased levels of potassium, creating concern over fouling characteristics in Sauder's tight boiler design. In addition, the wheat straw board contains high concentrations of chlorine, which may affect boiler tube corrosion when fired in combination with the particleboard wastes currently generated. Sauder has engaged the services of the Energy & Environmental Research Center (EERC) at the University of North Dakota to investigate the potential detrimental effects of firing blends containing wheat straw on boiler tube fouling and corrosion. Additional funding for this project was provided through the U.S. Department of Energy Jointly Sponsored Research Program (DOE JSRP) project ''Validation of Fireside Performance Indices'' to validate, improve, and expand the PCQUEST (Predictive Coal Quality Effects Screening Tool) program. The PCQUEST fuel database is constantly expanding and adding new fuels, for which the algorithms may need refinement and additional verification in order to accurately predict index values. A key focus is on performing advanced and conventional fuel analyses and adding these analyses to the PCQUEST database. Such fuels include coals of all ranks and origins, upgraded coals, petroleum coke, biomass and biomass-coal blends, and waste materials blended with coal. Since there are differences in the chemical and mineral form of the inorganic content in biomass and substantial differences in organic matrix characteristics, analysis and characterization methods developed for coal fuels may not be applicable. The project was seen to provide an excellent opportunity to test and improve the ability of PCQUEST to handle nontypical soil and biomass minerals.

Christopher J. Zygarlicke; Jay R. Gunderson; Donald P. McCollor

1999-02-01T23:59:59.000Z

210

A Design Experiment for Blending Knowledge Community And Inquiry in Secondary School Science  

E-Print Network [OSTI]

A Design Experiment for Blending Knowledge Community And Inquiry:00-1:15 Education Building 2010 Abstract. This presentation describes a design experiment objectives. Drawing on data from two design cycles, I examine the validity

Stanford, Kyle

211

Evaluation of Ethanol Blends for PHEVs using Simulation andEngine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Engine-in-the-Loop Evaluation of Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

212

Influence of branch content on the microstructure of blends of linear and octene-branched polyethylene  

E-Print Network [OSTI]

experimental densities of the two polymer melts. Initially, chains of LLDPE and HDPE were completely mixed POLYMER JOURNAL #12;short chain branching (SCB) [26]. Few studies have made use of m-LLDPE in blend

Hussein, Ibnelwaleed A.

213

Process simulation, integration and optimization of blending of petrodiesel with biodiesel  

E-Print Network [OSTI]

strategies to meet these requirements. The primary objective of this work is to analyze alternatives for producing ULSD. In addition to the conventional approach of revamping existing hydrotreating facilities, the option of blending petrodiesel with biodiesel...

Wang, Ting

2009-05-15T23:59:59.000Z

214

Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate  

E-Print Network [OSTI]

1 Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate of biodiesel fuels in diesel and homogeneous charge compression ignition engines. Keywords: Methyl decanoate; Methyl decenoate; Surrogate; Oxidation; Biodiesel fuels; Kinetic modeling; Engine; Low

Paris-Sud XI, Université de

215

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

SciTech Connect (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

216

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network [OSTI]

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

217

Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent  

SciTech Connect (OSTI)

The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

Delmau, Laetitia Helene [ORNL; Moyer, Bruce A [ORNL

2012-12-01T23:59:59.000Z

218

Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report  

SciTech Connect (OSTI)

The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

McCormick, R. L.; Westbrook, S. R.

2007-05-01T23:59:59.000Z

219

Hydration studies of calcium sulfoaluminate cements blended with fly ash  

SciTech Connect (OSTI)

The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)] [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain)] [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain) [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

2013-12-15T23:59:59.000Z

220

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

SciTech Connect (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Tank waste remediation system high-level waste feed processability assessment report  

SciTech Connect (OSTI)

This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050{degrees}C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150{degrees}C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150{degrees}C to 1400{degrees}C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site`s high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit.

Lambert, S.L. [Westinghouse Hanford Co., Richland, WA (United States); Kim, D.S. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-01T23:59:59.000Z

222

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

SciTech Connect (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

223

EWO Mee'ng September 2012 Petrobras Refining Decision-Making Design  

E-Print Network [OSTI]

: - Fuel demands - Diesel and gasoline Sulfur content - Gasoline octane Number 15) PDA extracCon factor model (NL) HDT sulfur reducCon (NL) Rigorous Blending Rules (NL) EquaCons: Volume balance Units TransformaCons (NL) Blending Solver

Grossmann, Ignacio E.

224

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

225

Thermal insulation for high temperature microwave sintering operations and method thereof  

DOE Patents [OSTI]

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

1995-09-12T23:59:59.000Z

226

Method of preparing thermal insulation for high temperature microwave sintering operations  

DOE Patents [OSTI]

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

1996-07-16T23:59:59.000Z

227

Method of preparing thermal insulation for high temperature microwave sintering operations  

DOE Patents [OSTI]

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

1996-01-01T23:59:59.000Z

228

Thermal insulation for high temperature microwave sintering operations and method thereof  

DOE Patents [OSTI]

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

1995-01-01T23:59:59.000Z

229

Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity  

SciTech Connect (OSTI)

In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature ? ? (T ? T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)] [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States) [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

2014-05-21T23:59:59.000Z

230

Analysis Of Exhaust Emission Of Internal Combustion Engine Using Biodiesel Blend  

E-Print Network [OSTI]

Abstract-The main purpose of this research is to study the effect of various blends of an environmental friendly alternative fuel such as biodiesel on the performance of diesel engine. In the Present investigation experimental work has been carried out to analyze the performance and exhaust emission characteristics of a single cylinder internal combustion engine fuelled with biodiesel blend at the different load. In this experiment the biodiesel which is use as a waste cooking oil (WCO) biodiesel.To investigation of the emission characteristics of the engine loads, which is supplied from the alternator. The experiment was carried out different load i.e. (NO LOAD, 100W 200W, 500W, 1000W, 1500W, 2000W, 2500W & 3000Watt) at engine speed 1500 rpm/min. A test was applied in which an engine was fuel with diesel and seven different blends of diesel. Biodiesel (B5, B10, B20, B40, B60, B80, B100) made from waste cooking oil and the results were analyzed.The emission of were measured carbon monoxide (CO), hydrocarbon carbon(HC), Oxides of nitrogen (NOX) and oxygen ().The experimental results will be compared with biodiesel blends and diesel. The biodiesel results of (WCO) in lower emission of hydro carbon (HC) and (CO) and increase emission of (NO2). This study showed that the results of exhaust emission of biodiesel blends were lower than the diesel fuel. Keyword- Biodiesel (WCO), diesel engine, gas analyzer, Exhaust emission. I.

Suvendu Mohanty; Dr. Om Prakash; Reasearch Scholar

231

Chain ordering of regioregular polythiophene films through blending with a nickel bisdithiolene complex  

SciTech Connect (OSTI)

An “annealing-free” strategy consisting of using a planar nickel bisdithiolene complex nickel bis[1,2-di(3?,4?-di-n-decyloxyphenyl)ethene-1,2-dithiolene] ([Ni(4dopedt){sub 2}]) is proposed for structuring poly(3-hexyl-thiophene) (P3HT). Photoluminescence (PL) and Raman spectroscopies, in conjunction with electronic absorption, have been used for evidencing P3HT changes due to blending. PL and absorption observations are consistent and show a correlation between polymer chain organization and increasing amounts of [Ni(4dopedt){sub 2}]. Blending with [Ni(4dopedt){sub 2}] do not modify the Raman ring-breathing modes energies indicating that blending does not induce strongly disorder in P3HT chains. Atomic force microscopic measurements show that blends nanoscale morphology presents a homogeneous matrix and small fibrils related to [Ni(4dopedt){sub 2}] concentration, especially for blends with a [Ni(4dopedt){sub 2}] weight ratio lower than 50%.

Hernandez-Maldonado, D. [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France) [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Ramos, B.; Bedel-Pereira, E.; Séguy, I. [LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France) [LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Villeneuve-Faure, C. [LAPLACE, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse (France)] [LAPLACE, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse (France); Sournia-Saquet, A.; Moineau-Chane Ching, K. I., E-mail: kathleen.chane@lcc-toulouse.fr [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France); LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Alary, F.; Heully, J. L. [LCPQ-IRSAMC, 118 Route de Narbonne, F-31077 Toulouse Cedex 4 (France)] [LCPQ-IRSAMC, 118 Route de Narbonne, F-31077 Toulouse Cedex 4 (France)

2014-03-10T23:59:59.000Z

232

The relationship between the thermoplastic behavior of blends and their component coals  

SciTech Connect (OSTI)

The thermoplastic behaviors of a number of coking coal blends were measured using proton magnetic resonance thermal analysis (PMRTA) to determine to what extent they were affected by interactions between the component coals. Most blends showed evidence that at temperatures near their temperatures of maximum fluidity the extent to which they fused was different to that expected if the coals did not interact. Only blends of coking coals of different rank fused to a greater extent than expected in the absence of interactions. Semi-anthracite, low rank coals and charcoal reduced the extent of fusion of coking coals to values below those expected if they were acting as inert diluents. These interactions are interpreted as being mediated by transfer of volatile material between the coals on heating.

Sakurovs, R.

1999-07-01T23:59:59.000Z

233

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

SciTech Connect (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

234

Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends  

E-Print Network [OSTI]

Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

235

Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent  

SciTech Connect (OSTI)

This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

Washington, A. L. II; Peters, T. B.

2014-03-03T23:59:59.000Z

236

The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether  

E-Print Network [OSTI]

diethyl ether (DEE) in ethanol fuel blends for a range ofbio-derived fuel components (ethanol) in emission productsHCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

2005-01-01T23:59:59.000Z

237

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

SciTech Connect (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

238

A review of chromatographic characterization techniques for biodiesel and biodiesel blends.  

SciTech Connect (OSTI)

This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

Pauls, R. E. (Chemical Sciences and Engineering Division)

2011-05-01T23:59:59.000Z

239

Catalyst and process development for synthesis gas conversion to isobutylene. Quarterly report, October 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

The objectives of this project are to develop a new catalyst; the kinetics for this catalyst; reactor models for trickle bed, slurry and fixed bed reactors; and to simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. A hydrogen-lean synthesis gas with a ratio of H{sub 2}/CO of 0.5 to 1.0 is produced from the gasification of coal, lignite, or biomass. Isobutylene is a key reactant in the synthesis of methyl tertiary butyl ether (MTBE) and of isooctanes. MTBE and isooctanes are high octane fuels used to blend with low octane gasolines to raise the octane number required for modern automobiles. The production of these two key octane boosters is limited by the supply of isobutylene. MTBE, when used as an octane enhancer, also decreases the amount of pollutants emitted from the exhaust of an automobile engine.

Anthony, R.G.; Akgerman, A.

1994-05-01T23:59:59.000Z

240

Optimization of Crude-Oil Blending Operations Sylvain Mouret Ignacio E. Grossmann Pierre Pestiaux  

E-Print Network [OSTI]

refinery Crude-oil blending scheduling Scheduling formulations 2 Proposed approach Basic idea MINLP model Proposed approach Results and comparisons Conclusion Oil refinery A typical oil refinery Refining crude definition Given Refinery configuration Logistics constraints Initial tank inventory and composition Vessel

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network [OSTI]

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal

Wooldridge, Margaret S.

242

Using blends of cerambycid beetle pheromones and host plant volatiles to simultaneously attract a  

E-Print Network [OSTI]

ethanol and a-pinene to determine whether such blends could be effective lures for detecting and moni-(undecyloxy)-ethanol, and race- mic 2-methyl-1-butanol. Bioassays in east-central Illinois captured 3070 to ethanol, with a-pinene enhancing attraction only for the pine specialist M. carolinensis. The optimal

Hanks, Lawrence M.

243

Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: Final report  

SciTech Connect (OSTI)

Stabilization/solidification technology is one of the most widely used techniques for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Cement-based products, commonly referred to as grouts, are the predominant materials of choice because of their low associated processing costs, compatibility with a wide variety of disposal scenarios, and ability to meet stringent processing and performance requirements. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % American Society for Testing and Materials (ASTM) Class F fly ash, and 4 wt % Type I-II-LA Portland cement. This blend is mixed with 106-AN at a mix ratio of 9 lb of dry-solids blend per gallon of waste. This report documents the final results of efforts at Oak Ridge National Laboratory in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

Spence, R.D.; Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Trotter, D.R.

1993-09-01T23:59:59.000Z

244

Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene  

E-Print Network [OSTI]

as the electron acceptor in some BHJ solar cells but not in others. We first determine the solar cell performanceMolecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene States *S Supporting Information ABSTRACT: We compare the solar cell performance of several polymers

McGehee, Michael

245

Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames  

E-Print Network [OSTI]

analyses of kinetic path ways and species transport on flame extinction were also conducted. The results and emission properties, such as the ignition delay times, extinction limits, flame speeds, species profilesKinetic effects of toluene blending on the extinction limit of n-decane diffusion flames Sang Hee

Ju, Yiguang

246

TENSILE PROPERTIES OF PLA AND PHBV BLENDS: ANOMALOUS ELONGATION AND AGING  

E-Print Network [OSTI]

TENSILE PROPERTIES OF PLA AND PHBV BLENDS: ANOMALOUS ELONGATION AND AGING T. Gérard, T. Noto and T, France tatiana.budtova@mines-paristech.fr INTRODUCTION Polylactide (PLA) and polyhydroxyalkanoates (PHA the drawbacks of the pure components. In this work, PLA and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV

Paris-Sud XI, Université de

247

Adaptive microbial population shifts in response to a continuous ethanol blend release increases biodegradation potential  

E-Print Network [OSTI]

Adaptive microbial population shifts in response to a continuous ethanol blend release increases 2013 Accepted 28 March 2013 Keywords: Pyrosequencing Ethanol Microbial diversity Temperature a b s t r a pilot- scale continuous release (10 months) of a 10% v:v ethanol solution mixed with benzene and toluene

Alvarez, Pedro J.

248

Effect of thermal history on the molecular orientation in polystyrene/poly(vinyl methyl ether) blends  

E-Print Network [OSTI]

ether) (PS/PVME) has been studied using polarization modulation infrared linear dichroism (PM to an increased orientation if the heating time at 51 8C is kept short. Moreover, PS and PVME develop a larger) blends; Thermal history; Polarization modulation infrared linear dichroism 1. Introduction The influence

Pezolet, Michel

249

Hardgrove grindability study of Powder River Basin and Appalachian coal components in the blend to a midwestern power station  

SciTech Connect (OSTI)

Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3 coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.

Padgett, P.L.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

1996-12-31T23:59:59.000Z

250

Enabling High Efficiency Ethanol Engines  

SciTech Connect (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Szybist, J.; Confer, K. (Delphi Automotive Systems)

2011-03-01T23:59:59.000Z

251

A New Generation of Building Insulation by Foaming Polymer Blend...  

Broader source: Energy.gov (indexed) [DOE]

insulation technologies available on the market. Instead of hydroflurocarbon, it uses carbon dioxide as the blowing agent. This technology represents a highly valuable market...

252

Effectiveness of organoclays as compatibilizers for multiphase polymer blends – A sustainable route for the mechanical recycling of co-mingled plastics  

SciTech Connect (OSTI)

We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimize the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour.

Causa, Andrea; Acierno, Domenico; Filippone, Giovanni [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Mistretta, Maria Chiara [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, ed. 6, 90128 Palermo (Italy)

2014-05-15T23:59:59.000Z

253

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 9, October 1, 1992--December 31, 1992  

SciTech Connect (OSTI)

Figure 7 summarizes the carbon selectivities observed towards the main products. During Period IV, the main products observed were the heavy hydrocarbons, with selectivity for MTBE being less than 3--5%. The only time that high MTBE selectivity was noted was during period III, when the i-butylene feed was shut-off. The large amounts of heavy products and the low selectivity to MTBE were surprising in view of our previous experiments in the gas phase and the high methanol-to-i-butylene ratio used in these runs. In the gas-phase and with methanol/i-butylene = 0.5, over 95% selectivity to MTBE was observed with this catalyst at this temperature. The higher level of methanol used here would be expected to further improve the MTBE selectivity. Perhaps one reason for the poor MTBE selectivity relates to the relative solubilities of the reactants in the Synfluid changing the effective methanol/i-butylene ratio. Figure 8 shows the relative molar concentration of i-butylene during Period III. At 180 minutes, the gas supply of that reactant was shut-off, yet the analyses show that i-butylene continued to elute from the reactor for at least an additional 2 hours. It seems reasonable that the i-butylene is highly soluble in the Synfluid since they are both nonpolar hydrocarbons. Likewise, one would expect the methanol to not be quite as soluble and thus the methanol/i-butylene ratio in the liquid medium may be very low, favoring the oligomerization of i-butylene. Indeed, the only time that MTBE selectivity was high was after the i-butylene supply was shut-off. We intend to quantify these solubilities in future experiments.

Marcelin, G.

1993-06-30T23:59:59.000Z

254

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network [OSTI]

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

255

Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends  

E-Print Network [OSTI]

by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously...

Uggini, Hari

2012-07-16T23:59:59.000Z

256

Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated  

SciTech Connect (OSTI)

Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

2009-02-01T23:59:59.000Z

257

Application and modeling of near-infrared frequency domain photon migration for monitoring pharmaceutical powder blending operations  

E-Print Network [OSTI]

of blending. A simulation method was developed which consisted of (i) dynamic simulation for generating the powder structure; (ii) the completely-randommixture model for predicting the spatial distribution of API particles within the powder bed; and (iii...

Pan, Tianshu

2006-10-30T23:59:59.000Z

258

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends  

E-Print Network [OSTI]

The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

Dimou, Iason

259

An Experimental Study into the Ignition of Methane and Ethane Blends in a New Shock-tube Facility  

E-Print Network [OSTI]

AN EXPERIMENTAL STUDY INTO THE IGNITION OF METHANE AND ETHANE BLENDS IN A NEW SHOCK-TUBE FACILITY A Thesis by CHRISTOPHER JOSEPH ERIK AUL Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2009 Major Subject: Mechanical Engineering AN EXPERIMENTAL STUDY INTO THE IGNITION OF METHANE AND ETHANE BLENDS IN A NEW SHOCK-TUBE FACILITY A Thesis...

Aul, Christopher Joseph Erik

2011-02-22T23:59:59.000Z

260

Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions  

SciTech Connect (OSTI)

Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tailor-Made Onion-Like Stereocomplex Crystals in Incompatible Enantiomeric Polylactide Containing Block Copolymer Blends  

SciTech Connect (OSTI)

Stereocomplexes formed by blending enantiomeric PLA block copolymers have demonstrated great potential for applications in biomedical devices. Here, we successfully synthesized well-defined enantiomeric PLA containing block copolymers by living ring-opening polymerization of L- and D-lactides from hydroxyl-terminated hydrophilic [poly(ethylene oxide) or PEO] and hydrophobic [poly(ethylene-co-1,2-butylene) or PEB] oligomers. Quantitative stereocomplex formation was achieved by equimolar mixing of the incompatible PEO-b-PLLA and PEB-b-PDLA. Intriguingly, in the blend of PEB-b-PDLA and PEO-b-PLLA with different PEB and PEO molecular weights, onion-like stereocomplex crystals were observed because of unbalanced surface stresses caused by different PEO and PEB molecular weights.

Sun,L.; Zhu, L.; Rong, L.; Hsiao, B.

2006-01-01T23:59:59.000Z

262

Disk-cylinder and disk-sphere nanoparticles from block copolymer blend solution construction  

SciTech Connect (OSTI)

Researchers strive to produce nanoparticles with complexity in composition and structure. Although traditional spherical, cylindrical and membranous, or planar, nanostructures are ubiquitous, scientists seek more complicated geometries for potential functionality. Here we report the simple solution construction of multigeometry nanoparticles, disk-sphere and diskcylinder, through a straightforward, molecular-level, blending strategy with binary mixtures of block copolymers. The multigeometry nanoparticles contain disk geometry in the core with either spherical patches along the disk periphery in the case of disk-sphere particles or cylindrical edges and handles in the case of the disk-cylinder particles. The portions of different geometry in the same nanoparticles contain different core block chemistry, thus also defining multicompartments in the nanoparticles. Although the block copolymers chosen for the blends are important for the definition of the final hybrid particles, the control of the kinetic pathway of assembly is critical for successful multigeometry particle construction.

Zhu, Jiahua [ORNL] [ORNL; Zhang, Shiyi [Texas A& M University] [Texas A& M University; Zhang, Ke [Northeastern University] [Northeastern University; Wang, Xiaojun [ORNL] [ORNL; Mays, Jimmy [ORNL] [ORNL; Wooley, Karen L [ORNL] [ORNL; Pochan, Darrin [University of Delaware] [University of Delaware

2013-01-01T23:59:59.000Z

263

Ab initio study of phase transition of boron nitride between zinc-blende and rhombohedral structures  

SciTech Connect (OSTI)

Boron nitride has polymorphs such as zinc-blende (c-BN), wurtzite (w-BN), rhombohedral (r-BN), and graphite-like (h-BN) forms. We simulate the direct conversion of r-BN to c-BN through electronic excitation. In our calculation, the conversion is made possible by increasing the hole concentration to over 0.06/atom. This conversion should be experimentally possible by hole-doping via an electric double layer transistor (EDLT) or capacitor.

Nishida, S.; Funashima, H.; Sato, K.; Katayama-Yoshida, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

2013-12-04T23:59:59.000Z

264

Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends  

SciTech Connect (OSTI)

Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

Buchholz, B A; Cheng, A S; Dibble, R W

2003-03-03T23:59:59.000Z

265

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

SciTech Connect (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

266

Low-temperature pyrolysis of coal to produce diesel-fuel blends  

SciTech Connect (OSTI)

Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

Shafer, T.B.; Jett, O.J.; Wu, J.S.

1982-10-01T23:59:59.000Z

267

SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE  

SciTech Connect (OSTI)

For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

Magoulas, V.

2013-05-27T23:59:59.000Z

268

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

269

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

270

Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)  

SciTech Connect (OSTI)

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

Not Available

2012-02-01T23:59:59.000Z

271

Emissions and engine performance from blends of soya and canola methyl esters with ARB {number_sign}2 diesel in a DCC 6V92TA MUI engine  

SciTech Connect (OSTI)

A Detroit Diesel 6V92TA MUI engine was operated on several blends of EPA No. 2 diesel, California ARB No. 2 diesel, soya methyl ester (SME) and canola methyl ester (CME). Various fuels and fuel blend characteristics were determined and engine emissions from these fuels and blends were compared. Increasing percentages of SME and CME blended with either ARB or EPA diesels led to increased emissions of NO{sub x}, CO{sub 2} and soluble particulate matter. Also noted were reductions in total hydrocarbons, CO and insoluble particulate matter. Chassis dynamometer tests conducted on a 20/80 SME/ARB blend showed similar emissions trends. The data suggest that certain methyl ester/No. 2 diesel blends in conjunction with delays in engine timing and technologies that reduce the soluble fraction of particulate emissions merit further exploration as emissions reducing fuel options for North American mass transits (except in California, which mandates ARB diesel).

Spataru, A.; Romig, C.

1995-12-31T23:59:59.000Z

272

Emissions and engine performance from blends of soya and canola methyl esters with ARB No. 2 diesel in a DDC 6V92TA MUI engine  

SciTech Connect (OSTI)

A Detroit Diesel 6V92TA MUI engine was operated on several blends of EPA No. 2 diesel, soya methyl ester (SME) and canola methyl ester (CME). Various fuels and fuel blend characteristics were determined and engine emissions from these fuels and blends were compared. Increasing percentages of SME and CME blended with either ARB or EPA diesels led to increased emissions of NO{sub x}, CO{sub 2} and soluble particulate matter. Also noted were reductions in total hydrocarbons, CO and insoluble particulate matter. Chassis dynamometer tests conducted on a 20/80 SME/ARB blend showed similar emission trends. The data suggest that certain methyl ester/No. 2 diesel blends in conjunction with technologies that reduce the soluble fraction of particulate emissions merit further exploration as emissions reducing fuel options for North American mass transit sectors (except California, which mandates ARB diesel).

Spataru, A.; Romig, C. [ADEPT Group, Inc., Los Angeles, CA (United States)

1995-11-01T23:59:59.000Z

273

Automated titration method for use on blended asphalts  

DOE Patents [OSTI]

A system for determining parameters and compatibility of a substance such as an asphalt or other petroleum substance uses titration to highly accurately determine one or more flocculation occurrences and is especially applicable to the determination or use of Heithaus parameters and optimal mixing of various asphalt stocks. In a preferred embodiment, automated titration in an oxygen gas exclusive system and further using spectrophotometric analysis (2-8) of solution turbidity is presented. A reversible titration technique enabling in-situ titration measurement of various solution concentrations is also presented.

Pauli, Adam T. (Cheyenne, WY); Robertson, Raymond E. (Laramie, WY); Branthaver, Jan F. (Chatham, IL); Schabron, John F. (Laramie, WY)

2012-08-07T23:59:59.000Z

274

Use of a predictive model for the impact of cofiring coal/biomass blends on slagging and fouling propensity  

SciTech Connect (OSTI)

The paper describes an investigation of slagging and fouling effects when cofiring coal/biomass blends by using a predictive model for large utility boilers. This model is based on the use a zone computational method to determine the midsection temperature profile throughout a boiler, coupled with a thermo-chemical model, to define and assess the risk of elevated slagging and fouling levels during cofiring of solid fuels. The application of this prediction tool was made for a 618 MW thermal wall-fired pulverized coal boiler, cofired with a typical medium volatile bituminous coal and two substitute fuels, sewage sludge and sawdust. Associated changes in boiler efficiency as well as various heat transfer and thermodynamic parameters of the system were analyzed with slagging and fouling effects for different cofiring ratios. The results of the modeling revealed that, for increased cofiring of sewage sludge, an elevated risk of slagging and high-temperature fouling occurred, in complete contrast to the effects occurring with the utilization of sawdust as a substitute fuel. 30 refs., 9 figs.,1 tab.

Piotr Plaza; Anthony J. Griffiths; Nick Syred; Thomas Rees-Gralton [Cardiff University, Cardiff (United Kingdom). Centre for Research in Energy

2009-07-15T23:59:59.000Z

275

Corrosion protection mechanism of polyaniline blended organic coating on steel  

SciTech Connect (OSTI)

Epoxy-coal tar coatings are widely used to protect steel structures exposed to marine atmosphere due to their good barrier property. However, the presence of micropores and microcracks formed during the coating formation leads to failure of the coating due to permeation of corrosive ions. In recent years, it has been established that the coatings containing polyaniline (PANI) is able to protect pinholes and defects due to its passivating ability. Hence, a study has been made on the effect of polyaniline content (1 and 3%) in epoxy-coal tar coating on the corrosion protection of steel in 3% NaCl solution by electrochemical impedance spectroscopy (EIS) studies. Both phosphate- and chloride-doped polyanilines were prepared by a chemical oxidative polymerization method. From EIS studies, it has been found that the resistance value of the coatings containing 1 and 3% phosphate-doped polyaniline and 3% chloride-doped polyaniline pigmented coatings are similar to 10{sup 9} {Omega} cm{sup 2} even after 90 days exposure to NaCl solution, which are two orders high in comparison to that of conventional coal tar epoxy coatings. Besides, the conducting state of polyaniline has been found to be decreased after exposure to NaCl solution due to redox property of PANI. X-ray photoelectron spectroscopy studies have shown that polyaniline forms a complex layer with iron beneath the coating along with iron oxide.

Sathiyanarayanan, S.; Jeyaram, R.; Muthukrishnan, S.; Venkatachari, G. [Central Electrochemical Research Institute, Karaikkudi (India)

2009-07-01T23:59:59.000Z

276

BiOctane | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud,Biodiesel Place:Forge

277

Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

Rich, Bechtold [Alliance Technical Services; Thomas, John F [ORNL; Huff, Shean P [ORNL; Szybist, James P [ORNL; West, Brian H [ORNL; Theiss, Timothy J [ORNL; Timbario, Tom [Alliance Technical Services; Goodman, Marc [Alliance Technical Services

2007-08-01T23:59:59.000Z

278

Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes  

SciTech Connect (OSTI)

This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased. (author)

Boehm, H. [Physikalische Chemie I, Universitaet Bielefeld (Germany); Braun-Unkhoff, M. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

2008-04-15T23:59:59.000Z

279

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

SciTech Connect (OSTI)

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

280

The Use of Triangular-Shaped PV Arrays to Better Blend into Historical Structures  

Broader source: Energy.gov [DOE]

When considering the installation of a solar PV array on a designated historical structure, placement of each solar panel requires extra attention to aesthetic considerations. If the solar array cannot be installed behind the structure or “hidden” on a roof plane that is not visible from the public street or sidewalk, it can sometimes be installed as an architectural feature that blends into the historical structure. One way to do this is to utilize triangular-shaped PV panels that conform with the building’s roof lines.

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

282

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy andNews and updates from theBiomass inBlending Hydrogen

283

Miscibility and degradability of poly(lactic acid)poly(ethylene oxide)/poly(ethylene glycol) blends  

SciTech Connect (OSTI)

Poly(lactic acid) [PLA] was melt blended with polyethylene(oxide) [PEG] and poly(ethylene glycol) [PEG] in different compositions to form blown films. It was determined that PLA was miscible with PEO in all compositions. Based on Gordon-Taylor equation, it was determined that the interactions between PLA and PEO is stronger than PEG. The addition of low molecular weight PEG improved the elongation and tear strength of the blends. Enzymatic degradation results shows that the weight loss of all the samples was more than 80% of the initial weight in 48 hours.

Yue, C.L.; Dave, V.; Gross, R.A.; McCarthy, S.P. [Univ. of Massachusetts, Lowell, MA (United States)

1995-12-01T23:59:59.000Z

284

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

SciTech Connect (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

285

95 Production and Testing of Coconut Oil Biodiesel Fuel and its Blend  

E-Print Network [OSTI]

Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0 % ethanol (wt % coconut oil), 0.8% potassium hydroxide catalyst at 65°C reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4%) was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

Oguntola J Alamu; Opeoluwa Dehinbo; Adedoyin M Sulaiman; Oguntola J. Alamu; Opeoluwa Dehinbo; Adedoyin M. Sulaiman

286

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect (OSTI)

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

287

Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.  

SciTech Connect (OSTI)

Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

2001-12-04T23:59:59.000Z

288

Key Aspects Blended Library draw strength by building on users'pre-existing knowledge of the everyday, non-digital  

E-Print Network [OSTI]

Key Aspects » Blended Library draw strength by building on users'pre-existing knowledge University of Konstanz http://hci.uni-konstanz.de/blendedlibrary Contact: Roman Rädle Tel. +49 7531 88-2868 Fax +49 7531 88-4772 roman.raedle@uni-konstanz.de Caused by the proceeding digitalization, real

Reiterer, Harald

289

Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report  

SciTech Connect (OSTI)

Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

1993-09-01T23:59:59.000Z

290

Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content  

E-Print Network [OSTI]

Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

Alvarez, Pedro J.

291

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

292

Amon Millner draft short paper submitted to the Interaction Design and Children 2011 conference Modkit: Blending and Extending Approachable Platforms  

E-Print Network [OSTI]

programming environment and the Arduino platform. The demonstration will feature the current Modkit components, activities, and projects that illustrate how the toolkit blends Scratch and Arduino platforms to extend what). General Terms Design, Human Factors, Languages. Keywords Modkit, Scratch, Arduino, informal learning

293

AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self-assembled monolayer  

E-Print Network [OSTI]

AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self force microscopy; Friction; Self-assembly; Surface thermodynamics (including phase transitions); Growth are of utmost current interest. In many practical appli- cations films of incompatible mixtures are pre- pared

Zbigniew, Postawa

294

Physical and chemical characteristics of an interesterified blend of butterfat and cottonseed oil with possible industrial applications  

E-Print Network [OSTI]

interest in milkfat research in other parts of the world. In 1984, a symposium was held in Sweden that dealt exclusively with milkfat and its modification. Emphasis was placed on milkfat-vegetable oil blends. These products are legally sold now in some...

Rashidi, Nabil

1988-01-01T23:59:59.000Z

295

Cellulase for commodity products from cellulosic biomass Michael E Himmel*?, Mark F Ruth*1 and Charles E Wymans  

E-Print Network [OSTI]

dramatically over the past two decades, to the point where the fuel is now competitive for blending with gasoline to reduce greenhouse gas emissions, enhance octane, extend the gasoline supply, and promote more

California at Riverside, University of

296

Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.  

SciTech Connect (OSTI)

Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

Herbinet, O; Pitz, W J; Westbrook, C K

2009-07-21T23:59:59.000Z

297

PUBLIC AND REGULATORY ACCEPTANCE OF BLENDING OF RADIOACTIVE WASTE VS DILUTION  

SciTech Connect (OSTI)

On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and then dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.

Goldston, W.

2010-11-30T23:59:59.000Z

298

Phase Structure and Properties of Poly(ethylene terephthalate)/High-Density Polyethylene Based on  

E-Print Network [OSTI]

Phase Structure and Properties of Poly(ethylene terephthalate)/High-Density Polyethylene Based.interscience.wiley.com). ABSTRACT: Blends based on recycled high density polyethylene (R-HDPE) and recycled poly(ethylene tereph- thalate) (R-PET) were made through reactive extrusion. The effects of maleated polyethylene (PE

299

Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

Snider, J.D.

1996-02-01T23:59:59.000Z

300

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

SciTech Connect (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Use of SEBS/EPR and SBR/EPR as binary compatibilizers for PE/PP/PS/HIPS blends: A work oriented to the recycling of thermoplastic wastes .  

E-Print Network [OSTI]

??Recycling of thermoplastic wastes consisting using SEBS/EPR and SBR/EPR as compatibilizers. The effect of PE/PP/PS/HIPS blends was investigated by The effect of the binary compatibilizer… (more)

Equiza, Nilton

2007-01-01T23:59:59.000Z

302

Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study  

SciTech Connect (OSTI)

The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.

Piotr A. Domanski; W. Vance Payne

2002-10-31T23:59:59.000Z

303

Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors  

SciTech Connect (OSTI)

Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M., E-mail: d.m.taylor@bangor.ac.uk [School of Electronic Engineering, Bangor University, Dean Street, Bangor, Gwynedd LL57 1UT (United Kingdom)

2014-11-03T23:59:59.000Z

304

A field test using coal:DRDF blends in spreader stoker-fired boilers. Final report, June 1976-July 1978  

SciTech Connect (OSTI)

This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-diameter x 3/4-inch-long dRDF was co-fired with coal in 2.7 x 7.5 kg/sec (60,000 lb/hr) and 3.6 x 10 kg/sec (75,000 lb/hr) of 1.03 MPa (150 psig) saturated steam. The results indicate that coal:dRDF blends up to 1:2 can be handled and burned in conventional spreader stoker-fired boilers without major equipment modification. As more dRDF was substituted for coal, the flame volume increased, the opacity decreased, the fly ash carbon burnout improved, and the turndown ratio of boiler operation increased. The emissions from the blend firing decreased slightly in mass flux, dropped significantly in particulate size and stack opacity, and had satisfactory particulate resistivities.

Degler, G.H.; Rigo, H.G.; Riley, B.T. Jr.

1980-08-01T23:59:59.000Z

305

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

306

ccsd00000932 Electronic structure of wurtzite and zinc-blende AlN  

E-Print Network [OSTI]

applications to flourish in the areas of high speed, high performance electronics and optoelectronic devices

307

High conversion of coal to transportation fuels for the future with low HC gas production. Progress report No. 14, January 1--March 31, 1996  

SciTech Connect (OSTI)

The objective of this project is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective, reflecting a recent change in direction in the synthetic fuels effort of DOE, is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline- burning transportation vehicles of today. To meet this second objective, research was proposed, and funding awarded, for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B). Experimental coal liquefaction studies conducted in a batch microreactor in our laboratory have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly we may approach these results in a continuous- flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal. A continuous system has been constructed and operated, with a one-half inch inside diameter (ID) tube as the reaction vessel. As the work in this project proceeded toward its conclusion, an unexpected benefit was discovered. As the residence times were decreased to values of 10 seconds or less, ratios of liquids/HC gases of 20/1 or higher were achieved. But very importantly, it was discovered that the chemical reactions which produce the primary liquids can be carried to high conversions at pressures much lower than reported, and indeed required, in the processes at longer times.

Wiser, W.H.; Oblad, A.G.

1996-04-01T23:59:59.000Z

308

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

309

Reducing hazardous waste incinerator emissions through blending: A study of 1,1,1-trichloroethane injection  

SciTech Connect (OSTI)

We investigate whether blending liquid hazardous wastes with hydrocarbons such as alkanes can improve the destruction efficiency and reduce the combustion byproduct levels in the post-flame region of a laboratory scale combustor. Outlet species concentrations are measured with an FTIR spectrometer for mixtures of 1,1,1-trichloroethane and 25% (by volume) dodecane or heptane injected as a spray of droplets. We also inject sprays of liquid pure 1,1,1-trichloroethane, gaseous pure 1,1,1-trichloroethane, and gaseous 1,1,1-trichloroethane with 25% (by volume) heptane. Once vaporized, the 1,1,1-trichloroethane decomposes to form CO{sub 2} and HCl through the intermediates 1,1-dichloroethylene, phosgene, acetylene, and carbon monoxide. The 1,1,1-trichloroethane/alkane mixtures also form the intermediate ethylene. No significant differences are observed between injecting the compounds as a droplet spray or as a gaseous jet, not as unexpected result as the mixing time of the gas jet is longer than the vaporization time of the droplets. The addition of heptane or dodecane to 1,1,1-trichloroethane produces two principal effects: an increase in ethylene, acetylene and carbon monoxide levels for injection temperatures between 950 to 1040 K, and a decrease in 1,1-dichloroethylene, phosgene, acetylene, and carbon monoxide levels for injection temperatures greater than 1050 K. Reaction of the injected alkane causes the former effect, while the additional heat of combustion of the alkane additives causes the latter. 17 refs., 6 figs., 3 tabs.

Thomson, M.; Koshland, C.P.; Sawyer, R.F. [Univ. of California, Berkeley, CA (United States)] [and others

1996-12-31T23:59:59.000Z

310

Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non?Road Engines, Report 1 - Updated  

SciTech Connect (OSTI)

In summer 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20--gasoline blended with 15 and 20% ethanol--on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This first report provides the results available to date from the first stages of a much larger overall test program. Results from additional projects that are currently underway or in the planning stages are not included in this first report. The purpose of this initial study was to quickly investigate the effects of adding up to 20% ethanol to gasoline on the following: (1) Regulated tailpipe emissions for 13 popular late model vehicles on a drive cycle similar to real-world driving and 28 small non-road engines (SNREs) under certification or typical in use procedures. (2) Exhaust and catalyst temperatures of the same vehicles under more severe conditions. (3) Temperature of key engine components of the same SNREs under certification or typical in-use conditions. (4) Observable operational issues with either the vehicles or SNREs during the course of testing. As discussed in the concluding section of this report, a wide range of additional studies are underway or planned to consider the effects of intermediate ethanol blends on materials, emissions, durability, and driveability of vehicles, as well as impacts on a wider range of nonautomotive engines, including marine applications, snowmobiles, and motorcycles. Section 1 (Introduction) gives background on the test program and describes collaborations with industry and agencies to date. Section 2 (Experimental Setup) provides details concerning test fuels, vehicle and SNRE selection, and test methods used to conduct the studies presented in this report. Section 3 (Results and Discussion) summarizes the vehicle and SNRE studies and presents data from testing completed to date. Section 4 (Next Steps) describes planned future activities. The appendixes provide test procedure details, vehicle and SNRE emissions standards, analysis details, and additional data and tables from vehicle and SNRE tests.

Knoll, Keith [National Renewable Energy Laboratory (NREL); West, Brian H [ORNL; Clark, Wendy [National Renewable Energy Laboratory (NREL); Graves, Ronald L [ORNL; Orban, John [Battelle, Columbus; Przesmitzki, Steve [National Renewable Energy Laboratory (NREL); Theiss, Timothy J [ORNL

2009-02-01T23:59:59.000Z

311

Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study  

SciTech Connect (OSTI)

In this brief communication, we present new experimental species profile measurements for the low and intermediate temperature oxidation of ethanol under knock-prone conditions. These experiments show that ethanol exhibits no global low temperature reactivity at these conditions, although we note the heterogeneous decomposition of ethanol to ethylene and water. Similar behavior is reported for an E85 blend in n-heptane. Kinetic modeling results are presented to complement these experiments and elucidate the interaction of ethanol and primary reference fuels undergoing cooxidation. (author)

Haas, Francis M.; Chaos, Marcos; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

2009-12-15T23:59:59.000Z

312

Add MTBE unit ahead of alkylation  

SciTech Connect (OSTI)

Approximately three years ago, the people at Diamond Shamrock's Sunray, Texas, refinery recognized a growing demand for high octane super premium unleaded gasoline in their regional marketing area. It was apparent that they would need to change their processing scheme to meet this growing demand. After investigating several options, they decided to install an MTBE (methyl tert-butyl ether) unit upstream of their existing sulfuric acid (H/sub 2/SO/sub 4/) aklylation unit. The new unit would process olefin feed before it entered the alkylation unit. The MTBE unit was expected to improve Diamond Shamrock's gasoline pool in two ways. First, the MTBE would be an additional high octane blending stock for the gasoline pool. Second, the MTBE unit would improve the quality of the olefin stream going to the alkylation unit. Diamond Shamrock brought their MTBE unit onstream in December, 1985. The results of the combined operation exceeded expectations, producing alkylate in excess of 98 RON (Research octane number) and MTBE of 118 RON. These components significantly upgraded the refinery's capability to produce a super premium unleaded gasoline.

Masters, K.R.; Prohaska, E.A.

1988-08-01T23:59:59.000Z

313

Initial report on characterization of excess highly enriched uranium  

SciTech Connect (OSTI)

DOE`s Office of Fissile Materials Disposition assigned to this Y-12 division the task of preparing a report on the 174.4 metric tons of excess highly enriched U. Characterization included identification by category, gathering existing data (assay), defining the likely needed processing steps for prepping for transfer to a blending site, and developing a range of preliminary cost estimates for those steps. Focus is on making commercial reactor fuel as a final disposition path.

NONE

1996-07-01T23:59:59.000Z

314

Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants  

SciTech Connect (OSTI)

In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

I. Surez-Ruiz; J.C. Hower; G.A. Thomas [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

2007-01-15T23:59:59.000Z

315

A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources  

SciTech Connect (OSTI)

In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.

2013-05-10T23:59:59.000Z

316

Clean Transportation Program | 919-515-3480 | www.cleantransportation.org North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 8/15/13  

E-Print Network [OSTI]

with gasoline at different levels. E10 (10% ethanol /90% gasoline) is blended in almost all regular 87 octane such as corn, grains, and sugarcane, as well as crop and forestry waste materials. Ethanol is usually blended gasoline where as E85 (85% ethanol / 15% gasoline) is an alternative fuel for flexible fuel vehicles (FFVs

317

Clean Transportation | www.nccleantech.ncsu.edu North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 3/13/14  

E-Print Network [OSTI]

, and sugarcane, as well as crop and forestry waste materials. Ethanol is usually blended with gasoline at different levels. E10 (10% ethanol /90% gasoline) is blended in almost all regular 87 octane gasoline where as E85 (85% ethanol / 15% gasoline) is an alternative fuel for flexible fuel vehicles (FFVs) . What

318

Disposition of Surplus Highly Enriched Uranium  

Broader source: Energy.gov (indexed) [DOE]

fuel or the blending of HEU to LEU as metal. Under dl blending dtematives, the maximum radiation dose to the maximy exposed individual of the public is 2.0 millirem (mrem)...

319

Ignition Delay Times of Natural Gas/Hydrogen Blends at Elevated Pressures  

E-Print Network [OSTI]

Applications of natural gases that contain high levels of hydrogen have become a primary interest in the gas turbine market. For reheat gas turbines, understanding of the ignition delay times of high-hydrogen natural gases is important for two...

Brower, Marissa

2012-10-19T23:59:59.000Z

320

Effect of Carbon Black and Silica Fillers in Elastomer Blends Yimin Zhang, S. Ge, B. Tang, T. Koga, M. H. Rafailovich,*, J. C. Sokolov,  

E-Print Network [OSTI]

, the effect of carbon black is offset by silica fillers. Introduction Fillers exist in a variety of systemsEffect of Carbon Black and Silica Fillers in Elastomer Blends Yimin Zhang, S. Ge, B. Tang, T. Koga January 30, 2001 ABSTRACT: The effects of carbon black and pyrogeneous silica fillers on the interfacial

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

322

Effect of commercial polymerization conditions on rubber particle size and efficiency in high impact polystyrene  

E-Print Network [OSTI]

Calculations. . . . . Page 20 21 25 . 77 77 . . . 79 . . . 85 CHAPTER I INTRODUCTION High impact polystyrene (HIPS) is a rubber toughened polymer, a special class of materials prepared by blending a high modulus, glassy polymer with a soft, rubber... with rubber phase volume (the volume occupied by the rubber phase, including occluded polystyrene) (Baer, 1972). The rubber phase volume (RPV) of commercial resins may be increased as much as four times the rubber volume by trapping polystyrene inside...

Klussmann, Bradley Ryan

1997-01-01T23:59:59.000Z

323

Biodiesel Production From Animal Fats And Its Impact On The Diesel Engine With Ethanol-Diesel Blends: A Review  

E-Print Network [OSTI]

Abstract — Mainly animal fats and vegetable oils are used for the production of biodiesel. Several types of fuels can be derived from triacylglycerol-containing feedstock. Biodiesel which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol (methanol/ethanol) under mild conditions in the presence of a base catalyst. This paper discuses fuel production, fuel properties, environmental effects including exhaust emissions and co-products. This also describes the use of glycerol which is the by-product in esterification process along with biodiesel. The impact of blending of biodiesel with ethanol and diesel on the diesel engine has described.

Darunde Dhiraj S; Prof Deshmukh Mangesh M

324

Bio-renewable fibers extracted from lignin/polylactide (PLA) blend.  

E-Print Network [OSTI]

??Due to the high cost and environment issues in the production of carbon fiber from polyacrylonitrile (PAN) and pitch, the use of low cost bio-renewable… (more)

Chen, Keke

2012-01-01T23:59:59.000Z

325

Advancing Biorefining of Distillers Grain and Corn Stover Blends  

Broader source: Energy.gov (indexed) [DOE]

pretreatment process for distiller's grains and corn stover to convert residual starch, cellulose, and hemicellulose to ethanol and high- converting residual starch in order to...

326

Thermal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends  

E-Print Network [OSTI]

Thermal decomposition and flammability of fire-resistant, UV/visible- sensitive polyarylates temperature, low notch sensitivity, and good electrical properties. Most of all, these materials show a high resistance to ignition and flame spreading without additives [6]. A high-temperature wholly aromatic poly

327

Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412  

SciTech Connect (OSTI)

CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using sophisticated scientific modeling optimized the 100-HX's approximately 0.7 square mile (181 hecto-meters) extraction and injection well field to support continuous operation of a maximum of 800 gallons (3,028 liters) per minute, 24 hours per day, and 7 days per week. The use of traditional resin technology for the plant's ion exchange system required a change out of the resin every 12 weeks and shipment to an offsite facility 1,500 miles (2,414 kilometers) away for regeneration. Instead, the project leadership pursued newer technology with a disposable resin that could be disposed of on-site and would require less frequent change outs, reducing the project's life cycle costs by more than $16 million. Constructing the facility had its own challenges. The well field location overlapped ecologically sensitive lands where bald eagles and native wildlife use the land for their mating habitat for nearly half of the year. Building locations had to be planned around historically and culturally sensitive areas, and around another contractor's remediation work zones. Also, the size of the well field required a transfer (pumping) facility and installation of more than 60 miles (97 kilometers) of high-density polypropylene pipe, 23 miles (38 kilometers) of power cable, and 28 miles (46 kilometers) of control cable. Along with schedule and budget constraints typical of any fast-track project, the project team dealt with severe resource constraints due to competing projects across the Hanford Site caused by the influx of American Recovery and Reinvestment Act stimulus funding. In addition, the project team itself was stretched between completing another $25 million dollar construction project while designing and constructing this project. In order to save money, the project schedule was compressed by three months from the original baseline schedule. This was made possible by the strong use of project management principles throughout the design, construction, and testing phases, as well as implementation of many lessons learned from a similar construction project. In summary, the 100-HX

Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

2012-07-01T23:59:59.000Z

328

New etherification process commercialized in Finland  

SciTech Connect (OSTI)

The phase-out of leaded fuels in Europe, Asia, and parts of Africa and Latin America is increasing demand for octane and octane-bearing fuel components such as ethers. Early solutions to the problem of increasing octane while reducing tailpipe emissions involved use of methyl tertiary butyl ether (MTBE). According to Neste, using both tertiary amyl methyl ether (TAME) and MTBE can give refiners increased blending flexibility for volatility control. But the economics associated with TAME production often make TAME units difficult to justify. The paper discusses the NExTAME process, the unit at the Porvoo refinery and process improvements.

NONE

1997-01-06T23:59:59.000Z

329

Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends  

E-Print Network [OSTI]

In recent years, the development and use of biofuels have received considerable attention due to the high demand for environmentally acceptable (green) fuels. Most of the recent studies have looked at the processes of converting vegetable oils...

Savant, Gautam Sandesh

2012-07-16T23:59:59.000Z

330

Characterization of Jeffamine (polyoxypropyleneamine) based compatibilizers and bisphenol-a polycarbonate blends  

E-Print Network [OSTI]

to the negative sign, the high molecular weights (or molar Volumes) of polymers greatly diminishes its magnitude leaving conditions for miscibility to be satisfied by a negative interaction parameter. This leads one to the conclusion that an exothermic heat... bond formation and a variety of other specific interactions play an important role in determining polymer miscibility. On the other hand the observed exothermic heats of mixing for many low and high molecular weight systems are small and other...

Guenther, Gerhard Kurt

1991-01-01T23:59:59.000Z

331

Mapping surrogate gasoline compositions into RON/MON space  

SciTech Connect (OSTI)

In this paper, new experimentally determined octane numbers (RON and MON) of blends of a tri-component surrogate consisting of toluene, n-heptane, i-octane (called toluene reference fuel TRF) arranged in an augmented simplex design are used to derive a simple response surface model for the octane number of any arbitrary TRF mixture. The model is second-order in its complexity and is shown to be more accurate to the standard ''linear-by-volume'' (LbV) model which is often used when no other information is available. Such observations are due to the existence of both synergistic and antagonistic blending of the octane numbers between the three components. In particular, antagonistic blending of toluene and iso-octane leads to a maximum in sensitivity that lies on the toluene/iso-octane line. The model equations are inverted so as to map from RON/MON space back into composition space. Enabling one to use two simple formulae to determine, for a given fuel with known RON and MON, the volume fractions of toluene, n-heptane and iso-octane to be blended in order to emulate that fuel. HCCI engine simulations using gasoline with a RON of 98.5 and a MON of 88 were simulated using a TRF fuel, blended according to the derived equations to match the RON and MON. The simulations matched the experimentally obtained pressure profiles well, especially when compared to simulations using only PRF fuels which matched the RON or MON. This suggested that the mapping is accurate and that to emulate a refinery gasoline, it is necessary to match not only the RON but also the MON of the fuel. (author)

Morgan, Neal; Kraft, Markus [Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Smallbone, Andrew; Bhave, Amit [Reaction Engineering Solutions Ltd., 61 Canterbury Street, Cambridge CB4 3QG (United Kingdom); Cracknell, Roger; Kalghatgi, Gautam [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2010-06-15T23:59:59.000Z

332

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect (OSTI)

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

333

An Experimental Investigation of Low Octane Gasoline in Diesel Engines |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluation of

334

Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride Starch Blends  

E-Print Network [OSTI]

dispersion than neat PLA. The main disadvantages of TPS are its moisture sensitivity, limited temperature temperature of PLA is not affected by grafting. Glass transition temperatures and dynamic mechanical Introduction Poly(lactic acid) (PLA) exhibits high bio- degradability; however, it is expensive ­ what limits

North Texas, University of

335

Color tuning of Y{sub 3}Al{sub 5}O{sub 12}:Ce phosphor and their blend for white LEDs  

SciTech Connect (OSTI)

Gadolinium or lanthanum co-doped (0.5 mole) yttrium aluminum garnet doped with cerium phosphors were synthesized by a citric acid gel method and the effect of co-dopants on the structural and luminescent properties were studied. A significant peak shift in the photoluminescence spectra of yttrium aluminum garnet doped cerium was observed from 535 to 556 and 576 nm for gadolinium or lanthanum co-doped phosphors, respectively. The color tuned phosphor were blended with yttrium aluminum garnet doped cerium which showed a considerable improvement in the Commission International De Eclairage chromaticity co-ordinate values of gallium nitride based blue light emitting diode pumped white light. White light emitted from yttrium aluminum garnet doped cerium shows a Commission International De Eclairage value of (0.229, 0.182) whereas the yttrium aluminum garnet doped cerium phosphor blended with gadolinium or lanthanum co-doped phosphor shows (0.262, 0.243) and (0.295, 0.282), respectively. These results demonstrate the possibility to use these phosphor blends to enhance the white light generation in the field of white-light emitting diode solid-state lighting.

Kottaisamy, M. [Materials Research Laboratory, Kalasalingam University, Krishnankoil 626 190 (India)], E-mail: mmksamy66@yahoo.com; Thiyagarajan, P.; Mishra, J.; Ramachandra Rao, M.S. [Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600 036 (India); Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

2008-07-01T23:59:59.000Z

336

The Impact of Alternative Fuels on Combustion Kinetics  

SciTech Connect (OSTI)

The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributions on fuel vaporization and mixing. The primary focus will be Fischer-Tropsch liquids made from natural gas, coal or biomass. The models will include both the effects of operation with these alternative fuels as well as blends of these fuels with conventional petroleum-based fuels. The team will develop the requisite kinetic rules for specific reaction types and incorporate these into detailed kinetic mechanisms to predict the combustion performance of neat alternative fuels as well as blends of these fuels with conventional fuels. Reduced kinetic models will be then developed to allow solution of the coupled kinetics/transport problems. This is a collaboration between the Colorado School of Mines (CSM) and the Lawrence Livermore National Laboratory (LLNL). The CSM/LLNL team plans to build on the substantial progress made in recent years in developing accurate detailed chemical mechanisms for the oxidation and pyrolysis of conventional fuels. Particular emphasis will be placed upon reactions of the isoalkanes and the daughter radicals, especially tertiary radicals, formed by abstraction from the isoalkanes. The various components of the program are described. We have been developing the kinetic models for two iso-dodecane molecules, using the same kinetic modeling formalisms that were developed for the gasoline and diesel primary reference fuels. These mechanisms, and the thermochemical and transport coefficient submodels for them, are very close to completion at the time of this report, and we expect them to be available for kinetic simulations early in the coming year. They will provide a basis for prediction and selection of desirable F-T molecules for use in jet engine simulations, where we should be able to predict the ignition, combustion and emissions characteristics of proposed fuel components. These mechanisms include the reactions and chemical species needed to describe high temperature phenomena such as shock tube ignition and flammability behavior, and they will also include low temperature kinetics to describe other ignition phenomena such as compression ignition and knocking. During the past years, our hydrocarbon kinetics modeling group at LLNL has focused a great deal on fuels typical of gasoline and diesel fuel. About 10 years ago, we developed kinetic models for the fuel octane primary reference fuels, n-heptane [1] and iso-octane [2], which have 7 and 8 carbon atoms and are therefore representative of typical gasoline fuels. N-heptane represents the low limit of knock resistance with an octane number of 0, while iso-octane is very knock resistant with an octane number of 100. High knock resistance in iso-octane was attributed largely to the large fraction of primary C-H bonds in the molecule, including 15 of the 18 C-H bonds, and the high bond energy of these primary bonds plays a large role in this knock resistance. In contrast, in the much more ignitable n-heptane, 10 of its 16 C-H bonds are much less strongly bound secondary C-H bonds, leading to its very low octane number. All of these factors, as well as a similarly complex kinetic description of the equally important role of the transition state rings that transfer H atoms within the reacting fuel molecules, were quantified and collected into large kinetic reaction mechanisms that are used by many researchers in the fuel chemistry world.

Pitz, W J; Westbrook, C K

2009-07-30T23:59:59.000Z

337

Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films  

SciTech Connect (OSTI)

We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5?×?10{sup 16?}cm{sup ?3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

Kanemoto, Katsuichi, E-mail: kkane@sci.osaka-cu.ac.jp; Nakatani, Hitomi; Domoto, Shinya [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

2014-10-28T23:59:59.000Z

338

Disposition of highly enriched uranium obtained from the Republic of Kazakhstan. Environmental assessment  

SciTech Connect (OSTI)

This EA assesses the potential environmental impacts associated with DOE`s proposal to transport 600 kg of Kazakhstand-origin HEU from Y-12 to a blending site (B&W Lynchburg or NFS Erwin), transport low-enriched UF6 blending stock from a gaseous diffusion plant to GE Wilmington and U oxide blending stock to the blending site, blending the HEU and uranium oxide blending stock to produce LEU in the form of uranyl nitrate, and transport the uranyl nitrate from the blending site to USEC Portsmouth.

NONE

1995-05-01T23:59:59.000Z

339

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect (OSTI)

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

340

Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire  

E-Print Network [OSTI]

reported dry transfer method,13 is the use of octane and mineral oil (2:1, v:v) mixture as a lubricant a lubricant during the contact printing process which significantly minimizes the NW-NW mechanical patterned resist (Figure 1a and Supporting Information). During the process, NWs are in effect combed

Javey, Ali

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL  

SciTech Connect (OSTI)

Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

2003-02-27T23:59:59.000Z

342

EXPERIMENTAL INVESTIGATION OF PERFORMANCE PARAMETERS OF SINGLE CYLINDER FOUR STROKE DI DIESEL ENGINE OPERATING ON NEEM OIL BIODIESEL AND ITS BLENDS  

E-Print Network [OSTI]

Increasing oil prices, and global warming activates the research and development of substitute energy resources to maintain economic development. The methyl esters of vegetable oil, known as biodiesel are becoming popular because of their low ecological effect and potential as a green substitute for compression ignition engine. The main objective of this study is to investigate the performance of neem oil methyl ester on a single cylinder, four stroke, direct injection, and 8 HP capacity diesel engine. The Experimental research has been performed to analyze the performance of different blends 20 % (BD20), 50 % (BD50), and 100 % (BD100) of neem oil biodiesel. Biodiesel, when compared to conventional diesel fuel, results showed that the brake specific fuel consumption and brake specific energy consumption are higher and brake thermal efficiency less during testing of engine. The brake specific energy consumption is increased by 0.60 % to 8.25 % and brake thermal efficiency decreased by 0.57 % to 7.62 % at 12 kg engine brake load as compared to diesel fuel. When the fuel consumption of biodiesel is compared to diesel fuel it observed that the fuel consumption was increased by 2.5 % to 19.5 % than that of diesel fuel for B20, B50 and B100 bends at 12 kg engine brake load. It is observed that the performance of biodiesel blends is less as compared to plain diesel and during testing of diesel engine run normally for all engine loads. It is investigated that the neem oil biodiesel 20 % blend showed very close performance when compared to plain diesel and hence can be used as an alternative fuel for conventional diesel in the future.

Rob Res; Dharmendra Yadav; Nitin Shrivastava; Vipin Shrivastava

343

Absence of Structural Impact of Noble Nanoparticles on P3HT: PCBM Blends for Plasmon Enhanced Bulk-Heterojunction Organic Solar Cells Probed by Synchrotron Grazing Incidence X-Ray Diffraction  

E-Print Network [OSTI]

The incorporation of noble metal nanoparticles, displaying localized surface plasmon resonance, in the active area of donor-acceptor bulk-heterojunction organic photovoltaic devices is an industrially compatible light trapping strategy, able to guarantee better absorption of the incident photons and give an efficiency improvement between 12% and 38%. In the present work, we investigate the effect of Au and Ag nanoparticles blended with P3HT: PCBM on the P3HT crystallization dynamics by synchrotron grazing incidence X-ray diffraction. We conclude that the presence of (1) 80nm Au, (2) mix of 5nm, 50nm, 80nm Au, (3) 40nm Ag, and (4) 10nm, 40nm, 60nm Ag colloidal nanoparticles, at different concentrations below 0.3 wt% in P3HT: PCBM blends, does not affect the behaviour of the blends themselves.

Samuele Lilliu; Mejd Alsari; Oier Bikondoa; J. Emyr Macdonald; Marcus S. Dahlem

2014-10-18T23:59:59.000Z

344

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends  

SciTech Connect (OSTI)

Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

2005-11-01T23:59:59.000Z

345

Detailed kinetic models for the low-temperature auto ignition of gasoline surrogates  

E-Print Network [OSTI]

In the context of the search for gasoline surrogates for kinetic modeling purpose, this paper describes a new model for the low-temperature auto-ignition of n-heptane/iso-octane/hexene/toluene blends for the different linear isomers of hexene. The model simulates satisfactory experimental results obtained in a rapid compression machine for temperatures ranging from 650 to 850 K in the case of binary and ternary mixtures including iso octane, 1-hexene and toluene. Predictive simulations have also been performed for the autoignition of n heptane/iso octane/hexene/toluene quaternary mixtures: the predicted reactivity is close to that of pure iso octane with a retarding effect when going from 1- to 3-alkene.

Bounaceur, Roda; Fournet, René; Warth, Valérie; Battin-Leclerc, Frédérique

2009-01-01T23:59:59.000Z

346

energy savings by the use of mtbe to replace alkylate in automotive gasolines  

SciTech Connect (OSTI)

This paper presents data on the differences in energy consumption in the production of leaded and unleaded AI-93 gasolines with various blend components. The authors investigate as high-octane components certain products that are more effective in use and less energy-consuming in production in comparison with alkylate. In particular, methyl tert-butyl ether (MTBE) is discussed; it is not poisonous, it has a high heat of combustion, and it does not attack materials of construction. The addition of 11% MTBE to gasoline lowers the cold start temperature of engines by 10-12 degrees. Moreover, no adjustment of the carburetor is required for the changeover to gasoline with 11% MTBE.

Englin, B.A.; Emel'yanov, V.E.; Terent'ev, G.A.; Vinogradov, A.M.

1986-07-01T23:59:59.000Z

347

Daily High-Resolution-Blended Analyses for Sea Surface Temperature RICHARD W. REYNOLDS,* THOMAS M. SMITH, CHUNYING LIU,* DUDLEY B. CHELTON,#  

E-Print Network [OSTI]

. SMITH, CHUNYING LIU,* DUDLEY B. CHELTON,# KENNETH S. CASEY,@ AND MICHAEL G. SCHLAX# *NOAA purposes from climate monitoring and prediction (e.g., Smith and Reynolds 2003) to fea- ture tracking (e and Atmospheric Administration (NOAA) as described by Reynolds and Smith (1994) and Reynolds et al. (2002

Kurapov, Alexander

348

PETROLEUM AND PETROLEUM/COAL BLENDS AS FEEDSTOCKS IN LABORATORY-SCALE AND PILOT-SCALE COKERS TO OBTAIN CARBONS OF POTENTIALLY HIGH VALUE.  

E-Print Network [OSTI]

??The main goal of this research is to understand how the chemical composition of the feedstock and reactor design affects the quality of the coke… (more)

Escallon, Maria

2008-01-01T23:59:59.000Z

349

Tank waste remediation system phase I high-level waste feed processability assessment report  

SciTech Connect (OSTI)

This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

1996-08-01T23:59:59.000Z

350

Blackmore, K. and Kane, L., Blended Learning for Course Sharing A Case Study Proceedings of the 2010 AaeE Conference, Sydney, Copyright Blackmore, K. and Kane, L., 2010  

E-Print Network [OSTI]

that has been employed in restructuring a Solar Energy Technology course at a major Australian university for Course Sharing ­ A Case Study Kim Blackmore Australian National University, Canberra, Australia Kim.Blackmore@anu.edu.au Lauren Kane Australian National University, Canberra, Australia Lauren.Kane@anu.edu.au Abstract: A blend

Blackmore, Kim

351

Aspects of coal pyrogenation with high heating rates  

SciTech Connect (OSTI)

The present paper describes the conversion of different rank coals into coke of required quality, influenced by heating rate variation. The study has been made for romanian coals and the imported coals too. Theoretical aspects of the coking process kinetics with special practical applications are shown. In Romania, classical coke making technology involves some theoretical and practical problems because of the local coal supply, weak in coking coals. Petrographical methods, as a complementary source of information for coking mechanisms understanding were used, for blends with high content of weakly coking coals. The results reveal the importance of rank and petrographical composition determinations for complex blends making. The paper continues previous studies of coke making kinetics, influenced by heating rate variation. On the basis of the relationship between coal charge composition and coke structure, including its use in the blast furnace, the influence of an increase in heating rate on the structure of the coke produced from different rank and petrographical composition coals, was studied. The heating rates ranged between 3 and 40 C/min. The structural changes produced during pyrogenation were more evident for the heating rates: 3, 6, 10 and 40 C/min. Table 2 reveals the optical aspects of coke matrix and inertinitic inclusions evolution, that is, the differences in structure arrangement by changing the plastic phase characteristics due to the increase in the heating rate.

Panaitescu, C.; Barca, F. [Politehnica Univ., Bucharest (Romania); Predeanu, G.; Albastroiu, P. [Metallurgical Research Inst., Bucharest (Romania)

1994-12-31T23:59:59.000Z

352

Red phosphors for use in high CRI fluorescent lamps  

DOE Patents [OSTI]

Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

2005-11-15T23:59:59.000Z

353

Enhanced efficiency of p-type doping by band-offset effect in wurtzite and zinc-blende GaAs/InAs-core-shell nanowires  

SciTech Connect (OSTI)

Using first principles calculation based on density-functional theory, we investigated p-type electronic structures and the doping mechanism in wurtzite (WZ) and zinc-blende (ZB) GaAs/InAs-core-shell nanowires (NWs) along the [0001] and [111] directions, respectively. Comparing the doping in WZ and ZB core-shell NWs, we found it is easier and more stable to realize dopant in WZ NWs. Due to the type I band-offset, p-type doping in the GaAs-core of GaAs{sub core}/InAs{sub shell} for both WZ and ZB NWs makes that the valence band-edge electrons in the InAs-shell can spontaneously transfer to the impurity states, forming one-dimensional hole gas. In particular, this process accompanies with a reverse transition in WZ core-shell nanowire due to the existence of antibonding and bonding states.

Song, Changsheng; Wang, Jiqing, E-mail: jqwang@ee.ecnu.edu.cn; Lin, Weixian; Mao, Huibing; Zhao, Qiang; Yang, Pingxiong [Key Laboratory of Polarized Materials and Devices, East china Normal University, shanghai 200241 (China); Xing, Huaizhong [Department of Applied Physics, Donghua University, Shanghai 201620 (China)

2014-09-07T23:59:59.000Z

354

The autoignition of iso-cetane at high to moderate temperatures and elevated pressures: Shock tube experiments and kinetic modeling  

SciTech Connect (OSTI)

Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C{sub 16}H{sub 34}) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated temperatures and pressures relevant to combustion in internal combustion engines. Ignition delay time measurements were made in reflected shock experiments in a heated shock tube for {phi} = 0.5, 1.0, and 1.5 iso-cetane/air mixtures at temperatures ranging from 879 to 1347 K and pressures from 8 to 47 atm. Ignition delay times were measured using electronically excited OH emission, monitored through the shock tube end wall, and piezoelectric pressure transducer measurements, made at side wall locations. A new kinetic mechanism for the description of the oxidation of iso-cetane is presented that is developed based on a previous mechanism for iso-octane. Computed results from the mechanism are found in good agreement with the experimental measurements. To our knowledge, the ignition time measurements for iso-cetane presented here are the first of their kind. (author)

Oehlschlaeger, Matthew A.; Steinberg, Justin [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St., JEC 2049, Troy, NY 12180 (United States); Westbrook, Charles K.; Pitz, William J. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

2009-11-15T23:59:59.000Z

355

Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for to

Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

2013-08-21T23:59:59.000Z

356

Inclusion of Blended Lipid Solutions as Functional Ingredients to Alter the Fatty Acid Profile of Beef Patties  

E-Print Network [OSTI]

fatty acid profile. Pelser and others (2007) manufactured Dutch style sausages enriched with canola oil or encapsulated flaxseed oil, seeing an increase in PUFA:SFA ratio as well as an decrease in n-6:n-3 ratio in both treatments compared.... Sausages (Pelser and others 2007) were manufactured with canola oil or flaxseed oil, both high in 18:3n-3, and fish oils, high in 20:5n-3 and 22:6n-3. It was observed that treatments with canola oil, due most likely to its high amount of tocopherols...

Lowder, Austin C.

2010-10-12T23:59:59.000Z

357

The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine  

SciTech Connect (OSTI)

The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 88. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant equivalence ratio conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50. The increase in efficiency with higher CR was fuel-dependent, so that the fuels requiring a higher CR to achieve ignition did not gain a proportionate efficiency increase. For example, n-heptane achieved an indicated thermal efficiency (ITE) of 38% at a CR of 9:1, whereas a 50 wt% blend of toluene with n-heptane required a CR of 12:1 to achieve the same ITE. A simple heat balance around the engine showed that higher toluene content fuels had higher cooling losses. The high toluene fuels exhibited higher rates of maximum pressure rise than the lower octane fuels. The increased cooling losses can be attributed to the higher pressure rise rates, which are a driving force for heat transfer.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2007-01-01T23:59:59.000Z

358

Determination of the effects caused by different polymers on coal fluidity during carbonization using high-temperature {sup 1}H NMR and rheometry  

SciTech Connect (OSTI)

The effects of blending polyethylene (PE), polystyrene (PS), poly(ethyleneterephthalate) (PET), a flexible polyurethane (FPU), and a car shredded fluff waste (CSF) on fluidity development of a bituminous coal during carbonization have been studied by means of high-torque, small-amplitude controlled-strain rheometry and in situ high-temperature {sup 1}H NMR spectroscopy. The most detrimental effects were caused by PET and PS, which completely destroyed the fluidity of the coal. The CSF had a deleterious effect on coal fluidity similar to that of PET, although the deleterious effect on the viscoelastic properties of the coal were less pronounced than those of PET and PS. On the contrary, the addition of 10 wt % PE caused a slight reduction in the concentration of fluid hydrogen and an increase in the minimum complex viscosity, and the addition of 10 wt % FPU reduced the concentration of fluid hydrogen without changing the viscoelastic properties of the coal. Although these results suggest that these two plastics could potentially be used as additives in coking blends without compromising coke porosity, it was found that the semicoke strengths were reduced by adding 2 wt % FPU and 5 wt % PE. Therefore, it is unlikely that more than 2 wt % of a plastic waste could be added to a coal blend without deterioration in coke quality. 35 refs., 11 figs., 3 tabs.

Miguel Castro Diaz; Lucky Edecki; Karen M. Steel; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2008-01-15T23:59:59.000Z

359

EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY  

Broader source: Energy.gov [DOE]

This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

360

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils  

SciTech Connect (OSTI)

The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricated using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.

Hemmi, T.; Matsui, K.; Koizumi, N. [Japan Atomic Energy Agency, Fusion Research and Development Directorate 801-1 Mukoyama, Naka, Ibaraki, 311-0193 (Japan); Nishimura, A. [National Institute for Fusion Science, Fusion Engineering Research Center 322-6 Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Nishijima, S. [Osaka University, Division of Sustainable Energy and Environmental Engineering 1-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Shikama, T. [Tohoku University, Institute for Materials Research 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 (Japan)

2014-01-27T23:59:59.000Z

362

Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number  

DOE Patents [OSTI]

The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

Waller, Francis Joseph; Quinn, Robert

2004-07-06T23:59:59.000Z

363

High-precision elements of double-lined spectroscopic binaries from combined interferometry and spectroscopy. Application to the beta Cephei star beta Centauri  

E-Print Network [OSTI]

We present methodology to derive high-precision estimates of the fundamental parameters of double-lined spectroscopic binaries. We apply the methods to the case study of the double-lined beta Cephei star beta Centauri. We also present a detailed analysis of beta Centauri's line-profile variations caused by its oscillations. We point out that a systematic error in the orbital amplitudes, and any quantities derived from them, occurs if the radial velocities of blended component lines are computed without spectral disentangling. This technique is an essential ingredient in the derivation of the physical parameters if the goal is to obtain a precision of only a few percent. We have devised iteration schemes to obtain the orbital elements for systems whose lines are blended throughout the orbital cycle. We find the following parameters for beta Cen: $M_1=10.7\\pm 0.1 M_\\odot$ and $M_2=10.3\\pm 0.1 M_\\odot$, an age of $(14.1\\pm 0.6)\\times 10^6$ years. We deduce two oscillation frequencies for the broad-lined primary of beta Centauri with degrees higher than 2. We propose that our iteration schemes be used in any future derivations of the spectroscopic orbital parameters of double-lined binaries with blended component lines to which disentangling can be successfully applied.

M. Ausseloos; C. Aerts; K. Lefever; J. Davis; P. Harmanec

2006-05-09T23:59:59.000Z

364

HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect (OSTI)

Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2009-04-15T23:59:59.000Z

365

Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics  

SciTech Connect (OSTI)

This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

Kamil Klier; Richard G. Herman

2005-11-30T23:59:59.000Z

366

2011 Spring : Highly Distinguished Honors Highly Distinguished  

E-Print Network [OSTI]

Elizabeth Campbell Highly Distinguished Bowker Ripley Eden Highly Distinguished Brandfass Lara Rose Highly Distinguished Brotherton Cara Price Highly Distinguished Brown Anna Laughlin Highly Distinguished Brown Chloe Alix Highly Distinguished Brown Kelsey Michelle Highly Distinguished Brown Kyle Truman Highly

Kasman, Alex

367

The Effects of Trans-Esterification of Castor Seed Oil Using Ethanol, Methanol and their Blends on the Properties and Yields of Biodiesel  

E-Print Network [OSTI]

The effects of ethanol, methanol and their blends at different percentage mixtures on the properties and yields of biodiesel at varied trans-esterification times and temperatures using sodium hydroxide as a base catalyst have been investigated. At 70 o C, the optimum yields were: for ethanol 88.4%, 94.2%, 94.8%, and 95.2 % and for methanol, 90.6%, 95.6%, 96.0%, and 96.4% at 1 hour, 2 hours, 3 hours and 4 hours respectively. The biodiesel yields increased as time of reaction progressed for both solvents but the yields obtained from methanol were generally higher than those from ethanol. A mixture of both solvents at 50 % each produced the overall highest of biodiesel yield of 98.6 % at 70 o C and in 4 hours compared to either solvent used alone at the same time and temperature. The properties such as densities, viscosities, flash points and pour points of the biodiesels tested were found to conform to ASTM standards. The average values were as follows: densities at 15 o C, were 0.8951, 0.8876 and 0.8832g/cm 3; viscosities (at 40 o C) were 4.7160cSt, 4.7380cSt and 4.5055cSt; flash points were 140.9 o C, 147.4 o C and 161.6 o C while for pour points they were-2.4375 o C,-1.6875 o C and-6 o C for ethyl, methyl and ethyl/methyl biodiesel respectively.

Vincent Enontiemonria; Ayoola Ayodeji; Anawe Paul; Apeye Lucky; Oteri Ogheneofego

368

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z

369

Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer  

SciTech Connect (OSTI)

In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

Chindaprasirt, Prinya [Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand)

2010-04-15T23:59:59.000Z

370

2009 Spring : Highly Distinguished Honors Highly Distinguished  

E-Print Network [OSTI]

Armstrong Anna P Highly Distinguished Armstrong Jack Ray Highly Distinguished Armstrong Sarah Rose Highly

Kasman, Alex

371

2012 Fall : Highly Distinguished Honors Highly Distinguished  

E-Print Network [OSTI]

Distinguished Andersen Meredith Esther Highly Distinguished Anderson Anna Kathleen Highly Distinguished Anderson Leah Ellen Highly Distinguished Anderson Lucy Paige Highly Distinguished Andrews James Matheson Highly Distinguished Aquino Jeri-Lynn Highly Distinguished Armistead Mary Chandler Highly Distinguished Armstrong Jessa

Kasman, Alex

372

2013 Fall : Highly Distinguished Honors Highly Distinguished  

E-Print Network [OSTI]

Anderson Chelsea Mariah Highly Distinguished Anderson Madison Olivia Highly Distinguished Andrews James Askew Mary Frances Highly Distinguished Augustine Andrew William Highly Distinguished Austin Adrian Bailes Mary Elizabeth Highly Distinguished Bailey Erika Leigh Highly Distinguished Bailey Margaret

Kasman, Alex

373

Optimization of blended battery packs  

E-Print Network [OSTI]

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

374

Ashing properties of coal blends  

SciTech Connect (OSTI)

The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

Biggs, D.L.

1982-03-01T23:59:59.000Z

375

Development of ternary blended Concrete;.  

E-Print Network [OSTI]

??Manufacturing of Portland cement is an energy intensive process newlineand releases very large amount of green house gases into the atmosphere newlinewhich affect the earth… (more)

Murthi P

2015-01-01T23:59:59.000Z

376

Mid-Level Ethanol Blends  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250 Rev. 05 Oak09 U . SThe MarchMid-Level Ethanol

377

Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing  

SciTech Connect (OSTI)

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.

Bunting, Bruce G [ORNL

2006-01-01T23:59:59.000Z

378

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

EGR controls MPR but may adversely impact BTE stability due to EGR heat rejection and turbo-machinery limitations. Ethanol-gasoline blends enable higher load operation with...

379

High-pressure Storage Vessels for Hydrogen, Natural Gas andHydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas and Blends - Materials Testing and Design Requirements for Hydrogen Components and Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Hydrogen...

380

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network [OSTI]

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MTBE growth limited despite lead phasedown in gasoline  

SciTech Connect (OSTI)

This month's legislated reduction of the allowable amount of lead additives in gasoline will increase demand strongly for methyl-tert-butyl ether (MTBE) as an octane enhancer, but the economics of the refinery business and the likelihood of rapidly increasing high-octane gasoline imports probably will limit the size of the business in coming years. MTBE will be used to fill the octane gap now, but economics and imports of gasoline later on could hold down demand. The limited growth in sales of MTBE is discussed.

Storck, W.

1985-07-15T23:59:59.000Z

382

DOE 2014 Biomass Conference  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

383

Underground Storage Tanks: New Fuels and Compatibility  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

384

High compression ratio turbo gasoline engine operation using alcohol enhancement  

E-Print Network [OSTI]

Gasoline - ethanol blends were explored as a strategy to mitigate engine knock, a phenomena in spark ignition engine combustion when a portion of the end gas is compressed to the point of spontaneous auto-ignition. This ...

Lewis, Raymond (Raymond A.)

2013-01-01T23:59:59.000Z

385

The thermodynamic properties of mixtures of normal octane and branched paraffin hydrocarbons  

E-Print Network [OSTI]

static equilibrium flasks and associated mercury manometer 12 2: Diagram of static vapor pressure apparatus . , 13 Schematic diagram of the auxiliary apparatus . 14 4: Static equilibrium flasks and parts of the apparatus 5: Activity coefficients... vapor pressure 0 0 o apparatus. Barker's least square method was employed to calcu- late equilibrium vapor compositions, activity coefficients, and excess thermodynamic functions such as G , H , and TS . The correlation of thermodynamic properties...

Liu, Edward Kou-Shan

1975-01-01T23:59:59.000Z

386

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch  

SciTech Connect (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: addition of i-butylene during the formation of methanol and/or higher alcohols directly from CO and H[sub 2] during slurry-phase Fischer-Tropsch; addition of i-butylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and addition of methanol to slurry phase FT synthesis making iso-olefins. During the seventh quarter we continued the shake down experiments for the SBCR and conducted an initial aborted run. We have also re-started experiments on Scheme 1, i.e., the addition of iso-butylene during CO hydrogenation. Using a dual bed arrangement, we have demonstrated the synthesis of MTBE from syngas and iso-butylene.

Marcelin, G.

1992-09-24T23:59:59.000Z

387

The relation of octane number, compression ratio, and exhaust temperature in the gasoline engine  

E-Print Network [OSTI]

on the engine consisted of a battery, two induction coils, distributor, spark indicator and spark plug. One induction coil was connected to the spark indicator on which could be read the amount of spark advance or retardation, while the other was connected... into the spark plug circuit. Fuel was supplied to the engine by gravity flow through flexible and copper tubing, a ceramic filter, and a simple float type carburetor from a gallon tank mounted on platform scales, The scales were graduated in hundredths...

Jentsch, Donald George

1951-01-01T23:59:59.000Z

388

Dielectric response of high permittivity polymer ceramic composite with low loss tangent  

SciTech Connect (OSTI)

The present communication investigates the dielectric response of the Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramics loaded high density polyethylene and epoxy resin. Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramic filled polyethylene and epoxy composites were prepared using hot blending and mechanical mixing, respectively. 40 vol % ceramic loaded polyethylene has relative permittivity of 12.1 and loss tangent of 0.004 at 8 GHz, whereas the corresponding composite using epoxy as matrix has permittivity and loss tangent of 14.1 and 0.022, respectively. The effective medium theory fits relatively well for the observed permittivity of these composites.

Subodh, G. [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology, Thiruvanathapuram 695019 (India); 1.Physikalisches Institut, Universitat Stuttgart, Pfaffenwaldring 57, Stuttgart 70550 (Germany); Deepu, V.; Mohanan, P. [Department of Electronics, Cochin University of Science and Technology, Cochin 682 022 (India); Sebastian, M. T. [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology, Thiruvanathapuram 695019 (India)

2009-08-10T23:59:59.000Z

389

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

1999-01-01T23:59:59.000Z

390

Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure  

SciTech Connect (OSTI)

The self-ignition of several spark-ignition (SI) engine fuels (iso-octane, methanol, methyl tert-butyl ether and three different mixtures of iso-octane and n-heptane), mixed with air, was investigated experimentally under relevant engine conditions by the shock tube technique. Typical modes of the self-ignition process were registered cinematographically. For temperatures relevant to piston engine combustion, the self-ignition process always starts as an inhomogeneous, deflagrative mild ignition. This instant is defined by the ignition delay time, {tau}{sub defl}. The deflagration process in most cases is followed by a secondary explosion (DDT). This transition defines a second ignition delay time, {tau}{sub DDT}, which is a suitable approximation for the chemical ignition delay time, if the change of the thermodynamic conditions of the unburned test gas due to deflagration is taken into account. For iso-octane at p = 40 bar, a NTC (negative temperature coefficient), behavior connected with a two step (cool flame) self-ignition at low temperatures was observed. This process was very pronounced for rich and less pronounced for stoichiometric mixtures. The results of the {tau}{sub DDT} delays of the stoichiometric mixtures were shortened by the primary deflagration process in the temperature range between 800 and 1,000 K. Various mixtures of iso-octane and n-heptane were investigated. The results show a strong influence of the n-heptane fraction in the mixture, both on the ignition delay time and on the mode of self-ignition. The self-ignition of methanol and MTBE (methyl tert-butyl ether) is characterized by a very pronounced initial deflagration. For temperatures below 900 K (methanol: 800 K), no secondary explosion occurs. Taking into account the pressure increase due to deflagration, the measured delays {tau}{sub DDT} of the secondary explosion are shortened by up to one order of magnitude.

Fieweger, K.; Blumenthal, R.; Adomeit, G. [RWTH, Aachen (Germany). Inst. fuer Allegemeine Mechanik] [RWTH, Aachen (Germany). Inst. fuer Allegemeine Mechanik

1997-06-01T23:59:59.000Z

391

Evaluation of the Nutritional Value of Seafood By-Product Blends with Red Drum Sciaenops Ocellatus and Hybrid Striped Bass Morone Saxatilis X M.Chysops  

E-Print Network [OSTI]

Diets of many cultured fishes require high inclusion of fishmeal and fish oil. With the growth of aquaculture worldwide, demand for fishmeal and fish oil has increased resulting in higher prices of these ingredients due to increased demand...

Burns, Alton F

2014-05-06T23:59:59.000Z

392

High Extraction Phosphors for Solid State Lighting  

SciTech Connect (OSTI)

We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the â??anti-quenchingâ? behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, â??largeâ? nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material systems, the encapsulation of ZnSeS particle phosphors and ZnSeS screens with Al{sub 2}O{sub 3} and TiO{sub 2} using ALD was shown to improve the stability by >8X and also increased the luminescence efficiency due to improved surface passivation and optical coupling. A large-volume fluidized bed ALD system was designed that can be adapted to a commercial ALD or vapor deposition system. Throughout the program, optical simulations were developed to evaluate and optimize various phosphor mixtures and device configurations. For example, to define the scattering properties of nanophosphors in an LED device or in a stand-off screen geometry. Also this work significantly promoted and assisted in the implementation of realistic phosphor material models into commercial modeling programs.

Chris Summers; Hisham Menkara; Brent Wagner

2011-09-30T23:59:59.000Z

393

High Performance Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Computing High Performance Computing Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of...

394

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

395

PHYSICAL CHARACTERIZATION OF VITREOUS STATE LABORATORY AY102/C106 AND AZ102 HIGH LEVEL WASTE MELTER FEED SIMULANTS (U)  

SciTech Connect (OSTI)

The objective of this task is to characterize and report specified physical properties and pH of simulant high level waste (HLW) melter feeds (MF) processed through the scaled melters at Vitreous State Laboratories (VSL). The HLW MF simulants characterized are VSL AZ102 straight hydroxide melter feed, VSL AZ102 straight hydroxide rheology adjusted melter feed, VSL AY102/C106 straight hydroxide melter feed, VSL AY102/C106 straight hydroxide rheology adjusted melter feed, and Savannah River National Laboratory (SRNL) AY102/C106 precipitated hydroxide processed sludge blended with glass former chemicals at VSL to make melter feed. The physical properties and pH were characterized using the methods stated in the Waste Treatment Plant (WTP) characterization procedure (Ref. 7).

Hansen, E

2005-03-31T23:59:59.000Z

396

Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy  

SciTech Connect (OSTI)

In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

Kalaskar, Vickey B [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Splitter, Derek A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

397

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

398

172 Newark High School 83 Reynoldsburg High School  

E-Print Network [OSTI]

AU09 HS 172 Newark High School 83 Reynoldsburg High School 71 Heath High School 69 Granville High School 57 Licking Valley High School 54 Northridge High School 54 Watkins Memorial High Scho 51 Sheridan High School 50 Lincoln High School 49 Mount Vernon High School 46 Tri-valley High School 43 Utica High

Jones, Michelle

399

High-Tech Halloween  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Tech Halloween Catch an Event Events Happening Now Events Calendar High-Tech Halloween Lifelong Learning Mailing List 70th Events Lectures invisible utility element High-Tech...

400

High Temperature, High Pressure Devices for Zonal Isolation in...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature,...

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PRODUCTION, STORAGE AND PROPERTIES OF HYDROGEN AS INTERNAL COMBUSTION ENGINE FUEL: A CRITICAL REVIEW  

E-Print Network [OSTI]

In the age of ever increasing energy demand, hydrogen may play a major role as fuel. Hydrogen can be used as a transportation fuel, whereas neither nuclear nor solar energy can be used directly. The blends of hydrogen and ethanol have been used as alternative renewable fuels in a carbureted spark ignition engine. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. A stoichiometric hydrogen–air mixture has very low minimum ignition energy of 0.02 MJ. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides (NOx). The main drawbacks of using hydrogen as a transportation fuel are huge on-board storage tanks. Hydrogen stores approximately 2.6 times more energy per unit mass than gasoline. The disadvantage is that it needs an estimated 4 times more volume than gasoline to store that energy. The production and the storage of hydrogen fuel are not yet fully standardized. The paper reviews the different production techniques as well as storage systems of hydrogen to be used as IC engine fuel. The desirable and undesirable properties of hydrogen as IC engine fuels have also been discussed.

402

Assessment of ether and alcohol fuels from coal. Volume 2. Technical report  

SciTech Connect (OSTI)

A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

Not Available

1983-03-01T23:59:59.000Z

403

Illinois coal/RDF coprocessing to produce high quality solids and liquids. Technical report, March 1, 1994--May 31, 1994  

SciTech Connect (OSTI)

It is the aim of this study to provide information pertinent to the development of a coal/RDF pyrolysis process capable of economically creating valuable products from high sulfur Illinois coal. This project will be carried out in a systematic manner. First, samples will be properly selected prepared, preserved and characterized. Then coals, various plastics, cellulose, and a high quality RDF will be pyrolyzed, steam pyrolyzed, hydro-pyrolyzed, and liquefied at various conditions. Next, blends of coal with various RDF components will be reacted under the same conditions. From this work, synergistic effects will be identified and process parametric studies will be conducted on the appropriate mixtures and single components. Product quality and mass balances will be obtained on systems showing promise. Preliminary pyrolysis work will be conducted on a TGA. The majority of reactions will be conducted in microautoclaves. If this research is successful, a new market for high sulfur, high mineral Illinois coal would emerge. Samples needed for this project have been obtained and sample preparation have been completed. A Perkin Elmer TGA-7 was employed to study pyrolysis. significant interactions have been observed. About 200 microreactor experiments have been performed and the acquisition of products for analysis has been achieved. Interactions occur between 400-450{degrees}C. Synergism occurs at short reaction time. High temperature and long reaction times result in higher residue yields and a loss of synergisms. Reactive species may be required to stabilize intermediate products.

Hippo, E.J.; Palmer, S.R.; Blankenship, M. [Southern Illinois Univ., Carbondale, IL (United States)

1994-09-01T23:59:59.000Z

404

High Performance Networks for High Impact Science  

SciTech Connect (OSTI)

This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

Scott, Mary A.; Bair, Raymond A.

2003-02-13T23:59:59.000Z

405

E-Print Network 3.0 - alkaline high-level waste Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies ; Fission and Nuclear Technologies 7 9DSRXU 3KDVH +GUDWLRQ RI %OHQGHG 2LGH 0DJQR :DVWH *ODVVHV Neil C. Hyatt,1* Summary: studies of a blended Oxide Magnox...

406

E-Print Network 3.0 - aluminum hlw high Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management and Restoration Technologies 91 9DSRXU 3KDVH +GUDWLRQ RI %OHQGHG 2LGH 0DJQR :DVWH *ODVVHV Neil C. Hyatt,1* Summary: studies of a blended Oxide Magnox...

407

On the similarity of macromolecular responses to high-energy processes: mechanical milling vs. irradiation  

E-Print Network [OSTI]

-6-oxynaphthoate) (Vec- tra1 ) [18], and PET with recycled tire [19]. An unexpected implication of our findings to blend PMMA with either PEP or PI [15­17], poly(ethylene terephthalate) (PET) with poly(oxybenzoate-r-2

408

High pressure, high current, low inductance, high reliability sealed terminals  

DOE Patents [OSTI]

The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

Hsu, John S. (Oak Ridge, TN) [Oak Ridge, TN; McKeever, John W. (Oak Ridge, TN) [Oak Ridge, TN

2010-03-23T23:59:59.000Z

409

Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels  

SciTech Connect (OSTI)

This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

2013-09-30T23:59:59.000Z

410

Co-firing high sulfur coal with refuse derived fuels. Final report  

SciTech Connect (OSTI)

This project was designed to evaluate the combustion performance of and emissions from a fluidized bed combustor during the combustion of mixtures of high sulfur and/or high chlorine coals and municipal solid waste (MSW). The project included four major tasks, which were as follows: (1) Selection, acquisition, and characterization of raw materials for fuels and the determination of combustion profiles of combination fuels using thermal analytical techniques; (2) Studies of the mechanisms for the formation of chlorinated organics during the combustion of MSW using a tube furnace; (3) Investigation of the effect of sulfur species on the formation of chlorinated organics; and (4) Examination of the combustion performance of combination fuels in a laboratory scale fluidized bed combustor. Several kinds of coals and the major combustible components of the MSW, including PVC, newspaper, and cellulose were tested in this project. Coals with a wide range of sulfur and chlorine contents were used. TGA/MS/FTIR analyses were performed on the raw materials and their blends. The possible mechanism for the formation of chlorinated organics during combustion was investigated by conducting a series of experiments in a tube furnace. The effect of sulfur dioxide on the formation of molecular chlorine during combustion processes was examined in this study.

Pan, W.P.; Riley, J.T.; Lloyd, W.G.

1997-11-30T23:59:59.000Z

411

Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal  

DOE Patents [OSTI]

The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

McLean, II, William (Oakland, CA); Miller, Philip E. (Livermore, CA); Horton, James A. (Livermore, CA)

1995-01-01T23:59:59.000Z

412

Synthesis of oxygenate products for high volume fuels applications. Quarterly technical progress report No. 1, November 1, 1994--January 31, 1995  

SciTech Connect (OSTI)

Construction and setup of twin laboratory gas phase reactors with in-line Gas chromatographic analysers was completed. Calibration and C.G. analysis methods development were carried out, and spreadsheet programs were written for reduction of data to interpretable results. Initial tests were carried out with pentasil zeolite ASM-5 containing very low (0.1%) levels of mercury as potential catalysts for conversion of acetylene/methanol streams to 1,1-dimethoxyethane or to C{sub 2}{sup +} alcohols, both useful as high-oxygenate gasoline blending agents. Trace levels of both types of products were observed, although the predominant products were light olefins at lower reaction temperatures and aromatics at higher temperatures. It is anticipated that less acidic zeolites and/or Zn- containing catalysts will be more active for oxygenate production. Testing of these materials is underway.

NONE

1995-03-08T23:59:59.000Z

413

High Voltage Safety Act  

Broader source: Energy.gov [DOE]

The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

414

Large-dimension, high-ZT Thermoelectric Nanocomposites for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...

415

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

416

High power microwave generator  

DOE Patents [OSTI]

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, C.A.

1983-12-29T23:59:59.000Z

417

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

418

High energy astrophysical processes  

E-Print Network [OSTI]

We briefly review the high energy astrophysical processes that are related to the production of high energy $\\gamma$-ray and neutrino signals and are likely to be important for the energy loss of high and ultrahigh energy cosmic rays. We also give examples for neutrino fluxes generated by different astrophysical objects and describe the cosmological link provided by cosmogenic neutrinos.

Todor Stanev

2005-04-18T23:59:59.000Z

419

High performance systems  

SciTech Connect (OSTI)

This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

Vigil, M.B. [comp.

1995-03-01T23:59:59.000Z

420

High Performance Computing in  

E-Print Network [OSTI]

High Performance Computing in Bioinformatics Thomas Ludwig (t.ludwig@computer.org) Ruprecht PART I: High Performance Computing Thomas Ludwig PART II: HPC Computing in Bioinformatics Alexandros #12;© Thomas Ludwig, Alexandros Stamatakis, GCB'04 3 PART I High Performance Computing Introduction

Stamatakis, Alexandros

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test  

SciTech Connect (OSTI)

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

2004-02-01T23:59:59.000Z

422

High power, high beam quality regenerative amplifier  

DOE Patents [OSTI]

A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

Hackel, L.A.; Dane, C.B.

1993-08-24T23:59:59.000Z

423

High power, high beam quality regenerative amplifier  

DOE Patents [OSTI]

A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

1993-01-01T23:59:59.000Z

424

Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load  

SciTech Connect (OSTI)

It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

2012-01-01T23:59:59.000Z

425

Optimally Controlled Flexible Fuel Powertrain System  

SciTech Connect (OSTI)

A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

2011-06-30T23:59:59.000Z

426

Phase Behavior in Asymmetric Polymer Blends  

E-Print Network [OSTI]

a clean reactor using dry ice/IPA to cool the reactor. Thewas switched to dry ice/IPA and DCM continued to distillwas terminated with isopropanol (IPA) as shown in Reaction

Nedoma, Alisyn Jenise

2010-01-01T23:59:59.000Z

427

EFFECTS OF BIODIESEL BLENDING ON EXHAUST EMISSIONS  

E-Print Network [OSTI]

Rising fuel costs and energy demands, combined with growing concern over health related and environmental concerns, have led to increased interest in the use of biodiesel. Biodiesel can be utilized as a direct replacement ...

Guo, Jing

2011-08-31T23:59:59.000Z

428

Mid-Blend Ethanol Fuels – Implementation Perspectives  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification Bill Woebkenberg, Fuels Technical and Regulatory Affairs Senior Engineer, Mercedes-Benz

429

Phase Behavior in Asymmetric Polymer Blends  

E-Print Network [OSTI]

1065-1067. Sanchez, I. C. ; Lacombe, R. H. Macromolecules117, 481-500. Sanchez, I. C. ; Lacombe, R. H. Macromolecules

Nedoma, Alisyn Jenise

2010-01-01T23:59:59.000Z

430

Brake blending strategy for a hybrid vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

Boberg, Evan S. (Hazel Park, MI)

2000-12-05T23:59:59.000Z

431

Performance of Biofuels and Biofuel Blends  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow YourPerformance Audit ofPlanPerformance of

432

Evaluation of polyethylene-modified asphalt blends  

E-Print Network [OSTI]

aggregate and asphalt modified with LDPE (binder contents of 4. 8%%u and 5. 87'). 42 Table 9. Summary of statistical parameters derived from IDT testing on crushed granite mixtures bound with AC-20 + LDPE (4. 8%, and 5. 8/ binder). 46 Table 10. Summary... of creep to rupture data for crushed granite mixtures. 71 Table 11. Summary of the results of IDT repeated load fatigue testing of river gravel mixtures bound with Texaco asphalt: AC- 10, AC-10 + LDPE and AC-20. Table 12. K, ' and n, values of river...

Consuegra Granger, Fernando

1990-01-01T23:59:59.000Z

433

Intermediate Ethanol Blends: Plans and Status  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7 U.S. DepartmentFederal Waters | Department

434

Stocks of Motor Gasoline Blending Components  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10:InformationSteam Weekly

435

Sandia National Laboratories: blending feedstock varieties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wavearc-faultbest paperbiomarineblending feedstock

436

Tropexx - Blending System - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDF Effects in SatelliteIndustrial

437

Alternative Fuels Data Center: Biodiesel Blends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric Vehicles toas

438

A study of PVT relations for carbon dioxide, n-pentane, and n-octane mixtures using a recombination apparatus  

E-Print Network [OSTI]

Carbon dioxide flooding is considered to have a multi- contact miscibility displacement mechanism. It changes the reservoir fluid in a complex manner. This type of Enhanced Oil Recovery (EOR) technique is very economically viable, readily...

Wirawan, Januar Fitri Santo

1993-01-01T23:59:59.000Z

439

EXPERIMENTAL AND MODELING STUDY OF THE AUTOIGNITION OF 1-HEXENE / ISO-OCTANE MIXTURES AT LOW TEMPERATURE  

E-Print Network [OSTI]

of a propane/MTBE mixture has been studied in a shock tube [5], while the oxidation of n-heptane/MTBE and n

Paris-Sud XI, Université de

440

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. [801Methyl tert-butyl ether  

SciTech Connect (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

Marcelin, G.

1992-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "blending high octane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High output lamp with high brightness  

DOE Patents [OSTI]

An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

Kirkpatrick, Douglas A. (Great Falls, VA); Bass, Gary K. (Mt. Airy, MD); Copsey, Jesse F. (Germantown, MD); Garber, Jr., William E. (Poolesville, MD); Kwong, Vincent H. (Vancouver, CA); Levin, Izrail (Silver Spring, MD); MacLennan, Donald A. (Gaithersburg, MD); Roy, Robert J. (Frederick, MD); Steiner, Paul E. (Olney, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

2002-01-01T23:59:59.000Z

442

Commissioning for High Performance  

E-Print Network [OSTI]

, including energy efficiency, durability, life-cycle performance, and occupant productivity” • ASHRAE Guideline 32 - Sustainable High-Performance Operations and Maintenance A high-performance building “consistently delivers a highly productive environment... plumbing fixtures • Renewable energy sources such as photovoltaic (PV) systems • Building envelope: Design reviews and field testing • Indoor Air Quality (IAQ): Ventilation that meets or exceeds ASHRAE 62.1 • Natural lighting & light pollution • System...

Meline, K.

2013-01-01T23:59:59.000Z

443

High Performance New Construction  

E-Print Network [OSTI]

Funding for Efficient New Buildings through Integrated Project Delivery and High Performance Design-Build Case Study Rolling Plains New Medical Office Building Michael Flores McKinstry mflores@mckinstry.com 469-789-9920 1 ESL-KT-13-12-40 CATEE..., San Antonio, Texas Dec. 16-18 Objectives • Explain how High Performance Design Build / Integrated Project Delivery (HPDB/IPD) differs from alternative project delivery methods (and why it is usually better!) • Identify the key participants in High...

Flores, M.

2013-01-01T23:59:59.000Z

444

Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases  

SciTech Connect (OSTI)

The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

2012-10-01T23:59:59.000Z

445

Co-firing high sulfur coal with refuse derived fuels. Technical report {number_sign}4  

SciTech Connect (OSTI)

In order to study combustion performance under conditions similar to that in the AFBC system, the authors conducted a series of experiments at a heating rate of 100 C/min using the TGA/FTIR/MS system. Results indicate that more hydrocarbons are evolved at the faster heating rate, owing to incomplete combustion of the fuel. Chlorinated organic compounds can be formed at high heating rates. Certain oxidation products such as organic acids and alcohols are obtained at the slow heating rate. To simulate the conditions used in the atmospheric fluidized bed combustor (AFBC) at Western Kentucky University, studies were also conducted using a quartz tube in a tube furnace. The temperature conditions were kept identical to those of the combustor. The products evolved from the combustion of coal, PVC, and mixtures of the two were trapped in suitable solvents at different temperatures, and analyzed using the Shimadzu GC/MS system. The detection limits and the GC/MS analytical parameters were also established. The experiments were conducted keeping in mind the broader perspective; that of studying conditions conducive to the formation of chlorinated organic compounds from the combustion of coal/MSW blends. 32 figs., 16 tabs.

Pan, W.P.; Riley, J.T.; Lloyd, W.G.

1995-08-03T23:59:59.000Z

446

Reaction of metal sulfates with molybdenum oxide, a high temperature reaction step for thermochemical cycles  

SciTech Connect (OSTI)

The reaction of sulfates with molybdenum oxide at high temperature was studied to determine the feasibility of using these reactions in a thermochemical process for making hydrogen. The experiments were performed by heating the blended powders to temperatures of 1075 K and higher and analyzing the evolved gas for acid content. It was found that the reaction rate over the first few minutes increased with both temperature and MoO/sub 3/. The fraction of sulfate reacting in the first 5 minutes varies with cation used. At 1125 K and for a molar ratio of sulfate ion/MoO/sub 3/ of 0.5, the fraction reacted was 0.29 for BaSO/sub 4/, 0.32 for CaSO/sub 4/ and 0.82 for La/sub 2/(SO/sub 4/)/sub 3/. These results are encouraging and indicate that an alternative means to sulfuric acid drying and decomposition is feasible using a mixed sulfate/oxide system to lower the effective decomposition temperature of the insoluble sulfate.

Hollabaugh, C.M.; Wallace, T.C.; Bowman, M.G.; Jones, W.M.

1980-01-01T23:59:59.000Z

447

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage...

448

.NET High Performance Computing.  

E-Print Network [OSTI]

?? Graphics Processing Units (GPUs) have been extensively applied in the High Performance Computing (HPC) community. HPC applications require additional special programming environments to improve… (more)

Ou, Hsuan-Hsiu

2012-01-01T23:59:59.000Z

449

High coking value pitch  

SciTech Connect (OSTI)

A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

2014-06-10T23:59:59.000Z

450

High-Throughput, High-Precision Hot Testing Tool for High-Brightness...  

Energy Savers [EERE]

Throughput, High-Precision Hot Testing Tool for High-Brightness Light-Emitting Diode Testing High-Throughput, High-Precision Hot Testing Tool for High-Brightness Light-Emitting...

451

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

452

High Temperature, High Pressure Devices for Zonal Isolation in...  

Broader source: Energy.gov (indexed) [DOE]

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells DOE Geothermal Peer...

453

An experimental investigation of the burning characteristics of water-oil emulsions  

SciTech Connect (OSTI)

An experimental investigation was conducted on the combustion characteristics of droplets of n-heptane, n-decane, n-dodecane, n-hexadecane and iso-octane emulsified with various amount of water and freely falling in a furnace of controlled temperature. Results demonstrate the intricate influences of water emulsification on the ignition, extinction and micro-explosion of the droplet response, and that the droplet burning time can be significantly reduced through judicious fuel blending so as to minimize the ignition delay and advance the onset of micro-explosion.

Wang, C.H.; Chen, J.T. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering] [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

1996-10-01T23:59:59.000Z

454

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

SciTech Connect (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.