Powered by Deep Web Technologies
Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect (OSTI)

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

2

Advancing Biorefining of Distiller's Grain and Corn Stover Blends...  

Broader source: Energy.gov (indexed) [DOE]

Advancing Biorefining of Distiller's Grain and Corn Stover Blends Advancing Biorefining of Distiller's Grain and Corn Stover Blends This fact sheet summarizes a U.S. Department of...

3

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

4

Ethanol-blended Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

5

Alternative Fuels Data Center: Biodiesel Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Blends Biodiesel can be blended and used in many different concentrations, including B100 (pure biodiesel), B20 (20% biodiesel, 80% petroleum diesel),

6

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

7

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

8

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

9

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

U.S. Energy Information Administration (EIA) Indexed Site

No. 2 Distillate No. 4 Fuel a Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 Distillate Low-Sulfur High-Sulfur Total United States January...

10

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

11

Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Fuel Blend Tax Diesel Fuel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel

12

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

13

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

14

Alternative Fuels Data Center: Biodiesel Blend Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Standards to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Standards on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Standards on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Standards on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Standards Biodiesel blends are considered compliant with Texas Low Emissions Diesel Fuel (TxLED) regulations if the diesel fuel is compliant with TxLED

15

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

16

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

17

Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Use Ethanol Fuel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Use Requirement State government agencies and universities owning or operating motor

18

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

19

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate Pursuant to state law, all diesel motor vehicle fuel and all other liquid fuel used to operate motor vehicle diesel engines in Massachusetts must

20

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Co-coking of Hydrotreated Decant Oil/Coal Blends: Effect of Hydrotreatment Severity on the Yield Distribution and Quality of Distillate Fuels  

Science Journals Connector (OSTI)

The coke yield from delayed co-coking of hydrotreated DOs and coal blends was observed to be in the range of 15.9–24.4%. ... The coal used in this study (EI-106) was a 50:50 blend of the Powellton and Eagle seams, both very similar coals of high-volatile A bituminous rank from West Virginia. ... One of the hydrotreated DOs (EI-133) was coked alone. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2013-05-19T23:59:59.000Z

22

Distillation of liquid fuels by thermogravimetry  

SciTech Connect (OSTI)

In this paper, design and operation of a custom-built thermogravimetric apparatus for the distillation of liquid fuels are reported. Using a sensitive balance with scale of 0.001 g and ASTM distillation glassware, several petroleum and petroleum-derived samples have been analyzed by the thermogravimetric distillation method. When the ASTM distillation glassware is replaced by a micro-scale unit, sample size could be reduced from 100 g to 5-10 g. A computer program has been developed to transfer the data into a distillation plot, e.g. Weight Percent Distilled vs. Boiling Point. It also generates a report on the characteristic distillation parameters, such as, IBP (Initial Boiling Point), FBP (Final Boiling Point), and boiling point at 50 wt% distilled. Comparison of the boiling point distributions determined by TG (thermogravimetry) with those by SimDis GC (Simulated-Distillation Gas Chromatography) on two liquid fuel samples (i.e. a decanted oil and a filtered crude oil) are also discussed in this paper.

Huang, He; Wang, Keyu; Wang, Shaojie; Klein, M.T.; Calkins, W.H.

1996-12-31T23:59:59.000Z

23

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate All diesel fuel sold to state agencies, political subdivisions of the state, and public schools for use in on-road motor vehicles must contain at

24

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

25

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

26

Alternative Fuels Data Center: Biofuel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Mandate All Gasoline sold or offered for sale in Minnesota must contain at least: 10% corn-based ethanol by volume or the maximum percent by volume of corn-based ethanol authorized in a waiver issued by the U.S. Environmental

27

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate In September 2013, the commissioners of the Minnesota Department of Agriculture, Department of Commerce, and Pollution Control Agency determined that all conditions had been satisfied to implement a 10%

28

Mid-Blend Ethanol Fuels - Implementation Perspectives | Department...  

Broader source: Energy.gov (indexed) [DOE]

Mid-Blend Ethanol Fuels - Implementation Perspectives Mid-Blend Ethanol Fuels - Implementation Perspectives Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel...

29

Distillation of liquid fuels by thermogravimetry  

SciTech Connect (OSTI)

The most widely used separation technique in the petroleum industry and other liquid fuel production processes as well as in much of the chemical industry is distillation. To design and operate an appropriate commercial and laboratory distillation unit requires a knowledge of the boiling point distribution of the materials to be separated. In recognition of these needs, the ASTM developed the distillation procedures of D86, D216, D447, D850, and D1078. They are widely used in laboratories for the purposes of sample characterization, product and quality control, and distillation column design. However, the significant drawbacks of these ASTM methods include (1) close monitoring of the distillation is required. This is particularly difficult for those samples which are very toxic and/or cause any other safety problems; (2) the sample under test must be transparent and free of separated water; and (3) results obtained by these methods are not particularly precise. This motivated the development of a novel automatic distillation system based on the use of a custom-built thermogravimetric apparatus.

Huang, He; Wang, Keyu; Wang, Shaojie [Univ. of Delaware, Newark, DE (United States)] [and others

1996-12-31T23:59:59.000Z

30

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

31

Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Blend Purchase Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Purchase Requirement Diesel fuel that the New Hampshire Department of Transportation

32

Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blend Biofuel Blend Dispenser Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Dispenser Labeling Requirement

33

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

34

Alternative Fuels Data Center: Biofuel Blending Capability Requirements and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blending Biofuel Blending Capability Requirements and Regulations to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on AddThis.com... More in this section...

35

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method  

Science Journals Connector (OSTI)

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method ... Energy Fuels, 2013, 27 (2), ...

Peter Y. Hsieh; Kathryn R. Abel; Thomas J. Bruno

2013-01-17T23:59:59.000Z

36

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

37

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

38

Alternative Fuels Data Center: Biodiesel Production and Blending Equipment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Production Biodiesel Production and Blending Equipment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on AddThis.com... More in this section... Federal State

39

Alternative Fuels Data Center: Biodiesel Blend Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Tax Biodiesel Blend Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Tax Credit Licensed biodiesel blenders are eligible for a tax credit for special fuel, including diesel, blended with biodiesel to create a biodiesel blend. The

40

Composition-Explicit Distillation Curves of Alternative Turbine Fuels  

Science Journals Connector (OSTI)

National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, Colorado 80305, United States ... In recent years, environmental considerations, the potential for supply disruptions, and rising fuel prices have led to the development of turbine fuels produced from non-petroleum feedstocks. ... We found that the distillation curves of the chicken-fat-derived fuel and the gas–liquid turbine fuel were similar to those of JP-8, deviating the most at high distillate volume fractions. ...

R. V. Gough; T. J. Bruno

2012-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Biofuels Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Blend Use Biofuels Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuels Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuels Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuels Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuels Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuels Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuels Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Blend Use Requirement Whenever possible, governmental entities and state educational institutions must fuel diesel vehicles with biodiesel blends containing at least 2%

42

Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Blending Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with

43

Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Distribution Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Distribution Mandate All state-owned diesel fueling facilities must provide fuel containing at

44

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10%

45

Alternative Fuels Data Center: Biodiesel Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Tax Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Tax Credit A biodiesel blender located in Indiana may receive a credit of $0.02 per gallon of blended biodiesel produced at a facility located in Indiana. The

46

Alternative Fuels Data Center: Biodiesel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Tax Biodiesel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Tax Exemption Biodiesel blends of at least 20% (B20) that are used for personal, noncommercial use by the individual that produced the biodiesel portion of

47

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement An ethanol retailer selling a blend of 10% ethanol by volume or higher must

48

Alternative Fuels Data Center: Biodiesel Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Tax Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Tax Credit Businesses and individuals are eligible for a tax credit of up to 15% of the cost of qualified equipment used for storing or blending biodiesel with

49

Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Retailer Tax Credit Retailers whose total diesel sales consist of at least 50% biodiesel blends

50

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

51

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

52

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

53

Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Retailer Ethanol Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Retailer Tax Credit The Ethanol Promotion Tax Credit is available to any fuel retailer for up

54

Alternative Fuels Data Center: Biofuel Blending Contract Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blending Biofuel Blending Contract Regulation to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Contract Regulation Any provision in a contract between a fuel wholesaler and a refiner or

55

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

56

Alternative Fuels Data Center: Biodiesel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Use Biodiesel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Use Requirement Any diesel-powered vehicle the state, county or local government, school district, community college, public college or university, or mass transit

57

Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blending Biodiesel Blending Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Facility Tax Credit A tax credit is available for up to 30% of the cost of purchasing or

58

Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Production Biodiesel Production and Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Production and Blending Tax Credit

59

Alternative Fuels Data Center: Supply of Petroleum Products for Blending  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Supply of Petroleum Supply of Petroleum Products for Blending with Biofuels to someone by E-mail Share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Facebook Tweet about Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Twitter Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Google Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Delicious Rank Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Digg Find More places to share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on AddThis.com... More in this section... Federal

60

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

62

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

63

,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " WWithheld...

64

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*  

E-Print Network [OSTI]

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

Stefanopoulou, Anna

65

Certification of alternative aviation fuels and blend components  

SciTech Connect (OSTI)

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

66

Distillation  

Science Journals Connector (OSTI)

A critical review on new developments in desalination by distillation processes, with the multistage flash evaporation process as the reference, was presented by Veenman. These developments refer to vertical t...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

67

Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2  

E-Print Network [OSTI]

58 45 51 H Content (% mass) 13.6 14.5 15.5 14.3 15.1 Heat of Combust. (MJ/kg) 43.3 43.8 44.4 43.8 441 Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2 Feedstock Petroleum Petroleum & Natural Gas Natural Gas Petroleum & Coal Coal Sulfur (ppm by mass) 1148 699 19 658 22 Alkanes (% vol.) 50

Meskhidze, Nicholas

68

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

69

Mid-Blend Ethanol Fuels ? Implementation Perspectives  

Broader source: Energy.gov (indexed) [DOE]

Wall" * E15 is the answer to the question nobody asked * E85 has no market penetration * GHG Rulemaking removes incentives for OEMs to produce FFV vehicles Page 15 Mid Blend...

70

Distillate Fuel Oil Imports Could Be Available - For A Price  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So it wasn't demand and production explains only part of the reason we got through last winter with enough stocks. The mystery is solved when you look at net imports of distillate fuel last winter. As we found out, while imports are a small contributor to supply, they are sometimes crucial. Last winter, imports were the main source of supply increase following the price spike. Previous record levels were shattered as imports came pouring into the country. The fact that Europe was enjoying a warmer-than-normal winter also encouraged exports to the United States. It was massive amounts of imports, particularly from Russia, that helped us get through last winter in as good a shape as we did. Imports are expected to be relatively normal this winter. Added imports

71

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

72

Microchannel Distillation of JP-8 Jet Fuel for Sulfur Content Reduction  

SciTech Connect (OSTI)

In microchannel based distillation processes, thin vapor and liquid films are contacted in small channels where mass transfer is diffusion-limited. The microchannel architecture enables improvements in distillation processes. A shorter height equivalent of a theoretical plate (HETP) and therefore a more compact distillation unit can be achieved. A microchannel distillation unit was used to produce a light fraction of JP-8 fuel with reduced sulfur content for use as feed to produce fuel-cell grade hydrogen. The HETP of the microchannel unit is discussed, as well as the effects of process conditions such as feed temperature, flow rate, and reflux ratio.

Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Huang, Xiwen; King, David L.

2006-09-16T23:59:59.000Z

73

Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels  

Broader source: Energy.gov [DOE]

Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

74

Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

New New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) to someone by E-mail Share Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Facebook Tweet about Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Twitter Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Google Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing

75

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

76

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"KD0VABNUS1","KPRVABNUS1" "Date","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Vessel...

77

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

78

Interactive chemical effects and instability of shale derived middle distillate fuels  

SciTech Connect (OSTI)

This paper presents a study of instability of shale-derived fuels. Changes in fuel properties with time have been a continuing problem in the use of middle distillate fuels. The authors define instability as the formation of insoluble sediments and gums as well as the production of peroxides and color bodies. Nitrogen and sulfur heterocycles have long been implicated in fuel degradation, but present knowledge is limited regarding the chemistry of their autoxidation reactions in the complex fuel media. Based on the GC/MS identification of nitrogen heterocyclic constituents in several shale-derived middle distillate fuels, the authors have conducted gravimetric instability tests employing three model nitrogen heterocycles in shale-derived diesel fuels. Model sulfur compound dopant studies on shale-derived jet fuels were conducted by monitoring hydroperoxide formation/decomposition and the decreased quantity of sulfur compound. Potential interactive effects have been defined for these model dopants.

Mushrush, G.W.; Beal, E.J.; Watkins, J.M.; Morris, R.E.; Hardy, D.R. (Fuels Section, Naval Research Lab., Washington, DC (US))

1989-01-01T23:59:59.000Z

79

Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in  

E-Print Network [OSTI]

1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung-ho Ahn, Anna G. Stefanopoulou, and Mrdjan Jankovic Abstract--Ethanol is being increasingly flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up

Stefanopoulou, Anna

80

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A new blending agent and its effects on methanol-gasoline fuels  

SciTech Connect (OSTI)

The major difficulty encountered with the use of methanol-gasoline blends as SI engine fuel is their tendency to phase separation due to the hydrophilic properties of methanol. Phase separation can lead to some utilization problems. Using a blending agent for the methanol-gasoline system is the common approach taken towards solving the phase separation problem. In this study introduces fraction of molasses fuel oil as an effective new blending agent for methanol-gasoline fuel.

Karaosmanoglu, F.; Isigiguer-Erguedenler, A.; Aksoy, H.A.

2000-04-01T23:59:59.000Z

82

Primary and Secondary Distillates as Marine Fuel Oil  

Science Journals Connector (OSTI)

The component compositions of marine fuel oils satisfying the requirements of TU 38. ... were developed. Light gasoils replace standard diesel fuel in marine fuel oil. The demulsifiability of light and heavy ... ...

T. N. Mitusova; I. A. Pugach; N. P. Averina…

83

The distribution of n-alkanes in partially frozen middle distillate fuels  

SciTech Connect (OSTI)

This work on partially frozen fuels is one of a continuing series of studies on the effect of composition on the freezing properties of hydrocarbon fuels. The method used for this purpose was reported previously. By means of this method the authors were able to determine the composition of the liquid and solid phases in partially frozen mixtures consisting of liquid and of solid crystals plus entrapped liquid. This paper presents the results of this study on five different middle distillate fuels.

Van Winkle, T.L.; Affens, W.A.; Beal, E.J.; Hazlett, R.N.; Guzman, J.

1986-04-01T23:59:59.000Z

84

Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel  

SciTech Connect (OSTI)

We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

2007-09-15T23:59:59.000Z

85

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

86

Distillate Fuel Oil Assessment for Winter 1995-1996  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refining Capacity Utilization U.S. Refining Capacity Utilization by Tancred Lidderdale, Nancy Masterson, and Nicholas Dazzo* U.S. crude oil refinery utilization rates have steadily increased since oil price and allocation decontrol in 1981. The annual average atmospheric distillation utilization rate has increased from 68.6 percent of operable capacity in 1981 to 92.6 percent in 1994. The distillation utilization rate reached a peak of 96.4 percent in August 1994, the highest one-month average rate in over 20 years. This dramatic increase in refining capacity utilization has stimulated a growing interest in the ability of U.S. refineries to supply domestic requirements for finished petroleum products. This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in

87

Method and apparatus for assessing distillate-fuel stability by oxygen overpressure  

SciTech Connect (OSTI)

Reactions leading to insoluble sediments formation in distillate fuel are accelerated by forcing oxygen into solution in the fuel at pressures of between about 90 and 110 psig and then stressing the fuel under conditions of accelerated storage at temperatures of between about 40 C to 100 C. The method then makes use of gravimetric determination of the total insoubles formed. The stability of the fuel over a period of time as well as its comparitive stability to other fuels can then be predicted from the amount of insolubles formed. The method can be carried out by using a specialized pressure vessel.

Hardy, D.R.; Beal, E.J.; Burnett, J.C.

1989-06-27T23:59:59.000Z

88

Rapid Monitoring of Hydrocarbon Blending Stocks in Modified Aviation Turbine Fuels  

Science Journals Connector (OSTI)

......JP-4 jet fuel. For JP-4 turbine fuel, the analysis is relatively...blending stocks in JP-4 aviation turbine fuel. Introduction High resolution...principal Air Force aviation turbine fuel, and the incorporation...Scientific). The column's efficiency was measured and found to be......

P.C. Hayes; Jr.; E.W. Pitzer

1984-10-01T23:59:59.000Z

89

Profit and policy implications of producing biodiesel–ethanol–diesel fuel blends to specification  

Science Journals Connector (OSTI)

A nonlinear optimization model is developed in this work to analyze biodiesel–ethanol–diesel (BED) ternary blending processes. The model establishes optimal blends to improve the system profitability given production costs, market demand, and fuel prices while meeting multiple property criteria such as kinematic viscosity, density, lower heating value, cloud point, cetane number, fuel stability and sulfur content. Pertinent fuel mixing rules for predicting the fuel properties of BED blends were extrapolated from previous works and applied as constraints to the present model. Several dynamic and/or uncertainty factors were explored in further depth to quantify their impacts on the fuel composition of BED blends including petro-diesel supply reduction, diesel production cost, diesel blends market retail price, and policy changes on bio-fuel subsidies. By examining key optimization sensitivity analysis such as shadow prices and opportunity costs, the crucial limits or constraints on fuel specifications can be identified and used to proactively identify and promote the development of potential additives. The model also suggests the government policy of simultaneously implementing bio-fuel tax credits and mandates may not have a higher contribution to promoting bio-fuel production than the case only with tax credits for the firms with the goal of profit maximization. The firms enable 5–8% increase of the optimal profit from BED blends by utilizing ethanol derived from food waste feedstocks instead of edible biomass.

Jiefeng Lin; Gabrielle Gaustad; Thomas A. Trabold

2013-01-01T23:59:59.000Z

90

Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends  

Science Journals Connector (OSTI)

Abstract An engine running at low load and low rated speed is said to be subject to high idling conditions, a mode which represents one of the major problems currently the transport industry is facing. During this time, the engine can not work at peak operating temperature. This leads to incomplete combustion and emissions level increase due to having fuel residues in the exhaust. Also, idling results in increase in fuel consumption. The purpose of this study is to evaluate fuel consumption and emissions parameters under high idling conditions when diesel blended with Jatropha curcas biodiesel is used to operate a diesel engine. Although biodiesel–diesel blends decrease carbon monoxide and hydrocarbon emissions, they increase nitrogen oxides emissions in high idling modes. Compared to pure diesel fuel, fuel consumption also increases under all high idling conditions for biodiesel–diesel blends, with a further increase occurring as blend percentage rises.

S.M. Ashrafur Rahman; H.H. Masjuki; M.A. Kalam; M.J. Abedin; A. Sanjid; S. Imtenan

2014-01-01T23:59:59.000Z

91

Chapter 30 - Biofuel Economics and Policy: The Renewable Fuel Standard, the Blend Wall, and Future Uncertainties  

Science Journals Connector (OSTI)

Abstract Biofuels are currently in a state of flux. The main operative policy for biofuels in the United States is the Renewable Fuel Standard (RFS). It specifies a minimum quantity of four different types of biofuels that must be blended each year in the United States through 2022. However, the United States also faces what is called the blend wall, which is a physical limit on blending given that the United States blends at a 10% rate. The blend wall upper limit is now below the RFS lower limit for corn ethanol, and that is causing problems with the administration of the RFS. This chapter explains how the RFS functions and then examines alternatives to the current administration of the RFS. The RFS is critical for cellulosic biofuels and biodiesel, and its elimination would likely end use of those fuels. Corn ethanol, however, is now much less expensive than gasoline and would continue.

Wallace E. Tyner

2015-01-01T23:59:59.000Z

92

Heavy Alcohols as a Fuel Blending Agent for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Applications Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations p-21ramirez.pdf More Documents & Publications HD...

93

Meet changing fuel requirements with online blend optimization  

SciTech Connect (OSTI)

Compania Espanola de Petroleos (CEPSA) embarked on an overall refinery automation program, with state-of-the-art gasoline blending being one of the highest priorities. The result of this effort is a sophisticated computerized gasoline blending system using offline LPs for initial optimal recipe calculation, an online LP for real-time blend recipe reformulation using online analyzers for blending model adjustment, complete automation of blending sequence startup and shutdown, generation of end of blend quality performance reports, and real-time integration between lab, tank gauging, plant information, and blending systems. The entry of Spain in the EEC brought with it the need to quickly adapt to the requirements of an openly competitive marketplace emphasizing no lead, oxygenated, high performance gasolines and ISO 9000 quality standards. The blending system allowed CEPSA to produce lowest cost, minimum giveaway gasolines, while having the flexibility to produce a wide variety of modern gasolines serving the Western European market. The paper describes the blender architecture, optimizer linear programming, man machine interface, and results from the blending system.

Diaz, A. [Compania Espanola de Petroleos, S.A., Cadiz (Spain). Algeciras Refinery; Barsamian, J.A. [ABB Simcon Inc., Bloomfield, NJ (United States)

1996-02-01T23:59:59.000Z

94

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

95

Performance of a direct diesel engine using aviation fuels blended with biodiesel  

Science Journals Connector (OSTI)

In this study, jet fuel (JF) and railroad fuel (D2) with SME blends (5%, 20%, 50%) were used in a four-cylinder, naturally aspirated, direct (DI) diesel engine. The engine was operated under full load and tested at various speeds to determine the engine's performance and exhaust emission characteristics. The experimental results show that as the SME ratio of the fuels increases, the break specific fuel consumption (BSFC) and exhaust temperature increase; the SME and its blends show a slight drop in engine performance. In this experiment, carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and smoke opacity values were measured for each fuel. The results of the emission tests revealed that the oxygen content of SME provided a significant reduction in CO and smoke opacity emissions. However, when the test engine was fuelled by SME and its blends, NOx emissions increased.

Burak Gökalp; Hakan Serhad Soyhan; Halil ?brahim Sarac

2012-01-01T23:59:59.000Z

96

Exhaust emissions and mutagenic effects of diesel fuel, biodiesel and biodiesel blends  

Science Journals Connector (OSTI)

Abstract The replacement of petroleum-derived fuels by renewable biogenic fuels has become of worldwide interest with the environmental effects being scientifically investigated. Biodiesel has been proven to be a suitable alternative to petrodiesel and blending up to 20% biodiesel with petrodiesel is policy promoted in the USA and the EU. To investigate the influence of blends on the exhaust emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) using blends of rapeseed-derived biodiesel and petrodiesel. Regulated and non-regulated exhaust compounds were measured and their mutagenic effects were determined using the Bacterial Reverse Mutation Assay (Ames-Test) according to OECD Guideline 471. Exhaust emissions of blends were approximately linearly dependent on the blend composition, particularly when considering regulated emissions. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust emissions. In detail, an increase of the mutagenic potential was found for blends with the maximum observed for B20. From this point of view, B20 must be considered as a critical blend when petrodiesel and biodiesel are used as binary mixtures.

Olaf Schröder; Jürgen Bünger; Axel Munack; Gerhard Knothe; Jürgen Krahl

2013-01-01T23:59:59.000Z

97

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network [OSTI]

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal

Wooldridge, Margaret S.

98

Tailoring key fuel properties of diesel–biodiesel–ethanol blends for diesel engine  

Science Journals Connector (OSTI)

Alternative fuel research for the profusely growing number of diesel run automotive has intensified due to environmental reasons and turmoil in petroleum market. Government initiatives all around the world, their energy policies and steps to emphasis the use of biodiesel; proved biodiesel as a number one renewable substitute for No. 2 diesel fuels. Among all biodiesel feedstock, palm oil is a potential source with higher yield rate without much fertilizer use especially in tropical region. However, the application of transesterified palm biodiesel is objected by many auto-manufacturers due to adverse effects on engine in long term operation. The aim of this study was to modify the key fuel properties of palm biodiesel which causes engine fouling in long term operation. A significant amount of work is devoted to mix biodiesel and diesel at arbitrary percentages and test engine performance. Numerous fuel additives are developed for biodiesels automotive use. In this study, chemical properties of biodiesel are tailored by ethanol and an optimum formulation is derived mathematically. Ethanol is used at a controlled proportion (6%) with palm oil methyl ester (POME) as additive to reduce the higher viscosity of POME. This optimum palm biodiesel–ethanol blend was mixed at varying proportions (i.e. 0–30%) with No. 2 diesel to produce ternary blends of diesel–palm biodiesel–ethanol. Cold flow properties (such as, could point, pour point) of these ternary blends has improved and minute percentage of ethanol adding did not adversely affect the oxidation stability and corrosiveness of the fuel blend. Ethanol has significantly reduces the flash point, but the flammability of ternary blends is classified as Class II; similar to that of diesel. Cetane number is reduced in ternary blends by ethanol. So, palm biodiesel with minute percentage of anhydrous ethanol as additive in the ternary blend significantly improved key fuel properties significantly.

Md. Jayed Hussan; Masjuki Hj. Hassan; Md. Abul Kalam; Liaquat Ali Memon

2013-01-01T23:59:59.000Z

99

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

Office of Scientific and Technical Information (OSTI)

Annual Technical Progress Report for Project Entitled "Impact Annual Technical Progress Report for Project Entitled "Impact of DME-Diesel Fuel Blend Properties on Diesel Fuel Injection Systems" May 16, 2002 - May 15, 2003 Elana M. Chapman, Andre Boehman, Kimberly Wain, Wallis Lloyd, Joseph M. Perez, Donald Stiver, Joseph Conway Report Issue Date: June 2003 DOE Award Number: DE-FC26-01NT41115 The Pennsylvania State University The Energy Institute University Park, PA 16802 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

100

Evaluation of Fuel Properties of Butanol?Biodiesel?Diesel Blends and Their Impact on Engine Performance and Emissions  

Science Journals Connector (OSTI)

Values of specific fuel consumption of engine when fueled with different blends and pure diesel at different speeds are shown in Figure 4. ... Chandra, R.; Kumar, R. Fuel properties of some stable alcohol?diesel microemulsions for their use in compression ignition engines Energy Fuels 2007, 21, 3410– 3414 ... Liu, B.; Huang, Z.; Miao, H.; Di, Y.; Jiang, D.; Zeng, K. Combustion and emissions of a DI diesel engine fuelled with diesel?oxygenate blends Fuel 2008, 87, 2691– 2697 ...

Rakhi N. Mehta; Mousumi Chakraborty; Pinakeswar Mahanta; Parimal A. Parikh

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines  

SciTech Connect (OSTI)

Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

1999-05-05T23:59:59.000Z

102

Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

The aim of this study is to experimentally investigate the effects of blends containing various alternative fuels and diesel fuel on the performance and emissions of a diesel engine. The considered parameters are brake power, specific fuel consumption and thermal efficiency as well as carbon monoxide, hydrocarbon and nitrogen oxide emissions. Blends of biodiesel, ethanol, methanol and vegetable oil with diesel fuel, each containing 15% alternative fuel in volume, were prepared. Then, these blends were tested in a naturally aspirated, direct injection diesel engine. The test results obtained with these blends were compared with those obtained with diesel fuel. It was found that the tested blends yielded usually different performance and emission characteristics compared to diesel fuel. The biodiesel blend resulted in performance parameters very close to those obtained in the use of diesel fuel. Ethanol and methanol blends yielded lower brake power, while they resulted in higher specific fuel consumption and lower carbon monoxide emissions. On the other hand, the vegetable oil blend yielded lower carbon monoxide emissions, while it caused only slight changes in the performance parameters.

Murat Karabektas; Gokhan Ergen; Murat Hosoz

2013-01-01T23:59:59.000Z

103

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. p-02anitescu.pdf More Documents & Publications...

104

On the Development of a Distillation Process for the Electrometallurgical Treatment of Irradiated Spent Nuclear Fuel  

SciTech Connect (OSTI)

As part of the spent fuel treatment program at the Idaho National Laboratory, a vacuum distillation process is being employed for the recovery of actinide products following an electrorefining process. Separation of the actinide products from a molten salt electrolyte and cadmium is achieved by a batch operation called cathode processing. A cathode processor has been designed and developed to efficiently remove the process chemicals and consolidate the actinide products for further processing. This paper describes the fundamentals of cathode processing, the evolution of the equipment design, the operation and efficiency of the equipment, and recent developments at the cathode processor. In addition, challenges encountered during the processing of irradiated spent nuclear fuel in the cathode processor will be discussed.

B.R. Westphal; K.C. Marsden; J.C. Price; D.V. Laug

2008-04-01T23:59:59.000Z

105

Extended end-point distillate fuels from shale oil by hydrotreating coupled with catalytic dewaxing  

SciTech Connect (OSTI)

It is generally accepted that shale oils derived by either surface or in situ retorting of western oil shale require relatively severe hydrotreatment as a consequence of their high oxygen, nitrogen and olefin contents. However, the hydrotreated syn crudes so produced typically possess pour points on the order of 20-30/sup 0/C which may require transport in heated pipelines. In addition distillates derived from the hydrotreated shale oil may also be unacceptable as jet and diesel fuels as a consequence of their poor low temperature fluidity characteristics. The authors report here a relatively simple process modification which overcomes these problems, i.e., addition of a shape-selective ZSM-5 dewaxing reactor in series with the conventional hydrotreating reactor. This process scheme is shown to be operative without interstage separation of light products from the hydrotreater including ammonia. Processing conditions for the dewaxing reactor are compatible with those of the hydrotreater. Surprisingly low levels of zeolite acidity are required for substantial pour point reduction. As a result of such processing, naphthas with octanes higher than those typically obtained by hydrocracking are produced in addition to a high yield of extended end point distillate which meets essentially all requirements for acceptable diesel fuel.

LaPierre, R.B.; Gorring, R.L.; Smith, R.L.

1986-03-01T23:59:59.000Z

106

Degradation studies on acid–base blends for both LT and intermediate T fuel cells  

Science Journals Connector (OSTI)

Abstract In this study the ex-situ and in-situ behavior of acid–base blend membranes from sulfonated polyethersulfone and a partially fluorinated sulfonated polymer (prepared by condensation of decafluorobipenyl with bisphenol AF, followed by sulfonation of the obtained polymer) and two different polybenzmidazoles (F6-PBI and PBIOO®) was investigated. Two types of acid–base blend membranes from the abovementioned polymers were prepared and characterized: acid–base blend membranes with a molar excess of acidic blend component for low-T H2 fuel cells (LT-FC) where the proton conductivity is overtaken by the sulfonic acid groups, and blend membranes comprising a molar excess of basic blend component which were subsequently doped with phosphoric acid for the usage in intermediate-T H2 fuel cells (IT-FC) where the network of phosphoric acid molecules in the membrane provides the proton conduction. For elucidation of the radical stability of the membranes, the membranes were subjected to Fenton's Reagent and were operated in a H2-PEMFC. After these tests, the membranes were investigated via SEC for molecular weight degradation. As a result, correlations could be found between degradation of the blend membranes in the fuel cell and after Fenton's test. Moreover, at IT-FC membranes, a correlation could be found between doping degree and fuel cell performance which are discussed in this paper. One of the membranes, a H3PO4-doped base-excess membrane from sPSU and PBIOO showed an excellent performance in an IT-FC at 180 °C of 0.85 A/cm2@0.5 V without pressurization of the reactant gases.

A. Chromik; J.A. Kerres

2013-01-01T23:59:59.000Z

107

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

108

Volatility of Mixtures of JP-8 with Biomass Derived Hydroprocessed Renewable Jet Fuels by the Composition Explicit Distillation Curve Method  

Science Journals Connector (OSTI)

Volatility of Mixtures of JP-8 with Biomass Derived Hydroprocessed Renewable Jet Fuels by the Composition Explicit Distillation Curve Method ... Energy Fuels, 2012, 26 (3), ... There are many reasons for this, the most important of which are guarding against potential supply disruptions, overcoming the dependence on foreign sources of petroleum, overcoming the vulnerability of large centralized refineries (to both weather events and terrorist acts), and mitigation of the rising costs of current fuel streams. ...

Jean Van Buren; Kathryn Abel; Tara M. Lovestead; Thomas J. Bruno

2012-02-28T23:59:59.000Z

109

Effect of Bioethanol Blended Diesel Fuel and Engine Load on Spray, Combustion, and Emissions Characteristics in a Compression Ignition Engine  

Science Journals Connector (OSTI)

Yan et al.(8) investigated the combustion and emission characteristics of diesel engines fueled with ethanol–diesel blended fuel in a single cylinder diesel engine. ... Figure 11 shows the indicated specific fuel consumption (ISFC) characteristics of diesel–bioethanol blended fuels at various engine loads. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Su Han Park; In Mo Youn; Yunsung Lim; Chang Sik Lee

2012-07-03T23:59:59.000Z

110

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

111

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black  

E-Print Network [OSTI]

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black-based materials that have good catalytic activity, but the electrical conductivity of the AC is poor compared as a binder, as opposed to Nafion with Pt, which greatly reduces the cost of the cathode materials. AC

112

Performance and Emissions of a Compression-Ignition Engine Fueled with Dimethyl Ether and Rapeseed Oil Blends  

Science Journals Connector (OSTI)

Sorenson and Mikkelsen2 had studied DME in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Meanwhile, these parameters are compared with those of pure diesel fuel in order to clarify the effect of blends on the combustion and emission of engines (a CI engine cannot run for much longer of a period with pure DME fuel, so a comparison is only made with pure diesel fuel). ... Moreover, owing to the lower calorific value of the blend compared to diesel fuel, the fuel supply amount per cycle for blend operation is enlarged by increasing the plunger stroke of the fuel pump in order to make the power and torque output of the blends approach those of the corresponding diesel engine. ...

Wang Ying; Zhou Longbao

2007-04-20T23:59:59.000Z

113

The conversion of natural gas to liquid fuels using the Sasol Slurry Phase Distillate Process  

SciTech Connect (OSTI)

The natural gas and energy industries have long sought an economically attractive means of converting remote gas reserves into transportable products, such as fuels or petrochemicals. Applicable gas sources include: undeveloped gas fields in locations so remote that pipeline construction is prohibitively expensive and associated gas from oil wells that is either flared, which is becoming environmentally unacceptable in many parts of the world, or reinjected, which is costly. Projects which have been developed to exploit such feeds typically have converted the gas into one of the following: (1) liquefied natural gas (LNG)--the process plants for LNG production are expensive, need to be very large to be economically viable, have costly dedicated shipping requirements, and suffer from a limited market concentrated in few countries; (2) methanol--the market for petrochemical feedstock methanol is limited, for use as a fuel, further downstream processing is needed, for example in a methyl tertiary butyl ether (MTBE) or methanol to gasoline (MTG) unit. Clearly, there is a need for an alternative that produces high quality fuels or value added products that can be transported to far-off markets, while yielding an attractive return on the developers` investment. The Sasol Slurry Phase Distillate Process will fulfill this need.

Silverman, R.W. [Raytheon Engineers and Constructors, Cambridge, MA (United States); Hill, C.R. [Sastech, Johannesburg (South Africa)

1997-12-31T23:59:59.000Z

114

Detailed HCCI Exhaust Speciation- ORNL Reference Fuel Blends  

Broader source: Energy.gov [DOE]

·Accurately measure exhaust profile from an HCCI engine with a variety of fuels and create a better understanding of HCCI engine emissions.

115

NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)  

SciTech Connect (OSTI)

Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

Moriarty, K.; Clark, W.

2011-01-01T23:59:59.000Z

116

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

SciTech Connect (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

117

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

118

Recovery of Navy distillate fuel from reclaimed product. Volume I. Technical discussion  

SciTech Connect (OSTI)

In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). The first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 referenvces and abstracts. This appendix, because of its volume, has been published separately as Volume 2. 18 figures, 4 tables.

Brinkman, D.W.; Whisman, M.L.

1984-11-01T23:59:59.000Z

119

Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review  

SciTech Connect (OSTI)

In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

Brinkman, D.W.; Whisman, M.L.

1984-11-01T23:59:59.000Z

120

Air and oxy-fuel combustion behaviour of petcoke/lignite blends  

Science Journals Connector (OSTI)

The pyrolysis and combustion behaviour of a petroleum coke (petcoke), an indigenous lignite and their 70/30 wt.% blend in air and oxy-fuel conditions were investigated by using non-isothermal thermo-gravimetric method (TGA) coupled with Fourier transform infrared (FTIR) spectrometer. Blend samples were prepared by mixing lignite, which has low calorific value, high ash and moisture contents with petcoke that has high calorific value, low ash and moisture content, in the proportion of 70:30. Pyrolysis tests were carried out in nitrogen and carbon dioxide environments which are the main diluting gases of air and oxy-fuel environments, respectively. Pyrolysis curves of parent fuels and their blend reveal close resemblance up to 700 °C in both N2 and CO2 environments. At higher temperatures, further weight loss taking place in N2 and CO2 atmospheres is attributed to calcite decomposition and CO2-char gasification reaction, respectively. Gasification reaction leads to significant increase in CO and COS formation as observed in FTIR evolution profiles. Almost identical experimental and theoretical pyrolysis profiles of the blend samples show that there is no synergy between the parent fuels of the blend in both pyrolysis environments. Combustion experiments were carried out in four different atmospheres; air, oxygen-enriched air environment (30% O2–70% N2), oxy-fuel environment (21% O2–79% CO2) and oxygen-enriched oxy-fuel environment (30% O2–70% CO2). Combustion experiments show that replacing nitrogen in the gas mixture by the same concentration of CO2 leads to delay in combustion (lower maximum rate of weight loss and higher burnout temperatures). Overall comparison of derivative thermogravimetry (DTG) profiles shows that effect of oxygen content on combustion characteristics is more significant than that of diluting gas in the combustion environment. At elevated oxygen levels, profiles shift through lower temperature zone, peak and burnout temperatures decrease, weight loss rate increases significantly and complete combustion is achieved at lower temperatures and shorter times. Theoretical and experimental combustion profiles of the blend mainly display different trends, which indicate synergistic interactions between lignite and petcoke during their combustion in different environments.

Nur Sena Yuzbasi; Nevin Selçuk

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Winter Distillate  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Throughout the summer, gasoline prices have drawn most of the public's attention, but EIA has been concerned over winter heating fuels as well. q Distillate inventories are likely to begin the winter heating season at low levels, which increases the chances of price volatility such as that seen last winter. q Natural gas does not look much better. q Winter Distillate http://www.eia.doe.gov/pub/oil_gas/petroleum/presentati...00/winter_distillate_and_natural_gas_outlook/sld001.htm [8/10/2000 4:35:57 PM] Slide 2 of 25 Notes: Residential heating oil prices on the East Coast (PADD 1) were 39 cents per gallon higher this June than last year (120 v 81 cents per gallon). As many of you already know, the increase is due mainly to increased crude oil prices.

122

A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources  

SciTech Connect (OSTI)

In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.

2013-05-10T23:59:59.000Z

123

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings  

Science Journals Connector (OSTI)

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings ... Because of their fuel economy and high reliability, compression-ignition (CI) engines known as diesel engines have been penetrating a number of markets around the world. ...

Mustafa Canakci; Cenk Sayin; Metin Gumus

2008-09-27T23:59:59.000Z

124

Performance and Emissions of a Compression Ignition Engine Fueled with Diesel/Oxygenate Blends for Various Fuel Delivery Advance Angles  

Science Journals Connector (OSTI)

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus and Ofner,2 and Sorenson and Mikkelsen3 have studied dimethyl ether (DME) in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Although some previous work has revealed the characteristics of diesel/ethanol blends in a compression ignition engine (Satge de Caro et al.,14 Ali et al.15), there, however, is still much work that needs to be done in regard to the application of diesel/methanol blends in compression ignition engines, especially in clarifying the basic combustion and emission. ...

Zuohua Huang; Hongbing Lu; Deming Jiang; Ke Zeng; Bing Liu; Junqiang Zhang; Xibin Wang

2005-02-02T23:59:59.000Z

125

Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester?Diesel Fuel Blends  

Science Journals Connector (OSTI)

(3, 4) A lot of researchers have reported that using biodiesel as a fuel in diesel engines causes a diminution in harmful exhaust emissions as well as equivalent engine performance with diesel fuel. ... Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke d. and NOx to evaluate and compute the behavior of the diesel engine running on the above-mentioned fuels. ... Ma, Z.; Huang, Z. H.; Li, C.; Wang, X. B.; Miao, H.Effects of fuel injection timing on combustion and emission characteristics of a diesel engine fueled with diesel?propane blends Energy Fuels 2007, 21 ( 3) 1504– 1510 ...

Cenk Sayin; Metin Gumus; Mustafa Canakci

2010-03-11T23:59:59.000Z

126

Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.  

SciTech Connect (OSTI)

Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

Hoffman, E. A.; Nuclear Engineering Division

2005-04-29T23:59:59.000Z

127

Comparison of blends of conventional diesel fuel and CRBO containing high levels of FFA in a DI diesel engine  

Science Journals Connector (OSTI)

This work attempts to analyse the ability of high free fatty acid (FFA) crude rice bran oil (CRBO) in replacing diesel partially in a compression ignition (CI) engine. It was observed that the delay period and the maximum rate of pressure rise for CRBO blends are lower than diesel and is almost inversely proportional to FFA content. Maximum heat release rate for CRBO blends are lower and occur earlier than that of diesel. CRBO blends require longer duration to release 90% of heat than diesel and it decreases with increase in FFA content of CRBO. When operating with CRBO blends, all emission parameters were decreased significantly with a marginal increase in CO emission than that of diesel without affecting the brake thermal efficiency of the engine. It is concluded that higher FFA of CRBO blends does not inhibit its ability to be utilised as a fuel in CI engines.

S. Saravanan; G. Lakshmi Narayana Rao; S. Sampath; G. Nagarajan

2012-01-01T23:59:59.000Z

128

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

SciTech Connect (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

129

Performance of a spark ignition engine fueled with methanol or methanol-gasoline blends  

SciTech Connect (OSTI)

Engine torque and specific energy consumption of an automotive engine were studied under steady state condition using gasoline, methanol gasoline blends and straight methanol as fuel. At first the engine was run without any modification. Next the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally the engine was run with 15% mixture methanol in gasoline by volume using the carburetor modified to have approximately 10% larger fuel flow area than the production carburetor. From the results of this study the effects of using methanol on engine torque and specific energy consumption can be explained on the basis of change in stoichiometry caused by the use of methanol.

You, B.C.

1983-11-01T23:59:59.000Z

130

,"U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumers (Thousand Gallons)","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. No 2 Diesel Adj SalesDeliveries to On-Highway...

131

Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection  

Broader source: Energy.gov [DOE]

Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

132

Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method  

Broader source: Energy.gov [DOE]

Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines.,

133

Distribution of higher n-alkanes in partially frozen middle-distillate fuels. Final report, October 1982-September 1984  

SciTech Connect (OSTI)

In conjunction with continuing studies on the effect of composition on the freezing points of middle distillate fuels, attention was directed to partially frozen fuels. The crystals and residual liquid from partially frozen JP-5 and DFM fuel samples derived from both petroleum and shale were separated from each other and collected by means of the NRL liquid-solid separator apparatus (LSS) at several temperatures below the freezing points of the original samples. The original fuel samples, the solid material (precipitate), and liquid (filtrate) were characterized by gas chromatography (GC). The filtrate data were straightforward. As expected, Van't Hoff plot of the n-alkanes concentrations (log concentrations vs reciprocal absolute temperature) formed straight lines, and their slopes demonstrated the importance of the higher n-alkanes in fuel crystallization at cold temperatures. The precipitate data presented some problems of interpretation since it was observed that the waxy crystal precipitate matrix entrapped significant amounts of liquid (filtrate). The data on solid which were obtained by these methods demonstrated that the higher n-alkanes play the key role in fuel crystallization at low temperatures, concentrating as much as tenfold in the crystallized solids compared to the liquid. Also, it was clearly shown that the n-alkanes form the major part, up to least 95% by weight in some fuels, of the solid crystals formed.

Van Winkle, T.L.; Affens, W.A.; Beal, E.J.; Hazlett, R.N.; DeGuzman, J.

1985-04-10T23:59:59.000Z

134

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

135

Properties and performance of cotton seed oil–diesel blends as a fuel for compression ignition engines  

Science Journals Connector (OSTI)

This paper presents the evaluation of properties of straight vegetable cotton seed oil (CSO) and its blends with diesel fuel in various proportions to evaluate the performance and emission characteristics of a single cylinder compression ignition (CI) engine at constant speed of 1500 rev ? min . Diesel and CSO oil fuel blends (10% 30% 50% and 70%) were used to conduct engine performance and smoke emission tests at varying loads of 0% 20% 40% 60% 80% and 100% of full load in addition to their straight CSO and diesel fuel. The performance parameters of brake specific energy consumption (BSFC) brake thermal efficiency (BTE) mechanical efficiency (ME) exhaust gas temperature (EGT) and exhaust emission (smoke) were evaluated to find the optimum CSO and diesel fuel blend. From the experimental results the CSO10D90 blend fuel showed 3.7% reduction in BSFC 1.7% increase in BTE 6.7% increase in ME and 21.7% reduction in the smoke emissions in comparison with conventional diesel operated engine. Finally it is concluded that CSO10D90 can be used straight away in CI engines without any major modifications to the engine as it showed good performance and improved emission compared to all other fuels tested for the entire range of engine operation in comparison with diesel.

B. Murali Krishna; J. M. Mallikarjuna

2009-01-01T23:59:59.000Z

136

Blending high sulfer coal with refuse derived fuel to make SO{sub 2} compliant slurry fuels  

SciTech Connect (OSTI)

The need for a better method of disposing of the international community`s garbage hardly needs emphasizing. In 1993, the United States alone generated approximately 207 million ton per year of Municipal Solid Waste (MSW), with 62% landfilled, 220/6 recycled, and 16% combusted for energy recovery. Despite strenuous efforts to make these disposal methods meet present needs, the cost of disposal is rising dramatically. Concurrently, the Clean Air Act Amendments (CAAA) of 1990 have severely restricted the SO{sub 2} emissions from coal fired boilers. Medium and high sulfur coals will not comply with the Phase II CAAA regulation limit of 1.2 lb SO{sub 2}/MM Btu, without advanced coal cleaning technologies or flue gas desulfurization, including the majority of the North Dakota lignite reserves. Utility power plants have attempted to burn refuse derived fuel (RDF), a heterogeneous solid fuel produced from MSW, with coal in utility scale boilers (generally referred to as co-firing). Co-firing of RDF with coal has been attempted in sixteen different boilers, five commercially. While lower SO{sub 2} emissions provided the impetus, co-firing RDF with coal suffered from several disadvantages including increased solids handling, increased excess air requirements, higher HCI, CO, NO{sub x} and chlorinated organic emissions, increased slag formation in the boiler, and higher fly ash resistivity. Currently, only two of the sixteen boilers are still regularly used to co-fire RDF. The overall objective of this research program was to assess the feasibility of blending RDF with lignite coal to form SO{sub 2} Compliant slurry fuels using EnerTech`s SlurryCarb{trademark} process. In particular, the objective was to overcome the difficulties of conventional co-firing. Blended slurry fuels were produced with the Energy & Environmental Research Center`s (EERC) bench-scale autoclave and were combusted in a pressurized fluidized-bed reactor (PFBR).

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States); Anderson, C. [Energy & Environmental Research Center, Grand Forks, ND (United States)

1995-12-31T23:59:59.000Z

137

Investigation on combustion characteristics of crude rice bran oil methyl ester blend as a heavy duty automotive engine fuel  

Science Journals Connector (OSTI)

In the present work, an attempt was made to test the suitability of crude rice bran oil methyl ester (CRBME) blend as a heavy duty automotive engine fuel. A four stroke, six cylinder direct injection 117.6 kW turbo-charged compression ignition (CI) engine was used for the work. The operation of the engine with CRBME blend showed that the peak pressure increased with lower maximum rate of pressure rise and maximum heat release rate with shorter delay period. Burning rate of the CRBME blend was slower and required a higher crank angle to complete the combustion cycle when compared to diesel. The brake thermal efficiency of the CRBME blend was lower than that of diesel at all speeds except at 2300rpm. As the measured combustion and performance parameters for CRBME blend differs only by a smaller magnitude when compared with diesel, this investigation ensures the suitability of the CRBME blend as fuel for heavy duty automotive engine without any design modifications [Received: August 12, 2010; Accepted: August 29, 2010

S. Saravanan; G. Nagarajan; S. Sampath

2011-01-01T23:59:59.000Z

138

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel  

Science Journals Connector (OSTI)

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel ... Recently, the use of diesel engines has increased by virtue of their low fuel consumption and high efficiencies. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Mustafa Canakci; Cenk Sayin; Ahmet Necati Ozsezen; Ali Turkcan

2009-05-04T23:59:59.000Z

139

A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range  

SciTech Connect (OSTI)

This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

S. D. Brandes; R. A. Winschel

1999-12-30T23:59:59.000Z

140

Heavy Alcohols as a Fuel Blending Agent for Compression Ignition Engine Applications  

Broader source: Energy.gov [DOE]

Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vtr_mgalpd_m.htm"

142

,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vwr_mgalpd_m.htm"

143

A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production: a distillation tower, which  

E-Print Network [OSTI]

of feedstock; and a blender unit which blends feedstock and gasoline stock (at no loss). (Note that "ONA blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production in feedstock (maximum 200,000 bbl/day) and produces gasoline stock with 98 ON at a rate of .5 bbl per bbl

Galvin, David

144

Premium distillate products from direct liquefaction of coal  

SciTech Connect (OSTI)

The net liquid products from modern coal liquefaction processes are lower boiling and have much lower end points (mostly under 400{degree}C) than crude petroleum. Coal liquids have very low concentrations of heteroatoms, particularly S, and metals, and are free of resids and asphaltenes. High yields of low-S (0.01--0.03 wt %) naphtha, kerosene, and diesel fuel fractions can be obtained simply by atmospheric distillation, with a total yield of light fuel fractions ranging from 68 to 82 LV% (W260D exclusive). The coal naphtha has a low aromatics content (5--13 LV%), readily meeting projected year-2000 requirements. Its low Reid vapor pressure allows light components from other sources to be blended. The coal light distillate of in appropriate boiling range will be a good low-S blending stock for the light diesel fuel pool. The heavy distillate can be refined into a low-S No. 4 diesel fuel/fuel oil. This fraction, along with the >343{degree}C atmospheric bottoms, can be catalytically cracked or hydrocracked to make light liquid fuels. Thus, modern coal liquids should no longer be envisioned as thick liquids (or even solids) with high concentrations of aromatics and asphaltenes. Products obtained from advanced coal liquefaction technologies are more like light naphthene-base petroleum, but with lower heteroatoms and metals contents, and they are free of resids. Coal liquids are likely to be co-refined in existing petroleum refineries; and hydroprocessing of various severities would be needed for different fractions to produce quality blending stocks for refinery fuel pools.

Zhou, P.Z. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winschel, R.A. [CONSOL, Inc., Library, PA (United States); Klunder, E.B. [USDOE Pittsburgh Energy Technology Center, PA (United States)]|[USDOE, Washington, DC (United States)

1994-08-01T23:59:59.000Z

145

Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges  

SciTech Connect (OSTI)

This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

Cappelli, Mark; Mungal, M Godfrey

2014-10-28T23:59:59.000Z

146

Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content  

E-Print Network [OSTI]

Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

Alvarez, Pedro J.

147

Determination of liquid and solid phase composition in partially frozen middle distillate fuels  

SciTech Connect (OSTI)

One of the tasks of the United States Navy Mobility Fuels program at the Naval Research Laboratory is to determine the effect of composition on the freezing properties of liquid fuels. The combination of requirements for ship and jet aircraft fuels of a low freezing point (to permit cold temperature operations around the world) and a flash point minimum (to reduce the hazard of storage and transport of liquid fuels on board ship) leads to opposing compositional needs. This is because many components of a fuel that tend to lower the freezing point (small hydrocarbons with higher vapor pressures) will also reduce the flash point. Because of these constraints, it is not always practical to produce fuels meeting these requirements from available crudes. This limits the amount of crudes and hence the amount of JP-5, the Navy fuel for carrier based aircraft, which can be produced from ''a barrel of crude.'' With increased knowledge and understanding of the components that first crystallize out of a cold fuel, it may be possible to modify refining techniques to increase the yield of Navy liquid fuels per barrel of crude without compromising either the freezing point or the flash point restrictions. This paper deals with the method used to separate the liquid filtrate from the precipitate in fuels cooled to predetermined temperatures below their freezing points, the method of analyzing the fuel and fuel fractions, and the results obtained from a study of one particular jet fuel.

Van Winkle, T.L.; Affens, W.A.; Beal, E.J.; Mushrush, G.W.; Hazlett, R.N.; DeGuzman, J.

1986-04-01T23:59:59.000Z

148

Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.  

SciTech Connect (OSTI)

Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

Herbinet, O; Pitz, W J; Westbrook, C K

2009-07-21T23:59:59.000Z

149

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and blended exclusively...

150

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

151

Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel  

Science Journals Connector (OSTI)

An experimental study has been conducted to evaluate the use of various blends of cottonseed oil or its methyl ester (bio-diesel) with diesel fuel, in blend ratios from 10/90 up to 100/0, in a fully instrumented, four-stroke, High Speed Direct Injection (HSDI), Ricardo/Cussons 'Hydra' diesel engine. The tests were conducted using each of the above fuel blends or neat fuels, with the engine working at a medium and a high load. Volumetric fuel consumption, exhaust smokiness and exhaust-regulated gas emissions such as nitrogen oxides, carbon monoxide and unburnt hydrocarbons were measured. The differences in the performance and exhaust emissions from the baseline operation of the engine, that is, when working with neat diesel fuel, were determined and compared, as well as the differences between cottonseed oil or its methyl ester and their blends. Theoretical aspects of diesel engine combustion were used to aid the correct interpretation of the engine behaviour.

Constantine D. Rakopoulos; Kimon A. Antonopoulos; Dimitrios C. Rakopoulos; Emmanuel C. Kakaras; Efthimios G. Pariotis

2007-01-01T23:59:59.000Z

152

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

153

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

154

The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition  

Science Journals Connector (OSTI)

Abstract In this study, combustion from the co-firing of coal and wood biomass, and thermal characteristics such as ignition temperature, burn-out temperature, and activation energy were discussed using a thermogravimetric analyzer (TGA). We investigated the effects of biomass blending with two kinds of pulverized coal (bituminous Shenhua, and sub-bituminous Adaro) under air and oxy-fuel conditions. The coal fraction in the blended samples was set to 1, 0.8, and 0.5. The oxygen fraction in the oxidant was set to 0.21, 0.3, 0.5, and 0.8. The ignition temperature was governed by the fuel composition, particularly in the blended biomass which has a much higher content of volatile matter comparing to coal. However, the burnout temperature, which shows a strong relationship with char combustion, depended on the oxidant ingredients rather than on the fuel components. Thermal characteristics such as ignition, burnout temperature, reaction region, and heat flow were very similar between air and a 0.3 oxygen concentration under oxy-fuel conditions with Shenhua coal.

Seongyool Ahn; Gyungmin Choi; Duckjool Kim

2014-01-01T23:59:59.000Z

155

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM  

Science Journals Connector (OSTI)

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM ... (1) In addition, biodiesel can be used in existing compression ignition (CI) or diesel engines with minimal or no modifications because its physicochemical characteristics are very similar to those of fossil diesel. ... However, when CME, PME, and SME are blended with 50 vol % of diesel fuel, the general trend as discussed above is not reproduced. ...

Harun Mohamed Ismail; Hoon Kiat Ng; Suyin Gan; Xinwei Cheng; Tommaso Lucchini

2012-11-12T23:59:59.000Z

156

Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends  

Science Journals Connector (OSTI)

Abstract The need to produce energy from poor quality carbonaceous materials has increased, in order to reduce European dependency on imported fuels, diversify the use of new and alternative fuels and to guarantee secure energy production routes. The valorisation of a poor quality solid residual fuel (SRF), with high content of ash and volatile matter, through its conversion into fuel gas was studied. The rise of gasification temperature and equivalent ratio (ER) led to higher gas yields and to lower undesirable gaseous components, though higher ER values led to a gas with lower energetic content. To reduce the negative effect of SRF unfavourable characteristics and to diversify the feedstocks used, SRF blended with three different types of biomass wastes: forestry pine, almond shells and olive bagasse was co-gasified. The use of biomass wastes tested was valuable for SRF gasification, as there was an increase in the overall reactivity and in H2 production and a reduction of about 55% in tar released, without great changes in gas yield and in its HHV. The use of natural minerals mixed with silica sand was also studied with the aim of improving SRF gasification performance and fuel gas quality. The best results were obtained in presence of dolomite, as the lowest tar and H2S contents were obtained, while an increase in gas yield was observed. Co-gasification of this poor quality SRF blended with biomass wastes in presence of dolomite increased gas yield by 25% while tar contents decreased by 55%.

Filomena Pinto; Rui Neto André; Carlos Carolino; Miguel Miranda; Pedro Abelha; Daniel Direito; Nikos Perdikaris; Ioannis Boukis

2014-01-01T23:59:59.000Z

157

Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel  

Science Journals Connector (OSTI)

Abstract Crude oil price hikes, energy security concerns and environmental drivers have turned the focus to alternative fuels. Gas to liquid (GTL) diesel is regarded as a promising alternative diesel fuel, considering the adeptness to use directly as a diesel fuel or in blends with petroleum-derived diesel or bio-diesel. GTL fuel derived from Fischer–Tropsch synthesis is of distinctly different characteristics than fossil diesel fuel due to its paraffinic nature, virtually zero sulfur, low aromatic contents and very high cetane number. GTL fuel is referred to as a “clean fuel” for its inherent ability to reduce engine exhaust emission even with blends of diesel and bio-diesel. This paper illustrates feasibility of GTL fuel in context of comparative fuel properties with conventional diesel and bio-diesels. This review also describes the technical attributes of GTL and its blends with diesel and bio-diesel focusing their impact on engine performance and emission characteristics on the basis of the previous research works. It can introduce an efficacious guideline to devise several blends of alternative fuels, further the development of engine performance and constrain exhaust emission to cope with the relentless efforts to manufacture efficient and environment friendly powertrains.

H. Sajjad; H.H. Masjuki; M. Varman; M.A. Kalam; M.I. Arbab; S. Imtenan; S.M. Ashrafur Rahman

2014-01-01T23:59:59.000Z

158

Engine performance and emissions from the combustion of low-temperature Fischerâ??Tropsch synthetic diesel fuel and biodiesel rapeseed methyl ester blends  

Science Journals Connector (OSTI)

The combustion of oxygenated biodiesel (rapeseed methyl ester (RME)) improves the engine-out particulate matter, hydrocarbon and carbon monoxide (CO) emissions, while the low-temperature Fischerâ??Tropsch synthetic paraffinic diesel fuel improves engine-out NOx, CO, hydrocarbon and particulate matter emissions. Blending synthetic diesel (SD) fuel with oxygenated biodiesel could unlock potential performance synergies in the fuel properties (e.g. O2 content in RME and high cetane number of the synthetic fuels) of such blends and benefit engine performance and emissions. The combustion of synthetic diesel fuel/RME blend, named synthetic diesel B50, has shown similar combustion characteristics to diesel fuel, while simultaneous improvements in engine efficiency and smoke-NOx trade-off were achieved by taking advantage of the fuel's properties. The engine thermal efficiency was dependent on the fuel type, and followed the general trend: synthetic diesel > SDB50 > diesel > RME. Therefore, it has been shown that the design of a synthetic fuel with properties similar to the fuel blends presented in this work could improve engine-out NOx, smoke and hydrocarbon emissions and maintain or improve engine performance.

Kampanart Theinnoi; Athanasios Tsolakis; Sathaporn Chuepeng; Andrew P.E. York; Roger F. Cracknell; Richard H. Clark

2009-01-01T23:59:59.000Z

159

Development of decision support system to select the best fuel blend in IC engines to enhance the energy efficiency  

Science Journals Connector (OSTI)

This paper describes an application of hybrid MCDM technique for the selection of optimum blend in fish oil biodiesel among the six alternative fuel blends diesel, B20, B40, B60, B80 and B100 which is prepared by varying the amount of diesel with biodiesel. Brake thermal efficiency (BTE), exhaust gas temperature (EGT), oxides of nitrogen (NOx), smoke, hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), ignition delay (ID), combustion duration (CD) and maximum rate of pressure rise (MRPR) are considered as evaluation criteria. A single cylinder, constant speed and direct injection diesel engine with a rated output of 4.4 kW was used for exploratory analysis of evaluation criteria at different load conditions. The proposed model, fuzzy analytical hierarchy process (FAHP) is integrated with elimination et and choice translating reality (ELECTRE) to evaluate the optimum blend. Here the FAHP is used to determine the relative weights of the criteria, whereas ELECTRE is used for obtaining the final ranking of alternative blends.

G. Sakthivel; M. Ilangkumaran

2013-01-01T23:59:59.000Z

160

Comparison of Biomass-Derived Turbine Fuels with the Composition-Explicit Distillation Curve Method  

Science Journals Connector (OSTI)

Thermophysical Properties Division, National Institute of Standards and Technology Boulder, Colorado 80305, United States ... In recent years, civilian and military users of aviation kerosene (for gas turbine engines) have been interested in expanding the scope of fuel feed stocks to include nonpetroleum sources. ... JP-7 was developed in the 1950s to meet the more stringent requirements necessary for the development of high-altitude reconnaissance aircraft that fly at speeds exceeding Mach 3. The extreme temps. ...

Thomas J. Bruno; Evgenii Baibourine

2011-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Diesol: an alternative fuel for compression ignition engines  

SciTech Connect (OSTI)

Physical properties including specific gravity, kinematic viscosity, heat of combustion, flash point, cetane number and distillation curves are presented for several blends of No. 2 diesel fuel and soybean oil. The mixture is referred to as Diesol. The soybean oil received a minimal amount of refining by water-washing to remove most of the lecithin type gums. The Diesol fuels were tested in a Cooperative Fuel Research single cylinder diesel test engine to determine the short time engine performance using soybean oil as a diesel fuel extender. Brake specific fuel consumption, volumetric fuel consumption, exhaust smoke opacity and power were determined. Various blends of Diesol were also tested in a multicylinder diesel commercial power system. Results are presented to show the comparison between Diesol blends and diesel fuel. The fuel properties and engine performance test results indicate that soybean oil would be a viable extender of diesel fuel for compression-ignition engines.

Cochran, B.J.; Baldwin, J.D.C.; Daniel, L.R. Jr.

1981-01-01T23:59:59.000Z

162

Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol  

Science Journals Connector (OSTI)

Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min?1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, \\{NOx\\} emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

C.S. Cheung; Yage Di; Zuohua Huang

2008-01-01T23:59:59.000Z

163

Distillate Stocks Expected  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So let's get to what you want to know. What do we expect this upcoming winter? When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain towards the lower end of the normal range. We are forecasting about an 11 million barrel build between the end of July 2001 and the end of November 2001, slightly more than the average over the past 5 years (10 million barrels), but less than the average of the last 10 years (15 ½ million barrels). If, however, economic incentives are high enough, distillate stocks could build more, resulting in a higher distillate stock level heading into the winter. Of course, the reverse is true as well, if for example, the distillate fuel refining spread declines substantially. Since 1994,

164

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect (OSTI)

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

165

Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel  

SciTech Connect (OSTI)

The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

None

1981-04-01T23:59:59.000Z

166

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend...

167

Combustion Characteristics and Heat Release Analysis of a Spark-Ignited Engine Fueled with Natural Gas?Hydrogen Blends  

Science Journals Connector (OSTI)

It can be seen that the laminar-burning velocity of hydrogen is 5 times that of natural gas and that the quenching distance of hydrogen is one-third that of natural gas, while the latter is beneficial to reduce the unburned hydrocarbons near the wall and from the top-land crevice. ... The signal of cylinder pressure was acquired for every 0.5 deg CA, the acquisition process covered 254 completed cycles, and the averaged value of these 254 cycles was outputted as the pressure data for calculation of the combustion parameters. ... Two factors are considered to influence the cylinder pressure:? one is the increase in flame propagation speed or combustion speed with the increase of the hydrogen fraction in the blends, and this will cause a rapid rising in the cylinder pressure and bring a higher value of the peak cylinder pressure; another is the decrease in the heating value of the fuel blends with the increase of the hydrogen fraction in natural gas?hydrogen blends, and this will decrease the volumetric heat release rate and the cylinder pressure rising, leading to the lower value of the peak cylinder pressure. ...

Zuohua Huang; Bing Liu; Ke Zeng; Yinyu Huang; Deming Jiang; Xibin Wang; Haiyan Miao

2007-08-15T23:59:59.000Z

168

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

SciTech Connect (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

169

Blend Membranes of Highly Phosphonated Polysulfone and Polybenzimidazoles for High Temperature Proton Exchange Membrane Fuel Cells  

E-Print Network [OSTI]

Energy, Office of Hydrogen, Fuel Cells and InfrastructureD. Kreuer, and J. Maier, Fuel Cells 5, 335 2. M. A. Hickner,Proton Exchange Membrane Fuel Cells R. A. Potrekar † , K. T.

Potrekar, Ravindra

2014-01-01T23:59:59.000Z

170

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Tax Credit Licensed biodiesel blenders are eligible for a tax credit for special fuel, including diesel, blended with biodiesel to create a biodiesel blend. The tax...

171

Detonations in Hydrocarbon Fuel Blends J.M. Austin and J.E. Shepherd  

E-Print Network [OSTI]

.3), nitrogen dilutions (fuel-oxygen to fuel-air), and initial pressures (20-130 kPa). The cell widths of the JP to be comparable. The addition of lower molecular weight fuels (hydrogen, acetylene, ethylene, 1 #12;and carbon, but addition of more than about 75 % (by fuel mass) carbon monoxide results in a significant increase in cell

Low, Steven H.

172

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

173

Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis  

Science Journals Connector (OSTI)

Abstract Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment.

I. López; C.E. Quintana; J.J. Ruiz; F. Cruz-Peragón; M.P. Dorado

2014-01-01T23:59:59.000Z

174

Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends combining with EGR  

Science Journals Connector (OSTI)

An experimental study on the effect of hydrogen fraction and EGR rate on the combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends was investigated. The results show that flame development duration, rapid combustion duration and total combustion duration are increased with the increase of EGR rate and decreased with the increase of hydrogen fraction in the blends. Hydrogen addition shows larger influence on flame development duration than that on rapid combustion duration. The coefficient of variation of the indicated mean effective pressure increases with the increase of EGR rate. And hydrogen addition into natural gas decreases the coefficient of variation of the indicated mean effective pressure, and this effectiveness becomes more obviously at high EGR rate. Engine fueled with natural gas–hydrogen blends combining with proper EGR rate can realize the stable low temperature combustion in gas engine.

Erjiang Hu; Zuohua Huang; Bing Liu; Jianjun Zheng; Xiaolei Gu

2009-01-01T23:59:59.000Z

175

Effects of oxygenated fuel blends on carbonaceous particulate composition and particle size distributions from a stationary diesel engine  

Science Journals Connector (OSTI)

Abstract A systematic study was conducted to evaluate and compare the effects of blending five different oxygenated compounds, diglyme (DGM), palm oil methyl ester (PME), dimethyl carbonate (DMC), diethyl adipate (DEA) and butanol (Bu) with ultralow sulfur diesel (ULSD), on engine performance, particulate mass concentrations, organic (OC) and elemental (EC) carbon fractions of the particles and particle size distributions from a single cylinder, direct injection stationary diesel engine with the engine working at a constant engine speed and at three engine loads. A small increase in the brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) was observed with the use of oxygenates blended with ULSD. All five oxygenates were found to be effective at reducing particulate mass emissions at medium and high engine loads, with butanol being the most effective and DGM being the least effective. Analysis of the relative contribution of changes in the OC and EC emissions to the reduction of particulate matter indicated that under the same oxygen content, EC made a dominant contribution to the reduction of particulate mass. The results also indicated that reduction in both particle mass and number emissions was affected not only by the oxygen content, but also by the chemical structure and thermophysical properties of oxygenates as well as engine operating conditions.

Zhi-Hui Zhang; Rajasekhar Balasubramanian

2015-01-01T23:59:59.000Z

176

Effects of Bioethanol-Blended Diesel Fuel on Combustion and Emission Reduction Characteristics in a Direct-Injection Diesel Engine with Exhaust Gas Recirculation (EGR)  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea ... As a fuel for compression engines, bioethanol-blended diesel fuels have some different trends on the exhaust emission characteristics according to the engine load. ... The paper begins with an introduction of general information on the nature of emissions of exhaust gases, including the toxicity and causes of emissions for both spark-ignition and diesel engines. ...

Su Han Park; Junepyo Cha; Chang Sik Lee

2010-06-03T23:59:59.000Z

177

Complex Fluid Analysis with the Advanced Distillation Curve Approach  

E-Print Network [OSTI]

Complex Fluid Analysis with the Advanced Distillation Curve Approach Thomas J. Bruno, Lisa S. Ott for measuring distillation curves reveals the physicochemical properties of complex fluids such as fuels distillation curves of complex fluids. The distillation curve provides the only practical avenue to assess

178

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect (OSTI)

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

179

Distillation 29 Chem 355 Jasperse DISTILLATION  

E-Print Network [OSTI]

Distillation 29 Chem 355 Jasperse DISTILLATION Background Distillation is a widely used technique for purifying liquids. The basic distillation process involves heating a liquid such that liquid molecules that is condensed and collected must be more pure than the original liquid mix. Distillation can be used to remove

Jasperse, Craig P.

180

NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)  

SciTech Connect (OSTI)

Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

Moriarty, K.; Clark, W.

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Rapid Monitoring of Hydrocarbon Blending Stocks in Modified Aviation Turbine Fuels  

Science Journals Connector (OSTI)

......stocks in JP-4 aviation turbine fuel. Introduction High resolution capillary gas chromatography affords...principal Air Force aviation turbine fuel, and the incorporation...Model 3700 capillary gas chromatographic system...Products), to remove residual oxygen and/or water......

P.C. Hayes; Jr.; E.W. Pitzer

1984-10-01T23:59:59.000Z

182

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

183

Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR  

DOE Patents [OSTI]

A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

2007-08-21T23:59:59.000Z

184

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

185

A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions  

Science Journals Connector (OSTI)

Abstract This study was aimed at synthesizing a novel soluble hybrid nanocatalyst to decrease emissions i.e., nitrogen oxide compounds (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and soot, of a DI engine fueled with diesel–biodiesel blends. Moreover, enhancement of performance parameters i.e. power, torque and fuel consumption was also simultaneously targeted. The hybrid nanocatalyst containing cerium oxide on amide-functionalized multiwall carbon nanotubes (MWCNT) was investigated using two types of diesel–biodiesel blends (B5 and B20) at three concentrations (30, 60 and 90 ppm). The results obtained revealed that high surface area of the soluble nano-sized catalyst particles and their proper distribution along with catalytic oxidation reaction resulted in significant overall improvements in the combustion reaction specially in B20 containing 90 ppm of the catalyst B20(90 ppm). More specifically, all pollutants i.e., NOx, CO, HC and soot were reduced by up to 18.9%, 38.8%, 71.4% and 26.3%, respectively, in B20(90 ppm) compared to neat B20. The innovated fuel blend also increased engine performance parameters i.e., power and torque by up to 7.81%, 4.91%, respectively, and decreased fuel consumption by 4.50%.

Mehrdad Mirzajanzadeh; Meisam Tabatabaei; Mehdi Ardjmand; Alimorad Rashidi; Barat Ghobadian; Mohammad Barkhi; Mohammad Pazouki

2015-01-01T23:59:59.000Z

186

Catalytic Distillation  

E-Print Network [OSTI]

removing both will occur in the temperature range ne~ded high and low boilers to maintain the tower for reaction. One limitation may be .I the composition profile, exothermic reactions critical point of the system, above w~ich can be easily temperature... with significantly less energy. There are two primary reasons for energy reduction: 1. The heat of reaction for exothermic reactions is fully re covered as useful boilup for fractionation. 2. Fewer attendant distillations are normally required than for a...

Smith, L. A., Jr.; Hearn, D.; Wynegar, D. P.

1984-01-01T23:59:59.000Z

187

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

diesel and heating fuel prices diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Warmer weather and the arrival of new supply, mainly imports, relieved the supply/demand imbalance and brought prices back down. The spike is now behind us, but high crude prices are keeping prices above year-ago levels. The low stock situation that set the stage for the distillate price spike was not unique to the United States, Low stocks exist worldwide and are not limited to distillate. The low stock situation stems from what is happening in the crude oil markets. A crude oil supply shortage drove crude

188

Making premium diesel fuel  

SciTech Connect (OSTI)

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

189

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

As of December 29, distillate fuel oil stocks were about 116 million As of December 29, distillate fuel oil stocks were about 116 million barrels, which is over 14 percent below their 5 year average for this time of year. Heating oil stocks were at 47.4 million barrels, or about 28 percent lower than their seasonal 5-year average. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. Recently, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable to near-term shocks from potential cold weather events or disruptions in the logistical system than was expected earlier this fall. Unless the second half of the winter in the Northeast is unusually

190

Truck loading rack blending  

SciTech Connect (OSTI)

Blending, the combining of two or more components to make a single product, has become widely used in most loading rack applications. Blending should not be confused with additive injection, which is the injection of very small doses of enhancers, detergents and dyes into a product stream. Changes in the environmental protection laws in the early 90`s have put increasing demands on marketing terminals with regards to reformulated fuels and environmental protection concerns. As a result of these new mandates, terminals have turned to blending at the loading rack as an economical and convenient means in meeting these new requirements. This paper will discuss some of these mandates and how loading rack blending is used for different applications. Various types of blending will also be discussed along with considerations for each method.

Boubenider, E. [Daniel Flow Products, Inc., Houston, TX (United States)

1995-12-01T23:59:59.000Z

191

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

SciTech Connect (OSTI)

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

192

Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel–diesel blends  

Science Journals Connector (OSTI)

Abstract Biodiesel fuel was produced from waste cooking oil by transesterification process. B20 and B50 blends of biodiesel–petroleum diesel were prepared. These blends and D2 fuels were tested in a single cylinder CI engine. Performance, combustion and emission values of the engine running with the mentioned fuels were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with layers of ceramic materials. The mentioned parts were coated with 100 ?m of NiCrAl as lining layer. Later the same parts were coated with 400 ?m material of coating that was the mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3. After the engine coating process, the same fuels were tested in the coated engine at the same operation condition. Finally, the same engine out parameters were obtained and compared with those of uncoated engine parameters in order to find out how this modification would change the combustion, performance and emission parameters. Results showed that the modification of the engine with coating process resulted in better performance, especially in considerably lower brake specific fuel consumption (Bsfc) values. Besides, emissions of the engine were lowered both through coating process and biodiesel usage excluding the nitrogen oxides (NOx) emission. In addition, the results of the coated engine are better than the uncoated one in terms of cylinder gas pressure, heat release rate (HRR) and heat release (HR).

Selman Ayd?n; Cenk Say?n

2014-01-01T23:59:59.000Z

193

A method for the rapid, accurate prediction of the physical properties of middle distillate fuels from LC- sup 1 H NMR derived data  

SciTech Connect (OSTI)

A method has been developed whereby various physical properties of middle distillate fuels may be rapidly and accurately calculated by a group property approach from data obtained from a directly coupled Liquid Chromatograph - {sup 1}H Nuclear Magnetic Resonance Spectrometer (LC-{sup 1}H NMR). The physical properties include cetane number, cetane index, density, specific gravity, pour point, flash point, viscosity, filterability, heat of combustion, cloud point, volume percent aromatics, residual carbon content, and initial, 10%, 50%, 90%, and end boiling points. These property predictions have accuracies approaching the error for measurement of the experimental physical property and require less than two hours analysis time per fuel. An interface was developed between the NMR spectrometer and a personal computer to aid in automation of the LC-{sup 1}H NMR data collection and to perform off-line analysis of the LC-{sup 1}H NMR data. This interface and all associated software is described. Also presented is a series of model compounds studies in which the physical properties of pure hydrocarbons (i.e., alkanes, monocyclic and dicyclic aromatics) were predicted by a similar group property approach.

Caswell, K.A.

1988-01-01T23:59:59.000Z

194

Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel  

Science Journals Connector (OSTI)

Abstract The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy.

Zunqing Zheng; Lang Yue; Haifeng Liu; Yuxuan Zhu; Xiaofan Zhong; Mingfa Yao

2015-01-01T23:59:59.000Z

195

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

U.S. diesel and heating fuel U.S. diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. From January 17, New England residential heating oil prices rose over 78 cents per gallon to average $1.97 February 7; diesel increased 68 cents per gallon, averaging $2.12 February 7. Prices for both fuels began to fall back by February 14 as new supplies were arriving, and have continued to decline since. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Demand: Cold weather increases core heating customer demand. In addition, it was reported that utilities were buying distillate both for peaking power and, along with industrial and commercial users, to

196

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Total distillate stocks rose only marginally in November, to about 117 million barrels from about 115 million barrels at the end of October. The "normal" or average inventory level at end November is 146 million barrels. Thus, by the end of November, instead of seeing an improvement, US distillate inventories were 30 million barrels less than normal rather than the 26 million barrels less as of the end of October, indicating greater tightness in markets for heating oil and diesel fuel. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. In fact, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable

197

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: At the end of December, distillate fuel oil stocks were about 116 million barrels, which is more than 14 percent below their 5-year average for this time of year, and about 7 percent less than last year's low levels. As of January 19, the most recent weekly data, distillate stocks remained at about that level, which is slightly higher than a year ago. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. Recently, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable to near-term shocks from potential cold weather events or disruptions in the logistical system than was expected earlier this fall.

198

Structure of middle distillate fuels on the atomic carbon and hydrogen to carbon ratio at alpha position to aromatic rings  

SciTech Connect (OSTI)

The alkyl, naphthenic, or total carbon atoms of the functional groups at alpha position to aromatic rings and their hydrogen to carbon ratio are some of the important parameters for structural analysis of fossil fuel products. In this paper, the authors present a number of novel formula-structure relationships for precise determination of different carbon atom types at alpha position to aromatic rings and the average number of hydrogens per alpha-carbon.

Glavincevski, B.; Gulder, O.L.; Gardner, L

1988-01-01T23:59:59.000Z

199

Catalytic distillation structure  

SciTech Connect (OSTI)

Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

Smith, Jr., Lawrence A. (Bellaire, TX)

1984-01-01T23:59:59.000Z

200

Performance, emission and combustion characteristics of DI diesel engine running on blends of calophyllum inophyllum linn oil (honne oil)/diesel fuel/kerosene  

Science Journals Connector (OSTI)

Kerosene (K)/diesel fuel (D)/honne oil (H) blends have a potential to improve the performance and emissions and to be alternatives to neat diesel fuel (ND) and has not been reported in the literature. Experiments have been conducted on DI diesel engine when fuelled with ND, H10 (10%H + 90%D, by volume) to H30, HK10 (10%H + 45%K + 45%D), HK20 (20%H + 40%K + 40%D) and HK30 (30%H + 35%K + 35%D). The emissions [CO, HC and smoke density (SD)] of fuel blend HK20 are found to be lowest, with CO and HC dropping significantly. The NOx level is higher with HK10 to HK30 compared to ND and H10 to H30. The brake thermal efficiency of HK10 to HK30 is almost the same and it is higher as compared to ND and H10 to H30. There is a good trade off between NOx and SD. Peak cylinder pressure and premixed combustion phase increases as kerosene content increases.

B.K. Venkanna; C. Venkataramana Reddy

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and prescribed methods for the inspection and testing of alcohol blended fuels, petroleum products, biodiesel, and biodiesel blends; Labeling requirements for devices...

202

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with biodiesel, ethanol, or other biofuel is exempt from state property...

203

Renewable Oxygenate Blending Effects on Gasoline Properties  

Science Journals Connector (OSTI)

Renewable Oxygenate Blending Effects on Gasoline Properties ... National Renewable Energy Laboratory, Golden, Colorado 80401, United States ... Energy Fuels, 2011, 25 (10), ...

Earl Christensen; Janet Yanowitz; Matthew Ratcliff; Robert L. McCormick

2011-08-16T23:59:59.000Z

204

Investigation on characteristics of ionization current in a spark-ignition engine fueled with natural gas–hydrogen blends with BSS de-noising method  

Science Journals Connector (OSTI)

Investigation on ionization current characteristic in a spark-ignition engine fueled with natural gas, natural gas–hydrogen bends and gasoline was conducted. Blind Source Separation (BSS) de-noising method is employed to separate the ionization current signal from the interference of spark tail generated by ignition discharge. Cylinder pressure was recorded, and local temperature at spark plug gap is calculated using AVL-FIRE simulation code. Results show that the simulated cylinder pressures are in good agreement with those of measured and the spark tail and ionization current can be separated using BSS method. Front flame stage and post flame stage in ionization current can be used to analyze the combustion characteristics of natural gas–hydrogen blends. De-noised current shows that the appearance of front flame stage and post flame stage (including the peaks in the stages) fueled with natural gas is postponed and compared with that fueled with gasoline, and the appearance of front flame stage and post flame stage advance with the increase of hydrogen fraction in natural gas–hydrogen blends. In addition, the amplitude of ionization currents in both front flame and post flame (including the two peaks) fueled with natural gas gives lower values compared with those fueled with gasoline and hydrogen addition can increase the amplitude. Maximum post flame current shows similar trend to maximum cylinder pressure and it has good correlation between the timing of maximum post flame current and the timing of maximum cylinder pressure. High correlation coefficient between maximum post flame current and maximum pressure is presented.

Zhongquan Gao; Xiaomin Wu; Hui Gao; Bing Liu; Jie Wang; Xiangwen Meng; Zuohua Huang

2010-01-01T23:59:59.000Z

205

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

providers to install biofuel fueling facilities. Fueling facilities include storage tanks and fuel pumps dedicated to dispensing E85 and biodiesel blends of 20% (B20). TDOT...

206

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85%...

207

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

Slide 1 of 11 Notes: During the second half of January, diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. From January 17, New England residential heating oil prices rose over 78 cents per gallon to average $1.97 February 7; diesel increased 68 cents per gallon, averaging $2.12 February 7, but fell back to $1.93 by February 14 as new supplies are arriving. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Demand: Cold weather increases core heating customer demand. In addition, it was reported that utilities were buying distillate both for peaking power and, along with industrial and commercial users, to

208

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

that meet ASTM specification D6751. Blended biodiesel is a blend of biodiesel with petroleum diesel fuel so that the volume percentage of biodiesel in the blend is at least 2%...

209

Catalytic distillation structure  

DOE Patents [OSTI]

Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

Smith, L.A. Jr.

1984-04-17T23:59:59.000Z

210

A Comparison of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Rangeof Gasoline Range Surrogate Fuel Blends  

Broader source: Energy.gov [DOE]

Kinetic models of fuels are needed to allow the simulation of engine performance for research, design, or verification purposes.

211

Stocks of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History U.S. 117,336 112,541 110,875 113,524 118,065 115,955 1982-2013 PADD 1 37,188 36,279 34,646 36,139 37,685 36,450 1990-2013 New England 7,437 7,125 7,429 7,213 6,570 6,143 1990-2013 Central Atlantic 18,363 17,955 17,103 18,219 19,488 19,010 1990-2013 Lower Atlantic 11,388 11,198 10,114 10,707 11,626 11,297 1990-2013 PADD 2 25,135 24,663 24,159 24,955 25,979 25,894 1990-2013 PADD 3 38,487 35,470 36,422 36,720 37,292 36,874 1990-2013 PADD 4 3,499 3,423 3,401 3,548 3,733 3,789 1990-2013 PADD 5

212

Quality Assessment of Biodiesel and Biodiesel Blends | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Quality Assessment of Biodiesel and Biodiesel Blends Quality Assessment of Biodiesel and Biodiesel Blends The results of a quality survey of B20 fuel in the United States were...

213

Prediction of the Effects of Ethanol-Diesel Fuel Blends on Diesel Engine Performance Characteristics, Combustion, Exhaust Emissions, and Cost  

Science Journals Connector (OSTI)

Bilgin et al.’s and ?ahin’s experimental studies which have been used in comparisons with numerical results of the present model have been performed in a single cylinder diesel engine at Karadeniz Technical University, Engineering Faculty Mechanical Engineering Department Internal Combustion Engines Laboratory. ... Durgun, O. A practical method for calculation engine cycles Union of Chambers of Turkish Engineers and Architects, Chamber of Mech. ... Dieselhols (blends of diesels, biodiesels, and alcohols) have received considerable attention because of their low emission of CO2. ...

Z. ?ahin; O. Durgun

2009-02-10T23:59:59.000Z

214

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

engines. A biodiesel blend is defined as any fuel produced by blending biodiesel with petroleum-based diesel to produce a fuel suitable for use in diesel engines. (Reference Idaho...

215

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

216

Multipartite nonlocality distillation  

SciTech Connect (OSTI)

The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.

Hsu, Li-Yi; Wu, Keng-Shuo [Department of Physics, Chung Yuan Christian University, Chungli 32023, Taiwan (China)

2010-11-15T23:59:59.000Z

217

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

218

Cumene by catalytic distillation  

SciTech Connect (OSTI)

Catalytic distillation, a combination of catalytic reaction and distillation in a single column, has several advantages when used in a process to make cumene from benzene and propylene. An extremely high purity cumene is obtained in high yield. The catalytic distillation principle was used in an earlier process to make MTBE. A unit, started up up in Houston refinery in 1981, operated successfully for four years. Since then, three other MTBE units of this design have gone into service.

Shoemaker, J.D.; Jones, E.M. Jr.

1987-06-01T23:59:59.000Z

219

Generalized entanglement distillation  

E-Print Network [OSTI]

We present a way for the entanglement distillation of genuine mixed state. Different from the conventional mixed state in entanglement purification protocol, each components of the mixed state in our protocol is a less-entangled state, while it is always a maximally entangled state. With the help of the weak cross-Kerr nonlinearity, this entanglement distillation protocol does not require the sophisticated single-photon detectors. Moreover, the distilled high quality entangled state can be retained to perform the further distillation. These properties make it more convenient in practical applications.

Yu-Bo Sheng; Lan Zhou

2014-04-14T23:59:59.000Z

220

Experimental investigation on thermal barrier coated diesel engine fueled with diesel-biodiesel-ethanol-diethyl ether blends  

Science Journals Connector (OSTI)

In the present work diesel-biodiesel-ethanol (DBE) and diesel-biodiesel-diethyl ether (DBD) fuels are tested with normal diesel engine and the diesel engine coated with the layers of aluminum oxide (Al 2O3) of 0.3?mm and yttria-stabilized zirconia of 0.2?mm. The various performance and emission parameters are analyzed and determined. The experimental work was carried out in a single cylinder water cooled engine coupled with eddy current dynamometer. The AVL make five gas analyzer and smoke meter were used to measure the different exhaust pollutants. The result shows that the brake thermal efficiency of coated engine is more than that of base diesel at high loads. The thermal barrier coated engine using fuel as diesel biodiesel and ethanol (TDBE) produces the lowest carbon monoxide (CO) emissions among all the fuels that are selected. In addition it produces the lowest carbon dioxide (CO2) at higher loads. Both the thermal barrier coated engine using fuel as diesel biodiesel and diethyl ether (TDBD) and TDBE have higher NOx emissions among almost all the fuels used. The TDBE and TDBD have higher smoke emissions at initial loads but eventually show lower smoke emissions at higher loads. The thermal barrier coated diesel engine fueled with DBE and DBD shows an increase in engine power and specific fuel consumption as well as significant improvements in exhaust gas emissions except NOx.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reducing Emissions of Persistent Organic Pollutants from a Diesel Engine by Fueling with Water-Containing Butanol Diesel Blends  

Science Journals Connector (OSTI)

An increasing energy demand and environmental pollution has motivated a search for bio-fuels, such as bio-diesels(1, 2) and bio-alcohols,(3, 4) that can be used as alternative fuels for diesel engines. ... In general, both bio-diesel and bio-alcohols, such as ethanol and butanol, have the advantages of higher brake thermal efficiency (BTE) and lower emissions of particulate matter (PM), carbon monoxide (CO) and hydrocarbons (HC). ... Diesel Engine and Test Cycle ...

Yu-Cheng Chang; Wen-Jhy Lee; Hsi-Hsien Yang; Lin-Chi Wang; Jau-Huai Lu; Ying I. Tsai; Man-Ting Cheng; Li-Hao Young; Chia-Jui Chiang

2014-04-16T23:59:59.000Z

222

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

223

A Review of Chromatographic Characterization Techniques for Biodiesel and Biodiesel Blends  

Science Journals Connector (OSTI)

......determination of the biodiesel content of...blends of biodiesel in conventional...Sciences and Engineering Division...characterization of biodiesel and its blends...addressed. Introduction Biodiesel...commercial fuels. These fuels......

R. E. Pauls

2011-05-01T23:59:59.000Z

224

Catalytic distillation process  

DOE Patents [OSTI]

A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, L.A. Jr.

1982-06-22T23:59:59.000Z

225

Catalytic distillation process  

DOE Patents [OSTI]

A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, Jr., Lawrence A. (Bellaire, TX)

1982-01-01T23:59:59.000Z

226

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

blend being sold. The labeling must follow established labeling specifications for petroleum-based fuels. An alternative fuel producer may provide the retailer with a label...

227

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10% ethanol by volume must be labeled with the capital letter "E"...

228

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, qualified diesel fuel substitutes, E85, and a blend of hydrogen with propane or...

229

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the purpose of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, qualified diesel fuel substitutes, E85, and a blend of hydrogen with...

230

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

over the vehicle's useful life. Low carbon fuels include hydrogen, biomethane, electricity, or natural gas blends of at least 90%. State agencies must phase in fuel economy...

231

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

deadline. Fueling equipment for natural gas, liquefied petroleum gas (propane), electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between...

232

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

using alternative fuel. Recognized alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

233

Low Distillate Stocks Set Stage for Price Volatility  

Gasoline and Diesel Fuel Update (EIA)

Along with the recent rise in crude oil prices, low stocks of Along with the recent rise in crude oil prices, low stocks of distillate fuels left markets in a vulnerable position. As we went into our two biggest distillate demand months, January and February, U.S. distillate stocks were very low -- particularly on the East and Gulf Coasts. The East Coast is the primary heating oil region, and it depends heavily on production from the Gulf Coast as well. Distillate stocks in the U.S. and Europe were in surplus supply as recently as October, but distillate stocks did not build as they usually do during the late fall, and declined more sharply than usual in December. December stocks closed well below the normal range. The unusual drawdown, in contrast to the more normal building pattern, resulted in distillate inventory levels about 3 million barrels lower than the very low

234

Advanced Distillation Final Report  

SciTech Connect (OSTI)

The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

2010-03-24T23:59:59.000Z

235

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

SciTech Connect (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

236

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect (OSTI)

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

237

Properties, performance and emissions of biofuels in blends with gasoline.  

E-Print Network [OSTI]

??The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding… (more)

Eslami, Farshad

2013-01-01T23:59:59.000Z

238

EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY  

Broader source: Energy.gov [DOE]

This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

239

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel blends of at least 20% biodiesel fuel or that mix fuel from separate storage tanks and allow the user to select the percentage of renewable fuel. The maximum credit...

240

Combustion and Emission Characteristics of a Direct-Injection Diesel Engine Fueled with Diesel?Diethyl Adipate Blends  

Science Journals Connector (OSTI)

The advantage of a diesel engine compared with a gasoline engine is the fuel economy benefits; however, the high NOx and smoke emissions still remain the main obstacles for the increasing application of diesel engines with the increasing concerns for environmental protection and implementation of more stringent exhaust gas regulations, thus further reduction in engine emissions becomes one of major tasks in engine development. ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus et al.,2 and Sorenson et al.3 have studied dimethyl ether (DME) in the modified diesel engine, and their results showed that the engine could achieve ultralow emission prospects without fundamental change in combustion systems. ... Murayama, T.; Zheng, M.; Chikahisa, T. Simultaneous reduction of smoke and NOx from a DI diesel engine with EGR and dimethyl carbonate; SAE paper 952518, Society of Automotive Engineers:? Warrendale, PA, 1995. ...

Yi Ren; Zuohua Huang; Haiyan Miao; Deming Jiang; Ke Zeng; Bing Liu; Xibin Wang

2007-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: Energy.gov [DOE]

Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

242

The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether  

E-Print Network [OSTI]

Ignition Using Isooctane, Ethanol and Natural Gas - AModel for High Temperature Ethanol Oxidation," Internationalof Bio-Derived Carbon from Ethanol-in-Diesel Blends in the

Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

2005-01-01T23:59:59.000Z

243

Distillation: The Efficient Workhorse  

E-Print Network [OSTI]

DISTILLATION: THE EFFICIENT WORKHORSE Dan Steinmeyer Monsanto Company St. Louis, Missouri Distillation is inherently highly efficient: phase separation is clean it is relatively easy to build a mUltistage countercurrent device equilibrium... of separation to the work pmbedded in the reboiler and condenser thermal flows. The right application is one where the streams ? separated both exceed la' of the feed, relative volatility exceeds 1.2, and separation is complete - i.e. pure products...

Steinmeyer, D.

244

Random multiparty entanglement distillation  

E-Print Network [OSTI]

We describe various results related to the random distillation of multiparty entangled states - that is, conversion of such states into entangled states shared between fewer parties, where those parties are not predetermined. In previous work [Phys. Rev. Lett. 98, 260501 (2007)] we showed that certain output states (namely Einstein-Podolsky-Rosen (EPR) pairs) could be reliably acquired from a prescribed initial multipartite state (namely the W state) via random distillation that could not be reliably created between predetermined parties. Here we provide a more rigorous definition of what constitutes ``advantageous'' random distillation. We show that random distillation is always advantageous for W-class three-qubit states (but only sometimes for Greenberger-Horne-Zeilinger (GHZ)-class states). We show that the general class of multiparty states known as symmetric Dicke states can be readily converted to many other states in the class via random distillation. Finally we show that random distillation is provably not advantageous in the limit of multiple copies of pure states.

Ben Fortescue; Hoi-Kwong Lo

2007-09-25T23:59:59.000Z

245

Advanced Petroleum Based Fuels Research at NREL  

Broader source: Energy.gov (indexed) [DOE]

Fuel Impacts on Current and Emerging Engines Goals and Objectives * VTP Task 3: Petroleum displacing fuels and fuel blending components - Study combustion and emissions...

246

Alternative Fuels Data Center: Blender Pump Dispensers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

dispensers? Blender pumps are fuel dispensers that draw fuel from two separate storage tanks and can dispense preprogrammed blends of those two fuels. Many conventional stations...

247

5, 1206712102, 2005 Alternative fuel  

E-Print Network [OSTI]

ACPD 5, 12067­12102, 2005 Alternative fuel blends and regional air quality J.-F. Vinuesa et al and Physics Discussions Impacts of using reformulated and oxygenated fuel blends on the regional air quality License. 12067 #12;ACPD 5, 12067­12102, 2005 Alternative fuel blends and regional air quality J

Paris-Sud XI, Université de

248

Qutrit Magic State Distillation  

E-Print Network [OSTI]

Magic state distillation (MSD) is a purification protocol that plays a central role in fault tolerant quantum computation. Repeated iteration of the steps of a MSD protocol, generates pure single non-stabilizer states, or magic states, from multiple copies of a mixed resource state using stabilizer operations only. Thus mixed resource states promote the stabilizer operations to full universality. Magic state distillation was introduced for qubit-based quantum computation, but little has been known concerning MSD in higher dimensional qudit-based computation. Here, we describe a general approach for studying MSD in higher dimensions. We use it to investigate the features of a qutrit MSD protocol based on the 5-qutrit stabilizer code. We show that this protocol distills non-stabilizer magic states, and identify two types of states, that are attractors of this iteration map. Finally, we show how these states may be converted, via stabilizer circuits alone, into a state suitable for state injected implementation ...

Anwar, Hussain; Browne, Dan E

2012-01-01T23:59:59.000Z

249

Proton NMR characterization of gasoline–ethanol blends  

Science Journals Connector (OSTI)

Abstract Nuclear magnetic resonance (NMR) can be conveniently used for accurate measurement of water and ethanol concentrations in gasoline–ethanol fuel blends. The spectra also contain information on proton exchange rates. In addition, NMR pulsed-field-gradient diffusion measurement allows estimation of ethanol–water clusters and viscosity of the fuel blends.

A. Turanov; A.K. Khitrin

2014-01-01T23:59:59.000Z

250

Cumene by Catalytic Distillation  

SciTech Connect (OSTI)

The novel concept of Catalytic Distillation has been commercialized in the CRandL MTBE process, in which combined reaction and distillation provide energy savings over conventional processes. This concept has now been extended to production of cumene from benzene and propylene. In this case the advantages of the technique are not only energy savings but significant reductions in by-product losses and capital requirements. In this paper the development of the process is discussed and the economics of commercial operation are presented.

Jones, E.M.; Mawer, J.

1986-01-01T23:59:59.000Z

251

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

F8: Distillate Fuel Oil Price and Expenditure Estimates, 2012 State Prices Expenditures Residential Commercial Industrial Transportation Electric Power Total Residential Commercial...

252

Tritium Attenuation by Distillation  

SciTech Connect (OSTI)

The objective of this study was to determine how a 100 Area distillation system could be used to reduce to a satisfactory low value the tritium content of the dilute moderator produced in the 100 Area stills, and whether such a tritium attenuator would have sufficient capacity to process all this material before it is sent to the 400 Area for reprocessing.

Wittman, N.E.

2001-07-31T23:59:59.000Z

253

Topological Quantum Distillation  

E-Print Network [OSTI]

We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding and computation with magic states.

H. Bombin; M. A. Martin-Delgado

2006-05-16T23:59:59.000Z

254

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is 0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate...

255

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85 Definition E85 motor fuel is defined as an alternative fuel that is a blend of ethanol and hydrocarbon, of which the ethanol portion is 75-85% denatured fuel ethanol by volume...

256

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blender Tax Credit A licensed fuel supplier who blends biodiesel or green diesel with diesel fuel may claim an income tax credit of 0.05 per gallon for fuel containing...

257

Heteroazeotropic Batch Distillation Feasibility and Operation  

E-Print Network [OSTI]

Heteroazeotropic Batch Distillation Feasibility and Operation by Efstathios Skouras and distillation is the dominating unit operation for such separations. However, the presence of azeotropes and non distillation as the best suited process. Among, various techniques to enhance distillation, heterogeneous

Skogestad, Sigurd

258

MULTIVESSEL BATCH DISTILLATION EXPERIMENTAL VERIFICATION  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION ­ EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad 1 The experimental verification of the operation of a multivessel batch distillation column, operated under total vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

Skogestad, Sigurd

259

Gulf Coast Distillate Production  

Gasoline and Diesel Fuel Update (EIA)

4 of 15 4 of 15 Notes: PADD 3 is a major source of supply for the East Coast. This graph shows how during the winter of 1997-1998 when distillate stocks were very high, production fell back. In contrast, we entered the winter of 1996-1997 with very low stocks, and refineries reached record production levels as they tried to build stocks late in the season. Notice that production is normally reduced in January as distillate stocks are used to meet demand and as refineries begin maintenance and turnovers, which continue into February. This January is no different. There is room for some production increases in January and February, if refineries postpone maintenance. But postponing maintenance and turnarounds can create problems when the gasoline production season begins in March and April.

260

Low Energy Distillation Schemes  

E-Print Network [OSTI]

an important means of reducing energy consumption in distillation processes. However, its conventional use requires the installation of piping (and pipes carrying vapour streams tend to be of large diameter and are consequently expensive). So, finally we.... However, its conventional use requires the installation of piping (and pipes carrying vapour streams tend to be of large diameter and are consequently expensive). In the late eighties engineers in Germany [e.g. Kaibel, 1987] looked at one way in which...

Polley, G. T.

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of US Navy jet fuel (JP-5) has been related to the amounts of large n-alkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how the n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30, and 32 ppM in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-01-01T23:59:59.000Z

262

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of U.S. Navy jet fuel (JP-5) has been related to the amounts of large nalkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how th n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30 and 32 ppm in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-02-01T23:59:59.000Z

263

Elastomer Compatibility Testing of Renewable Diesel Fuels  

SciTech Connect (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

264

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel and Ethanol Definitions and Retail Requirements Biodiesel blend stock must be at least 99% biodiesel (no more than 1% diesel fuel) and meet ASTM specification D6751....

265

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the purpose of producing or blending diesel fuel containing at least 2% biodiesel or green diesel. Eligible direct costs must have been incurred after December 31, 2002. A...

266

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the purpose of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

267

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, electricity, and hydrogen. A vehicle may receive one rebate in its lifetime. Only AFVs...

268

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the federal government. Recognized alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

269

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

For the purpose of this requirement, alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

270

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

liquefied natural gas, ethanol blends of 70% (E70) or greater, hydrogen, propane, or electricity, or (with the exception of buses, snowplows, and construction vehicles) have a fuel...

271

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

or conversion cost of two or more AFVs. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other...

272

Distillate Stocks Expected to Remain Low  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain low for the rest of the year. - Stocks are beginning at very low levels. The September 1 distillate fuel stock level (112 million barrels) is nearly 20% less than last year, and about 15% below the 10 year average for end of August levels. - But stocks on the East Coast, at 39.8 million barrels, are 39% behind year-ago levels, and about a similar percentage below end-of-August 10-year average levels. Over the last 10 years, the average stock build from the end of August through the end of November has been about 10 million barrels. We are forecasting about a 12 million barrel build, which does not reach the normal band. Forecast stocks peak at the end of November at 127 million

273

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

274

Alternative Fuels Data Center: Status Update: Ethanol Blender...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blender pumps are fuel dispensers that draw fuel from two separate bulk storage tanks and can dispense preprogrammed blends of those fuels into vehicles. Many stations...

275

Catalytic distillation : design and application of a catalytic distillation column.  

E-Print Network [OSTI]

??Catalytic Distillation (CD) is a hybrid technology that utilizes the dynamics of si- multaneous reaction and separation in a single process unit to achieve a… (more)

Nieuwoudt, Josias Jakobus (Jako)

2005-01-01T23:59:59.000Z

276

Distillate Supply/Demand Balance Reflected in Spreads  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: The price spike that initiated the flood of distillate imports last winter can be easily seen in this chart. The distillate supply/demand balance influences the spread between spot distillate and spot crude oil prices. For example, when stocks are higher than normal, the spread will be lower than usual. This spread is the price incentive that encourages or discourages changes in supply. The January/February 2000 price spike was shorter than the one last winter, largely due to the timing. Since last winter's price spike occurred early in the season, it took some time before prices receded substantially. Currently, the distillate fuel refining spread (the difference between the spot heating oil price and the WTI price) is more "typical". But as was

277

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

278

Catalytic distillation extends its reach  

SciTech Connect (OSTI)

Since the early 1980s, catalytic distillation processes have been selected by more than a hundred operators for various applications. Since such a unit performs both reaction and distillation simultaneously, a combined column can replace a separate, fixed-bed reactor and distillation column, thereby eliminating equipment and reducing capital costs. And, compared to the conventional approach, catalytic distillation may also improve other factors, such as reactant conversion, selectivity, mass transfer, operating pressure, oligomer formation and catalyst fouling. The constant washing of the catalyst by liquid flowing down the column and the distillation of high-boiling foulants results in extended catalyst life. Four selective hydrogenation applications of catalytic distillation are discussed: Butadiene selective hydrogenation combined within an MTBE unit; Pentadiene selective hydrogenation; C{sub 4} acetylene conversion; and Benzene saturation.

Rock, K.; McGuirk, T. [Catalytic Distillation Technologies, Houston, TX (United States); Gildert, G.R. [Catalytic Distillation Technologies, Pasadena, TX (United States)

1997-07-01T23:59:59.000Z

279

Increasing Distillate Production at U.S. Refineries Â… Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

280

Underground Storage Tanks: New Fuels and Compatibility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high octane fuels being considered as possible path forward Storing high octane ethanol blended fuels will require careful consideration of material compatibility issues...

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

as international marine bunker fuel. For the remaining 5% ofOf the distillate fuel consumed by all marine vessels, weresidual fuel oil from international marine travel. However,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

282

Multivessel Batch Distillation -Potential Energy Savings  

E-Print Network [OSTI]

Multivessel Batch Distillation - Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

283

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Use Requirement At least 50% of state vehicles using petroleum diesel fuel must use a minimum blend of 5% biodiesel (B5) or other biofuel approved by the U.S....

284

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

as E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, or any fuel that the U.S. Department of Energy determines, by final rule, to be...

285

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, electricity, or any other fuel that the U.S. Department of Energy has determined is...

286

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

as the price of the biodiesel blend is not more than 0.10 per gallon as compared to the price of diesel fuel. Individuals operating state-owned motor vehicles must purchase fuel...

287

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel comprised of mono-alkyl esters of long chain fatty acids from biologically derived oil and fats. A biodiesel blend is defined as a fuel comprised of a specified ratio of...

288

Theoretical and experimental investigation of membrane distillation.  

E-Print Network [OSTI]

??Invented in the 1960s, membrane distillation is an emerging technology for water treatment attracting more attention since 1980s. There are four configurations of membrane distillations… (more)

Zhang, Jianhua

2011-01-01T23:59:59.000Z

289

Oil recovery from condensed corn distillers solubles.  

E-Print Network [OSTI]

??Condensed corn distillers solubles (CCDS) contains more oil than dried distillers grains with solubles (DDGS), 20 vs. 12% (dry weight basis). Therefore, significant amount of… (more)

Majoni, Sandra

2009-01-01T23:59:59.000Z

290

Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives  

Broader source: Energy.gov [DOE]

A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx reduction

291

Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced...

292

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

293

Effects of Ruminally Degradable Nitrogen in Diets Containing Wet Distiller’s Grains with Solubles and Steam-flaked Corn on Feedlot Cattle Performance and Carcass Characteristics  

E-Print Network [OSTI]

ethanol (i.e., 100% alcohol or 200 proof). Ethanol has been introduced in reformulated gasoline as an alternative, renewable fuel source. Reformulated gasoline, used in vehicles, is a blend of gasoline and oxygenates. Oxygenates produce maximum... 10% blend of ethanol to comply with the Energy Policy Act of 2005. Ethanol-based fuel needs to be less expensive than gasoline in order to be competitive with traditional gasoline, due to the lower energy value of 100% ethanol (30% less than...

Ponce, Christian

2010-10-12T23:59:59.000Z

294

Distillate Fuel Oil Sales for Commercial Use  

Gasoline and Diesel Fuel Update (EIA)

2,718,674 2,850,895 2,785,246 2,738,304 2,715,335 2,557,543 2,718,674 2,850,895 2,785,246 2,738,304 2,715,335 2,557,543 1984-2012 East Coast (PADD 1) 1,796,285 1,741,268 1,565,353 1,528,778 1,433,828 1,286,053 1984-2012 New England (PADD 1A) 468,464 414,174 401,527 487,480 415,642 314,646 1984-2012 Connecticut 107,555 105,372 80,709 84,370 85,400 71,696 1984-2012 Maine 120,883 114,227 85,876 88,529 95,962 74,902 1984-2012 Massachusetts 134,184 104,471 129,062 219,929 143,938 94,217 1984-2012 New Hampshire 45,883 41,254 42,557 39,671 43,292 32,389 1984-2012 Rhode Island 28,361 24,752 34,745 27,984 21,136 19,533 1984-2012 Vermont 31,598 24,098 28,579 26,998 25,914 21,910 1984-2012 Central Atlantic (PADD 1B) 1,014,960 1,013,141 839,545 725,332 727,755 634,029 1984-2012

295

Distillate Fuel Oil Sales for Farm Use  

Gasoline and Diesel Fuel Update (EIA)

,202,847 3,744,936 2,660,024 2,928,175 2,942,436 3,031,878 ,202,847 3,744,936 2,660,024 2,928,175 2,942,436 3,031,878 1984-2012 East Coast (PADD 1) 370,159 395,566 333,748 454,160 375,262 382,639 1984-2012 New England (PADD 1A) 24,850 30,839 13,909 13,140 16,967 16,070 1984-2012 Connecticut 2,164 2,469 1,671 1,920 2,182 2,134 1984-2012 Maine 10,710 14,479 3,256 4,430 4,902 5,944 1984-2012 Massachusetts 3,474 1,424 1,664 1,123 1,510 1,920 1984-2012 New Hampshire 3,114 5,412 2,375 948 1,554 1,439 1984-2012 Rhode Island 87 103 20 16 23 44 1984-2012 Vermont 5,301 6,951 4,925 4,704 6,797 4,589 1984-2012 Central Atlantic (PADD 1B) 102,108 119,028 94,862 101,211 108,924 104,831 1984-2012 Delaware 5,839 4,762 5,904 6,821 8,548 6,767 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012

296

Distillate Fuel Oil Sales for Military Use  

Gasoline and Diesel Fuel Update (EIA)

63,145 270,975 243,728 243,242 246,243 142,696 1984-2012 63,145 270,975 243,728 243,242 246,243 142,696 1984-2012 East Coast (PADD 1) 65,650 67,961 71,878 63,847 74,030 44,821 1984-2012 New England (PADD 1A) 12,611 17,229 5,915 5,174 6,420 3,359 1984-2012 Connecticut 1,660 997 385 533 622 501 1984-2012 Maine 5,349 8,059 1,487 2,852 1,506 1,071 1984-2012 Massachusetts 2,382 3,182 500 343 3,101 466 1984-2012 New Hampshire 1,390 3,220 1,480 490 253 104 1984-2012 Rhode Island 1,735 1,403 1,643 903 900 1,091 1984-2012 Vermont 93 368 420 53 38 124 1984-2012 Central Atlantic (PADD 1B) 28,387 22,436 31,857 28,351 28,047 14,109 1984-2012 Delaware 180 128 122 75 168 70 1984-2012 District of Columbia 598 291 165 265 693 300 1984-2012 Maryland 6,441 6,448 4,234 4,686 4,831 2,114 1984-2012

297

Distillate Fuel Oil Sales for Railroad Use  

Gasoline and Diesel Fuel Update (EIA)

3,634,512 3,229,625 2,759,140 2,974,641 3,121,150 3,118,150 3,634,512 3,229,625 2,759,140 2,974,641 3,121,150 3,118,150 1984-2012 East Coast (PADD 1) 580,632 500,071 459,324 482,929 514,418 492,156 1984-2012 New England (PADD 1A) 69,282 47,582 43,763 53,930 51,126 33,306 1984-2012 Connecticut 4,450 3,219 2,219 2,006 2,006 5,195 1984-2012 Maine 126 1,694 7,252 8,284 6,818 5,970 1984-2012 Massachusetts 63,896 40,378 24,852 33,130 32,647 12,307 1984-2012 New Hampshire 119 126 697 86 124 116 1984-2012 Rhode Island 13 72 4 24 3 133 1984-2012 Vermont 678 2,092 8,740 10,400 9,528 9,586 1984-2012 Central Atlantic (PADD 1B) 210,461 177,750 152,309 196,570 233,005 204,527 1984-2012 Delaware 1,404 1,120 1,096 879 126 149 1984-2012 District of Columbia 0 0 0 1,229 6,392 6,770 1984-2012

298

Distillate Fuel Oil Sales for Industrial Use  

Gasoline and Diesel Fuel Update (EIA)

466,906 2,593,750 2,159,428 2,045,164 2,179,953 2,325,503 466,906 2,593,750 2,159,428 2,045,164 2,179,953 2,325,503 1984-2012 East Coast (PADD 1) 846,364 851,906 597,048 560,403 568,024 568,997 1984-2012 New England (PADD 1A) 57,624 56,038 60,994 41,357 42,972 39,708 1984-2012 Connecticut 13,312 10,362 17,414 8,976 7,576 7,427 1984-2012 Maine 16,275 17,536 17,332 14,167 15,981 13,532 1984-2012 Massachusetts 13,617 10,067 6,697 5,071 4,788 6,105 1984-2012 New Hampshire 5,618 6,481 12,393 4,455 4,180 4,239 1984-2012 Rhode Island 2,119 1,906 933 2,176 1,213 1,124 1984-2012 Vermont 6,683 9,687 6,225 6,512 9,234 7,280 1984-2012 Central Atlantic (PADD 1B) 294,847 307,072 185,569 152,730 195,359 190,517 1984-2012 Delaware 2,023 2,176 3,316 2,510 918 943 1984-2012

299

Optimal Control of Distillation Systems  

E-Print Network [OSTI]

The optimum performance of a distillation system can be evaluated by examining the product purities, the product recoveries, and the system's capability to respond to small or large, expected or unexpected, plant disturbances. An optimal control...

Chatterjee, N.; Suchdeo, S. R.

1984-01-01T23:59:59.000Z

300

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR crude2 SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum backoutlet

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparative Study on Engine Performance and Diesel Emissions with European Diesel Fuel (DF)?Diethylene Glycol Dimethyl Ether (DGM) and Fischer?Tropsch (FT)?DGM Blends  

Science Journals Connector (OSTI)

† Department of Energy and Process Engineering ... The general picture of the methyl- and methylene-related vibrations in the DF used here confirms the results of the GC analyses; i.e., that the DF resembles a n-alkane-dominated hydrocarbon mixture. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Rudolf Schmid; Johan Einar Hustad

2010-03-30T23:59:59.000Z

302

Impact of Biodiesel on Fuel System Component Durability  

SciTech Connect (OSTI)

A study of the effects of biodiesel blends on fuel system components and the physical characteristics of elastomer materials.

Terry, B.

2005-09-01T23:59:59.000Z

303

Distillation process using microchannel technology  

DOE Patents [OSTI]

The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

2009-11-03T23:59:59.000Z

304

Quantum universality by state distillation  

E-Print Network [OSTI]

Quantum universality can be achieved using classically controlled stabilizer operations and repeated preparation of certain ancilla states. Which ancilla states suffice for universality? This "magic states distillation" question is closely related to quantum fault tolerance. Lower bounds on the noise tolerable on the ancilla help give lower bounds on the tolerable noise rate threshold for fault-tolerant computation. Upper bounds show the limits of threshold upper-bound arguments based on the Gottesman-Knill theorem. We extend the range of single-qubit mixed states that are known to give universality, by using a simple parity-checking operation. For applications to proving threshold lower bounds, certain practical stability characteristics are often required, and we also show a stable distillation procedure. No distillation upper bounds are known beyond those given by the Gottesman-Knill theorem. One might ask whether distillation upper bounds reduce to upper bounds for single-qubit ancilla states. For multi-qubit pure states and previously considered two-qubit ancilla states, the answer is yes. However, we exhibit two-qubit mixed states that are not mixtures of stabilizer states, but for which every postselected stabilizer reduction from two qubits to one outputs a mixture of stabilizer states. Distilling such states would require true multi-qubit state distillation methods.

Ben W. Reichardt

2006-08-09T23:59:59.000Z

305

Experimental Investigation of the Effects of Fuel Aging on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-Ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid is a renewable fuel for stationary heat and power generation; however degradation of bio-oil by time, a.k.a. aging, has an impact… (more)

Zarghami-Tehran, Milad

2012-01-01T23:59:59.000Z

306

Experimental Investigation of the Effects of Fuel Properties on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid, also known as bio-oil, is a promising renewable fuel for heat and power generation; however, implementing crude bio-oil in some current… (more)

Moloodi, Sina

2011-01-01T23:59:59.000Z

307

Distillate Imports Surged to Meet Supply/Demand Imbalance  

Gasoline and Diesel Fuel Update (EIA)

receded when weather moderated and new supply began to receded when weather moderated and new supply began to arrive. Imports were the largest source of new supply that arrived to relieve the imbalance that was behind the price spike. This graph shows the dramatic increase on a calendar monthly average basis. During the three weeks ending February 25, distillate fuel oil imports averaged 566 thousand barrels per day. During the prior four weeks, imports only averaged 162 thousand barrels per day. Refinery production on the East Coast also increased. For the three weeks ending February 25, East Coast distillate production averaged 478 thousand barrels per day, which was an increase of about 91 thousand barrels per day or 24% over the prior four weeks. (During the same time period, national distillate production only rose 7 percent.)

308

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

309

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents [OSTI]

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

310

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Carolina Incentives and Laws Carolina Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuels Retail Incentive Expired: 06/30/2012 Ethanol retailers selling fuel blends of at least 70% ethanol (E70) are eligible for a $0.05 incentive per gallon of ethanol blended fuel sold, provided that the fuel is subject to the South Carolina motor fuel user fee. Additionally, biodiesel retailers are eligible for a $0.25 incentive per gallon of biodiesel (B100) sold as pure biodiesel or as part of a biodiesel blend, provided that the blend contains at least 2% biodiesel (B2). These incentives apply only to fuel sold before July 1, 2012.

311

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

312

PPMCSA Presentation on Winter Distillate Outlook  

Gasoline and Diesel Fuel Update (EIA)

PPMCSA Presentation on Winter Distillate Outlook PPMCSA Presentation on Winter Distillate Outlook 09/15/2000 Click here to start Table of Contents Winter Distillate Outlook Distillate Prices Increasing With Crude Oil Factors Driving Prices & Forecast First Factor Impacting Distillate Prices: Crude Oil Prices High Crude Prices Go With Low Inventories Second Price Component: Spread Impacted by Distillate Supply/Demand Balance Distillate Stocks are Low – Especially on the East Coast Distillate Stocks Are Important Part of East Coast Winter Supply Winter Demand Impacted by Weather Warm Winters Held Heating Oil Demand Down While Diesel Grew Distillate Demand Strong in December 1999 Dec 1999 & Jan 2000 Production Fell, But Rebounded with Price Higher Yields Can Be Achieved Unusual Net Imports May Only Be Available at a High Price

313

An isoteniscope was used to measure the V.P. of different fuel blends. This apparatus allows us to take measurements over a wide range of  

E-Print Network [OSTI]

.B. *** Biofuels are increasingly being used in the aviation industry. Vapor pressure (V.P.) is the main parameter understand the combustion process in jet engines. An experimental apparatus was set up and data was collected for a 50/50* surrogate mixture of Biojet and Jet-A fuel to find the relation of their V.P. with temperature

Barthelat, Francois

314

Optimal protocols for nonlocality distillation  

SciTech Connect (OSTI)

Forster et al. recently showed that weak nonlocality can be amplified by giving the first protocol that distills a class of nonlocal boxes (NLBs) [Phys. Rev. Lett. 102, 120401 (2009)] We first show that their protocol is optimal among all nonadaptive protocols. We next consider adaptive protocols. We show that the depth-2 protocol of Allcock et al. [Phys. Rev. A 80, 062107 (2009)] performs better than previously known adaptive depth-2 protocols for all symmetric NLBs. We present a depth-3 protocol that extends the known region of distillable NLBs. We give examples of NLBs for which each of the Forster et al., the Allcock et al., and our protocols perform best. The understanding we develop is that there is no single optimal protocol for NLB distillation. The choice of which protocol to use depends on the noise parameters for the NLB.

Hoeyer, Peter; Rashid, Jibran [Department of Computer Science, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, 2N 1N4 (Canada)

2010-10-15T23:59:59.000Z

315

The Northeast heating fuel market: Assessment and options  

SciTech Connect (OSTI)

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

316

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

317

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

318

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

319

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

320

Rapid Separation of Petroleum Fuels by Hydrocarbon Type  

Science Journals Connector (OSTI)

......various fuels such as gasoline and jet fuel into...cleaning solvent and straight-run distillate have...various fuels such as gasoline and jet fuel into...cleaning solvent and straight-run distillate have...aromatic content of gasoline usually in- creases......

Robert Stevenson

1971-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Entanglement distillation using particle statistics  

E-Print Network [OSTI]

We extend the idea of entanglement concentration for pure states(Phys. Rev. Lett. {\\bf 88}, 187903) to the case of mixed states. The scheme works only with particle statistics and local operations, without the need of any other interactions. We show that the maximally entangled state can be distilled out when the initial state is pure, otherwise the entanglement of the final state is less than one. The distillation efficiency is a product of the diagonal elements of the initial state, it takes the maximum 50%, the same as the case for pure states.

H. L. Huang; L. H. Cheng; X. X. Yi

2005-10-25T23:59:59.000Z

322

Bounds for nonlocality distillation protocols  

SciTech Connect (OSTI)

Nonlocality can be quantified by the violation of a Bell inequality. Since this violation may be amplified by local operations, an alternative measure has been proposed--distillable nonlocality. The alternative measure is difficult to calculate exactly due to the double exponential growth of the parameter space. In this paper, we give a way to bound the distillable nonlocality of a resource by the solutions to a related optimization problem. Our upper bounds are exponentially easier to compute than the exact value and are shown to be meaningful in general and tight in some cases.

Forster, Manuel [Computer Science Department, ETH Zuerich, CH-8092 Zuerich (Switzerland)

2011-06-15T23:59:59.000Z

323

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Gasoline SR Distillate SR GO SR Residuum backoutletCDUfrontoutletCDUfeedfeedCDUoutlet bbFaF ,,,,, * ++= #12

Grossmann, Ignacio E.

324

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum #12;7 Complexity of CDU CDU depends on steam stripping

Grossmann, Ignacio E.

325

A photographic study of the combustion of low cetane fuels in a Diesel engine aided with spark assist  

SciTech Connect (OSTI)

An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions. Results indicate that controlled combustion of extended fuel blends in a Diesel engine may be possible without inlet air preconditioning and that engine knock may be avoided when heat release is optimized with proper spark and injection timing.

Abata, D.L.; Fritz, S.G.; Stroia, B.J.

1986-01-01T23:59:59.000Z

326

Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance  

SciTech Connect (OSTI)

In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

Eaton, Scott J [ORNL; Bunting, Bruce G [ORNL; Lewis Sr, Samuel Arthur [ORNL; Fairbridge, Craig [National Centre for Upgrading Technology, Canada

2009-01-01T23:59:59.000Z

327

SELFOPTIMIZING CONTROL: A DISTILLATION CASE Sigurd Skogestad  

E-Print Network [OSTI]

for the controlled variables. The idea is applied to propane­propylene distillation case study. Keywords: ChemicalSELF­OPTIMIZING CONTROL: A DISTILLATION CASE STUDY Sigurd Skogestad #3; #3; Department of Chemical

Skogestad, Sigurd

328

Energy Recovery in Industrial Distillation Processes  

E-Print Network [OSTI]

ENERGY RECOVERY IN INDUSTRIAL DISTILLATION PROCESSES Duane B. Paul General Electric Company Fitchburg, Massachusetts ABSTRACT Overhead separati on processes whi ch present attracti ve Distillation processes are energy intensive Condenser...

Paul, D. B.

1983-01-01T23:59:59.000Z

329

Corrosion inhibition for distillation apparatus  

DOE Patents [OSTI]

Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY); Schweighardt, Frank K. (Upper Macungie, PA)

1985-01-01T23:59:59.000Z

330

Entanglement distillation by extendible maps  

E-Print Network [OSTI]

It is known that from entangled states that have positive partial transpose it is not possible to distill maximally entangled states by local operations and classical communication (LOCC). A long-standing open question is whether maximally entangled states can be distilled from every state with a non-positive partial transpose. In this paper we study a possible approach to the question consisting of enlarging the class of operations allowed. Namely, instead of LOCC operations we consider k-extendible operations, defined as maps whose Choi-Jamiolkowski state is k-extendible. We find that this class is unexpectedly powerful - e.g. it is capable of distilling EPR pairs even from product states. We also perform numerical studies of distillation of Werner states by those maps, which show that if we raise the extension index k simultaneously with the number of copies of the state, then the class of k-extendible operations is not that powerful anymore and provide a better approximation to the set of LOCC operations.

Lukasz Pankowski; Fernando G. S. L. Brandao; Michal Horodecki; Graeme Smith

2011-09-08T23:59:59.000Z

331

"Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel...

332

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal"...

333

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

334

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

335

Multivessel Batch Distillation Potential Energy Savings  

E-Print Network [OSTI]

Multivessel Batch Distillation ­ Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

336

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

Skogestad, Sigurd

337

Optimal distillation using thermodynamic geometry Bjarne Andresen  

E-Print Network [OSTI]

Optimal distillation using thermodynamic geometry Bjarne Andresen Ã?rsted Laboratory, University of a distillation column may be improved by permitting heat exchange on every tray rather than only in the reboiler (temperature, pressure, etc.) define successive states in a sequence of equilibria. Fractional distillation [2

Salamon, Peter

338

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

339

Process Svstems Enaineerina Instability of Distillation Columns  

E-Print Network [OSTI]

Process Svstems Enaineerina , Instability of Distillation Columns Elling W. Jacobsen and Sigurd recognized, distillation columns, operating with reflux and boilup as independent inputs, may have The dynamic behavior of distillation columns has been stud- ied quite extensively over the past decades

Skogestad, Sigurd

340

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA SÃ?RENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

Skogestad, Sigurd

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Experimental entanglement distillation of mesoscopic quantum states  

E-Print Network [OSTI]

LETTERS Experimental entanglement distillation of mesoscopic quantum states RUIFANG DONG1 , MIKAEL, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less entangled states, can be used4­14 . Here we report on the distillation of deterministically

Loss, Daniel

342

Analysis and Control of Heteroazeotropic Batch Distillation  

E-Print Network [OSTI]

Analysis and Control of Heteroazeotropic Batch Distillation S. Skouras and S. Skogestad Dept.interscience.wiley.com). The separation of close-boiling and azeotropic mixtures by heterogeneous azeotropic distillation is addressed. The results show that heteroazeotropic batch distillation exhibits substantial flexibility. The column profile

Skogestad, Sigurd

343

Sandia National Laboratories: blending feedstock varieties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

blending feedstock varieties Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

344

Effect of n-Butanol Blending with a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine  

Science Journals Connector (OSTI)

Effect of n-Butanol Blending with a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine ... Mechanical Engineering, Batman University, Batman 72100, Turkey ... Diesel engines are widely used for transportation, energy production, and agricultural and industrial applications because of their high fuel conversion efficiencies and durability. ...

S?ehmus Altun; Cengiz O?ner; Fevzi Yas?ar; Hamit Adin

2011-06-22T23:59:59.000Z

345

Alternative transportation fuels and air quality  

Science Journals Connector (OSTI)

Alternative transportation fuels and air quality ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ...

Tai Y. Chang; Robert H. Hammerle; Steven M. Japar; Irving T. Salmeen

1991-07-01T23:59:59.000Z

346

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

347

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect (OSTI)

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

348

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

by the sale of Energy Policy Act of 1992 (EPAct) credits to cover the incremental cost of purchasing fuel containing biodiesel blends of at least 20% (B20) for state fleet...

349

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

0.24 per gallon. E85 is defined as an alternative fuel that is a blend of denatured ethanol and hydrocarbon and typically contains 85% ethanol by volume, but must contain at...

350

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and 68-1359...

351

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

which provides grants of up to 2,500 to cover the cost of cleaning existing fuel tanks in preparation for storing biodiesel blends of at least 20% (B20) for use in public...

352

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

85% methanol (M85), biodiesel or fuel blends of at least 20% biodiesel (B20), or electricity (including plug-in hybrid electric vehicles). Waivers may be granted for fleets...

353

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the 0.30 per gallon state fuel excise tax. The exemption does not...

354

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

blends must comply with ASTM specification D7467-10. Biodiesel produced from palm oil is not considered biodiesel fuel unless the palm oil is waste oil or grease collected...

355

Simulated Distillation for Biofuel Analysis  

Science Journals Connector (OSTI)

Simulated Distillation for Biofuel Analysis ... SimDis therefore can easily be used to classifiy novel biofuels, for example, also bidodiesel made of algae or novel oilseed, regarding boiling characteristics and quality. ... and potential of biofuels in the transport sector including types of biofuel, feedstocks and technologies and some of the possible socio-economic, environmental and political implications of the widespread use of biofuels in our society. ...

Christine Bachler; Sigurd Schober; Martin Mittelbach

2009-12-30T23:59:59.000Z

356

Momentive Performance Materials Distillation Intercharger  

E-Print Network [OSTI]

Presenter: Nicki (Collins) Boucher Project Team: T. Baisley, C. Beers, R. Cameron, K. Holman, T. Kotkoskie, K. Norris Momentive Performance Materials Inc. Waterford, NY May 23, 2013 Industrial Energy Technology Conference ACC Responsible... Care? Energy Efficiency Program Momentive Performance Materials Distillation Interchanger ESL-IE-13-05-20 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Copyright 2013 Momentive Performance...

Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.

2013-01-01T23:59:59.000Z

357

Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend  

E-Print Network [OSTI]

Associated with High-Ethanol Blend Releases Jie Ma, Hong Luo, George E. DeVaull,§ William G. Rixey, and Pedro ABSTRACT: Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could conditions exist. Ethanol- derived methane may also increase the vapor intrusion potential of toxic fuel

Alvarez, Pedro J.

358

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Feedstock Heavy Naphtha 13 9 Refinery Production Fuel Gas 13 17 LPG 18 20 Light Naphtha 6 6 Premium Gasoline

Grossmann, Ignacio E.

359

Integration of Nonlinear CDU Models in Refinery  

E-Print Network [OSTI]

Hydrotreatment Distillate blending Gas oil blending Cat Crack CDU Crude1, ... Crude2, .... butane Fuel gas Prem. Gasoline Reg. Gasoline Distillate Fuel Oil Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum Product Blending 4 #12;Planning Model Example Information Given Refinery

Grossmann, Ignacio E.

360

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium 17 LPG 18 20 Light Naphtha 6 6 Premium Gasoline 20 20 Reg. Gasoline 80 92 Gas Oil 163 170 Fuel Oil Reg. Distillate Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

362

Effect of use of low oxygenate gasoline blends upon emissions from California vehicles. Final report  

SciTech Connect (OSTI)

The objective of this project was to investigate the emissions effects of low-oxygenate gasoline blends on exhaust and evaporative emissions from a test fleet of California certified light-duty autos. Thirteen vehicles were procured and tested using four gasoline-oxygenate blends over three test cycles. The four gasoline blends were: Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and 'match' and 'splash' blends of ethanol (in the 'match' blend the fuel Reid Vapor Pressure (RVP) is held constant, while in the 'splash' blend the fuel RVP is allowed to increase). Hydrocarbon and carbon monoxide exhaust emissions were generally reduced for the oxygenated blends, the exception being the 'splash-blended' ethanol gasoline which showed mixed results. Older technology vehicles (e.g., non-catalyst and oxidation catalyst) showed the greatest emissions reductions regardless of gasoline blend, while later technology vehicles showed the smallest reductions. Evaporative emissions and toxics were generally reduced for ETBE, while results for the other blends were mixed.

Born, G.L.; Lucas, S.V.; Scott, R.D.; DeFries, T.H.; Kishan, S.

1994-02-01T23:59:59.000Z

363

Alternative Fuels Data Center: E85: An Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85: An Alternative E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative Fuel on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E85 Photo of an E85 pump. E85 is a high-level gasoline-ethanol blend containing 51% to 83% ethanol,

364

Distillate Stocks are Low - Especially on the East Coast  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Distillate stocks are normally built during the summer for use during the winter as shown by the normal band. Currently, stocks are very low for this time of year. This graph shows East Coast inventories, which at the end of August, were well below the normal band (over 9 million barrels or 19% below the low end of the band). The East Coast is about 31% lower than its 10-year average level for this time of year. We focus on the East Coast (PADD 1 ) because this a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). December 1999 was the turning point. Stocks were well within the normal range through November 1999, but in December, they dropped below the

365

Purification Testing for HEU Blend Program  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is working to dispose of the inventory of enriched uranium (EU) formerly used to make fuel for production reactors. The Tennessee Valley Authority (TVA) has agreed to take the material after blending the EU with either natural or depleted uranium to give a {sup 235}U concentration of 4.8 percent low-enriched uranium will be fabricated by a vendor into reactor fuel for use in TVA reactors. SRS prefers to blend the EU with existing depleted uranium (DU) solutions, however, the impurity concentrations in the DU and EU are so high that the blended material may not meet specifications agreed to with TVA. The principal non-radioactive impurities of concern are carbon, iron, phosphorus and sulfur. Neptunium and plutonium contamination levels are about 40 times greater than the desired specification. Tests of solvent extraction and fuel preparation with solutions of SRS uranium demonstrate that the UO{sub 2} prepared from these solutions will meet specifications for Fe, P and S, but may not meet the specifications for carbon. The reasons for carbon remaining in the oxide at such high levels is not fully understood, but may be overcome either by treatment of the solutions with activated carbon or heating the UO{sub 3} in air for a longer time during the calcination step of fuel preparation.Calculations of the expected removal of Np and Pu from the solutions show that the specification cannot be met with a single cycle of solvent extraction. The only way to ensure meeting the specification is dilution with natural U which contains no Np or Pu. Estimations of the decontamination from fission products and daughter products in the decay chains for the U isotopes show that the specification of 110 MEV Bq/g U can be met as long as the activities of the daughters of U- 235 and U-238 are excluded from the specification.

Thompson, M.C. [Westinghouse Savannah River Company, AIKEN, SC (United States); Pierce, R.A.

1998-06-01T23:59:59.000Z

366

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand...

367

Entanglement distillation from quasifree Fermions  

E-Print Network [OSTI]

We develop a scheme to distill entanglement from bipartite Fermionic systems in an arbitrary quasifree state. It can be applied if either one system containing infinite one-copy entanglement is available or if an arbitrary amount of equally prepared systems can be used. We show that the efficiency of the proposed scheme is in general very good and in some cases even optimal. Furthermore we apply it to Fermions hopping on an infinite lattice and demonstrate in this context that an efficient numerical analysis is possible for more then 10^6 lattice sites.

Zoltan Kadar; Michael Keyl; Dirk Schlingemann

2010-03-14T23:59:59.000Z

368

Distillation of Bell states in open systems  

E-Print Network [OSTI]

In this work we review the entire classification of 2x2 distillable states for protocols with a finite numbers of copies. We show a distillation protocol that allows to distill Bell states with non zero probability at any time for an initial singlet in vacuum. It is shown that the same protocol used in non zero thermal baths yields a considerable recovering of entanglement.

E. Isasi; D. Mundarain

2009-08-14T23:59:59.000Z

369

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

370

Conceptual Design for Pressure Swing Distillation.  

E-Print Network [OSTI]

??The separation of homogenous azeotropic mixtures is a common task in the chemical industry. In the literature, pressure swing distillation is often mentioned as an… (more)

Bozzacco, Carmen

2006-01-01T23:59:59.000Z

371

Total Organic Carbon Rejection in Osmotic Distillation.  

E-Print Network [OSTI]

?? The osmotic distillation (OD) system is a spacecraft wastewater recycling system designed to produce potable water from human urine and humidity condensate. The OD… (more)

Shaw, Hali Laraelizabeth

2012-01-01T23:59:59.000Z

372

Intelligent fuzzy supervisory control for distillation columns.  

E-Print Network [OSTI]

??Distillation as a separation technique is widely used in the chemical and petroleum industries. With the growth of these industries and the availability of cheap… (more)

Santhanam, Srinivasan

2012-01-01T23:59:59.000Z

373

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

374

NREL: Learning - Alternative Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Fuels Alternative Fuels Photo of a man standing next to a large heavy-duty truck cab while the truck is being filled with biodiesel at a refueling station. As part of its work for the Clean Cities program, NREL helps people find and use alternative fuels such as biodiesel. Credit: L.L. Bean To reduce our growing dependence on imported oil, our nation's researchers are working with industry to develop several different kinds of alternative fuels. Some of these fuels can either be blended with petroleum while some are alternatives to petroleum. Using alternative fuels can also help to curb exhaust emissions and contribute to a healthier environment. Most of today's conventional cars, vans, trucks, or buses can already run on some alternative fuels, such as blends of gasoline or diesel fuel that

375

100% Pet coke or pet coke blends combustion  

SciTech Connect (OSTI)

Information is outlined on the combustion of 100 percent petroleum coke or petroleum coke blends. Data are presented on NISCO overviews; fuel (coke) characteristics; delayed coke analysis (1995-96); limestone characteristics/effects; limestone preparation; ash characteristics; vortex finders; agglomerization; and NISCO performance results.

Swindle, D.L.

1996-12-31T23:59:59.000Z

376

Bench-Top Engine System for Fast Screening of Alternative Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System for Fast Screening of Alternative Fuels and Fuel Additives A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx...

377

Distillability of entanglement in accelerated frames  

Science Journals Connector (OSTI)

We study the entanglement distillability of bipartite mixed states of two modes of a free Dirac field as seen by two relatively accelerated parties. It is shown that there are states that will change from distillable into separable for a certain value of acceleration. We exemplify these criteria in the context of Werner states.

Shahpoor Moradi

2009-06-05T23:59:59.000Z

378

Rank three bipartite entangled states are distillable  

E-Print Network [OSTI]

We prove that the bipartite entangled state of rank three is distillable. So there is no rank three bipartite bound entangled state. By using this fact, We present some families of rank four states that are distillable. We also analyze the relation between the low rank state and the Werner state.

Lin Chen; Yi-Xin Chen

2008-03-07T23:59:59.000Z

379

Locally accessible information and distillation of entanglement  

SciTech Connect (OSTI)

A different type of complementarity relation is found between locally accessible information and final average entanglement for a given ensemble. It is also shown that in some well-known distillation protocols, this complementary relation is optimally satisfied. We discuss the interesting trade-off between locally accessible information and distillable entanglement for some states.

Ghosh, Sibasish [Department of Computer Science, University of York, Heslington, York, YO10 (United Kingdom); Joag, Pramod [Department of Physics, University of Pune, Ganeshkhind, Pune 411 007 (India); Kar, Guruprasad; Kunkri, Samir [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata 700 108 (India); Roy, Anirban [Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113 (India)

2005-01-01T23:59:59.000Z

380

Forpeerreview Synthesis of Complex Thermally Coupled Distillation  

E-Print Network [OSTI]

US energy consumption, which is equivalent to 2.87x10 18 J (2.87 million TJ) per year, or to a power; Divided Wall Column; Superstructure optimization; GDP. Introduction Distillation is one of the most limitations. Distillation columns use very large amounts of energy because the evaporation steps involved

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Distillability of entanglement in accelerated frames  

E-Print Network [OSTI]

We study the entanglement distillability of bipartite mixed states of two modes of a free Dirac field as seen by two relatively accelerated parties. It is shown that there are states that will change from distillable into separable for a certain value of acceleration. We exemplify these criteria in the context of Werner states.

Shahpoor Moradi

2012-01-02T23:59:59.000Z

382

Rigorous Synthesis and Simulation of Complex Distillation Networks  

E-Print Network [OSTI]

Rigorous Synthesis and Simulation of Complex Distillation Networks Gerardo J. Ruiz, Seon B. Kim energy-efficient distillation net- works. Complex column networks have substantial potential for energy column, networks, temperature collocation, inverse design, Aspen validation Introduction Distillation

Linninger, Andreas A.

383

Integrated C3 Feedstock and Aggregated Distillation Model for  

E-Print Network [OSTI]

Polypropylene Propane return Reactor effluent Distillation Polymerization FeedTank Propylene (91%) Goal: Select. Refinery Grade (RG) Propane return Distillation Vapor recompression Propylene (91%) ~79% propylene #12 Polypropylene Propane return Reactor effluent Distillation Polymerization Feed Tank Propylene ~79% propylene ~95

Grossmann, Ignacio E.

384

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

385

JV Task 112-Optimal Ethanol Blend-Level Investigation  

SciTech Connect (OSTI)

Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

2008-01-31T23:59:59.000Z

386

Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane  

Broader source: Energy.gov [DOE]

The effects of blends of base fuel (n-heptane) and fuel-reformed products on the low-temperature combustion process were investigated.

387

Mid-Level Ethanol Blends  

Energy Savers [EERE]

Mid-Level Ethanol Blends Test Program DOE, NREL, and ORNL Team Presented by Keith Knoll Work supported by DOEEERE Vehicle Technologies Program Annual Merit Review and Peer...

388

Emissions and engine performance from blends of soya and canola methyl esters with ARB {number_sign}2 diesel in a DCC 6V92TA MUI engine  

SciTech Connect (OSTI)

A Detroit Diesel 6V92TA MUI engine was operated on several blends of EPA No. 2 diesel, California ARB No. 2 diesel, soya methyl ester (SME) and canola methyl ester (CME). Various fuels and fuel blend characteristics were determined and engine emissions from these fuels and blends were compared. Increasing percentages of SME and CME blended with either ARB or EPA diesels led to increased emissions of NO{sub x}, CO{sub 2} and soluble particulate matter. Also noted were reductions in total hydrocarbons, CO and insoluble particulate matter. Chassis dynamometer tests conducted on a 20/80 SME/ARB blend showed similar emissions trends. The data suggest that certain methyl ester/No. 2 diesel blends in conjunction with delays in engine timing and technologies that reduce the soluble fraction of particulate emissions merit further exploration as emissions reducing fuel options for North American mass transits (except in California, which mandates ARB diesel).

Spataru, A.; Romig, C.

1995-12-31T23:59:59.000Z

389

Emissions and engine performance from blends of soya and canola methyl esters with ARB No. 2 diesel in a DDC 6V92TA MUI engine  

SciTech Connect (OSTI)

A Detroit Diesel 6V92TA MUI engine was operated on several blends of EPA No. 2 diesel, soya methyl ester (SME) and canola methyl ester (CME). Various fuels and fuel blend characteristics were determined and engine emissions from these fuels and blends were compared. Increasing percentages of SME and CME blended with either ARB or EPA diesels led to increased emissions of NO{sub x}, CO{sub 2} and soluble particulate matter. Also noted were reductions in total hydrocarbons, CO and insoluble particulate matter. Chassis dynamometer tests conducted on a 20/80 SME/ARB blend showed similar emission trends. The data suggest that certain methyl ester/No. 2 diesel blends in conjunction with technologies that reduce the soluble fraction of particulate emissions merit further exploration as emissions reducing fuel options for North American mass transit sectors (except California, which mandates ARB diesel).

Spataru, A.; Romig, C. [ADEPT Group, Inc., Los Angeles, CA (United States)

1995-11-01T23:59:59.000Z

390

New Design Methods and Algorithms for Multi-component Distillation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf More...

391

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network [OSTI]

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct the fuel vaporization pro- cess for ethanol-gasoline fuel blends and the associated charge cooling effect experimental cylinder pressure for different gasoline-ethanol blends and various speeds and loads on a 2.0 L

Stefanopoulou, Anna

392

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

393

Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Retailer Fuel Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Retailer Tax Credit Retailers that sell fuel blends of gasoline containing up to 15% ethanol by

394

Alternative Fuels Data Center: Alternative Fuel Tax Rates  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax Rates to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Rates on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Rates on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rates on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rates on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Rates on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Rates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Rates Blended fuels that contain at least 10% gasoline or diesel are taxed at the full tax rates of gasoline ($0.30 per gallon) or diesel ($0.312 per

395

Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1  

SciTech Connect (OSTI)

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

396

Synthesis of azeotropic batch distillation separation systems  

SciTech Connect (OSTI)

The sequencing of batch distillation systems, in particular batch distillation columns, can be complicated by the existence of azeotropes in the mixture. These azeotropes can form batch distillation regions where, depending on the initial feed to the batch column, the types of feasible products and separations are limited. It is very important that these distillation regions are known while attempting to synthesize sequences of batch columns so infeasible designs can be eliminated early on in the design phase. The distillation regions also give information regarding the feasible products that can be obtained when the mixture is separated by using a variety of batch column configurations. The authors will show how a tool for finding the batch distillation regions of a particular mixture can be used in the synthesis of batch distillation column sequences. These sequences are determined by the initial feed composition to the separation network. The network of all possible sequences will be generated by using state-task networks when batch rectifying, stripping, middle vessel, and extractive middle vessel columns are allowed. The authors do not determine which sequence is the best, as the best sequence will depend on the particular application to which one is applying the algorithms. They show an example problem for illustration of this technique.

Safrit, B.T. [Eastman Chemical Co., Kingsport, TN (United States)] [Eastman Chemical Co., Kingsport, TN (United States); Westerberg, A.W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)] [Carnegie Mellon Univ., Pittsburgh, PA (United States)

1997-05-01T23:59:59.000Z

397

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies  

Broader source: Energy.gov (indexed) [DOE]

understood and accounted for, they can be introduced at higher blending levels. * Non-petroleum based fuels are relatively new and not fully understood. * Current vehicles are...

398

NREL: State and Local Governments - Renewable Fuel Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

blends of ethanol or alternative fuels. Adopting an implementation plan that can ease measurement and verification burdens and help ensure the target is met Avoiding trigger...

399

LANL disassembles "pits," makes mixed-oxide fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the MOX facility in South Carolina, the plutonium oxide from LANL will be blended with depleted uranium, fabricated into MOX fuel, and irradiated in domestic nuclear...

400

Distillation: Still towering over other options  

SciTech Connect (OSTI)

Distillation dominates separations in the chemical process industries (CPI), at least for mixtures that normally are processed as liquids. The authors fully expect that distillation will continue to be the method of choice for many separations, and the method against which other options must be compared. So, in this article, they will put into some perspective just why distillation continues to reign as the king of separations, and what steps are being taken to improve its applicability and performance, as well as basic understanding of the technique.

Kunesh, J.G. [Fractionation Research, Inc., Stillwater, OK (United States); Kister, H.Z. [Brown and Root, Inc., Alhambra (Canada); Lockett, M.J. [Praxair, Inc., Tonawanda, NY (United States); Fair, J.R. [Univ. of Texas, Austin, TX (United States)

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Renewable Fuel Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Labeling Requirement Biodiesel and ethanol blend dispensers must be affixed with decals

402

Nonlocality Distillation for High-Dimensional System  

E-Print Network [OSTI]

The intriguing and powerful capability of nonlocality in communication field ignites the research of the nonlocality distillation. The first protocol presented in Ref[Phys. Rev. Lett. 102, 120401] shows that the nonlocality of bipartite binary-input and binary-output nonsignaling correlated boxes could be amplified by 'wiring' two copies of weaker-nonlocality boxes. Several optimized distillation protocols were presented later for bipartite binary-input and binary-output nonsignaling correlated boxes. In this paper, we focus on the bipartite binary-input and multi-nary-output nonsignaling correlated boxes---high-dimensional boxes, and design comparators-based protocols to achieve the distillation of high-dimensional nonlocality. The results show that the high-dimensional nonlocality can be distilled in different ways, and we find that the efficiencies of the protocols are influenced not only by the wirings but also by the classes the initial nonlocality boxes belongs to. Here, the initial nonlcalities may hav...

Pan, Guo-Zhu; Chen, Zheng-Gen; Yang, Ming; Cao, Zhuo-Liang

2012-01-01T23:59:59.000Z

403

Minimizing corrosion in coal liquid distillation  

DOE Patents [OSTI]

In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY)

1985-01-01T23:59:59.000Z

404

Multipartite secret key distillation and bound entanglement  

SciTech Connect (OSTI)

Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing technique.

Augusiak, Remigiusz; Horodecki, Pawel [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland) and ICFO-Institute Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland)

2009-10-15T23:59:59.000Z

405

Multipartite secret key distillation and bound entanglement  

E-Print Network [OSTI]

Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted GHZ structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with help of the privacy squeezing technique.

Remigiusz Augusiak; Pawel Horodecki

2008-11-21T23:59:59.000Z

406

Use of computers for multicomponent distillation calculations  

E-Print Network [OSTI]

LIBRARY 4 A I4 COLLEGE QF TEXAS USE OF COMPUTERS FOB MULTICOMPONENT DISTILLATION CALCULATIONS A Thesis By Samuel Lane Sullivan Jr, Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January 1959 Major Subject: Chemical Engineering USE OF COMPUTERS FOR NULTICOMPONENT DISTILLATION CALCULATIONS A Thesis By Samuel Lane Sullivan Jr. Approved as to style and content by: Chairman...

Sullivan, Samuel Lane

2012-06-07T23:59:59.000Z

407

Sulfur-isotope separation by distillation  

SciTech Connect (OSTI)

Sulfur-isotope separation by low-temperature distillation of hydrogen sulfide was studied in an 8-m, 25-mm diameter distillation column. Column temperature was controlled by a propane-propylene heat pipe. Column packing HETP was measured using nitric oxide in the column. The column was operated at pressures from 45 to 125 kPa. The relative volatility of S-32 vs. S-34 varied from 1.0008 to 1.0014.

Mills, T.R.

1982-01-01T23:59:59.000Z

408

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S RENSEN 3 and RAJAB distillation schemes. A simple feedback control strategy for the total re ux operation of a multivessel column distillation generally is less energy e cient than continuous distillation, it has received increased attention

Skogestad, Sigurd

409

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA SÃ?RENSEN 3 and RAJAB distillation schemes. A simple feedback control strategy for the total reflux operation of a multivessel column distillation generally is less energy efficient than continuous distillation, it has received increased

Skogestad, Sigurd

410

On the Communication Complexity of Correlation and Entanglement Distillation  

E-Print Network [OSTI]

On the Communication Complexity of Correlation and Entanglement Distillation Ke Yang May 4th, 2004 distillation, entanglement distillation, communication complexity, EPR pairs, quantum key distribution #12) information, and then engage in a protocol to \\distill" the correlation/entanglement via communication. We

411

Blog Distillation via Sentiment-Sensitive Link Analysis  

E-Print Network [OSTI]

Blog Distillation via Sentiment-Sensitive Link Analysis Giacomo Berardi, Andrea Esuli, Fabrizio blog distillation by adding a link analysis phase to the standard retrieval-by-topicality phase, where in blog distillation. 1 Introduction Blog distillation is a subtask of blog search. It is defined

Sebastiani, Fabrizio

412

Flammability of diesel fuels with various compositions  

SciTech Connect (OSTI)

This paper reports on a study of the flammability of a number of fuels and blends, in relation to their physicochemical properties, particularly the volatility; these studies were performed in a specially designed simulator. The following fuels were used in the studies: a hydrotreated straight-run diesel fuel L; a catalytic gas oil; diesel fuel A; blends of diesel fuels L and A with cetaine, alpha-methylnaphthalene, undecane, and docosane; and a blend of fuel L, A-72 gasoline, and the additive TsGN. The physicochemical properties of the test fuels are shown. It is shown that the flammability of fuels with various compositions in a diesel engine is more correctly evaluated on the basis of the ignition delay period, which can be calculated from the cetane number and other physicochemical property indexes of fuels for a particular set of engine operating conditions.

Gureev, A.A.; Kamfer, G.M.; Prigul'skii, G.B.

1986-09-01T23:59:59.000Z

413

FUNDAMENTAL PROBLEMS IN SOLAR DISTILLATION  

Science Journals Connector (OSTI)

...applications of solar energy readily workable...plant constructed in Florida about two years ago...production, at a rate of about 0.1 gal...stallations in Florida. VOL. 47, 1961...success with solar energy input. Since raw...operation, i.e., fuel economy, is not...

George O. G. Löf

1961-01-01T23:59:59.000Z

414

Distillate Stocks on the East Coast Were Very Low Entering Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So, what happened last winter? At last year's SHOPP conference, my renowned colleague, Joanne Shore, warned of the potential for high prices. At this time last year, distillate stocks were very low. This graph shows East Coast inventories, which at the end of July 2000, were well below the normal band. We focus on the East Coast (PADD 1) because this is a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). East Coast stocks were well below normal last year from July through December, but then actually increased in January, when they typically decline. In fact, the increase was only the 2nd time East Coast distillate stocks have increased in January since EIA has kept PADD level data (1981)!

415

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Kansas Incentives and Laws Kansas Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuel Blending Equipment Tax Incentives Expired: 01/01/2012 A Storage and Blending Equipment Credit is available for the purchase, construction, or installation of qualified equipment used for storing and blending petroleum-based fuel with biodiesel, ethanol, or other biofuel. The equipment must be installed at a fuel terminal, refinery, or biofuel production facility. The tax credit is equal to 10% of the qualified investment for the first $10,000,000 invested, and 5% of the investment in excess of $10,000,000. The credit may be taken in 10 equal annual

416

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.  

E-Print Network [OSTI]

is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. ResearchRelatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10

417

Combined Impact of Branching and Unsaturation on the Autoignition of Binary Blends in a Motored Engine  

Science Journals Connector (OSTI)

From this test condition, a homogeneous charge of fuel and intake air can be achieved. ... The test fuels were prepared by addition of 5–20 vol % diisobutylene into n-heptane and isooctane. ... The 15 and 20 vol % blends of diisobutylene in isooctane were not able to reach high temperature heat release in the CFR engine system under these test conditions. ...

Dongil Kang; Stephen Kirby; John Agudelo; Magín Lapuerta; Khalid Al-Qurashi; André L. Boehman

2014-09-29T23:59:59.000Z

418

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

SciTech Connect (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

419

Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends  

Science Journals Connector (OSTI)

The combustion and emission characteristics of a turbo-charged, common rail diesel engine fuelled with diesel-biodiesel-DEE blends were investigated. The study reports that the brake-specific fuel consumption of ...

Ni Zhang; Zuohua Huang; Xiangang Wang; Bin Zheng

2011-03-01T23:59:59.000Z

420

Sulfur meter for blending coal at Plant Monroe: Final report  

SciTech Connect (OSTI)

An on-line sulfur analyzer, installed at the Detroit Edison, Monroe Power station, was placed into service and evaluated for coal blending optimization to minimize the cost of complying with changing stack gas sulfur dioxide regulations. The project involved debugging the system which consisted of an /open quotes/as-fired/close quotes/ sampler and nuclear source sulfur analyzer. The system was initially plagued with mechanical and electronic problems ranging from coal flow pluggages to calibration drifts in the analyzer. Considerable efforts were successfully made to make the system reliable and accurate. On-line testing showed a major improvement in control of sulfur dioxide emission rates and fuel blending optimization equivalent to as much as $6 million in fuel costs at the time of the evaluation. 7 refs., 14 figs., 12 tabs.

Trentacosta, S.D.; Yurko, J.O.

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method to blend separator powders  

DOE Patents [OSTI]

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

422

Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report  

SciTech Connect (OSTI)

The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

McCormick, R. L.; Westbrook, S. R.

2007-05-01T23:59:59.000Z

423

Local purity distillation with bounded classical communication  

SciTech Connect (OSTI)

Local pure states are an important resource for quantum computing. The problem of distilling local pure states from mixed ones can be cast in an information theoretic paradigm. The bipartite version of this problem where local purity must be distilled from an arbitrary quantum state shared between two parties, Alice and Bob, is closely related to the problem of separating quantum and classical correlations in the state and in particular, to a measure of classical correlations called the one-way distillable common randomness. In Phys. Rev. A 71, 062303 (2005), the optimal rate of local purity distillation is derived when many copies of a bipartite quantum state are shared between Alice and Bob, and the parties are allowed unlimited use of a unidirectional dephasing channel. In the present paper, we extend this result to the setting in which the use of the channel is bounded. We demonstrate that in the case of a classical-quantum system, the expression for the local purity distilled is efficiently computable and provide examples with their tradeoff curves.

Krovi, Hari; Devetak, Igor [Communication Sciences Institute, University of Southern California, Los Angeles, California 90089 (United States)

2007-07-15T23:59:59.000Z

424

Local purity distillation with bounded classical communication  

E-Print Network [OSTI]

Local pure states are an important resource for quantum computing. The problem of distilling local pure states from mixed ones can be cast in an information theoretic paradigm. The bipartite version of this problem where local purity must be distilled from an arbitrary quantum state shared between two parties, Alice and Bob, is closely related to the problem of separating quantum and classical correlations in the state and in particular, to a measure of classical correlations called the one-way distillable common randomness. In Phys. Rev. A 71, 062303 (2005), the optimal rate of local purity distillation is derived when many copies of a bipartite quantum state are shared between Alice and Bob, and the parties are allowed unlimited use of a unidirectional dephasing channel. In the present paper, we extend this result to the setting in which the use of the channel is bounded. We demonstrate that in the case of a classical-quantum system, the expression for the local purity distilled is efficiently computable and provide examples with their tradeoff curves.

Hari Krovi; Igor Devetak

2007-05-28T23:59:59.000Z

425

Design of processes with reactive distillation line diagrams  

SciTech Connect (OSTI)

On the basis of the transformation of concentration coordinates, the concept of reactive distillation lines is developed. It is applied to study the feasibility of a reactive distillation with an equilibrium reaction on all trays of a distillation column. The singular points in the distillation line diagrams are characterized in terms of nodes and saddles. Depending on the characterization of the reactive distillation line diagrams, it can be decided whether a column with two feed stages is required. On the basis of the reaction space concept, a procedure for identification of reactive distillation processes is developed, in which the reactive distillation column has to be divided into reactive and nonreactive sections. This can be necessary to overcome the limitations in separation which result from the chemical equilibrium. The concentration profile of this combined reactive/nonreactive distillation column is estimated using combined reactive/nonreactive distillation lines.

Bessling, B. [BASF Ludwigshafen (Germany). Engineering Research and Development] [BASF Ludwigshafen (Germany). Engineering Research and Development; Schembecker, G.; Simmrock, K.H. [Univ. of Dortmund (Germany). Dept. of Chemical Engineering] [Univ. of Dortmund (Germany). Dept. of Chemical Engineering

1997-08-01T23:59:59.000Z

426

Properties and Performance of Levulinate Esters as Diesel Blend Components  

Science Journals Connector (OSTI)

The esters were treated with the cetane-enhancing compound 2-ethyl hexyl nitrate and were tested as blends with diesel fuel in a 2008 model year Cummins ISB engine with the measurement of regulated pollutant emissions over the federal heavy duty diesel transient cycle. ... The various approaches to biomass conversion can be divided into two general types: thermochemical (gasification, pyrolysis, acid hydrolysis, combustion, and liquefaction) and biochemical (fermentation, enzymatic hydrolysis, and anaerobic and aerobic digestion). ...

Earl Christensen; Aaron Williams; Stephen Paul; Steve Burton; Robert L. McCormick

2011-10-05T23:59:59.000Z

427

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

428

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Retail distillate prices follow the spot distillate markets, and crude oil prices have been the main driver behind distillate spot price increases until recently. Crude oil rose about 36 cents per gallon from its low point in mid February 1999 to the middle of January 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, heating oil spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled slightly higher as the New York Harbor market began to

429

Entanglement Distillation Protocols and Number Theory  

E-Print Network [OSTI]

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension $D$ benefits from applying basic concepts from number theory, since the set $\\zdn$ associated to Bell diagonal states is a module rather than a vector space. We find that a partition of $\\zdn$ into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analitically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension $D$. When $D$ is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

H. Bombin; M. A. Martin-Delgado

2005-03-01T23:59:59.000Z

430

Entanglement distillation protocols and number theory  

SciTech Connect (OSTI)

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set Z{sub D}{sup n} associated with Bell diagonal states is a module rather than a vector space. We find that a partition of Z{sub D}{sup n} into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D. When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

Bombin, H.; Martin-Delgado, M.A. [Departamento de Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain)

2005-09-15T23:59:59.000Z

431

Advanced Fuels Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

432

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Recent Federal Actions This list includes recent federal actions, such as Federal Register notices and rulemaking actions, agency directives or agency communications, that are all publicly available. These actions relate to alternative fuels and vehicles, fuel blends, hybrid vehicles, and idle reduction and fuel economy measures. When rulemakings are finalized, they will move to the list of

433

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

SciTech Connect (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

434

Sandia National Laboratories: Biofuels Blend Right In: Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends...

435

Investigation of a Fatality Due to Diesel Fuel No. 2 Ingestion  

Science Journals Connector (OSTI)

......diesel oil No. 2. Diesel fuel No. 4 is marine diesel fuel or distillate marine diesel fuel (1,4). Diesel fuel No. 2 (CAS 68476-34-6...naphtalenes (dominant) to phenanthrenes. Some marine diesel fuels may content higher levels. Diesel fuel No......

María A. Martínez; Salomé Ballesteros

2006-10-01T23:59:59.000Z

436

Heat integrated distillation in a plate-packing HIDiC:.  

E-Print Network [OSTI]

??Distillation is an energy intensive separation method. To improve the exergetic efficiency of a distillation column, it can be designed as a heat integrated distillation… (more)

Krikken, T.

2011-01-01T23:59:59.000Z

437

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

438

Alternative Fuels Data Center: P-Series  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

P-Series to someone by P-Series to someone by E-mail Share Alternative Fuels Data Center: P-Series on Facebook Tweet about Alternative Fuels Data Center: P-Series on Twitter Bookmark Alternative Fuels Data Center: P-Series on Google Bookmark Alternative Fuels Data Center: P-Series on Delicious Rank Alternative Fuels Data Center: P-Series on Digg Find More places to share Alternative Fuels Data Center: P-Series on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels P-Series P-Series fuels are blends of natural gas liquids (pentanes plus), ethanol, and methyltetrahydrofuran (MeTHF), a biomass co-solvent. P-Series fuels are clear, colorless, 89-93 octane, liquid blends used either alone or mixed with gasoline in any proportion in flexible fuel vehicles. These fuels are

439

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

440

Interaction blending equations enhance reformulated gasoline profitability  

SciTech Connect (OSTI)

The interaction approach to gasoline blending gives refiners an accurate, simple means of re-evaluating blending equations and increasing profitability. With reformulated gasoline specifications drawing near, a detailed description of this approach, in the context of reformulated gasoline is in order. Simple mathematics compute blending values from interaction equations and interaction coefficients between mixtures. A timely example of such interactions is: blending a mixture of catalytically cracked gasoline plus light straight run (LSR) from one tank with alkylate plus reformate from another. This paper discusses blending equations, using interactions, mixture interactions, other blending problems, and obtaining equations.

Snee, R.D. (Joiner Associates, Madison, WI (United States)); Morris, W.E.; Smith, W.E.

1994-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The effects of heavy fuels on the M/V Bill Elmer  

SciTech Connect (OSTI)

This paper describes the operational experience of using blended or heavy fuels for inland marine service. The experience outlined here is with a vessel retrofitted to specifically use 2000 Redwood No. 1, seconds, fuel and designed to increase blended fuel-oil viscosity rising as high as 3500 Redwood. An engine teardown was performed and no abnormal wear was noticed.

Molin, W.A.; Barras, B.; Welchel, R.O.

1985-01-01T23:59:59.000Z

442

Methods of producing transportation fuel  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Cherrillo, Ralph Anthony (Houston, TX); Bauldreay, Joanna M. (Chester, GB)

2011-12-27T23:59:59.000Z

443

Fuel oil and kerosene sales 1997  

SciTech Connect (OSTI)

The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

NONE

1998-08-01T23:59:59.000Z

444

SELF-OPTIMIZING CONTROL: A DISTILLATION CASE Sigurd Skogestad  

E-Print Network [OSTI]

for the controlled variables. The idea is applied to propane-propylene distillation case study. Keywords: ChemicalSELF-OPTIMIZING CONTROL: A DISTILLATION CASE STUDY Sigurd Skogestad Department of Chemical

Skogestad, Sigurd

445

Utility-based Information Distillation Over Temporally Sequenced Documents  

E-Print Network [OSTI]

Utility-based Information Distillation Over Temporally Sequenced Documents Yiming Yang Language to information distil- lation over temporally ordered documents, and proposes a novel evaluation scheme, flexible user feedback, evaluation methodology. 1. INTRODUCTION Tracking new and relevant information from

Murphy, Robert F.

446

Extraction of tocopherols from deodorizer distillates: laboratory-scale evaluations  

E-Print Network [OSTI]

The tocopherols are valuable components of deodorizer distillate. Due to the limitations in the existing extraction methods, it is imperative that new processing parameters for extraction and concentration of tocopherols from deodorizer distillate...

Zhang, Xiaoyan

2012-06-07T23:59:59.000Z

447

Minimum Energy Diagrams for Multieffect Distillation Arrangements  

E-Print Network [OSTI]

and the energy use from this process accounts for an estimated 3% of the world energy consumption.1 With rising on the overall plant energy consumption. The use of heat integration combined with complex config- urations distillation ar- rangements. An easy form of comparison for energy consumption is the minimum vapor flow rate

Skogestad, Sigurd

448

Naphthenic acid corrosion in crude distillation units  

SciTech Connect (OSTI)

This paper summarizes corrosion experience in crude distillation units processing highly naphthenic California crude oils. Correlations have been developed relating corrosion rates to temperature and total acid number. There is a threshold acid number in the range of 1.5 to 2 mg KOH/g below which corrosion is minimal. High concentrations of hydrogen sulfide may raise this threshold value.

Piehl, R.L.

1988-01-01T23:59:59.000Z

449

Heat Exchanger Technologies for Distillation Columns  

E-Print Network [OSTI]

Conference, Houston, TX, April 16-19, 2002 Downcomer Ii IMass Transfer Ales I Hem Transrer Surf':lce I I I i i i i IDo-.>m" I Vapour Flow Figure 5. Alternative Inlegral Condenser Design Engineers unfamiliar with the thermodynamics of distillation...

Polley, G. T.

450

Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis  

SciTech Connect (OSTI)

There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accurate fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.

Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.; Billingsley, Matthew; Fraga, Carlos G.; Bruno, Thomas J.; Synovec, Robert E.

2014-01-31T23:59:59.000Z

451

Interpolation of recurrence and hashing entanglement distillation protocols  

SciTech Connect (OSTI)

We construct interesting entanglement distillation protocols by interpolating between the recurrence and hashing protocols. This leads to asymptotic two-way distillation protocols, resulting in an improvement of the distillation rate for all mixed Bell diagonal entangled states, even for the ones with very high fidelity. We also present a method for how entanglement-assisted distillation protocol can be converted into nonentanglement-assisted protocols with the same yield.

Vollbrecht, Karl Gerd H.; Verstraete, Frank [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

2005-06-15T23:59:59.000Z

452

Blender Pump Fuel Survey: CRC Project E-95  

SciTech Connect (OSTI)

To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

Alleman, T. L.

2011-07-01T23:59:59.000Z

453

Development of a mathematical model and simulation of mass transfer of solar ethanol distillation in modified brewery tank  

Science Journals Connector (OSTI)

Abstract The objective of this study was to develop a mathematical model of the mass transfer in a modified brewery tank for producing fuel ethanol. To reduce fossil fuel consumption, 50 flat-plate solar collectors were used as the heat source for the two stages of a distillation process for increasing the ethanol concentration. A 350-L distillation tank with 10%v/v (Stage 1) and a 70-L distillation tank with 40%v/v (Stage 2) were employed in the experiment used to develop the mathematical model of the mass transfer. A difference of approximately 10% was observed between the model predictions and the experimental results of the distillation product of Stage 1, whereas the predicted concentration was approximately 30% higher than that of the experiment, although this was reduced to approximately 5% by homogeneous mixing of the solution. Regarding the distillation process of Stage 2, there was approximately 10% difference between the predicted and experimental products, and approximately 3% difference between the predicted and experimental concentrations. The differences are attributed to errors in the heat transfer rate prediction of the model, which varies directly with the solar radiation values.

J. Jareanjit; P. Siangsukone; K. Wongwailikhit; J. Tiansuwan

2014-01-01T23:59:59.000Z

454

Distillate Fuel Oil Sales for All Other Uses  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 1984-2012 0 0 0 0 0 0 1984-2012 East Coast (PADD 1) 0 0 0 0 0 0 1984-2012 New England (PADD 1A) 0 0 0 0 0 0 1984-2012 Connecticut 0 0 0 0 0 0 1984-2012 Maine 0 0 0 0 0 0 1984-2012 Massachusetts 0 0 0 0 0 0 1984-2012 New Hampshire 0 0 0 0 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 0 0 0 0 0 0 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 0 0 0 0 0 0 1984-2012 New Jersey 0 0 0 0 0 0 1984-2012 New York 0 0 0 0 0 0 1984-2012 Pennsylvania 0 0 0 0 0 0 1984-2012 Lower Atlantic (PADD 1C) 0 0 0 0 0 0 1984-2012 Florida 0 0 0 0 0 0 1984-2012 Georgia 0 0 0 0 0 0 1984-2012 North Carolina

455

Distillate Fuel Oil Sales for Vessel Bunkering Use  

Gasoline and Diesel Fuel Update (EIA)

1,923,981 1,983,422 1,912,984 2,002,834 2,133,395 1,768,324 1,923,981 1,983,422 1,912,984 2,002,834 2,133,395 1,768,324 1984-2012 East Coast (PADD 1) 466,132 461,533 276,013 259,319 296,947 283,254 1984-2012 New England (PADD 1A) 43,014 69,102 45,147 30,589 32,414 38,891 1984-2012 Connecticut 6,654 5,683 3,914 1,898 1,502 2,838 1984-2012 Maine 8,298 6,815 15,611 4,207 4,128 13,349 1984-2012 Massachusetts 21,336 48,094 19,193 17,529 17,132 13,612 1984-2012 New Hampshire 2,740 2,552 2,327 1,110 1,395 1,815 1984-2012 Rhode Island 3,987 5,958 4,101 5,824 8,257 7,243 1984-2012 Vermont 0 0 0 21 0 35 1984-2012 Central Atlantic (PADD 1B) 147,629 129,789 104,487 67,726 76,446 74,154 1984-2012 Delaware 615 919 582 485 1,658 615 1984-2012 District of Columbia 11 7 5 13 15 17 1984-2012

456

Distillate Fuel Oil Sales for Oil Company Use  

Gasoline and Diesel Fuel Update (EIA)

774,984 1,066,688 760,877 951,322 1,381,127 1,710,513 1984-2012 774,984 1,066,688 760,877 951,322 1,381,127 1,710,513 1984-2012 East Coast (PADD 1) 31,154 32,115 58,098 27,778 44,556 101,246 1984-2012 New England (PADD 1A) 332 26 12 2,369 1,203 892 1984-2012 Connecticut 332 26 12 2 0 3 1984-2012 Maine 0 0 0 438 238 0 1984-2012 Massachusetts 0 0 0 871 965 887 1984-2012 New Hampshire 0 0 0 997 0 2 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 60 0 0 1984-2012 Central Atlantic (PADD 1B) 14,850 12,350 27,638 13,528 24,570 67,199 1984-2012 Delaware 7,100 3,210 10,694 3 4 5 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 0 129 87 48 36 70 1984-2012 New Jersey 0 399 11,892 1,391 355 450 1984-2012 New York 10 960 2,281 1,225 382 205 1984-2012

457

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

2,446.7 3,122.6 31,225.7 99,841.0 21,409.5 121,250.5 152,476.2 648.5 158,694.0 December ... 4,270.1 4,967.9 39,182.7 96,975.5 20,782.4 117,757.9...

458

Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...  

Gasoline and Diesel Fuel Update (EIA)

4,106.0 4,006.7 38,958.1 80,476.9 22,053.6 102,530.5 141,488.5 1,130.9 150,732.2 December ... 5,173.6 4,790.0 44,723.2 74,097.8 21,268.2...

459

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

3,230.7 3,231.8 30,257.7 91,110.1 19,854.1 110,964.3 141,221.9 815.6 148,500.0 December ... 3,872.6 4,684.1 35,790.4 88,601.0 20,217.6 108,818.6...

460

Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...  

U.S. Energy Information Administration (EIA) Indexed Site

6,760.2 5,346.9 52,887.5 75,799.8 21,654.3 97,454.1 150,341.6 1,882.4 164,331.1 February ... 4,728.6 3,460.9 46,281.0 77,949.8 20,779.4 98,729.2 145,010.2...

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Model Predictive Control of a Kaibel Distillation Column  

E-Print Network [OSTI]

Model Predictive Control of a Kaibel Distillation Column Martin Kvernland Ivar Halvorsen Sigurd (e-mail: skoge@ntnu.no) Abstract: This is a simulation study on controlling a Kaibel distillation column with model predictive control (MPC). A Kaibel distillation column has several advantages compared

Skogestad, Sigurd

462

Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements  

E-Print Network [OSTI]

Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements S. Skouras and S, Norway SCOPE OF THE PROJECT ·How can we separate ternary mixtures in closed batch distillation-up period is required, followed by a heteroazeotropic distillation step (Figure 3) Modified: The separation

Skogestad, Sigurd

463

Human versus Machine in the Topic Distillation Task Mingfang Wu  

E-Print Network [OSTI]

Human versus Machine in the Topic Distillation Task Mingfang Wu 1 , Gheorghe Muresan2 , Alistair Mc. The focus is on comparing humans and machine algorithms in terms of performance in a topic distillation task demonstrated that machines can perform nearly as well as people on the topic distillation task. Given a system

Wu, Mingfang

464

RIS0-M-2319 RISK ANALYSIS OF A DISTILLATION UNIT  

E-Print Network [OSTI]

RIS0-M-2319 RISK ANALYSIS OF A DISTILLATION UNIT J. R. Taylor**, 0. Hansen*, C. Jensen*, 0. F. A risk analysis of a batch distillation unit is de- scribed. The analysis has been carried out at several.2. Objectives and organisation 5 1.2.2. Philosophy and approach 6 1.3.1. The distillation unit 8 1

465

Blog Distillation via Sentiment-Sensitive Link Analysis  

E-Print Network [OSTI]

Blog Distillation via Sentiment-Sensitive Link Analysis Giacomo Berardi, Andrea Esuli, Fabrizio report a new approach to blog distillation, defined as the task in which, given a user query, the system of the TREC Blog Track. 1 Introduction Blog distillation is a subtask of the blog search task. It is defined

Sebastiani, Fabrizio

466

Many copies may be required for entanglement distillation John Watrous  

E-Print Network [OSTI]

Many copies may be required for entanglement distillation John Watrous Department of Computer state shared between two parties is said to be distillable if, by means of a protocol involving only |+ = (|00 + |11 )/ 2. In this paper it is proved that there exist states that are distillable

Watrous, John

467

Multiple Steady States in Ideal Two-Product Distillation  

E-Print Network [OSTI]

Multiple Steady States in Ideal Two-Product Distillation Elling W. Jacobsen and Sigurd Skogestad Chemical Engineering Dept., University of Trondheim-NTH, N-7034 Trondheim, Norway Simple distillation and compositions in the column. Introduction Multiple steady states (multiplicity) in distillation columns have

Skogestad, Sigurd

468

Bloggers as Experts Feed Distillation using Expert Retrieval Models  

E-Print Network [OSTI]

Bloggers as Experts Feed Distillation using Expert Retrieval Models Krisztian Balog kbalog Kruislaan 403, 1098 SJ Amsterdam ABSTRACT We address the task of (blog) feed distillation: to find blogs- ness as feed distillation strategies. The two models capture the idea that a human will often search

de Rijke, Maarten

469

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA SÃ?RENSEN 3 and RAJAB distillation schemes, including the inverted column and the middle vessel column. The total reflux operation of the multivessel batch distillation column was presented recently, and the main contribution of this paper

Skogestad, Sigurd

470

Effect of Number of Fractionating Trays on Reactive Distillation Performance  

E-Print Network [OSTI]

Effect of Number of Fractionating Trays on Reactive Distillation Performance Muhammad A. Al and rectifying sec- tions of a reacti®e distillation column can degrade performance. This effect, if true®e distillation columns cannot use conser®ati®e estimates of tray numbers, that is, we cannot simply add excess

Al-Arfaj, Muhammad A.

471

Multiple copy distillation and purification of phase diffused squeezed states  

E-Print Network [OSTI]

We provide a detailed theoretical analysis of multiple copy purification and distillation protocols for phase diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semi-analytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

Petr Marek; Jaromir Fiurasek; Boris Hage; Alexander Franzen; James DiGugliemo; Roman Schnabel

2007-08-10T23:59:59.000Z

472

Column Initialization 1 Initializing Distillation Column Models 1  

E-Print Network [OSTI]

Column Initialization 1 Initializing Distillation Column Models 1 Roger Fletcher \\Lambda with the optimisation of distillation column models by non­ linear programming are considered. The paper presents of the distillation column model. A certain limiting case of the column model is examined, that of infinite reflux

Dundee, University of

473

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,  

E-Print Network [OSTI]

MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S RENSEN 3 and RAJAB distillation schemes, including the inverted column and the middle vessel column. The total re ux operation of the multivessel batch distillation column was presented recently, and the main contribution of this paper

Skogestad, Sigurd

474

Energy efficient distillation Ivar J. Halvorsen a,*, Sigurd Skogestad b  

E-Print Network [OSTI]

Energy efficient distillation Ivar J. Halvorsen a,*, Sigurd Skogestad b a SINTEF ICT, Applied Keywords: Distillation Minimum energy Energy saving Dividing wall column Petlyuk arrangement Vmin-diagram a b s t r a c t Distillation is responsible for a significant amount of the energy consumption

Skogestad, Sigurd

475

Active constraint regions for optimal operation of distillation columns  

E-Print Network [OSTI]

Active constraint regions for optimal operation of distillation columns Magnus G. Jacobsen the control structure of distillation columns, with optimal operation in mind, it is important to know how for distillation columns change with variations in energy cost and feed flow rate. The production of the most

Skogestad, Sigurd

476

Effect of Fuel Ethanol on Subsurface Microorganisms and its Influence on Biodegradation of BTEX Compounds.  

E-Print Network [OSTI]

??Ethanol is used as fuel in neat form in some countries (Brazil and India) or blended with gasoline (Europe, Canada and the United States). The… (more)

Araujo, Daniela

2006-01-01T23:59:59.000Z

477

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion  

Broader source: Energy.gov [DOE]

Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance.

478

High-activity fuel cell catalyst layers via block copolymer nanocomposites.  

E-Print Network [OSTI]

??Current polymer electrolyte membrane fuel cell (PEMFC) catalyst layers are disordered blends of carbon-supported platinum catalyst in an ionomeric matrix. The objective of this research… (more)

Alabi, Toheeb Bola

2008-01-01T23:59:59.000Z

479

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost effective and reliable dual combustion mode engine - Development of a model-based SI...

480

Hybrid Time Formulation for Diesel Blending and Distribution Scheduling  

Science Journals Connector (OSTI)

Hybrid Time Formulation for Diesel Blending and Distribution Scheduling ... Schematic of diesel in-line blending and distribution infrastructure. ...

Sérgio M. S. Neiro; Valéria V. Murata; José M. Pinto

2014-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "blending distillate fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Fusibility of Blended Coal Ash  

Science Journals Connector (OSTI)

Ash fusibility temperatures (AFT) of coal ash are found at temperatures below the predicted liquidus temperature and, for ashes from blended coals, are generally nonlinear with respect to the blend proportion. ... ashing. ...

G. W. Bryant; G. J. Browning; H. Emanuel; S. K. Gupta; R. P. Gupta; J. A. Lucas; T. F. Wall

2000-02-25T23:59:59.000Z

482

Alcohol-based fuels from syngases  

SciTech Connect (OSTI)

Development of catalysts and reactor systems for producing alcohol-based fuels from coal-derived synthesis gases is outlined. Also, utilization of alcohol-based fuels either as gasoline blending stocks at 10-20% addition rates or as straight-run fuels is discussed. (Refs. 4).

Greene, M.I.

1982-08-01T23:59:59.000Z

483

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

484

Optimal Model-Based Production Planning for  

E-Print Network [OSTI]

Statement Cat Ref Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 and simplicity Taxes, 20% Dist. & Marketin g, 9% Refining, 18.10% Crude, 53% 2005 Retail Gasoline Price crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR

Grossmann, Ignacio E.

485

On-Road Use of Fischer-Tropsch Diesel Blends  

SciTech Connect (OSTI)

Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

1999-04-26T23:59:59.000Z

486

Secret key distillation from shielded two-qubit states  

E-Print Network [OSTI]

The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

Joonwoo Bae

2008-03-03T23:59:59.000Z

487

Secret key distillation from shielded two-qubit states  

SciTech Connect (OSTI)

The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)

2010-05-15T23:59:59.000Z

488

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1984-03-27T23:59:59.000Z

489

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of