Sample records for blending compounds shipments

  1. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect (OSTI)

    Boehm, H. [Physikalische Chemie I, Universitaet Bielefeld (Germany); Braun-Unkhoff, M. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2008-04-15T23:59:59.000Z

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased. (author)

  2. E-Print Network 3.0 - aromatic blending compounds Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ring aromatic compounds. 500 265 500 265 500 265 WAVELENGTH (nm) ARABIAN CRUDE LUBRICATING OIL... . 271 12;Although the spectra only give a qualitative analysis of the major...

  3. Biodiesel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

  4. 1995 shipment review & five year forecast

    SciTech Connect (OSTI)

    Fetherolf, D.J. Jr. [East Penn Manufacturing Co., Inc., Lyon Station, PA (United States)

    1996-01-01T23:59:59.000Z

    This report describes the 1995 battery shipment review and five year forecast for the battery market. Historical data is discussed.

  5. WIPP - Shipment & Disposal Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka Analytics andWFRNewsWindPrivacyShipment

  6. Removing nuclear waste, one shipment at a time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos,...

  7. Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...

    Office of Environmental Management (EM)

    Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

  8. Portsmouth Site Delivers First Radioactive Waste Shipment to...

    Office of Environmental Management (EM)

    Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

  9. 1994 battery shipment review and five-year forecast report

    SciTech Connect (OSTI)

    Fetherolf, D. [East Penn Manufacturing Co., Lyon Station, PA (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a 1994 battery shipment review and five year forecast report. Data is presented on replacement battery shipments, battery shipments, car and truck production, truck sales, original equipment, shipments for passenger cars and light commercial vehicles, and ten year battery service life trend.

  10. Overseas shipments of 48Y cylinders

    SciTech Connect (OSTI)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31T23:59:59.000Z

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  11. The Bayou Choctaw Oil Shipment Test

    SciTech Connect (OSTI)

    Bauer, S.J.; Ballard, S.; Barker, G.T.

    1994-05-01T23:59:59.000Z

    In early October of 1993, an oil shipment of about 1 million barrels was made from the Bayou Choctaw Strategic Petroleum Reserve storage facility to St. James Terminal. During the shipment, oil temperatures and soil temperatures along the pipeline were recorded. The field data were used to make estimations of soil thermal properties, thermal conductivity and specific heat. These data were also used to validate and calibrate a heat transfer code, OILPIP, which has been used to calculate pipeline cooling of oil during a drawdown.

  12. Thermal characterization of polymer blends prepared by reactive blending of PC and PET

    SciTech Connect (OSTI)

    Fiorini, M.; Marchese, P. [Univ. of Bologna (Italy); Pilati, F. [Univ. of Modena (Italy)] [and others

    1996-12-31T23:59:59.000Z

    Several Poly(ethylene terephthalate)-Bisphenol A polycarbonate (PC/PET) blends were prepared by reactive blending poly(ethylene terephthalate) and Bisphenol A polycarbonate in a batch mixer in the presence of ester exchange catalysts with different catalytic activity, such as Titanium, Terbium, Cerium, Samarium, Europium and Calcium/Antimony compounds. The catalytic activity and mixing time have been correlated with the extent of ester-carbonate exchange reactions and hence the influence of the PET/PC block copolymers formed during the blending on miscibility has been investigated by differential scanning calorimetry. The results of the thermal characterization showed that blends with a single glass transition temperature can be prepared at different mixing time determined by the ester-carbonate exchange reaction activity of the different catalysts employed. In addition, the Tg`s values for the miscible blends were lower than those predicted by the widely used Flory-Fox equation, except from the blends prepared with the Titanium catalyst. Crystallization of PET in PC/PET blends was also investigated. Thermal analysis is a powerful technique that can be applied to the determination of miscibility in polymer blends. In this communication, the results of a differential scanning calorimetry (DSC) study on blends prepared by reactive blending PC and PET are reported.

  13. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    SciTech Connect (OSTI)

    Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

    2003-08-01T23:59:59.000Z

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

  14. The ENCOAL project: Initial commercialization shipment and utilization of both solid and liquid products. Topical report

    SciTech Connect (OSTI)

    McCord, T.G.

    1995-03-01T23:59:59.000Z

    ENCOAL is co-funding a mild gasification project and shipping the products to customers. The ENCOAL Corporation has shipped, to two utility customers, over 500 rail cars (six partial trains and two full trains) of solid product (PDF) from its plant located at Triton Coal Company`s Buckskin Mine near Gillette Wyoming. Shipments span a range of blends from 15% to essentially unblended PDF. Utility handling of these shipments is comparable to that of run-of-mine Buckskin coal. Results related to spontaneous combustion and generation of fugitive dust are particularly favorable. Combustion tests were performed both in a pulverized-fired boiler and in a cyclone-fired boiler. Commercialization utilization of the liquid product (CDL) depends on customer facility capabilities and the source of any blending fuel, as expected. A total of 56 tank cars have been sent to three customers. The 1994 test program met or exceeded ENCOAL`s major objectives of transporting and burning both PDF and CDL in existing customer facilities.

  15. Idaho, Navy, DOE agree on shipments to, from INEL

    SciTech Connect (OSTI)

    Tompkins, B.

    1995-12-01T23:59:59.000Z

    This report describes aspects of a legal agreement between the U.S. Navy, the state of Idaho, and the United States Department of Energy (US DOE) regarding shipments of radioactive wastes. The agreement will allow for the shipment of 244 spent fuel shipments from the Fort St Vrain facility in Colorado, if a repository or interim storage facility outside Idaho is open and accepting spent fuel from INEL. The number of shipments to the INEL will be limited to 1133, instead of the 1940 originally planned. The Navy will be allowed 575 total shipments through the year 2035.

  16. Optimal Blending Quality

    SciTech Connect (OSTI)

    Harris, S.P.

    2001-03-28T23:59:59.000Z

    This paper discusses a functional program developed for product blending. The program is installed at a Savannah River Plant production site on their VAX computer. A wide range of blending choices is available. The program can be easily changed or expanded. The technology can be applied at other areas where mixing or blending is done.

  17. Enhancements to System for Tracking Radioactive Waste Shipments...

    Energy Savers [EERE]

    Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access...

  18. LNG shipments in 1994 set records

    SciTech Connect (OSTI)

    NONE

    1996-01-15T23:59:59.000Z

    Worldwide LNG shipments by ocean-going vessels in 1994 increased to 1,619 voyages, according to an LNG shipping industry statistical annual. LNG Log 20 published the recently compiled 1994 data in the last quarter of 1995. The publication is from the Society of International Gas Tanker and Terminal Operators Ltd., London. The year`s total was 8.8% more than for 1993 and the most in 35 years of records. The trips were made and the vessels loaded and discharged without report of serious safety or environmental incident, says the publication. Of the voyages completed during the year, 596 were to European receiving terminals (up 2.8% over 1993), and 1,003 went to the Far East (an increase of 10.7%); shipments to the US, however, dropped to 20, from 32 in 1993. This paper shows that the 1,619 voyages represent 3.6 million nautical miles logged by 78 vessels active during the year. These ships pumped ashore record annual volumes of approximately 144.3 million cu m of LNG, 110.1 million cu m (76.3%) of which went to Far Eastern customers. The paper also summarizes containment systems in use in 1994 and since LNG began to be shipped in 1959.

  19. Route selection issues for NWPA shipments

    SciTech Connect (OSTI)

    Hill, C.V. [Science Applications International Corp., Oak Ridge, TN (United States); Harrison, I.G. [Oak Ridge National Lab., TN (United States)

    1993-06-01T23:59:59.000Z

    Questions surrounding the designation of routes for the movement of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) by the Office of Civilian Radioactive Waste Management (OCRWM) have broad implications. Federal regulations prescribe rules to be applied in the selection of highway routes. In most cases, these rules will lead to a clear selection of one route between an origin and destination point. However, in other cases, strict application of the regulations does not result in a clear choice of a preferred route. The regulations also provide discretion to State governments and carriers to select alternative routes to enhance the safety of the shipment. Railroad shipments of radioactive materials are not subject to Federal routing regulations. Since the railroads operate on private property, it has been assumed that they know the best way to move freight on their system. This discretion, while desirable for addressing unique local safety concerns or for responding to temporary safety concerns such as road problems, weather conditions, or construction areas, leads to significant opportunity for misunderstandings and uneasiness on the part of local residents.

  20. Application of ALARA principles to shipment of spent nuclear fuel

    SciTech Connect (OSTI)

    Greenborg, J.; Brackenbush, L.W.; Murphy, D.W. Burnett, R.A.; Lewis, J.R.

    1980-05-01T23:59:59.000Z

    The public exposure from spent fuel shipment is very low. In view of this low exposure and the perfect safety record for spent fuel shipment, existing systems can be considered satisfactory. On the other hand, occupational exposure reduction merits consideration and technology improvement to decrease dose should concentrate on this exposure. Practices that affect the age of spent fuel in shipment and the number of times the fuel must be shipped prior to disposal have the largest impact. A policy to encourage a 5-year spent fuel cooling period prior to shipment coupled with appropriate cask redesign to accommodate larger loads would be consistent with ALARA and economic principles. And finally, bypassing high population density areas will not in general reduce shipment dose.

  1. TRANSCOM: The US Department of Energy (DOE) system for tracking shipments

    SciTech Connect (OSTI)

    Boes, K.S.; Joy, D.S.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Thomas, T.M. [US Dept. of Energy, Germantown, MD (United States); Lester, P.B. [US Dept. of Energy, Oak Ridge, TN (United States)

    1994-06-01T23:59:59.000Z

    The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment).

  2. atms tracking shipments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Help Date and Time Status Location 4202006 8:50 am Shipment delivered. Zagreb, Croatia 8:22 am With delivery courier. Zagreb, Croatia 4192006 10:03 am Delivery Attempted....

  3. Estimating carbon emissions from less-than-truckload (LTL) shipments

    E-Print Network [OSTI]

    Veloso de Aguiar, Guilherme

    2014-01-01T23:59:59.000Z

    Less-than-truckload (LTL) is a $32-billion sector of the trucking industry that focuses on moving smaller shipments, typically with weights between 100 and 10,000 pounds, that do not require a full trailer to be moved. ...

  4. Pipe overpack container for trasuranic waste storage and shipment

    DOE Patents [OSTI]

    Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

    1999-01-01T23:59:59.000Z

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  5. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect (OSTI)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01T23:59:59.000Z

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  6. Stochastic Clearing Models with Applications in Shipment Consolidation

    E-Print Network [OSTI]

    Wei, Bo

    2014-09-03T23:59:59.000Z

    OF PHILOSOPHY Chair of Committee, S?la C¸etinkaya Co-Chair of Committee, Daren B.H. Cline Committee Members, Guy L. Curry Richard M. Feldman Head of Department, Ce´sar O. Malave´ December 2014 Major Subject: Industrial Engineering Copyright 2014 ABSTRACT... order after a shipment is recorded, and the next shipment is made T time units after the arrival time of the first order. Likewise, there are two types of HPs. The first is a combination of QP and TP1, called HP1, and the second is a combination of QP...

  7. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect (OSTI)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15T23:59:59.000Z

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  8. Hazardous waste shipment data collection from DOE sites

    SciTech Connect (OSTI)

    Page, L.A.; Kirkpatrick, T.D. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Stevens, L. (USDOE, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  9. Hazardous waste shipment data collection from DOE sites

    SciTech Connect (OSTI)

    Page, L.A.; Kirkpatrick, T.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Stevens, L. [USDOE, Washington, DC (United States)

    1992-12-31T23:59:59.000Z

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  10. DPF Performance with Biodiesel Blends

    Broader source: Energy.gov (indexed) [DOE]

    DPF Performance with Biodiesel Blends Aaron Williams, Bob McCormick, Bob Hayes, John Ireland National Renewable Energy Laboratory Howard L. Fang Cummins, Inc. Diesel Engine...

  11. Ethanol-blended Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@EnergyErnestEthanol-Blended Fuels A Study

  12. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect (OSTI)

    Dewes, J.

    2014-02-24T23:59:59.000Z

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  13. BLENDED AND ONLINE LEARNING IN

    E-Print Network [OSTI]

    Ellis, Randy

    ) "Flipped classroom" - focus on active learning and enhanced student engagement in the classroom #12;First dissatisfied with student learning experience #12;Blended Learning Initiative Large, first-year courses student engagement improve student learning outcomes improve knowledge retention #12;Framework for Blended

  14. First Shipment of Compressors Leaves Portsmouth | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Departmentof OhioFirst Annual Post CompetitionShipment of Compressors

  15. Milestone reached: Waste shipment leaves Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7, at 3:00 ScienceWaste shipment

  16. Thermal Stabilization Blend Plan

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-05-02T23:59:59.000Z

    This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

  17. August 1999 Radiation Safety Manual Section 12 Shipment of Radioactive Materials

    E-Print Network [OSTI]

    Wilcock, William

    August 1999 Radiation Safety Manual Section 12 ­ Shipment of Radioactive Materials UW Environmental Health and Safety Page 12-1 Section 12 Shipment of Radioactive Materials Contents A. Shipping Regulations regulations for the safe transportation of radioactive materials. These regulations are adopted from those

  18. Polycarbonate blends having an improved impact strength

    SciTech Connect (OSTI)

    Krishnan, S.; Lazear, N.R.

    1984-05-15T23:59:59.000Z

    Thermoplastic molding compositions characterized by their improved impact performance and deformation under load are disclosed comprising a homogeneous, intimate blend of a polycarbonate resin and a nuclear alkylated polycarbonate resin wherein blend dispersed is a polymeric modifier.

  19. Intrinsically safe moisture blending system

    DOE Patents [OSTI]

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11T23:59:59.000Z

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  20. Sandia National Laboratories: blending feedstock varieties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Research & Capabilities, Transportation Energy Winemakers have long known that blending different grape varietals can favorably...

  1. Assessing the level of service for shipments originating or terminating on short line railroads

    E-Print Network [OSTI]

    Alpert, Steven M

    2007-01-01T23:59:59.000Z

    This thesis measures railroad freight trip time and trip time reliability for freight rail shipments involving short lines in 2006. It is based on an underlying MIT study commissioned by members of the short line railroading ...

  2. Recovery Act Funding Leads to Record Year for Transuranic Waste Shipments

    Broader source: Energy.gov [DOE]

    With the help of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations began...

  3. Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment

    SciTech Connect (OSTI)

    Nguyen, P.M.

    1994-08-19T23:59:59.000Z

    The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents.

  4. An economic analysis of export sales and export shipments: the case for cotton

    E-Print Network [OSTI]

    Ayuk, Elias Takor

    1986-01-01T23:59:59.000Z

    AN ECONOMIC ANALTSIS OF EXPORT SALES AND EXPORT SHIPMENTS: THE CASE FOR COTTON A Thesis by ELIAS TAKOR AYUK Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1986 Mayor Subgect: Agricultural Economics AN ECONOMIC ANALYSIS OF EXPORT SALES AND EXPORT SHIPMENTS: THE CASE FOR COTTON A Thesis by ELIAS TAKOR AYUK Approved as to style and content by Thomas L. Sporle er &Chairman of Committee...

  5. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-20T23:59:59.000Z

    The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Cancels DOE O 461.1A.

  6. Radiation Exposures Associated with Shipments of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    MASSEY,CHARLES D.; MESSICK,C.E.; MUSTIN,T.

    1999-11-01T23:59:59.000Z

    Experience has shown that the analyses of marine transport of spent fuel in the Environmental Impact Statement (EIS) were conservative. It is anticipated that for most shipments. The external dose rate for the loaded transportation cask will be more in line with recent shipments. At the radiation levels associated with these shipments, we would not expect any personnel to exceed radiation exposure limits for the public. Package dose rates usually well below the regulatory limits and personnel work practices following ALARA principles are keeping human exposures to minimal levels. However, the potential for Mure shipments with external dose rates closer to the exclusive-use regulatory limit suggests that DOE should continue to provide a means to assure that individual crew members do not receive doses in excess of the public dose limits. As a minimum, the program will monitor cask dose rates and continue to implement administrative procedures that will maintain records of the dose rates associated with each shipment, the vessel used, and the crew list for the vessel. DOE will continue to include a clause in the contract for shipment of the foreign research reactor spent nuclear fuel requiring that the Mitigation Action Plan be followed.

  7. Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process

    E-Print Network [OSTI]

    Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process J. Z. Lu,1 Q. Wu,1 I. I strength and flexural modulus of the resultant composites. With 50 wt % wood fiber, the optimum compounding of the modified blends and the dynamic mechanical properties of the resultant composites. The melt torque

  8. Fuel blending with PRB coal

    SciTech Connect (OSTI)

    McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

    2009-03-15T23:59:59.000Z

    Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

  9. Conducting polymer blends: Polypyrrole and polythiophene blends with polystyrene, polycarbonate resin, poly(vinyl alcohol) and poly(vinyl methyl ketone)

    SciTech Connect (OSTI)

    Wang, H.L.

    1992-01-01T23:59:59.000Z

    Various aromatic compounds can be polymerized by electrochemical oxidation in solution containing a supporting electrolyte. Most studies have been devoted to polypyrrole and polythiophene. In situ doping during electrochemical polymerization yields free standing conductive polymer film. One major approach to making conducting polymer blends is electrochemical synthesis after coating the host polymer on a platinum electrode. In the electrolysis of pyrrole or thiophene monomer, using (t-Bu[sub 4]N)BF[sub 4] as supporting electrolyte, and acetonitrile as solvent, monomer can diffuse through the polymer film, to produce a polypyrrole or polythiophene blend in the film. Doping occurs along with polymerization to form a conducting polymer alloy. The strongest molecular interaction in polymers, and one that is central to phase behavior, is hydrogen bonding. This mixing at the molecular level enhances the degree of miscibility between two polymers and results in macroscopic properties indicative of single phase behavior. In this dissertation, the authors describes the syntheses of conducting polymer blends: polypyrrole and polythiophene blends with polystyrene, poly(bisphenol-A-carbonate), polyvinyl alcohol and poly(vinyl methyl ketone). The syntheses are performed both electrochemically and chemically. Characterization of these blends was carried out by Fourier Transform Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis, Scanning Electron Microscopy, and X-ray diffraction. Percolating threshold conductivities occur from 7% to 20% for different polymer blends. The low threshold conductivity is attributed to blend homogeneity enhanced by hydrogen bonding between the carbonyl group in the insulating polymer and the N-H group in polypyrrole. Thermal stability, environmental stability, mechanical properties, crystallinity and morphological structure are also discussed. The authors have also engaged in the polymerization of imidazoles.

  10. Mid-Blend Ethanol Fuels ? Implementation Perspectives

    Broader source: Energy.gov (indexed) [DOE]

    Blend Ethanol Fuels - Implementation Perspectives William Woebkenberg - US Fuels Technical and Regulatory Affairs Mercedes-Benz Research & Development North America July 25, 2013...

  11. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    SciTech Connect (OSTI)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01T23:59:59.000Z

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  12. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Environmental Management (EM)

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

  13. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  14. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01T23:59:59.000Z

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  15. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  16. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect (OSTI)

    CERTA, P.J.

    2006-02-22T23:59:59.000Z

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  17. Green emitting phosphors and blends thereof

    DOE Patents [OSTI]

    Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

    2010-12-28T23:59:59.000Z

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  18. HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048

    SciTech Connect (OSTI)

    Halstead, Robert J.; Dilger, Fred

    2003-02-27T23:59:59.000Z

    No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

  19. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    SciTech Connect (OSTI)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01T23:59:59.000Z

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  20. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    SciTech Connect (OSTI)

    Green, J.R.

    1995-05-16T23:59:59.000Z

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  1. Two glass transitions in miscible polymer blends?

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-06-28T23:59:59.000Z

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  2. Continuous blending of dry pharmaceutical powders

    E-Print Network [OSTI]

    Pernenkil, Lakshman

    2008-01-01T23:59:59.000Z

    Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

  3. Imaginative play with blended reality characters

    E-Print Network [OSTI]

    Robert, David Yann

    2011-01-01T23:59:59.000Z

    The idea and formative design of a blended reality character, a new class of character able to maintain visual and kinetic continuity between the fully physical and fully virtual; the technical underpinnings of its unique ...

  4. Vehicle Technologies Office: Intermediate Ethanol Blends

    Broader source: Energy.gov [DOE]

    Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

  5. Carnegie Mellon Multiperiod Blend Scheduling Problem

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Department of Chemical Engineering Center for Advanced Process Decision-making Carnegie Mellon University frequently in the petrochemical industry. -Large cost savings can be achieved if the correct blending

  6. Exciting careers blending engineering, science, and ecology

    E-Print Network [OSTI]

    Tullos, Desiree

    Exciting careers blending engineering, science, and ecology New Opportunities Making the world://bee.oregonstate.edu/ecoe Ecological Engineering is: · Ecosystem restoration and habitat design at multiple scales · Watershed · Phytoremediation and bioremediation · Industrial ecology · Constructed wetlands and tidal marshlands · Mitigation

  7. Biodiesel Production and Blending Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS...

  8. Viscoelastic properties of bidisperse homopolymer blends

    E-Print Network [OSTI]

    Juliani

    2000-01-01T23:59:59.000Z

    VISCOELASTIC PROPERTIES OF BIDISPKRSE HOMOPOLYMER BLENDS A Thesis by JULIANI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2000... Major Subject. Chemical Engineering VISCOELASTIC PROPERTIES OF BIDISPERSE HOMOPOLYMER BLENDS A Thesis by JULIANI Submitted to Texas A&M University m partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style...

  9. WI Biodiesel Blending Progream Final Report

    SciTech Connect (OSTI)

    Redmond, Maria E; Levy, Megan M

    2013-04-01T23:59:59.000Z

    The Wisconsin State Energy Office�¢����s (SEO) primary mission is to implement cost�¢���effective, reliable, balanced, and environmentally�¢���friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

  10. Public information circular for shipments of irradiated reactor fuel. Report for 16 Jul 79-1 May 82

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    This circular has been prepared in response to numerous requests for information regarding routes used for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96-295. The NRC staff must approve such routes prior to their first use. Spent fuel shipment routes, primarily for road transportation, but also including one rail route, are indicated on reproductions of DOT road maps. Also included are the amounts of material shipped during the approximate three year period that safeguards regulations for spent fuel shipments have been effective. In addition, the Commission provided information in this document regarding the NRC's safety and safeguards regulations for spent fuel shipments as well as safeguards incidents regarding same.

  11. Polybenzimidazole compounds

    DOE Patents [OSTI]

    Klaehn, John R. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Orme, Christopher J. (Shelley, ID); Jones, Michael G. (Chubbuck, ID); Wertsching, Alan K. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID); Trowbridge, Tammy L. (Idaho Falls, ID)

    2011-11-22T23:59:59.000Z

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  12. Polybenzimidazole compounds

    DOE Patents [OSTI]

    Klaehn, John R. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Wertsching, Alan K. (Idaho Falls, ID); Orme, Christopher J. (Shelley, ID); Luther, Thomas A. (Idaho Falls, ID); Jones, Michael G. (Pocatello, ID)

    2010-08-10T23:59:59.000Z

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  13. Impacts of SNF burnup credit on the shipment capability of the GA-4 cask

    SciTech Connect (OSTI)

    Mobasheran, A.S. [Roy F. Weston, Inc., Washington, DC (United States); Lake, W. [Department of Energy, Washington, DC (United States); Richardson, J. [Raytheon Nuclear Inc., Washington, DC (United States)

    1996-12-01T23:59:59.000Z

    Scoping analyses were performed to determine the impacts of two different levels of burnup credit and two different spent fuel pickup rates on the shipment capability and the minimum fleet size of the GA-4 cask. The analyses involved developing loading curves for the GA-4 cask based on the actinide-only and principal-isotope burnup credit considerations. The analyses also involved examination of the spent nuclear fuel assembly population at nine reactor sites and categorization of the assemblies in accordance with the loading restrictions imposed. The results revealed that for the nine sites considered, depending on the level of burnup credit and the pickup rate assumed, the total savings in shipment and cask fleet costs (1994 dollars) can range from $55 million to $74 million.

  14. ELUCIDATING THE DIFFERENCES BETWEEN ONSITE AND OFFSITE SHIPMENT OF RADIOACTIVE MATERIALS

    SciTech Connect (OSTI)

    Loftin, B.; Watkins, R.

    2013-06-19T23:59:59.000Z

    Federal regulations stipulate how radioactive materials are transported within the United States. However, the Department of Energy, under Department of Energy Order, has the authority to operate, within the boundaries of their physical site, to other stipulations. In many cases the DOE sites have internal reviews for onsite transfers that rival reviews performed by the regulatory authorities for offsite shipments. Most of the differences are in the level or type of packaging that is required, but in some cases it may be in the amount and type of material that is allowed to be transferred. This paper will describe and discuss those differences and it will discuss ways to effectively align the onsite rules for transferring materials with those for offsite shipment.

  15. Effects of shipment on diffusive dosimetry recovery efficiency for pentane, hexane and heptane

    E-Print Network [OSTI]

    Read, Ronald Bruce

    1981-01-01T23:59:59.000Z

    Sciences College of Pharmacy Chairman of' Advisory Committee: Mr. Charles L. Gilmore The effects of' shipment on recovery was investigated for three aliphatic hydrocarbons adsorbed on the 3M Company's $3500 Organic Vapor Monitor and the Scientific Kit... Combination Vs. Contaminant INTRODUCTION The Occupational Safety and Health Adminsitration (OSHA) has promulgated standards including permissible exposure limits (PEL) for humans based on eight hour time-weighted average (TWA) exposures for approximately...

  16. Relationship between MTBE-blended gasoline properties and warm-up driveability

    SciTech Connect (OSTI)

    Suzawa, Takumi; Yamaguchi, Kazunori; Kashiwabara, Kimito [Mitsubishi Motors Corp., Tokyo (Japan); Fujisawa, Norihiro; Matsubara, Michiro

    1995-12-31T23:59:59.000Z

    The relationship between MBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100 C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio ({lambda}) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated. The results indicate that the new DI worsen when heavy reformate containing large amounts of aromatics or MTBE, an oxygen-containing compound, is used for the octane improver, leaving the balance of the volatility out of consideration.

  17. Preliminary assessment of blending Hanford tank wastes

    SciTech Connect (OSTI)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01T23:59:59.000Z

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  18. Development of By-Pass Blending Station System

    E-Print Network [OSTI]

    Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

    2003-01-01T23:59:59.000Z

    A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can...

  19. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

  20. Exploration of parameters for the continuous blending of pharmaceutical powders

    E-Print Network [OSTI]

    Lin, Ben Chien Pang

    2011-01-01T23:59:59.000Z

    The transition from traditional batch blending to continuous blending is an opportunity for the pharmaceutical industry to reduce costs and improve quality control. This operational shift necessitates a deeper understanding ...

  1. Blended Shelf: Reality-based Presentation and Exploration of Library

    E-Print Network [OSTI]

    Reiterer, Harald

    Blended library; shelf browsing; digital library ACM Classification Keywords H.5.2. [InformationBlended Shelf: Reality-based Presentation and Exploration of Library Collections Abstract We location of the library. Blended Shelf offers a 3D visualization of library collections

  2. Physical Protection of Spent Fuel Shipments: Resolution of Stakeholder Concerns Through Rulemaking - 12284

    SciTech Connect (OSTI)

    Ballard, James D. [Department of Sociology, California State University, Northridge, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 89706 (United States); Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)

    2012-07-01T23:59:59.000Z

    In 1999, the State of Nevada brought its concerns about physical protection of current spent nuclear fuel (SNF) shipments, and future SNF shipments to a federal repository, before the NRC in a 1999 petition for rulemaking (PRM-73-10). In October 2010, the NRC published a rulemaking decision which would significantly strengthen physical protection of SNF in transit. The newest articulation of the rule (10 CFR 73.37) incorporates regulatory clarifications and security enhancements requested in Nevada's 1999 petition for rulemaking, codifies the findings of the Nuclear NRC and DOE consequence analyses into policy guidance documents and brings forward into regulations the agency and licensee experience gained since the terrorist attacks of September 11, 2001. Although at present DOE SNF shipments would continue to be exempt from these NRC regulations, Nevada considers the rule to constitute a largely satisfactory resolution to stakeholder concerns raised in the original petition and in subsequent comments submitted to the NRC. This paper reviews the process of regulatory changes, assesses the specific improvements contained in the new rules and briefly describes the significance of the new rule in the context of a future national nuclear waste management program. Nevada's petition for rulemaking led to a generally satisfactory resolution of the State's concerns. The decade plus timeframe from petition to rulemaking conclusion saw a sea change in many aspects of the relevant issues - perhaps most importantly the attacks on 9/11 led to the recognition by regulatory bodies that a new threat environment exists wherein shipments of SNF and HLW pose a viable target for human initiated events. The State of Nevada has always considered security a critical concern for the transport of these highly radioactive materials. This was one of the primary reasons for the original rulemaking petition and subsequent advocacy by Nevada on related issues. NRC decisions on the majority of the concerns expressed in the petition, additional developments by other regulatory bodies and the change in how the United States sees threats to the homeland - all of these produced a satisfactory resolution through the rulemaking process. While not all of the concerns expressed by Nevada were addressed in the proposed rule and significant challenges face any programmatic shipment campaign in the future, the lesson learned on this occasion is that stakeholder concerns can be resolved through rulemaking. If DOE would engage with stakeholders on its role in transport of SNF and HLW under the NWPA, these concerns would be better addressed. Specifically the attempts by DOE to resist transportation and security regulations now considered necessary by the NRC for the adequate protection of the shipments of highly radioactive materials, these DOE efforts seem ill advised. One clear lesson learned from this successful rulemaking petition process is that the system of stakeholder input can work to better the regulatory environment. (authors)

  3. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    SciTech Connect (OSTI)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

    2003-02-26T23:59:59.000Z

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

  4. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  5. First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Departmentof OhioFirst Annual Post CompetitionShipment of

  6. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  7. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01T23:59:59.000Z

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  8. Technical Review Report for the Justification for Shipment of Sodium-Bonded Carbide Fuel Pins in the T-3 Cask

    SciTech Connect (OSTI)

    West, M; DiSabatino, A

    2008-01-04T23:59:59.000Z

    This report documents the review of the Fluor Submittal (hereafter, the Submittal), prepared by Savannah River Packaging Technology (SRPT) of Savannah River National Laboratory (SRNL), at the request of the Department of Energy's (DOE) Richland Operations Office, for the shipment of unirradiated and irradiated sodium-bonded carbide fuel pins. The sodium-bonded carbide fuel pins are currently stored at the Fast Flux Test Facility (FFTF) awaiting shipment to Idaho National Laboratory (INL). Normally, modified contents are included into the next revision of the SARP. However, the contents, identified to be shipped from FFTF to Idaho National Laboratory, are a one-way shipment of 18 irradiated fuel pins and 7 unirradiated fuel pins, where the irradiated and unirradiated fuel pins are shipped separately, and can be authorized with a letter amendment to the existing Certificate of Compliance (CoC).

  9. Bismaleimide compounds

    DOE Patents [OSTI]

    Adams, J.E.; Jamieson, D.R.

    1986-01-14T23:59:59.000Z

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  10. Bismaleimide compounds

    DOE Patents [OSTI]

    Adams, Johnnie E. (Grandview, MO); Jamieson, Donald R. (Merriam, KS)

    1986-01-14T23:59:59.000Z

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  11. Tough Blends of Polylactide and Castor Oil

    SciTech Connect (OSTI)

    Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A. (UMM)

    2012-10-10T23:59:59.000Z

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

  12. JOINT UNITED STATES/IAEA PROPOSED APPROACH FOR SAFEGUARDS DURING PLUTONIUM STABILIZATION, PACKAGING, AND SHIPMENT

    SciTech Connect (OSTI)

    L. KWEI; B. SMITH; ET AL

    2001-02-01T23:59:59.000Z

    For safety reasons, the U.S. Department of Energy (DOE) is preparing to stabilize and package plutonium oxide currently subject to International Atomic Energy Agency safeguards at the Rocky Flats Environmental Technology Site (RFETS) beginning in the year 2001. The Hanford Site will also stabilize and package plutonium materials under IAEA safeguards. The U.S. and the IAEA began consultations in late 1996 to develop an approach to the application of safeguards during stabilization and packaging. With the plans to ship RFETS plutonium to Savannah River for interim storage prior to final disposition, this work has been extended to include safeguards during shipment. This paper will discuss the elements of a joint U.S./IAEA proposal for this task.

  13. Mode-of-Action of Self-Extinguishing Polymer Blends Containing Organoclays

    SciTech Connect (OSTI)

    Pack, S.; Si, M; Koo, J; Sokolov, J; Koga, T; Kashiwagi, T; Rafailovich, M

    2009-01-01T23:59:59.000Z

    We have shown that the addition of nanoclays is an effective means for enhancing the flame retardant properties of polymer blends. Polymer blends are difficult to render flame retardant even with the addition of flame retardant agents due to dispersion and phase segregation during the heating process. We show that the addition of 5% functionalized Cloisite 20A clays in combination with 15% decabromodiphenyl ether and 4% antimony trioxide to a polystyrene/poly(methyl methacrylate) blend can render the compound flame resistant within the UL-94-V0 standard. Using a variety of micro-characterization methods, we show that the clays are concentrated at the interfaces between the polymers in this blend and completely suppress phase segregation. The flame retardant (FR) is absorbed onto the clay surfaces, and the exfoliation of the clays also distributes the FR agent uniformly within the matrix. TGA of the nanocomposite indicates that prior to the addition of clay, the dissociation times of the individual components varied by more than 20 C, which complicated the gas-phase kinetics. Addition of the clays causes all the components to have a single dissociation temperature, which enhanced the efficacy of the FR formula in the gas phase. Cone calorimetry also indicated that the clays decreased the heat release rate (HRR) and the mass loss rate (MLR), due to the formation of a robust char. In contrast, minimal charring occurred in blends containing just the FR. SEM examination of the chars showed that the clay platelets were curved and in some cases tightly folded into nanotube-like structures. These features were only apparent in blends, indicating that they might be associated with thermal gradients across the polymer phase interface. SEM and SAXS examinations of the nanocomposites after partial exposure to the flame indicated that the clays aggregated into ribbon-like structures, approximately microns in length, after the surfactant thermally decomposed. Thermal modeling indicated that these ribbons might partially explain the synergy due to better distribution of the heat and improve the mechanical properties of the melt at high temperatures, in a manner similar to the one reported for carbon nanotubes.

  14. Process for blending coal with water immiscible liquid

    DOE Patents [OSTI]

    Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

    1982-10-26T23:59:59.000Z

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  15. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll Brian West Wendy Clark...

  16. Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI Exhaust Speciation - ORNL Reference Fuel Blends Accurately measure exhaust profile from an HCCI engine with a variety of fuels and create a better understanding of HCCI...

  17. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01T23:59:59.000Z

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  18. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  19. Interface modification in an immiscible rod-coil polymer blend using functionalized copolymers and polyelectrolytes

    E-Print Network [OSTI]

    Passinault, Robbie J

    1996-01-01T23:59:59.000Z

    -polymer specific interactions on interfacial properties and mechanical performance of the blend. Specifi cally, in uncompatibilized blends, the effect of vectra concentration and domain size on shear modulus is studied. While, in blends compatibilized with small...

  20. Purification Testing for HEU Blend Program

    SciTech Connect (OSTI)

    Thompson, M.C. [Westinghouse Savannah River Company, AIKEN, SC (United States); Pierce, R.A.

    1998-06-01T23:59:59.000Z

    The Savannah River Site (SRS) is working to dispose of the inventory of enriched uranium (EU) formerly used to make fuel for production reactors. The Tennessee Valley Authority (TVA) has agreed to take the material after blending the EU with either natural or depleted uranium to give a {sup 235}U concentration of 4.8 percent low-enriched uranium will be fabricated by a vendor into reactor fuel for use in TVA reactors. SRS prefers to blend the EU with existing depleted uranium (DU) solutions, however, the impurity concentrations in the DU and EU are so high that the blended material may not meet specifications agreed to with TVA. The principal non-radioactive impurities of concern are carbon, iron, phosphorus and sulfur. Neptunium and plutonium contamination levels are about 40 times greater than the desired specification. Tests of solvent extraction and fuel preparation with solutions of SRS uranium demonstrate that the UO{sub 2} prepared from these solutions will meet specifications for Fe, P and S, but may not meet the specifications for carbon. The reasons for carbon remaining in the oxide at such high levels is not fully understood, but may be overcome either by treatment of the solutions with activated carbon or heating the UO{sub 3} in air for a longer time during the calcination step of fuel preparation.Calculations of the expected removal of Np and Pu from the solutions show that the specification cannot be met with a single cycle of solvent extraction. The only way to ensure meeting the specification is dilution with natural U which contains no Np or Pu. Estimations of the decontamination from fission products and daughter products in the decay chains for the U isotopes show that the specification of 110 MEV Bq/g U can be met as long as the activities of the daughters of U- 235 and U-238 are excluded from the specification.

  1. Alternative Fuels Data Center: Ethanol Blends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities ReflectsElectricityEthanol Blends to

  2. E-Print Network 3.0 - aluminate blend phosphate Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Sciences Collection: Physics 42 Formation of Biomimetic Porous Calcium Phosphate Coatings on Surfaces of PolyethyleneZinc Stearate Blends Summary: -zinc stearate blends...

  3. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Broader source: Energy.gov (indexed) [DOE]

    The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization...

  4. Anomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical

    E-Print Network [OSTI]

    , as well as interpenetrating and bicontinu- ous networks.7,8 Phase inversion occurs when the mi- norityAnomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical Alloying Archie P strategies for producing highly dis- persed multicomponent polymer blends. By their very nature

  5. CASIMIR EFFECT IN CROSSLINKED POLYMER BLENDS M. Benhamou

    E-Print Network [OSTI]

    Boyer, Edmond

    -potential. I. INTRODUCTION Interpenetrated polymer networks (IPNs) or crosslinked polymer blends constitute new interpenetrating networks used as electronic device encapsulants [3]. For certain practical realizations, the IPNsCASIMIR EFFECT IN CROSSLINKED POLYMER BLENDS M. Benhamou , M. Boughou, H. Ka¨idi M. El Yaznasni, H

  6. Achieving High Chilled Water Delta T Without Blending Station

    E-Print Network [OSTI]

    Wang, Z.; Wang, G.; Xu, K.; Yu, Y.; Liu, M.

    2007-01-01T23:59:59.000Z

    on the blending station performance. The results show that the blending station is not necessary in the building chilled water systems with 2-way modulation valves at end users. Actually the end user valve configuration and control mainly impacts building chilled...

  7. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOE Patents [OSTI]

    Doherty, J.P.; Marek, J.C.

    1987-02-25T23:59:59.000Z

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  8. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOE Patents [OSTI]

    Doherty, Joseph P. (Elkton, MD); Marek, James C. (Augusta, GA)

    1989-01-01T23:59:59.000Z

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  9. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    SciTech Connect (OSTI)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

    2012-07-01T23:59:59.000Z

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

  10. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L [Washington TRU Solutions (United States); Edmiston, D. R. [John Hart and Associates (United States); O'Leary, G. A. [CH2M-WG Idaho, LLC (United States); Rivera, M. A. [Aspen Resources Ltd., Inc. (United States); Steward, D. M. [Boulder Research Enterprises, LLC (United States)

    2006-07-01T23:59:59.000Z

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  11. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01T23:59:59.000Z

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  12. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    SciTech Connect (OSTI)

    Mark Schanfein

    2009-07-01T23:59:59.000Z

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  13. A perspective on the status of coal research from shipments of samples

    SciTech Connect (OSTI)

    Vorres, K.S. [Argonne National Lab., IL (United States); Kruse, C.W. [Illinois State Geological Survey, Champaign, IL (United States); Nater, K.A. [deGrote Vos, Zeeweg 37, 1753 BB St. Martenzee, NL (Netherlands); Glick, D.C.; Davis, A. [Pennsylvania State Univ., University Park, PA (United States). Coal and Organic Petrology Labs.

    1993-12-31T23:59:59.000Z

    Research on all aspects of coal research, at least for more small scale work, involves the use of samples at the beginning of experimental work. Most research workers for smaller scale work do not collect their own coal samples, but rather order them from a group of sample suppliers. The number of suppliers meeting the major needs in the US, as well as for the world, is not very large. An examination of the shipments of samples from each of these suppliers will give an interesting insight into the general trends in volume of work in the field. The suppliers involved in this study include the Argonne Premium Coal Sample Program, the Illinois Basin Coal Sample Program, the SBN and the several groups of samples from the Pennsylvania State University Coal Sample Bank. Each of these supplies a different number of samples in varying quantities. The quantities and variety of samples is important to the individual worker in selecting a supplier. The type of work to be done frequently affects the quantities and choice of sample, which in turn affects the choice of supplier. In general these data indicate that researchers realize the advantages of acquiring samples from centralized sample banks. These advantages include a lower cost than would be incurred from individual sampling and preparation; availability of analyzed samples; preservation of samples and the possibility of comparing results with others who have worked on the same samples.

  14. Calcination of calcium carbonate and blend therefor

    DOE Patents [OSTI]

    Mallow, William A. (Helotes, TX); Dziuk, Jr., Jerome J. (San Antonio, TX)

    1989-01-01T23:59:59.000Z

    A method for calcination of a calcium carbonate material comprising heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a catalyst; said catalyst comprising at least one fused salt having the formula MCO.sub.3.CaCO.sub.3.CaO.H.sub.2 O.sub.x, wherein M is an alkali metal and x is 0 to 1 and formed by fusing MCO.sub.3 and CaCO.sub.3 in a molar ratio of about 1:2 to 2:1, and a blend adapted to be heated to CaO comprising a calcium carbonate material and at least one such fused salt.

  15. RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY

    SciTech Connect (OSTI)

    SHUFORD DH; STEGEN G

    2010-04-19T23:59:59.000Z

    Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

  16. Phosphor blends for high-CRI fluorescent lamps

    DOE Patents [OSTI]

    Setlur, Anant Achyut (Niskayuna, NY); Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY); Beers, William Winder (Chesterland, OH); Toth, Katalin (Pomaz, HU); Balazs, Laszlo D. (Budapest, HU)

    2008-06-24T23:59:59.000Z

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  17. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  18. Readiness Assessments for the Shipment of TRU from West Jefferson, Ohio

    SciTech Connect (OSTI)

    Duffy, M. A.

    2003-02-26T23:59:59.000Z

    From 1943 through 1986, Battelle Memorial Institute (BMI) performed research and development work at its own facilities for the U.S. Department of Energy (DOE) and its predecessor agencies. The most highly contaminated facilities, comprising BMI's Nuclear Sciences Area, are located on 11 acres in West Jefferson, Ohio. Three buildings in this area were used to study nuclear reactor fuels, fuel element components, reactor designs, and radiochemistry analyses: one building contained nuclear hot cells, a second building contained a critical assembly and radiochemistry laboratory, and a third building once housed a nuclear research reactor. The Columbus Environmental Management Project (CEMP), one of the DOE Ohio Field Office's radioactive cleanup sites, oversees the Battelle Columbus Laboratories Decommissioning Project (BCLDP) for the decontamination and decommissioning (D&D) of BMI's Nuclear Sciences Area. The BCLDP mission is to decontaminate the Nuclear Sciences Area to a condition that is suitable for use without restrictions and to dispose of or store the associated radioactive waste at a suitable DOE-approved facility. During decontamination work, the CEMP is expected to generate approximately 120, 55-gallon drums of transuranic (TRU) waste, or about 20 truckloads. This TRU waste will be transported to DOE's Hanford nuclear facility in Washington State for temporary storage, prior to its ultimate disposal at the Waste Isolation Pilot Plant (WIPP). This paper presents a detailed approach for conducting readiness assessments for TRU waste shipments from any DOE site. It is based on demonstrating satisfaction of the 18 core requirements contained in DOE Order 425.1B, Startup and Restart of Nuclear Facilities, that are derived from the seven guiding principles of DOE's integrated safety management system.

  19. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect (OSTI)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01T23:59:59.000Z

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  20. Transportation impact analysis for shipment of irradiated N-reactor fuel and associated materials

    SciTech Connect (OSTI)

    Daling, P.M.; Harris, M.S.

    1994-12-01T23:59:59.000Z

    An analysis of the radiological and nonradiological impacts of highway transportation of N-Reactor irradiated fuel (N-fuel) and associated materials is described in this report. N-fuel is proposed to be transported from its present locations in the 105-KE and 105-KW Basins, and possibly the PUREX Facility, to the 327 Building for characterization and testing. Each of these facilities is located on the Hanford Site, which is near Richland, Washington. The projected annual shipping quantity is 500 kgU/yr for 5 years for a total of 2500 kgU. It was assumed the irradiated fuel would be returned to the K- Basins following characterization, so the total amount of fuel shipped was assumed to be 5000 kgU. The shipping campaign may also include the transport and characterization of liquids, gases, and sludges from the storage basins, including fuel assembly and/or canister parts that may also be present in the basins. The impacts of transporting these other materials are bounded by the impacts of transporting 5000 kgU of N-fuel. This report was prepared to support an environmental assessment of the N-fuel characterization program. The RADTRAN 4 and GENII computer codes were used to evaluate the radiological impacts of the proposed shipping campaign. RADTRAN 4 was used to calculate the routine exposures and accident risks to workers and the general public from the N-fuel shipments. The GENII computer code was used to calculate the consequences of the maximum credible accident. The results indicate that the transportation of N-fuel in support of the characterization program should not cause excess radiological-induced latent cancer fatalities or traffic-related nonradiological accident fatalities. The consequences of the maximum credible accident are projected to be small and result in no excess latent cancer fatalities.

  1. Time phased alternate blending of feed coals for liquefaction

    DOE Patents [OSTI]

    Schweigharett, Frank (Allentown, PA); Hoover, David S. (New Tripoli, PA); Garg, Diwaker (Macungie, PA)

    1985-01-01T23:59:59.000Z

    The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

  2. Photonic polymer-blend structures and method for making

    DOE Patents [OSTI]

    Barnes, Michael D.

    2004-06-29T23:59:59.000Z

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  3. Evaluation of Ethanol Blends for PHEVs using Simulation and Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Neeraj Shidore (PI) - Vehicle...

  4. ash blended cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass blends Texas A&M University - TxSpace Summary: , low ash partially composted manure LAPC, high ash raw manure HARM, and high ash partially composted manure HAPC)...

  5. Quality, Performance, and Emission Impacts of Biodiesel Blends

    Broader source: Energy.gov (indexed) [DOE]

    Impacts of Biodiesel Blends Bob McCormick (PI) With Teresa Alleman, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon Luecke, Dan Pedersen, Ken Proc, Matt Ratcliff, Matt...

  6. Disease resistance and performance of blended populations of creepi

    E-Print Network [OSTI]

    Abernathy, Scott David

    1999-01-01T23:59:59.000Z

    . . Materials and Methods. . Results and Discussion. Conclusions. . . . 41 . . 41 . . 42 . . 45 . 74 SUMMARY REFERENCES. . 80 LIST OF FIGURES Figure 1. Dollar spot progression in January, 1998 on single cultivar treatments. Page 32 Figure 2.... Dollar spot progression in January 1998 on Crenshaw, L-93 and Crenshaw / L-93 blended treatments. 33 Figure 3. Dollar spot progression in January, 1998 on Crenshaw, A-4 and Crenshaw / A-4 blended treatments. 34 Figure 4. Dollar spot progression...

  7. Elements & Compounds Atoms (Elements)

    E-Print Network [OSTI]

    Frey, Terry

    #12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12 #12;First shell Second shell Third shell Hydrogen 1H Lithium 3Li Sodium 11Na Beryllium 4Be Magnesium energy Higher energy (a) A ball bouncing down a flight of stairs provides an analogy for energy levels

  8. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21T23:59:59.000Z

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  9. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10T23:59:59.000Z

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  10. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01T23:59:59.000Z

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  11. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    SciTech Connect (OSTI)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01T23:59:59.000Z

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  12. Electric Turbo Compounding Technology Update

    Broader source: Energy.gov (indexed) [DOE]

    Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

  13. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect (OSTI)

    Thorp, D.T.; Geinitz, R.R. [Safe Sites of Colorado, L.L.C., Golden, CO (United States); Rivera, M.A. [Los Alamos Technical Associates (United States)

    1998-03-03T23:59:59.000Z

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  14. Environmental assessment for the manufacture and shipment of nuclear reactor fuel from the United States to Canada

    SciTech Connect (OSTI)

    Rangel, R.C.

    1999-02-01T23:59:59.000Z

    The US Department of Energy (DOE) has declared 41.9 tons (38 metric tons) of weapons-usable plutonium surplus to the United States` defense needs. A DOE Programmatic Environmental Impact Statement analyzed strategies for plutonium storage and dispositioning. In one alternative, plutonium as a mixed oxide (MOX) fuel would be irradiated (burned) in a reengineered heavy-water-moderated reactor, such as the Canadian CANDU design. In an Environmental Assessment (EA), DOE proposes to fabricate and transport to Canada a limited amount of MOX fuel as part of the Parallex (parallel experiment) Project. MOX fuel from the US and Russia would be used by Canada to conduct performance tests at Chalk River Laboratories. MOX fuel would be fabricated at Los Alamos National Laboratory and transported in approved container(s) to a Canadian port(s) of entry on one to three approved routes. The EA analyzes the environmental and human health effects from MOX fuel fabrication and transportation. Under the Proposed Action, MOX fuel fabrication would not result in adverse effects to the involved workers or public. Analysis showed that the shipment(s) of MOX fuel would not adversely affect the public, truck crew, and environment along the transportation routes.

  15. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN)

    2009-02-24T23:59:59.000Z

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  16. Evaluation of bitumen by realization of bitumen/polymer blends

    SciTech Connect (OSTI)

    Cogneau, P.; Goosse, S. [Parc Industriel, Perwez (Belgium)

    1995-12-31T23:59:59.000Z

    Today, if we want to guarantee the durability of bitumen/polymer blends and membranes, characterization of bitumen by penetration hardness and softening point is not enough. Bitumen which is a {open_quotes}residue{close_quotes} of distillation is a poor relation of the petrochemistry. It will tend to become more so in view of the more sophisticated treatment units of the heavy components coming from refining. This paper will present the correlation existing between generic composition of bitumen and the characteristics of the bitumen/polymers (atatic polypropylene) blends. The generic composition of the bitumen is determined by thin layer chromatography associated with a detection flame ionization (Iatroscan method). More than 20 bitumens of different origins have been studied. The quality of the blends done with an EPP batch for each of these bitumens is acquired by using determination trials of viscosity, cold bending (new state and after aging), segregation, and morphological analyses.

  17. XAFS Model Compound Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  18. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19T23:59:59.000Z

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  19. Blended learning through the eyes of Malagasy students Hoby ANDRIANIRINA Anne-Laure FOUCHER

    E-Print Network [OSTI]

    Boyer, Edmond

    Clermont-Ferrand, France Keywords: blended learning ; experience of students ; didactics French in a blended learning environment. This is part of a wider action research study in the Didactics of Languages

  20. Theoretical and experimental investigation of particle interactions in pharmaceutical powder blending

    E-Print Network [OSTI]

    Pu, Yu, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    In pharmaceutical manufacturing practices, blending of active pharmaceutical ingredient (API) with excipients is a crucial step in that homogeneity of active ingredient after blending is a key issue for the quality assurance ...

  1. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends...

    Energy Savers [EERE]

    BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines June 22,...

  2. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

    2013-01-15T23:59:59.000Z

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  3. Partially fluorinated ionic compounds

    DOE Patents [OSTI]

    Han, legal representative, Amy Qi (Hockessin, DE); Yang, Zhen-Yu (Hockessin, DE)

    2008-11-25T23:59:59.000Z

    Partially fluorinated ionic compounds are prepared. They are useful in the preparation of partially fluorinated dienes, in which the repeat units are cycloaliphatic.

  4. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, R.A.; Lambrecht, R.M.; Bloomer, W.D.

    1989-05-02T23:59:59.000Z

    Methods and kits for incorporating a radioactive astatine isotope (particularly [sup 211]At) into an organic compound by electrophilic astatodestannylation of organostannanes. 3 figs.

  5. Solid State Blending of Poly(ethylene terephthalate) with Polystyrene: Extent of PET Amorphization and

    E-Print Network [OSTI]

    Mitchell, Brian S.

    Solid State Blending of Poly(ethylene terephthalate) with Polystyrene: Extent of PET Amorphization.interscience.wiley.com). ABSTRACT: Polystyrene (PS) and poly(ethylene terephthalate) (PET) were blended to- gether in the solid. CMA PS/PET blend morphologies were characterized both qualitatively and quantitatively through

  6. Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains

    E-Print Network [OSTI]

    Potter, Don

    1 Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains N. K. Roy1 potential candidates for blending using Neural Networks. Generally the parent polymers of the blend need systems like branched polymers, high molecular weight polymer mixtures, block copolymers, interpenetrating

  7. ccsd00000932 Electronic structure of wurtzite and zinc-blende AlN

    E-Print Network [OSTI]

    ccsd­00000932 (version 1) : 10 Dec 2003 Electronic structure of wurtzite and zinc-blende AlN P. (December 10, 2003) Abstract The electronic structure of AlN in wurtzite and zinc-blende phases is studied in the calculations. Di#11;erences 1 #12; between the wurtzite and zinc-blende phases are small and re ect the slight

  8. Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

  9. Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we- ration, air-to-fuel ratio control, gasoline-ethanol blend, flex-fuel vehicles I. INTRODUCTION Currently

  10. Conjugated-Polymer Blends for Optoelectronics By Christopher R. McNeill* and Neil C. Greenham*

    E-Print Network [OSTI]

    Weeks, Eric R.

    Conjugated-Polymer Blends for Optoelectronics By Christopher R. McNeill* and Neil C. Greenham* 1. Introduction Blending of polymers has long been established as a technique to tune their physical properties the microstructure of the blend has new properties not present in either component. In the field of polymer

  11. HEU to LEU Conversion and Blending Facility: UNH blending alternative to produce LEU UNH for commercial use

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form that is more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed. This document provides data to be used in the environmental impact analysis for the UNH blending HEU disposition option. Process requirements, resource needs, employment needs, waste/emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  12. Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials

    E-Print Network [OSTI]

    Mobasher, Barzin

    Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials Barzin Mobasher1. A simplified model is presented which used cement chemistry, concrete physics, and mechanics to develop of hardened concrete, principally the cement paste, caused by exposure of concrete to sulfates and moisture

  13. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect (OSTI)

    Labbe, D.

    2009-11-15T23:59:59.000Z

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  14. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11T23:59:59.000Z

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  15. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J. [and others

    1997-02-01T23:59:59.000Z

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  16. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOE Patents [OSTI]

    Skotheim, Terje (East Patchogue, NY)

    1984-01-01T23:59:59.000Z

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  17. HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U{sub 3} O{sub 8}) per year to produce 177 MT of 4% U235 assay U{sub 3} O{sub 8}, for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

  18. Preparation of the Second Shipment of Spent Nuclear Fuel from the Ustav Jaderneho Vyzkumu Rez (UJV Rez), a.s., Czech Republic to the Russian Federation for Reprocessing - 13478

    SciTech Connect (OSTI)

    Trtilek, Radek; Podlaha, Josef [UJV Rez, a. s., Hlavni 130, 25068 Husinec-Rez (Czech Republic)] [UJV Rez, a. s., Hlavni 130, 25068 Husinec-Rez (Czech Republic)

    2013-07-01T23:59:59.000Z

    After more than 50 years of operation of the LVR-15 research reactor operated by the UJV Rez, a. s. (formerly Nuclear Research Institute - NRI), a large amount of the spent nuclear fuel (SNF) of Russian origin has been accumulated. In 2005 UJV Rez, a. s. jointed the Russian Research Reactor Fuel Return (RRRFR) program under the United States (US) - Russian Global Threat Reduction Initiative (GTRI) and started the process of SNF shipment from the LVR-15 research reactor back to the Russian Federation (RF). In 2007 the first shipment of SNF was realized. In 2011, preparation of the second shipment of spent fuel from the Czech Republic started. The experience obtained from the first shipment will be widely used, but some differences must be taken into the account. The second shipment will be realized in 2013 and will conclude the return transport of all, both fresh and spent, high-enriched nuclear fuel from the Czech Republic to the Russian Federation. After the shipment is completed, there will be only low-enriched nuclear fuel on the territory of the Czech Republic, containing maximum of 20% of U-235, which is the conventionally recognized limit between the low- and high-enriched nuclear materials. The experience (technical, organizational, administrative, logistic) obtained from the each SNF shipment as from the Czech Republic as from other countries using the Russian type research reactors are evaluated and projected onto preparation of next shipment of high enriched nuclear fuel back to the Russian Federation. The results shown all shipments provided by the UJV Rez, a. s. in the frame of the GTRI Program have been performed successfully and safely. It is expected the experience and results will be applied to preparation and completing of the Chinese Miniature Neutron Source Reactors (MNSR) Spent Nuclear Fuel Repatriation in the near future. (authors)

  19. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  20. Heart testing compound

    DOE Patents [OSTI]

    Knapp, F.F. Jr.; Goodman, M.M.

    1983-06-29T23:59:59.000Z

    The compound 15-(p-(/sup 125/I)-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  1. Heart testing compound

    DOE Patents [OSTI]

    Knapp, Jr., Furn F. (Oak Ridge, TN); Goodman, Mark M. (Knoxville, TN)

    1985-01-01T23:59:59.000Z

    The compound 15-(p-[.sup.125 I]-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  2. Review Of Rheology Models For Hanford Waste Blending

    SciTech Connect (OSTI)

    Koopman, D. C.; Stone, M.

    2013-09-26T23:59:59.000Z

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 ?m diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 ?m in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation experience). As experience is ga

  3. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01T23:59:59.000Z

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  4. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    SciTech Connect (OSTI)

    Boyle, J.D. [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States)] [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States); Fort, E. Joseph; Lorenz, William [Cabrera Services (Cabrera) East Harford, CT 06108 (United States)] [Cabrera Services (Cabrera) East Harford, CT 06108 (United States); Mills, Andy [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)] [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)

    2013-07-01T23:59:59.000Z

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  5. Microoptical compound lens

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Gill, David D. (Albuquerque, NM)

    2007-10-23T23:59:59.000Z

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  6. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  7. Effect of Organoclay on Compatibilization, Thermal and Mechanical Properties of Polycarbonate/Polystyrene Blends

    E-Print Network [OSTI]

    Singh, A K

    2014-01-01T23:59:59.000Z

    Pristine and organoclay modified polycarbonate/polystyrene (PC/PS) blends are prepared using melt-mixing technique. These blends are characterized for their morphology, structural, thermal and mechanical properties. Though our FTIR and XRD results show weak interactions between PC and PS phases, however, DSC and morphological study reveals that pristine PC/PS blends are immiscible. On other hand, introduction of organoclay results compatibilization of two polymer phases which is supported by significant shift in glass transition temperatures of the component phases and a distinct morphology having no phase segregation on sub-micron scale. Intercalation of polymers inside the clay gallery is achieved and is supported by XRD studies. A better thermal stability and higher value of modulus of the compatibilized blends compared to pristine PC/PS blends also support the reinforcement effect of organoclay to the PC/PS blend matrix.

  8. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    SciTech Connect (OSTI)

    Barklay, Chadwick D.; Miller, Roger G.; Pugh, Barry K.; Howell, Edwin I. [EG and G Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio 45343-3000 (United States)

    1997-01-10T23:59:59.000Z

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the 'Pluto Express' mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS)

  9. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    SciTech Connect (OSTI)

    Barklay, C.D.; Miller, R.G.; Pugh, B.K.; Howell, E.I. [EGG Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio45343-3000 (United States)

    1997-01-01T23:59:59.000Z

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the {open_quotes}Pluto Express{close_quotes} mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS). {copyright} {ital 1997 American Institute of Physics.}

  10. Aminopropyl thiophene compounds

    DOE Patents [OSTI]

    Goodman, Mark M. (Knoxville, TN); Knapp, Jr., Furn F. (Oak Ridge, TN)

    1990-01-01T23:59:59.000Z

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation of regional blood flow by radioimaging of the brain.

  11. Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate

    E-Print Network [OSTI]

    Anderlohr, Jörg; Da Cruz, A Pires; Bounaceur, Roda; Battin-Leclerc, Frédérique; Dagaut, Philippe; Montagne, X; 10.1016/j.proci.2008.06.019

    2009-01-01T23:59:59.000Z

    This paper presents an experimental and numerical study of the impact of various additives on the oxidation of a typical automotive surrogate fuel blend, i.e. n-heptane and toluene. It examines the impact of engine re-cycled exhaust has compounds on the control of an Homogeneous Charge Compression-Ignition (HCCI) engine. Series of experiments were performed in a hihly diluted Jet-Stirred Reactor (JDR) at pressures of 1 and 10 atm (1 atm = 101,325 Pa). The chosen thermo-chemical conditions were close to those characteristices of the pre-ignition period in an HCCI engine. The influence of various additives, namely nitric oxide (NO), ethylene (C2H4) and methanol (CH3OH), on the oxidation of a n-heptane/toluene blend was studied over a wide range of temperatures (550-1100 K), including the zone of the Negative Temperature Coefficient (NTC).

  12. Multi-scale analysis and simulation of powder blending in pharmaceutical manufacturing

    E-Print Network [OSTI]

    Ngai, Samuel S. H

    2005-01-01T23:59:59.000Z

    A Multi-Scale Analysis methodology was developed and carried out for gaining fundamental understanding of the pharmaceutical powder blending process. Through experiment, analysis and computer simulations, microscopic ...

  13. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Broader source: Energy.gov (indexed) [DOE]

    IMPACT OF LOW OCTANE HYDROCARBON BLENDING STREAMS ON "E85" ENGINE OPTIMIZATION Jim Szybist and Brian West Oak Ridge National Laboratory October 19, 2012 Acknowledgement This...

  14. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26T23:59:59.000Z

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

  15. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect (OSTI)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06T23:59:59.000Z

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  16. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    SciTech Connect (OSTI)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2008-10-23T23:59:59.000Z

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  17. Emissions mitigation of blended coals through systems optimization

    SciTech Connect (OSTI)

    Don Labbe [IOM Invensys Operations Management (United States)

    2009-10-15T23:59:59.000Z

    For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

  18. Hydrogen effects on materials for CNG/H2 blends.

    SciTech Connect (OSTI)

    Farese, David (Air Products, USA); Keller, Jay O.; Somerday, Brian P.

    2010-09-01T23:59:59.000Z

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  19. INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2005-02-01T23:59:59.000Z

    Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

  20. Mid-Level Ethanol Blends Test Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 AcquisitionO 231.1B ChgMicrosoft WordBlends

  1. Complex Compound Chemical Heat Pumps 

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01T23:59:59.000Z

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  2. Complex Compound Chemical Heat Pumps

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  3. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01T23:59:59.000Z

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  4. Interface modification in an immiscible rod-coil polymer blend using functionalized copolymers and polyelectrolytes 

    E-Print Network [OSTI]

    Passinault, Robbie J

    1996-01-01T23:59:59.000Z

    Blends of rod-like and flexible-coil polymers are attractive for synthesizing molecular composites. In this study, a blend of a rod-like polymer (Vectra B950) and a flexible polymer (polystyrene) is used to investigate the influence of polymer-polymer...

  5. Blended Interaction Toward a Framework for the Design of Interactive Spaces

    E-Print Network [OSTI]

    Reiterer, Harald

    Blended Interaction ­ Toward a Framework for the Design of Interactive Spaces Hans-Christian Jetter, Florian Geyer, Tobias Schwarz, Harald Reiterer Human-Computer Interaction Group, University of Konstanz In this paper, we propose Blended Interaction as a conceptual framework for the design of interactive spaces. We

  6. Probing Water Phases in Cement Blends using 1 Magnetic Resonance Relaxometry

    E-Print Network [OSTI]

    Sheffield, University of

    Probing Water Phases in Cement Blends using 1 H Nuclear Magnetic Resonance Relaxometry Jean)114 222 5973 Fax: +44 (0)114 222 5943 E-Mail: j.gorce@sheffield.ac.uk Extended Abstract: Cement and Concrete Science, Warwick, 16th + 17th September 2004 Introduction The nuclear industry uses blended cement

  7. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone

    E-Print Network [OSTI]

    Weiss, Lee E.

    In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering Kacey G. Marra,1 Jeffrey W. Szem,2 Prashant N. Kumta,3 Paul A. DiMilla,4 Lee E. Weiss5 1 14 April 1999 Abstract: Blends of biodegradable polymers, poly(capro- lactone) and poly

  8. Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures

    E-Print Network [OSTI]

    Yu, Edward T.

    Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire-shell heterostructures in 111 zinc blende and 0001 wurtzite geometries. These calculations reveal that critical wurtzite nanowire systems. In this article we extend this methodology to explore and contrast coherency

  9. Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite Yong Ding a

    E-Print Network [OSTI]

    Wang, Zhong L.

    Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite Yong Ding a , Xu Dong WangS nanostructures normally take the metastable wurtzite structure. This Letter investigates the conditions under which the formed phase can be con- trolled between zinc blende and wurtzite in nanomaterials synthesis

  10. Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires

    E-Print Network [OSTI]

    Wang, Deli

    Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires between pure zinc blende (ZB) NWs and wurtzite (WZ) NWs containing stacking faults and small ZB segments their growth-direction axis while wurtzite (WZ) InAs NWs grown on InAs (111)B substrates have numerous stacking

  11. Theoretical study of nonpolar surfaces of aluminum nitride: Zinc blende ,,110... and wurtzite ,,1010...

    E-Print Network [OSTI]

    Pandey, Ravi

    Theoretical study of nonpolar surfaces of aluminum nitride: Zinc blende ,,110... and wurtzite ,,101 structure and electronic properties of the nonpolar surfaces, namely zinc blende 110 and wurtzite (10 1 and small ther- mal expansion coefficient. At ambient conditions, AlN crys- tallizes in the wurtzite phase

  12. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-09-01T23:59:59.000Z

    This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

  13. X-ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance

    E-Print Network [OSTI]

    X-ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance no features on the length scale of 50 nm or greater. Additionally, the performance of photovoltaic devices evaluated and compared to the performance of chloroform blends with varied weight ratio. By studying

  14. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  15. Synergistic Effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Kensuke Masaki; Atsushi Dobashi; Kiyoshi Fukada [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2006-12-15T23:59:59.000Z

    To maximize the conversion of low-quality coal into good coke, we investigated the thermoplasticity of various binary blends of caking coals with slightly or noncaking coals using a dynamic viscoelastic technique with a temperature-variable rheometer. Coal blend samples were prepared by mixing two coals (1:1 by weight), which were heated from room temperature to 600 C at a rate of 3-80{sup o}C/min. At the slow rate of 3{sup o}C/min, the blends had a tan {delta} that was generally lower than the calculated value, showing that a negative interaction caused a loss of thermoplasticity. In contrast, at the rapid heating rate of 80{sup o}C/min, the tan {delta} of some blends was higher than the calculated value, indicating a positive interaction that enhanced the thermoplasticity. With rapid heating, the thermoplasticity of each coal itself increased, and their thermoplastic temperature ranges widened with rapid heating. Therefore, rapid heating was effective at converting these coal blends into good cokes. Moreover, even with slow heating, when a combination of coals (Gregory:Enshu, 1:1) showing some thermoplasticity in nearly the same temperature range was blended, a desirable synergistic effect of the blend was obtained. This suggests that blending coal with an overlapping thermoplastic temperature range is important for the synergistic effect, regardless of the heating rate. 15 refs., 9 figs., 2 tabs.

  16. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

    2008-05-15T23:59:59.000Z

    Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

  17. Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.

    E-Print Network [OSTI]

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being

  18. HIGH-TEMPERATURE STEAM-TREATMENT OF PEEK, PEKK, PBI, AND THEIR BLENDS

    E-Print Network [OSTI]

    Bluemel, Janet

    1 HIGH-TEMPERATURE STEAM-TREATMENT OF PEEK, PEKK, PBI, AND THEIR BLENDS: A SOLID-STATE NMR AND IR and their pure components after treating them with liquid water and steam at elevated temperatures and pressures. The pure polymer components and the PAEK-PBI (50 : 50 wt%) blends are steam-treated at 150 °C (302 °F

  19. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Broader source: Energy.gov [DOE]

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

  20. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect (OSTI)

    Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

    2011-01-01T23:59:59.000Z

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  1. Titanium alkoxide compound

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM)

    2007-08-14T23:59:59.000Z

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  2. Boronated porphyrin compounds

    DOE Patents [OSTI]

    Kahl, Stephen B. (Portola Valley, CA); Koo, Myoung-Seo (San Francisco, CA)

    1992-01-01T23:59:59.000Z

    A compound is described having the structure ##STR1## where R preferably is ##STR2## and most preferably R.sup.3 is a closo-carborane and R.sup.2 is --H, an alkyl or aryl having 1 to about 7 carbon atoms, This invention was made with Government support under NIH Grant No. CA-37961 awarded by the Department of Health and Human Services and under the Associated Universities Inc. Contract No. De-AC02-76CH00016 with the U.S. Department of Energy. The Government has rights in this invention.

  3. Boronated porphyrin compounds

    DOE Patents [OSTI]

    Kahl, S.B.; Koo, M.S.

    1992-09-22T23:59:59.000Z

    A compound is described having the structure ##STR1## where R preferably is ##STR2## and most preferably R.sup.3 is a closo-carborane and R.sup.2 is --H, an alkyl or aryl having 1 to about 7 carbon atoms, This invention was made with Government support under NIH Grant No. CA-37961 awarded by the Department of Health and Human Services and under the Associated Universities Inc. Contract No. De-AC02-76CH00016 with the U.S. Department of Energy. The Government has rights in this invention.

  4. ccsd-00000932(version1):10Dec2003 Electronic structure of wurtzite and zinc-blende AlN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ccsd-00000932(version1):10Dec2003 Electronic structure of wurtzite and zinc-blende AlN P. Jonnard) Abstract The electronic structure of AlN in wurtzite and zinc-blende phases is studied experimentally. Differences 1 #12;between the wurtzite and zinc-blende phases are small and reflect the slight variations

  5. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe AFM Compound Microscope Scanning Probe AFM Compound Microscope The atomic force microscope (AFM) compound microscope is designed primarily for fluorescence imaging in the...

  6. Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.

    SciTech Connect (OSTI)

    Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

    2009-11-01T23:59:59.000Z

    The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

  7. SGP Shipment Notification Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs RunningSEABRV2/01/12 Page3 SGP Cloud

  8. RH_SRS_Shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITYResponses:December 11,

  9. Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability

    E-Print Network [OSTI]

    Assef, R J; Afonso, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Beaulieu, J P; Charlot, X; Coutures, C; Ferlet, R; Fouqué, P; Glicenstein, J F; Goldman, B; Graff, D; Gros, M; Haïssinski, J; Hamadache, C; De Kat, J; Le Guillou, Laurent; Lesquoy, E; Loup, C; Magneville, C; Marquette, J B; Maurice, E; Maury, A; Milsztajn, A; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Rahal, Y R; Rich, J; Spiro, M; Tisserand, P; Vidal-Madjar, A; Vigroux, L; Zylberajch, S; Bennett, D P; Becker, A C; Griest, K; Vandehei, T; Welch, D L; Udalski, A; Szymanski, M K; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Wyrzykowski, L

    2006-01-01T23:59:59.000Z

    Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is a variable star, simply because most variable stars are systematically eliminated from microlensing studies. Using observational data for this event, we show that the intrinsic variability of a microlensed star is a powerful tool to constrain the nature of the lens by breaking the degeneracy between the microlens parallax and the blended light. We also present a statistical test for discriminating the location of the lens based on the \\chi^2 contours of the vector \\Lambda, the inverse of the projected velocity. We find that while SMC self lensing is somewhat favored, neither location can be ruled out with good confidence.

  10. Influence of Substrate on Crystallization in Polythiophene/fullerene Blends

    SciTech Connect (OSTI)

    C He; D Germack; J Kline; D Delongchamp; D Fischer; C Snyder; M Toney; J Kushmerick; L Richter

    2011-12-31T23:59:59.000Z

    The nanoscale morphology of the active layer in organic, bulk heterojunction (BHJ) solar cells is crucial to device performance. Often a combination of casting conditions and post deposition thermal treatment is used to optimize the morphology. In general, the development of microscopic crystals is deleterious, as the exciton diffusion length is {approx}10 nm. We find that the microscopic crystallization behavior in polythiophene/fullerene blends is strongly influenced by the substrate on which the BHJ is cast. With a silicon oxide substrate, the crystal nucleation density is high and significant crystallization occurs at a temperature of 140 C. On more hydrophobic substrates, significantly higher temperatures are required for observable crystallization. This difference is attributed to the interfacial segregation of the PCBM, controlled by the substrate surface energy. The substrate dependence of crystallization has significant implications on the fullerene crystal growth mechanisms and practical implications for device studies.

  11. Ordered ground state wurtzite alloys from zinc-blende parent compounds H. J. Xiang and Su-Huai Wei

    E-Print Network [OSTI]

    Gong, Xingao

    National Renewable Energy Laboratory, Golden, Colorado 80401, USA Shiyou Chen and X. G. Gong Surface that the ground state WZ alloy always has a lower strain energy and formation enthalpy than the corresponding zinc that the ground state GS WZ alloy WZA always has a lower strain energy than the cor- responding ZB alloy ZBA

  12. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  13. Sandia National Laboratories: compound semiconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compound semiconductor Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership,...

  14. HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  15. The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting

    E-Print Network [OSTI]

    Travis, Adrian

    The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solventsm00343c The power conversion efficiency in a conjugated polymer-functionalized fullerene bulk heterojunction organic photovoltaic (OPV) device is dependent both on the electronic properties

  16. Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends

    E-Print Network [OSTI]

    Savant, Gautam Sandesh

    2012-07-16T23:59:59.000Z

    into biodiesel. It is well known vegetable oil to biodiesel conversion involves many processes including transesterification, which makes biodiesel costly and time-consuming to produce. In this study, the effects of blending high-viscosity fresh and used corn...

  17. Knock limits in spark ignited direct injected engines using gasoline/ethanol blends

    E-Print Network [OSTI]

    Kasseris, Emmanuel P

    2011-01-01T23:59:59.000Z

    Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

  18. Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers

    E-Print Network [OSTI]

    in the systems polystyrene/polypropylene (PS/PP), polystyrene/high density polyethylene (PS/PE) and polycarbonate were conducted to study these effects by preparing blends with various polymers that varied

  19. Leaching and standing water characteristics of bottom ash and composted manure blends

    E-Print Network [OSTI]

    Mathis, James Gregory

    2001-01-01T23:59:59.000Z

    in significantly higher concentrations of total Kjeldahl nitrogen (TKN), P, and potassium (K). Generally, a higher CM content in acidic and alkaline blends resulted in higher leachate concentrations for total solids (TS), total dissolved solids (TDS), total...

  20. Evaluation of Ethanol Blends for PHEVs using Simulation andEngine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engine-in-the-Loop Evaluation of Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  1. Exciton localization mechanisms in wurtzite/zinc-blende GaAs nanowires

    E-Print Network [OSTI]

    Graham, Alexandra; Corfdir, Pierre; Heiss, Martin; Conesa-Boj, Sonia; Uccelli, Emanuele; Fontcuberta i Morral, Anna; Phillips, Richard

    We investigate the emission properties of excitons in GaAs nanowires containing quantum disks formed by structural alternation between the zinc-blende and wurtzite phases, by means of temperature-dependent photoluminescence. At 10 K the emission...

  2. Glass Transition Phenomena in Melt-Processed Polystyrene/Polypropylene Blends

    E-Print Network [OSTI]

    . The presence of a rigid polycarbonate matrix as PET cools through its glass transition gives rise to a "wall" effect, causing the Tg of PET to increase [6]. The Tg of polybutadiene in polycarbonate/ABS blends

  3. Influence of branch content on the microstructure of blends of linear and octene-branched polyethylene

    E-Print Network [OSTI]

    Hussein, Ibnelwaleed A.

    experimental densities of the two polymer melts. Initially, chains of LLDPE and HDPE were completely mixed POLYMER JOURNAL #12;short chain branching (SCB) [26]. Few studies have made use of m-LLDPE in blend

  4. Process simulation, integration and optimization of blending of petrodiesel with biodiesel

    E-Print Network [OSTI]

    Wang, Ting

    2009-05-15T23:59:59.000Z

    strategies to meet these requirements. The primary objective of this work is to analyze alternatives for producing ULSD. In addition to the conventional approach of revamping existing hydrotreating facilities, the option of blending petrodiesel with biodiesel...

  5. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate of biodiesel fuels in diesel and homogeneous charge compression ignition engines. Keywords: Methyl decanoate; Methyl decenoate; Surrogate; Oxidation; Biodiesel fuels; Kinetic modeling; Engine; Low

  6. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01T23:59:59.000Z

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  7. Characterization of Jeffamine (polyoxypropyleneamine) based compatibilizers and bisphenol-a polycarbonate blends

    E-Print Network [OSTI]

    Guenther, Gerhard Kurt

    1991-01-01T23:59:59.000Z

    CHARACTERIZATION OF IEFFAMINE (POLYOXYPROPYLENEAMINE) BASED COMPATIBILIZERS AND BISPHENOL-A POLYCARBONATE BLENDS A Thesis by GERHARD KURT GUENTHER Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1991 Major Subject: Mechanical Engineering CHARACTERIZATION OF JEFFAMINE (POLYOXYPROPYLENEAMINE) BASED COMPATIBILIZERS AND BISPHENOL-A POLYCARBONATE BLENDS A Thesis by GERHARD KURT GUENTHER...

  8. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene [ORNL; Moyer, Bruce A [ORNL

    2012-12-01T23:59:59.000Z

    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  9. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01T23:59:59.000Z

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  10. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24T23:59:59.000Z

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  11. Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters

    SciTech Connect (OSTI)

    Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R. [Sandia National Laboratory, Albuquerque, NM (United States); Johnson, J.D. [GRAM Inc., Albuquerque, NM (United States); Reardon, P.C. [PCRT Technologies, Albuquerque, NM (United States); Ebert, M.W.; Gallagher D.W. [Science Applications International Corp., Reston, VA (United States)

    1996-08-01T23:59:59.000Z

    Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters.

  12. Feedstock blending studies with laboratory indirectly heated gasifiers

    SciTech Connect (OSTI)

    Green, A.E.S.; Mullin, J.P.

    1999-10-01T23:59:59.000Z

    To support the further development of indirectly heated gasifiers intended to provide fuels for advanced gas turbines, several indirectly heated laboratory gasifiers were constructed. During many comparative tests, advantages and problems with each system were observed. The most useful systems make use of laboratory tube furnaces in conjunction with temperature, time and pressure or volume yield measuring systems and a gas chromatograph with a thermal conductivity detector. In this paper, high temperature pyrolysis results obtained with the latest system are presented. Contrasting feedstocks suitable for commercial systems separately or in blends are used. Yield versus time measurements are used to determine relevant rate constants and outputs. Since the rate constants are mainly reflective of heat transfer effects, cylindrical dowel sticks of varying radii were volatilized. The data set leads to an analytic heat transfer model that considers the hemicellulose, cellulose, and lignin components of the dowels. Also developed from the dowel experiments is an approximate procedure for estimating the proportionate releases of CO, CO{sub 2}, CH{sub 4}, and H{sub 2} for any type of biomass whose component proportions are known.

  13. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect (OSTI)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)] [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain)] [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain) [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15T23:59:59.000Z

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  14. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1995-08-22T23:59:59.000Z

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  15. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, Michael S. (New Ellenton, SC)

    1995-01-01T23:59:59.000Z

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  16. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1993-01-01T23:59:59.000Z

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  17. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect (OSTI)

    Krishna, C.R.

    2010-10-01T23:59:59.000Z

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

  18. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01T23:59:59.000Z

    Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

  19. Detection of chlorinated aromatic compounds

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1996-02-06T23:59:59.000Z

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  20. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1991-01-01T23:59:59.000Z

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  1. Aza compounds as anion receptors

    DOE Patents [OSTI]

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06T23:59:59.000Z

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  2. Gas and hydrocarbon vapor permeation in poly(1-trimethylsilyl-1-propyne)/poly(1-phenyl-1-propyne) blends

    SciTech Connect (OSTI)

    Morisato, A.; Shen, H.C.; Toy, L.G. [North Carolina State Univ., Raleigh, NC (United States)] [and others

    1996-12-31T23:59:59.000Z

    Permeation properties of phase-separated blends prepared from glassy poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) were determined as a function of blend composition with pure hydrogen, nitrogen, oxygen, carbon dioxide, and butane. Blend permeabilities decrease significantly with increasing PPP concentration and suggest the occurrence of a phase inversion at low PPP content (5 to 20 wt%). Based on TEM analysis high-aspect-ratio (extended) PPP ellipsoidal dispersions are found in a PTMSP matrix, indicating that the phase inversion is closely related to dispersed-phase connectivity in the blends.

  3. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  4. Molecular Characterization of Nitrogen Containing Organic Compounds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning...

  5. Process for production of a borohydride compound

    DOE Patents [OSTI]

    Chin, Arthur Achhing; Jain, Puja; Linehan, Suzanne; Lipiecki, Francis Joseph; Maroldo, Stephen Gerard; November, Samuel J; Yamamoto, John Hiroshi

    2013-02-19T23:59:59.000Z

    A process for production of a borohydride compound. The process comprises combining a compound comprising boron and oxygen with an adduct of alane.

  6. Chain ordering of regioregular polythiophene films through blending with a nickel bisdithiolene complex

    SciTech Connect (OSTI)

    Hernandez-Maldonado, D. [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France) [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Ramos, B.; Bedel-Pereira, E.; Séguy, I. [LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France) [LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Villeneuve-Faure, C. [LAPLACE, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse (France)] [LAPLACE, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse (France); Sournia-Saquet, A.; Moineau-Chane Ching, K. I., E-mail: kathleen.chane@lcc-toulouse.fr [CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse Cedex 4 (France); LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Alary, F.; Heully, J. L. [LCPQ-IRSAMC, 118 Route de Narbonne, F-31077 Toulouse Cedex 4 (France)] [LCPQ-IRSAMC, 118 Route de Narbonne, F-31077 Toulouse Cedex 4 (France)

    2014-03-10T23:59:59.000Z

    An “annealing-free” strategy consisting of using a planar nickel bisdithiolene complex nickel bis[1,2-di(3?,4?-di-n-decyloxyphenyl)ethene-1,2-dithiolene] ([Ni(4dopedt){sub 2}]) is proposed for structuring poly(3-hexyl-thiophene) (P3HT). Photoluminescence (PL) and Raman spectroscopies, in conjunction with electronic absorption, have been used for evidencing P3HT changes due to blending. PL and absorption observations are consistent and show a correlation between polymer chain organization and increasing amounts of [Ni(4dopedt){sub 2}]. Blending with [Ni(4dopedt){sub 2}] do not modify the Raman ring-breathing modes energies indicating that blending does not induce strongly disorder in P3HT chains. Atomic force microscopic measurements show that blends nanoscale morphology presents a homogeneous matrix and small fibrils related to [Ni(4dopedt){sub 2}] concentration, especially for blends with a [Ni(4dopedt){sub 2}] weight ratio lower than 50%.

  7. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)] [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States) [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-05-21T23:59:59.000Z

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature ? ? (T ? T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

  8. Analysis Of Exhaust Emission Of Internal Combustion Engine Using Biodiesel Blend

    E-Print Network [OSTI]

    Suvendu Mohanty; Dr. Om Prakash; Reasearch Scholar

    Abstract-The main purpose of this research is to study the effect of various blends of an environmental friendly alternative fuel such as biodiesel on the performance of diesel engine. In the Present investigation experimental work has been carried out to analyze the performance and exhaust emission characteristics of a single cylinder internal combustion engine fuelled with biodiesel blend at the different load. In this experiment the biodiesel which is use as a waste cooking oil (WCO) biodiesel.To investigation of the emission characteristics of the engine loads, which is supplied from the alternator. The experiment was carried out different load i.e. (NO LOAD, 100W 200W, 500W, 1000W, 1500W, 2000W, 2500W & 3000Watt) at engine speed 1500 rpm/min. A test was applied in which an engine was fuel with diesel and seven different blends of diesel. Biodiesel (B5, B10, B20, B40, B60, B80, B100) made from waste cooking oil and the results were analyzed.The emission of were measured carbon monoxide (CO), hydrocarbon carbon(HC), Oxides of nitrogen (NOX) and oxygen ().The experimental results will be compared with biodiesel blends and diesel. The biodiesel results of (WCO) in lower emission of hydro carbon (HC) and (CO) and increase emission of (NO2). This study showed that the results of exhaust emission of biodiesel blends were lower than the diesel fuel. Keyword- Biodiesel (WCO), diesel engine, gas analyzer, Exhaust emission. I.

  9. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01T23:59:59.000Z

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  10. The relationship between the thermoplastic behavior of blends and their component coals

    SciTech Connect (OSTI)

    Sakurovs, R.

    1999-07-01T23:59:59.000Z

    The thermoplastic behaviors of a number of coking coal blends were measured using proton magnetic resonance thermal analysis (PMRTA) to determine to what extent they were affected by interactions between the component coals. Most blends showed evidence that at temperatures near their temperatures of maximum fluidity the extent to which they fused was different to that expected if the coals did not interact. Only blends of coking coals of different rank fused to a greater extent than expected in the absence of interactions. Semi-anthracite, low rank coals and charcoal reduced the extent of fusion of coking coals to values below those expected if they were acting as inert diluents. These interactions are interpreted as being mediated by transfer of volatile material between the coals on heating.

  11. Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends

    E-Print Network [OSTI]

    Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

    Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

  12. The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

    E-Print Network [OSTI]

    Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

    2005-01-01T23:59:59.000Z

    diethyl ether (DEE) in ethanol fuel blends for a range ofbio-derived fuel components (ethanol) in emission productsHCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

  13. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2014-03-03T23:59:59.000Z

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

  14. A novel reactive processing technique: using telechelic polymers to reactively compatibilize polymer blends

    SciTech Connect (OSTI)

    Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2009-01-01T23:59:59.000Z

    Difunctional reactive polymers, telechelics, were used to reactively form multiblock copolymers in situ when melt-blended with a blend of polystyrene and polyisoprene. To quantify the ability of the copolymer to compatibilize the blends, the time evolution of the domain size upon annealing was analyzed by SEM. It was found that the most effective parameter to quantify the ability of the copolymer to inhibit droplet coalescence is Kreltstable, the relative coarsening constant multiplied by the stabilization time. These results indicate that intermediate-molecular-weight telechelic pairs of both highly reactive Anhydride-PS-Anhydride/NH2-PI-NH2 and slower reacting Epoxy-PS-Epoxy/COOH-PI-COOH both effectively suppress coalescence, with the optimal molecular weight being slightly above the critical molecular weight of the homopolymer,Mc. The effects of telechelic loading were also investigated, where the optimal loading concentration for this system was 0.5 wt %, as higher concentrations exhibited a plasticizing effect due to the presence of unreacted low-molecular-weight telechelics present in the blend. A determination of the interfacial coverage of the copolymer shows that a conversion of 1.5-3.0% was required for 20% surface coverage at 5.0 wt % telechelic loading, indicating a large excess of telechelics in this system. At the optimal loading level of 0.5 wt %, a conversion of 15% was required for 20% surface coverage. The results of these experiments provide a clear understanding of the role of telechelic loading and molecular weight on its ability to reactively form interfacial modifiers in phase-separated polymer blends and provide guidelines for the development of similar reactive processing schemes that can use telechelic polymers to reactively compatibilize a broad range of polymer blends.

  15. Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    ABSTRACT: Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could conditions exist. Ethanol- derived methane may also increase the vapor intrusion potential of toxic fuel to be modified when dealing with some high ethanol blend fuel (i.e., E20 up to E95) releases. INTRODUCTION

  16. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06T23:59:59.000Z

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  17. Prediction of metallurgical coke strength from the petrographic composition of coal blends

    SciTech Connect (OSTI)

    Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

    2009-07-01T23:59:59.000Z

    Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

  18. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect (OSTI)

    Pauls, R. E. (Chemical Sciences and Engineering Division)

    2011-05-01T23:59:59.000Z

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  19. AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL] [ORNL; Boyd, Alison C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

  20. Effect of thermal history on the molecular orientation in polystyrene/poly(vinyl methyl ether) blends

    E-Print Network [OSTI]

    Pezolet, Michel

    ether) (PS/PVME) has been studied using polarization modulation infrared linear dichroism (PM to an increased orientation if the heating time at 51 8C is kept short. Moreover, PS and PVME develop a larger) blends; Thermal history; Polarization modulation infrared linear dichroism 1. Introduction The influence

  1. Ultrasonic and microscopic investigation of blends of polydimethylsiloxane and polyisobutylene at all

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it would be important to control the mixing of two polymers during blend processing, in an extruder in different fields of application, in particular to characterize solid and molten polymers [Bridge (1987 50 years back. In 1948, Urick reported data of the ultrasonic attenuation in aqueous kaolin and sand

  2. Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here of coal and biomass fuels are presented. Different classes of co-firing methods are identified

  3. TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS

    E-Print Network [OSTI]

    Daripa, Prabir

    coal or by ex- haust clean up technology. For the power plants, the simplest solution is the preventive- ity well into the 21st century. This dependency on coal calls for better technologies to reduceTURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS

  4. Detonations in Hydrocarbon Fuel Blends J.M. Austin and J.E. Shepherd

    E-Print Network [OSTI]

    Low, Steven H.

    in high-molecular weight hydrocarbon fuels of interest to pulse detonation engine applications of thermally decomposed JP-10 was studied at 295 K. This blend consisted of hydrogen, carbon monoxide, methane to be comparable. The addition of lower molecular weight fuels (hydrogen, acetylene, ethylene, 1 #12;and carbon

  5. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate)

    E-Print Network [OSTI]

    Wood plastic composites based on microfibrillar blends of high density polyethylene January 2010 Keywords: Wood plastic composites Poly(ethylene terephthalate) Polyethylene Extrusion a b into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre

  6. Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires

    E-Print Network [OSTI]

    Wang, Zhong L.

    Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires Yong Ding of wurtzite WZ ZnO tetrapods. The formation of the wurtzite 011¯3 twined nanowires is proposed based on the ZB core. Simple bonding density calculation shows that the wurtzite nanowires with 011¯0 side surfaces

  7. Using blends of cerambycid beetle pheromones and host plant volatiles to simultaneously attract a

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    ethanol and a-pinene to determine whether such blends could be effective lures for detecting and moni-(undecyloxy)-ethanol, and race- mic 2-methyl-1-butanol. Bioassays in east-central Illinois captured 3070 to ethanol, with a-pinene enhancing attraction only for the pine specialist M. carolinensis. The optimal

  8. Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames

    E-Print Network [OSTI]

    Ju, Yiguang

    analyses of kinetic path ways and species transport on flame extinction were also conducted. The results and emission properties, such as the ignition delay times, extinction limits, flame speeds, species profilesKinetic effects of toluene blending on the extinction limit of n-decane diffusion flames Sang Hee

  9. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOE Patents [OSTI]

    Skotheim, Terje (East Patchogue, NY)

    1986-01-01T23:59:59.000Z

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  10. Optimization of Crude-Oil Blending Operations Sylvain Mouret Ignacio E. Grossmann Pierre Pestiaux

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    refinery Crude-oil blending scheduling Scheduling formulations 2 Proposed approach Basic idea MINLP model Proposed approach Results and comparisons Conclusion Oil refinery A typical oil refinery Refining crude definition Given Refinery configuration Logistics constraints Initial tank inventory and composition Vessel

  11. Femtosecond electron-transfer holography in C{sub 60}/polymer blends

    SciTech Connect (OSTI)

    Maniloff, E. [Los Alamos National Lab., NM (United States); Vacar, D. [California Univ., Santa Barbara, CA (United States). Inst. for Polymers and Organic Solids; McBranch, D.; Wang, Hsing-Lin; Mattes, B. [Los Alamos National Lab., NM (United States); Heeger, A.J. [California Univ., Santa Barbara, CA (United States). Inst. for Polymers and Organic Solids

    1996-10-01T23:59:59.000Z

    Holographic recording has recently been demonstrated in conducting polymer/C{sub 60} blends. Results are presented that demonstrate an improved signal-to-noise ratio is obtained when holographic detection is used to observe the dynamics of photo-induced absorption.

  12. Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost

    E-Print Network [OSTI]

    Minnesota, University of

    Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost Effectiveness Stephen J in Method? #12;Deicing and Anti-icing Treatments ·Sodium Chloride (NaCl) ·Cargill, NA Salt ·Magnesium Chloride (MgCl2) w/additives ·Envirotech Serv., Scotwood Ind., NA Salt ·Calcium Chloride (CaCl2) ·Tiger

  13. Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene

    E-Print Network [OSTI]

    McGehee, Michael

    Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene States *S Supporting Information ABSTRACT: We compare the solar cell performance of several polymers the efficiency of the solar cells only when they do not intercalate between the polymer side chains. When

  14. The Blend Down Monitoring System Demonstration at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Benton, J.; Close, D.; Johnson, W., Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-07-25T23:59:59.000Z

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor {sup 235}U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF{sub 6} flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities.

  15. Vapour Phase Hydration of Blended Oxide Magnox Waste Glasses Neil C. Hyatt,1*

    E-Print Network [OSTI]

    Sheffield, University of

    Vapour Phase Hydration of Blended Oxide ­ Magnox Waste Glasses Neil C. Hyatt,1* William E. Lee,1 BNFL Technology Centre, Sellafield, Seascale, Cumbria, CA20 1PG. UK. ABSTRACT Vapour phase hydration across the alteration layer. Vapour phase hydration leads to formation of surface alteration products

  16. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOE Patents [OSTI]

    Skotheim, T.

    1984-09-28T23:59:59.000Z

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  17. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    SciTech Connect (OSTI)

    Szybist, James P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

  18. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07T23:59:59.000Z

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  19. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14T23:59:59.000Z

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  20. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Houston, TX)

    1989-01-01T23:59:59.000Z

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  1. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

    1993-01-01T23:59:59.000Z

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  2. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

    1994-01-01T23:59:59.000Z

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  3. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1989-07-18T23:59:59.000Z

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  4. Superconductivity in graphite intercalation compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Robert P. [Univ. of Cambridge (United Kingdom); Dean, Mark P. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Weller, Thomas E. [Univ. College of London (United Kingdom); Howard, Christopher A. [Univ. College of London (United Kingdom); Rahnejat, Kaveh C. [Univ. College of London (United Kingdom); Saxena, Siddharth S. [Univ. of Cambridge (United Kingdom); Ellerby, Mark [Univ. College of London (United Kingdom)

    2015-07-01T23:59:59.000Z

    The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s This paper recontextualizes the field in light of the discovery of superconductivity in CaC? and YbC? in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  5. Superconductivity in graphite intercalation compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Robert P.; Dean, Mark P. M.; Weller, Thomas E.; Howard, Christopher A.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-07-01T23:59:59.000Z

    The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s This paper recontextualizes the field in light of the discovery of superconductivity in CaC? and YbC? in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes aremore »most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  6. Compound semiconductor optical waveguide switch

    DOE Patents [OSTI]

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10T23:59:59.000Z

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  7. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect (OSTI)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

    2009-05-15T23:59:59.000Z

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  8. Development of shape memory polymer (SMP) blend for biomedical and clinical applications Shape memory polymers (SMP) are a class of responsive stimuli materials that are able to respond to external stimulus

    E-Print Network [OSTI]

    Development of shape memory polymer (SMP) blend for biomedical and clinical applications Shape properties of this shape memory biopolymers and blends. The bio-compatible SMP blend will be fabricated by melt-blending and gas foaming. The various shape memory and mechanical properties of the foam and solid

  9. Feedback Capacity of the Compound Channel

    E-Print Network [OSTI]

    Shrader, Brooke E.

    In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

  10. Semiconducting compounds and devices incorporating same

    SciTech Connect (OSTI)

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17T23:59:59.000Z

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  11. Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns

    SciTech Connect (OSTI)

    Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

    2003-02-27T23:59:59.000Z

    Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

  12. Volatile organic compound sensor system

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Laramie, WY); Sorini-Wong, Susan S. (Laramie, WY)

    2009-02-10T23:59:59.000Z

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  13. Volatile organic compound sensor system

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Waxahachie, TX); Sorini-Wong, Susan S. (Laramie, WY); Wong, Gregory K. (Laramie, WY)

    2011-03-01T23:59:59.000Z

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  14. Viscoelastic Properties and Phase Behavior of 12-tert-Butyl Ester Dendrimer/Poly(methyl methacrylate) Blends

    E-Print Network [OSTI]

    Harmon, Julie P.

    with bis- phenol A polycarbonate (PC), resulting in an in- crease in free volume with increasing dendrimer hyperbranched polyester/bisphenol A PC blends with respect to pure PC. Studies were conducted by Carr et al.24

  15. Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

    E-Print Network [OSTI]

    Dimou, Iason

    The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

  16. Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends 

    E-Print Network [OSTI]

    Uggini, Hari

    2012-07-16T23:59:59.000Z

    by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously...

  17. Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends

    E-Print Network [OSTI]

    Kar, Kenneth

    The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

  18. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

    2009-02-01T23:59:59.000Z

    Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

  19. Nanowire-Induced Wurtzite InAs Thin Film on Zinc-Blende InAs Substrate

    E-Print Network [OSTI]

    Bao, Jiming

    Nanowire-Induced Wurtzite InAs Thin Film on Zinc-Blende InAs Substrate By Jiming Bao, David C. Bell as that of their substrates. Here, we report on the observation of a wurtzite InAs thin-film structure on a zinc-blende In the wurtzite crystal structure. The bandgap of wurtzite InAs, obtained by low-temperature photoluminescence

  20. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  1. Solubility of carbon dioxide in an aqueous blend of diethanolamine and piperazine

    SciTech Connect (OSTI)

    Mondal, M.K. [Banaras Hindu University, Varanasi (India). Dept. of Chemical Engineering and Technology

    2009-09-15T23:59:59.000Z

    The solubility of CO{sub 2} in aqueous blends of diethanolamine (DEA) and piperazine (PZ), from mixtures of CO{sub 2} and N{sub 2}, was measured for temperatures and CO{sub 2} partial pressures ranging from (303.14 to 353.14) K and (10.133 to 20.265) kPa, respectively. Measurements were made by a saturation method using a laboratory scale bubble column. The results of CO{sub 2} solubility in liquid are expressed as {alpha}(CO{sub 2}) (mol CO{sub 2}/mol amine) for all experimental runs. A solubility model is developed to correlate and predict the solubility data of CO{sub 2} in aqueous blends of DEA and PZ. There is all acceptable degree of agreement between the experimental data of the present study and predictions of the solubility model with an average absolute deviation of less than 4.5%.

  2. Finite element analysis on the fracture of rubber toughened polymer blends

    SciTech Connect (OSTI)

    Wu, Y.; Mai, Y.W. [Univ. of Sydney, New South Wales (Australia); Wu, J. [Hong Kong Univ. of Science and Technology (Hong Kong)

    1997-12-31T23:59:59.000Z

    The effect of rubber particle volume fraction on the constitutive relation and fracture toughness of polymer blends was studied using elastic-plastic Finite Element Analysis (FEA). The effect of rubber particle cavitation on the stress-strain state at a crack tip was also investigated. Stress analysis reveals that because of the high rubber bulk modulus, the hydrostatic stress inside the rubber particle is close to that in the adjacent matrix material element. As a result, the rubber particle imposes a severe plastic constraint to the surrounding matrix and limits its plastic strain. Rubber particle cavitation can effectively release the constraint and enable large scale plastic strain to occur. Different failure criteria were used to determine the optimum rubber particle volume fraction for the polymer blends studied in this paper.

  3. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    SciTech Connect (OSTI)

    Pak, J.; Lin, W.; Wang, K.; Chinchore, A.; Shi, M.; Ingram, D. C.; Smith, A. R.; Sun, K.; Lucy, J. M.; Hauser, A. J.; Yang, F. Y. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, The Ohio State University, 191 Woodruff Avenue, Columbus, Ohio 43210 (United States)

    2010-07-15T23:59:59.000Z

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  4. Disk-cylinder and disk-sphere nanoparticles from block copolymer blend solution construction

    SciTech Connect (OSTI)

    Zhu, Jiahua [ORNL] [ORNL; Zhang, Shiyi [Texas A& M University] [Texas A& M University; Zhang, Ke [Northeastern University] [Northeastern University; Wang, Xiaojun [ORNL] [ORNL; Mays, Jimmy [ORNL] [ORNL; Wooley, Karen L [ORNL] [ORNL; Pochan, Darrin [University of Delaware] [University of Delaware

    2013-01-01T23:59:59.000Z

    Researchers strive to produce nanoparticles with complexity in composition and structure. Although traditional spherical, cylindrical and membranous, or planar, nanostructures are ubiquitous, scientists seek more complicated geometries for potential functionality. Here we report the simple solution construction of multigeometry nanoparticles, disk-sphere and diskcylinder, through a straightforward, molecular-level, blending strategy with binary mixtures of block copolymers. The multigeometry nanoparticles contain disk geometry in the core with either spherical patches along the disk periphery in the case of disk-sphere particles or cylindrical edges and handles in the case of the disk-cylinder particles. The portions of different geometry in the same nanoparticles contain different core block chemistry, thus also defining multicompartments in the nanoparticles. Although the block copolymers chosen for the blends are important for the definition of the final hybrid particles, the control of the kinetic pathway of assembly is critical for successful multigeometry particle construction.

  5. Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

    SciTech Connect (OSTI)

    Buchholz, B A; Cheng, A S; Dibble, R W

    2003-03-03T23:59:59.000Z

    Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

  6. Use of Savannah River Site facilities for blend down of highly enriched uranium

    SciTech Connect (OSTI)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01T23:59:59.000Z

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO{sub 3}) powder, uranyl nitrate [UO{sub 2}(NO{sub 3}){sub 2}] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO{sub 2}) or uranium hexafluoride (UF{sub 3}), the normal inputs for commercial fuel fabrication. This study`s scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO{sub 2} or UF{sub 6}, blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM).

  7. Ab initio study of phase transition of boron nitride between zinc-blende and rhombohedral structures

    SciTech Connect (OSTI)

    Nishida, S.; Funashima, H.; Sato, K.; Katayama-Yoshida, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2013-12-04T23:59:59.000Z

    Boron nitride has polymorphs such as zinc-blende (c-BN), wurtzite (w-BN), rhombohedral (r-BN), and graphite-like (h-BN) forms. We simulate the direct conversion of r-BN to c-BN through electronic excitation. In our calculation, the conversion is made possible by increasing the hole concentration to over 0.06/atom. This conversion should be experimentally possible by hole-doping via an electric double layer transistor (EDLT) or capacitor.

  8. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  9. Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373

    SciTech Connect (OSTI)

    Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

  10. Low-temperature pyrolysis of coal to produce diesel-fuel blends

    SciTech Connect (OSTI)

    Shafer, T.B.; Jett, O.J.; Wu, J.S.

    1982-10-01T23:59:59.000Z

    Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

  11. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27T23:59:59.000Z

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  12. Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412

    SciTech Connect (OSTI)

    Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

    2012-07-01T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using sophisticated scientific modeling optimized the 100-HX's approximately 0.7 square mile (181 hecto-meters) extraction and injection well field to support continuous operation of a maximum of 800 gallons (3,028 liters) per minute, 24 hours per day, and 7 days per week. The use of traditional resin technology for the plant's ion exchange system required a change out of the resin every 12 weeks and shipment to an offsite facility 1,500 miles (2,414 kilometers) away for regeneration. Instead, the project leadership pursued newer technology with a disposable resin that could be disposed of on-site and would require less frequent change outs, reducing the project's life cycle costs by more than $16 million. Constructing the facility had its own challenges. The well field location overlapped ecologically sensitive lands where bald eagles and native wildlife use the land for their mating habitat for nearly half of the year. Building locations had to be planned around historically and culturally sensitive areas, and around another contractor's remediation work zones. Also, the size of the well field required a transfer (pumping) facility and installation of more than 60 miles (97 kilometers) of high-density polypropylene pipe, 23 miles (38 kilometers) of power cable, and 28 miles (46 kilometers) of control cable. Along with schedule and budget constraints typical of any fast-track project, the project team dealt with severe resource constraints due to competing projects across the Hanford Site caused by the influx of American Recovery and Reinvestment Act stimulus funding. In addition, the project team itself was stretched between completing another $25 million dollar construction project while designing and constructing this project. In order to save money, the project schedule was compressed by three months from the original baseline schedule. This was made possible by the strong use of project management principles throughout the design, construction, and testing phases, as well as implementation of many lessons learned from a similar construction project. In summary, the 100-HX

  13. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

    1993-01-01T23:59:59.000Z

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  14. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05T23:59:59.000Z

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  15. NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott [ORNL; West, Brian H [ORNL

    2012-01-01T23:59:59.000Z

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  16. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott [ORNL; West, Brian H [ORNL

    2011-10-01T23:59:59.000Z

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  17. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

  18. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23T23:59:59.000Z

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  19. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07T23:59:59.000Z

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  20. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19T23:59:59.000Z

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  1. Oxygen stabilized zirconium vanadium intermetallic compound

    DOE Patents [OSTI]

    Mendelsohn, Marshall H. (Woodridge, IL); Gruen, Dieter M. (Downers Grove, IL)

    1982-01-01T23:59:59.000Z

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  2. Development of a compound for low temperature joining of SiC ceramics and CFCC composites

    SciTech Connect (OSTI)

    Anderson, I.E.; Ijadi-Maghsoodi, S.; Uenal, O. [Ames Lab., IA (United States)] [and others

    1997-11-01T23:59:59.000Z

    This investigation was driven by the need for a robust, practical method to join continuous fiber-reinforced ceramic composite (CFCC) materials composed of SiC fibers in a SiC matrix (SiC/SiC). A new filler compound composition resulted from this research which is composed primarily of a silicon-acetylene ceramic precursor polymer blended with fine alloy and elemental powders. Joint formation relies on reaction of the powders with the products of the polymer pyrolysis reaction and the CFCC on continuous heating from room temperature to the curing temperature. The joint can be heated and cured either in an inert or air atmosphere furnace or in air upon heating with a propane torch to a maximum curing temperature of about 1200{degrees}C. This curing temperature is effective for joint formation while preventing degradation of the SiC fibers in the CFCC material and permitting field joining of SiC CFCC parts with an open flame torch. The joining compound demonstrated good wetting and joint filling characteristics. Mechanical property testing revealed a room temperature bend strength of 50 to 100MPa (7 to 14ksi), depending on care in joint preparation. There was a tendency for partial SiC fiber pullout as the crack propagation path wandered in and out of the joint material during fracture, adding toughness. Preliminary mechanical tests of joined samples, after exposure to high temperature (1100{degrees}C) ambient air for 100 hours. indicated excellent retention of strength.

  3. Express Shipment Service Network Design

    E-Print Network [OSTI]

    >= 5000 Capacity-demand constraint: Connectivity (covering) constraint: Demand from BWI to SDF = 5000 BWI SDF 5000 8000 12000 12500 Key Idea #1 · The capacity-demand constraint is dominated by the connectivity constraint. Throw out the former. #12;Demand from BWI to SDF = 5000 x1 + x2 + x3 + x4 + x5 >= 1

  4. Operations start and shipments begin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air travel seemed too risky, the Army shipped the product by rail. The containers of uranium tetrafluoride were placed in special luggage. At 10:30 a.m. on specified days,...

  5. ing delivery of shipment. For

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    satisfactory food is available and in which no monophage could sur- UfO: ~NETT G. GALEF, JR. AND MATTHEW BECK

  6. LANL reaches waste shipment milestone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as ReadyAppointedKyungmin2010 top corporateJeffopenLANL

  7. LANL Resumes Shipments to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 6157 / ThePreliminaryLANL GoLANL

  8. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRatesAbout Us > Hanford Site Wide

  9. WIPP Receives 100th Shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE Awards Contract for WIPP Mobile4 WIPP5

  10. WIPP Receives 200th Shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE Awards Contract for WIPP Mobile4 WIPP5200 th

  11. Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet

    SciTech Connect (OSTI)

    Rich, Bechtold [Alliance Technical Services; Thomas, John F [ORNL; Huff, Shean P [ORNL; Szybist, James P [ORNL; West, Brian H [ORNL; Theiss, Timothy J [ORNL; Timbario, Tom [Alliance Technical Services; Goodman, Marc [Alliance Technical Services

    2007-08-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

  12. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect (OSTI)

    Wallner, T. (Energy Systems)

    2011-08-01T23:59:59.000Z

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

  13. ETBE as a gasoline blending component. The experience of Elf Aquitaine

    SciTech Connect (OSTI)

    Chatin, L.; Fombarlet, C.; Bernasconi, C.; Gauthier, A.; Schmelzle, P.

    1994-10-01T23:59:59.000Z

    This study, led by Elf Aquitaine for several years, shows the possibility to use ETBE instead of MTBE as a gasoline component and compares properties of these two ethers regarding different parameters like octanes, volatility, engine cleanliness, stability of the ethers themselves and of gasoline blends, lubricant compatibility and toxicological data. ETBE appears at least as good as MTBE and sometimes better, as ETBE is chemically more similar to hydrocarbons than MTBE and can be used advantageously as a gasoline oxygenated component. 9 refs., 4 figs., 8 tabs.

  14. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

  15. Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study

    SciTech Connect (OSTI)

    Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

    2010-11-01T23:59:59.000Z

    The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

  16. The Use of Triangular-Shaped PV Arrays to Better Blend into Historical Structures

    Broader source: Energy.gov [DOE]

    When considering the installation of a solar PV array on a designated historical structure, placement of each solar panel requires extra attention to aesthetic considerations. If the solar array cannot be installed behind the structure or “hidden” on a roof plane that is not visible from the public street or sidewalk, it can sometimes be installed as an architectural feature that blends into the historical structure. One way to do this is to utilize triangular-shaped PV panels that conform with the building’s roof lines.

  17. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-08-01T23:59:59.000Z

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

  18. Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer

    E-Print Network [OSTI]

    Gordillo Ariza, Gerardo

    2010-10-12T23:59:59.000Z

    W) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were...

  19. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11T23:59:59.000Z

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  20. Effect of Blending on High-Pressure Laminar Flame Speed Measurements, Markstein Lengths, and Flame Stability of Hydrocarbons

    E-Print Network [OSTI]

    Lowry, William Baugh

    2012-02-14T23:59:59.000Z

    . Hydrocarbon blends of methane, ethane, and propane make up a large portion of natural gas and it has been shown that dimethyl ether can be used as a supplement or in its pure form for gas turbine combustion. Because of this, a fundamental understanding... include the flame speeds for binary blends of methane, ethane, propane, and dimethyl ether performed at elevated pressures, up to 10-atm initial pressure, using a spherically expanding flame in a constant-volume vessel. Also included in this thesis is a...

  1. Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy

    SciTech Connect (OSTI)

    Shi, B. M.; Xie, M. H.; Wu, H. S.; Wang, N.; Tong, S. Y. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tang, Hong Kong (China)

    2006-10-09T23:59:59.000Z

    GaN exists in both wurtzite and zinc-blende phases and the growths of the two on its (0001) or (111) surfaces are achieved by choosing proper deposition conditions of molecular-beam epitaxy (MBE). At low substrate temperatures but high gallium fluxes, metastable zinc-blende GaN films are obtained, whereas at high temperatures and/or using high nitrogen fluxes, equilibrium wurtzite phase GaN epilayers resulted. This dependence of crystal structure on substrate temperature and source flux is not affected by deposition rate. Rather, the initial stage nucleation kinetics plays a primary role in determining the crystallographic structures of epitaxial GaN by MBE.

  2. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect (OSTI)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)] [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15T23:59:59.000Z

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  3. Experimental investigation of burning rates of pure ethanol and ethanol blended fuels

    SciTech Connect (OSTI)

    Parag, Shintre; Raghavan, Vasudevan [Thermodynamics and Combustion Engineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036 (India)

    2009-05-15T23:59:59.000Z

    A fundamental experimental study to determine the burning rates of ethanol and ethanol-blended fossil fuels is presented. Pure liquid ethanol or its blends with liquid fossil fuels such as gasoline or diesel, has been transpired to the surface a porous sphere using an infusion pump. Burning of the fuel takes place on the surface of the porous sphere, which is placed in an air stream blowing upwards with a uniform velocity at atmospheric pressure and temperature under normal gravity conditions. At low air velocities, when ignited, a flame envelopes the sphere. For each sphere size, air stream velocity and fuel type, the fuel feed rate will vary and the same is recorded as the burning rate for that configuration. The flame stand-off distances from the sphere surface are measured by post-processing the digital image of the flame photograph using suitable imaging software. The transition velocity at which the flame moves and establishes itself at the wake region of the sphere has been determined for different diameters and fuel types. Correlations of these parameters are also presented. (author)

  4. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    SciTech Connect (OSTI)

    Balazs, Anna (U of Pittsburgh) [U of Pittsburgh

    2008-11-05T23:59:59.000Z

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  5. 95 Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    E-Print Network [OSTI]

    Oguntola J Alamu; Opeoluwa Dehinbo; Adedoyin M Sulaiman; Oguntola J. Alamu; Opeoluwa Dehinbo; Adedoyin M. Sulaiman

    Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0 % ethanol (wt % coconut oil), 0.8% potassium hydroxide catalyst at 65°C reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4%) was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

  6. Page 1 of 2 http://ehs.columbia.edu/IntentToShipHazardousMaterialsForm.pdf Rev. 2. May 2012 EH&S is available to help classify your shipment, complete shipper's declaration forms, commercial invoices and FedEx airway

    E-Print Network [OSTI]

    Jia, Songtao

    No If no, what will the materials be shipped in? Wet Ice/Ice pack Liquid Nitrogen Dry Ice Other (room temperature) shipment? Yes No If no, what will the materials be shipped in? Wet Ice/Ice packEx airway bills, select and review your packaging, advise on dry ice quantities and assist

  7. Digital Construction Platform: A Compound Arm Approach

    E-Print Network [OSTI]

    Spielberg, Nathan A.

    2014-01-01T23:59:59.000Z

    We introduce a novel large-scale Digital Construction Platform (DCP) for on-site sensing, analysis, and fabrication. The DCP is an in-progress research project consisting of a compound robotic arm system comprised of a ...

  8. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R. William (Ames, IA); Ellis, Timothy W. (Ames, IA); Dennis, Kevin W. (Ames, IA); Hofer, Robert J. (Ames, IA); Branagan, Daniel J. (Ames, IA)

    1997-11-25T23:59:59.000Z

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  9. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25T23:59:59.000Z

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  10. Aza crown ether compounds as anion receptors

    DOE Patents [OSTI]

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04T23:59:59.000Z

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  11. Small-angle scattering investigations of poly([epsilon]-caprolactone)/polycarbonate blends -- 2: Small-angle X-ray and light scattering study of semicrystalline/semicrystalline and semicrystalline/amorphous blend morphologies

    SciTech Connect (OSTI)

    Cheung, Y.W.; Stein, R.S. (Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering); Lin, J.S.; Wignall, G.D. (Oak Ridge National Lab., Oak Ridge, TN (United States))

    1994-04-25T23:59:59.000Z

    Crystalline morphologies of poly([epsilon]-caprolactone) (PCL) and polycarbonate (PC) blends were probed with small-angle X-ray scattering (SAXS) and small-angle light scattering (SALS). Quantitative SAXS analysis suggested that random mixing of PCL and PC lamellae occurred in the semicrystalline/semicrystalline state. Two distinct regions of incorporation were identified in the semicrystalline/amorphous state. It was found that PCL was rejected from the PC interlamellar region in the PCL-rich blends. In contrast, PCL was incorporated into the amorphous phase between the crystalline lamellae in the PC-rich blends. This transition from interlamellar exclusion to interlamellar inclusion may be related to the glass transition temperatures or the mobility of the blends. It is proposed that the mode of incorporation or exclusion is governed by the competition between entropy and diffusion. Additionally, SALS coupled with optical microscopy indicated that PC is an effective nucleating agent for PCL crystallization as manifested by the reduction of PCL spherulitic size with the addition of PC.

  12. Polymers containing borane or carborane cage compounds and related applications

    SciTech Connect (OSTI)

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-04-23T23:59:59.000Z

    Polymers comprising residues of cage compound monomers having at least one polyalkoxy silyl substituent are provided. The cage compound monomers are selected from borane cage compound monomers comprising at least 7 cage atoms and/or carborane cage compound monomers comprising 7 to 11 cage compound monomers. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Articles of manufacture comprising such polymers are also disclosed.

  13. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01T23:59:59.000Z

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  14. Excitonic properties of strained wurtzite and zinc-blende GaNAlxGa1xN quantum dots

    E-Print Network [OSTI]

    Fonoberov, Vladimir

    Excitonic properties of strained wurtzite and zinc-blende GaNÕAlxGa1ÀxN quantum dots Vladimir A 2003 We investigate exciton states theoretically in strained GaN/AlN quantum dots with wurtzite WZ of GaN QDs.1­8 Molecu- lar beam epitaxial growth in the Stranski­Krastanov mode of wurtzite WZ Ga

  15. Optical properties of wurtzite and zinc-blende GaNAlN quantum dots Vladimir A. Fonoberova)

    E-Print Network [OSTI]

    Fonoberov, Vladimir

    Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots Vladimir A. Fonoberova; published 20 August 2004 We investigate theoretically and compare optical properties of wurtzite and zincN/AlN interface governs optical properties of wurtzite quantum dots while having a small effect on zinc

  16. Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy

    E-Print Network [OSTI]

    As, Donat Josef

    -assembled wurtzite GaN QDs1 and up to 300 K in site-controlled wurtzite nanowire QDs.2 Less mature than their wurtzite counterparts, single self-assembled zinc- blende (ZB) GaN QDs already show good prospects in terms to 100 K.5 They even present several advantages over self-assembled wurtzite GaN QDs: shorter radiative

  17. Universality of electron accumulation at wurtzite c-and a-plane and zinc-blende InN surfaces

    E-Print Network [OSTI]

    As, Donat Josef

    Universality of electron accumulation at wurtzite c- and a-plane and zinc- blende InN surfaces P. D 27 August 2007 Electron accumulation is found to occur at the surface of wurtzite 112¯0 , 0001.6 Experimental studies to date have focused on wurtzite c-plane surfaces,1­3,7 although pre- vious

  18. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect (OSTI)

    Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Fisher, Galen [University of Michigan] [University of Michigan; West, Brian H [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  19. Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

  20. Physical and chemical characteristics of an interesterified blend of butterfat and cottonseed oil with possible industrial applications

    E-Print Network [OSTI]

    Rashidi, Nabil

    1988-01-01T23:59:59.000Z

    interest in milkfat research in other parts of the world. In 1984, a symposium was held in Sweden that dealt exclusively with milkfat and its modification. Emphasis was placed on milkfat-vegetable oil blends. These products are legally sold now in some...

  1. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    SciTech Connect (OSTI)

    Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24T23:59:59.000Z

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  2. Compound and Elemental Analysis At Clear Lake Area (Thompson...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Clear Lake Area (Thompson, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  3. Novel Compounds for Enhancing Electrolyte Stability and Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells Novel Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells 2010 DOE Vehicle...

  4. Compound and Elemental Analysis At Newberry Caldera Area (Goles...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Newberry Caldera Area (Goles & Lambert, 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  5. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect (OSTI)

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-01-01T23:59:59.000Z

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  6. Process for production of a borohydride compound

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19T23:59:59.000Z

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  7. Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

    2007-01-01T23:59:59.000Z

    The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

  8. Process for producing phenolic compounds from lignins

    DOE Patents [OSTI]

    Agblevor, F.A.

    1998-09-15T23:59:59.000Z

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  9. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, R.J.; Constantine, C.

    1997-04-29T23:59:59.000Z

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  10. Organic photosensitive devices using subphthalocyanine compounds

    DOE Patents [OSTI]

    Rand, Barry (Princeton, NJ); Forrest, Stephen R. (Ann Arbor, MI); Mutolo, Kristin L. (Hollywood, CA); Mayo, Elizabeth (Alhambra, CA); Thompson, Mark E. (Anaheim Hills, CA)

    2011-07-05T23:59:59.000Z

    An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

  11. Inelastic neutron scattering in valence fluctuation compounds

    SciTech Connect (OSTI)

    Jon M Lawrence

    2011-02-15T23:59:59.000Z

    The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected for rare-earth-like Hund's rule behavior, essentially because the orbital moment is suppressed for itinerant 5f electrons. We also found that the standard local-moment-based theory of the temperature dependence of the specific heat, susceptibility and neutron scattering fails badly for URu{sub 2}Zn{sub 20} and UCo{sub 2}Zn{sub 20}, even though the theory is phenomenally successful for the closely related rare earth compound YbFe{sub 2}Zn{sub 20}. Both these results highlight the distinction between the itineracy of the 5f's and the localization of the 4f's. It is our hope that these results are sufficiently significant as to stimulate deeper investigation of these compounds.

  12. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, Randy J. (Albuquerque, NM); Constantine, Christopher (Safety Harbor, FL)

    1997-01-01T23:59:59.000Z

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  13. Beta cell device using icosahedral boride compounds

    DOE Patents [OSTI]

    Aselage, Terrence L. (62 Avenida Del Sol, Cedar Crest, NM 87008); Emin, David (1502 Harvard Ct., NE., Albuquerque, NM 87106-3712)

    2002-01-01T23:59:59.000Z

    A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15compound self-heals, resisting degradation from radiation damage.

  14. Experimental investigation of single carbon compounds under hydrothermal conditions

    E-Print Network [OSTI]

    Rhoads, James

    reactant during the abiotic synthesis of reduced carbon compounds via Fischer­Tropsch-type processes

  15. Compositions containing borane or carborane cage compounds and related applications

    DOE Patents [OSTI]

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-11-11T23:59:59.000Z

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  16. Compositions containing borane or carborane cage compounds and related applications

    DOE Patents [OSTI]

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-05-28T23:59:59.000Z

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  17. Process for preparing a deuterated or tritiated compound

    DOE Patents [OSTI]

    Klei, Steven R.; Bergman, Robert C.

    2006-06-06T23:59:59.000Z

    A process for labeling organic compounds with deuterium and tritium is described using specific catalysts.

  18. Process for preparing a deuterated or tritiated compound

    DOE Patents [OSTI]

    Bergman, Robert C.; Klei, Steven R.

    2006-05-16T23:59:59.000Z

    A process for labeling organic compounds with deuterium and tritium is described using specific catalysts.

  19. Process for preparing a deuterated or tritiated compound

    DOE Patents [OSTI]

    Bergman, Robert C.; Klei, Steven R.

    2004-09-21T23:59:59.000Z

    A process for labeling organic compounds with deuterium and tritium is described using specific catalysts.

  20. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties

    SciTech Connect (OSTI)

    Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

    2002-08-30T23:59:59.000Z

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the latest state-of-the-art for thermodynamic properties of HFC refrigerant blends. These models were incorporated into version 7 of NIST REFPROP database.

  1. HYDROGEN LOCAL VIBRATIONAL MODES IN COMPOUND SEMICONDUCTORS

    E-Print Network [OSTI]

    McCluskey, Matthew

    HYDROGEN LOCAL VIBRATIONAL MODES IN COMPOUND SEMICONDUCTORS M.D. MCCLUSKEY* University) spectroscopy of hydrogen and deuterium in GaP, AlSb, ZnSe, and GaN has provided important information about the structures of dopant- hydrogen complexes and their interaction with the host lattice. In GaN:Mg, for example

  2. Quaternary Ammonium Compounds as Water Channel Blockers

    E-Print Network [OSTI]

    de Groot, Bert

    /AQP2/AQP4, whereas the water permeability of AQP3 and AQP5, which lack a corresponding TyrQuaternary Ammonium Compounds as Water Channel Blockers SPECIFICITY, POTENCY, AND SITE OF ACTION, West Mains Road, EH9 3JJ Scotland, United Kingdom Excessive water uptake through Aquaporins (AQP) can

  3. Stable surface passivation process for compound semiconductors

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM)

    2001-01-01T23:59:59.000Z

    A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.

  4. Superconductivity in iron compounds G. R. Stewart

    E-Print Network [OSTI]

    Wu, Zhigang

    of the superconductivity in this new class of compounds. These iron pnictide and chalcogenide (FePn/Ch) superconductors-phonon coupled ``conventional'' superconductors. Clearly, superconductivity and magnetism or magnetic of magnetism and superconductivity in FePn/Ch superconductors 1606 D. Tc and TS=TSDW versus pressure 1607 1

  5. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004

    SciTech Connect (OSTI)

    Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

    2005-11-01T23:59:59.000Z

    The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

  6. Valence band density of states of zinc-blende and wurtzite InN from x-ray photoemission spectroscopy and first-principles calculations

    E-Print Network [OSTI]

    As, Donat Josef

    Valence band density of states of zinc-blende and wurtzite InN from x-ray photoemission for wurtzite InN 112¯0 are shown to yield a VB-DOS similar to that of zinc-blende InN, although the nonzero the thermodynamically stable phase is the wurtzite 2H polymorph4 wz-InN , judicious choice of substrate material

  7. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect (OSTI)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29T23:59:59.000Z

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

  8. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27T23:59:59.000Z

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  9. Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors

    SciTech Connect (OSTI)

    Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M., E-mail: d.m.taylor@bangor.ac.uk [School of Electronic Engineering, Bangor University, Dean Street, Bangor, Gwynedd LL57 1UT (United Kingdom)

    2014-11-03T23:59:59.000Z

    Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

  10. Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001)

    E-Print Network [OSTI]

    Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001) Wenzhi Lin, Jeongihm], but not hexagonal (wurtzite) GaN, a fast-developing semiconductor material with important technological applicationsN on wurtzite GaN(0001), by employing e-beam evaporation in an ultra-high vacuum MBE cham- ber. The FeN films

  11. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.

    2011-03-10T23:59:59.000Z

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  12. Direct synthesis of catalyzed hydride compounds

    DOE Patents [OSTI]

    Gross, Karl J.; Majzoub, Eric

    2004-09-21T23:59:59.000Z

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  13. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01T23:59:59.000Z

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  14. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOE Patents [OSTI]

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02T23:59:59.000Z

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  15. Correlations of Polyimides and Blended Polyimides for High Temperature Gas Separations

    SciTech Connect (OSTI)

    John R. Klaehn; Christopher J. Orme; Thomas A. Luther; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2002-03-01T23:59:59.000Z

    High performance polymers are of interest for high temperature gas separations, especially for the sequestration of carbon dioxide. A new family of high performance imide polymers has been identified as a successful membrane capture material. VTEC polyimides possess desired thermal properties (up to 500 °C) along with being robust and flexible even after multiple thermal cycles (up to 400 °C). Polyimides (PI) are excellent materials for high selectivity for smaller kinetic diameter gases such as H2 and CO2; however, they have low fluxes. We blended small amounts of different polymers with VTEC polyimide, which changes the fluxes. Another critical problem when working with glassy polymers is their moisture content. It has been found that water entrapped within the polymer matrix (left over from the solvent, or physisorbed) can also cause the polymer to change dramatically. Additionally presence of molecular water in the polymer’s void volume has been validated through Positron Annihilation Lifetime (PAL) spectroscopy. In this presentation, polymer characterization and gas-separation testing results will be discussed.

  16. Hydromechanical transmission with compound planetary assembly

    DOE Patents [OSTI]

    Orshansky, Jr., deceased, Elias (late of San Francisco, CA); Weseloh, William E. (San Diego, CA)

    1980-01-01T23:59:59.000Z

    A power transmission having three distinct ranges: (1) hydrostatic, (2) simple power-split hydromechanical, and (3) compound power-split hydromechanical. A single compound planetary assembly has two sun gears, two ring gears, and a single carrier with two sets of elongated planet gears. The two sun gears may be identical in size, and the two ring gears may be identical in size. A speed-varying module in driving relationship to the first sun gear is clutchable, in turn, to (1) the input shaft and (2) the second sun gear. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being the one clutchable to either the input shaft or to the second sun gear. The other unit, which may have a fixed stroke, is connected in driving relation to the first sun gear. A brake grounds the carrier in the first range and in reverse and causes drive to be delivered to the output shaft through the first ring gear in a hydrostatic mode, the first ring gear being rigidly connected to the output shaft. The input shaft is also clutchable to the second ring gear of the compound planetary assembly.

  17. Intercalation compounds and electrodes for batteries

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young-Il; Huang, Biyan

    2004-09-07T23:59:59.000Z

    This invention concerns intercalation compounds and in particular lithium intercalation compounds which have improved properties for use in batteries. Compositions of the invention include particulate metal oxide material having particles of multicomponent metal oxide, each including an oxide core of at least first and second metals in a first ratio, and each including a surface coating of metal oxide or hydroxide that does not include the first and second metals in the first ratio formed by segregation of at least one of the first and second metals from the core. The core may preferably comprise Li.sub.x M.sub.y N.sub.z O.sub.2 wherein M and N are metal atom or main group elements, x, y and z are numbers from about 0 to about 1 and y and z are such that a formal charge on M.sub.y N.sub.z portion of the compound is (4-x), and having a charging voltage of at least about 2.5V. The invention may also be characterized as a multicomponent oxide microstructure usable as a lithium intercalation material including a multiphase oxide core and a surface layer of one material, which is a component of the multiphase oxide core, that protects the underlying intercalation material from chemical dissolution or reaction. In a particular preferred example the multicomponent oxide may be an aluminum-doped lithium manganese oxide composition. Such aluminum-doped lithium manganese oxide compositions, having an orthorhombic structure, also form a part of the invention. In addition, the invention includes articles, particularly electrodes, for batteries formed from the compositions of the invention, and batteries including such electrodes. The invention further relates to a composite intercalation material comprising at least two compounds in which at least one compound has an orthorhombic structure Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2, where y is nonzero, or a mixture of orthorhombic and monoclinic Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2.

  18. Hydroxyalkyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals

    DOE Patents [OSTI]

    Katti, Kattesh V. (Columbia, MO); Singh, Prahlad R. (Columbia, MO); Reddy, V. Sreenivasa (Columbia, MO); Katti, Kavita K. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Ketring, Alan R. (Columbia, MO)

    1999-01-01T23:59:59.000Z

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises a functionalized hydroxyalkyl phosphine ligand and a metal combined with the ligand.

  19. Expanded Use of Bicyclic Guanidinate Ligands in Dimetal Paddlewheel Compounds

    E-Print Network [OSTI]

    Young, Mark D.

    2010-01-16T23:59:59.000Z

    ^6+ compounds, both of which are examined structurally and electrochemically. [Os2(hpp)4]^+ is examined to improve upon earlier studies, yielding a model of the g-tensor components with respect to the compound structure. An additional project included...

  20. Surface passivation process of compound semiconductor material using UV photosulfidation

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM)

    1995-01-01T23:59:59.000Z

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  1. Hydroxyalkyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals

    DOE Patents [OSTI]

    Katti, K.V.; Singh, P.R.; Reddy, V.S.; Katti, K.K.; Volkert, W.A.; Ketring, A.R.

    1999-03-02T23:59:59.000Z

    This research discloses a compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises a functionalized hydroxyalkyl phosphine ligand and a metal combined with the ligand. 16 figs.

  2. Method for conversion of .beta.-hydroxy carbonyl compounds

    DOE Patents [OSTI]

    Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

    2010-03-30T23:59:59.000Z

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  3. HOT NEW SPIN-1/2 PERFECT KAGOM COMPOUND

    E-Print Network [OSTI]

    Keren, Amit

    to 3.5K. At even lower temperature the low frequency peak vanishes. L. Marcipar et al. PRB 80 132402 L. Marcipar et al. PRB 80 132402 (2009) Does this compound behave as expected from a kagome. Marcipar et al. PRB 80 132402 (2009) Does this compound behave as expected from a kagome compound: Does

  4. Synthesis, structure and magnetic properties of lanthanide cluster compounds

    E-Print Network [OSTI]

    Sweet, Lucas Edward

    2009-05-15T23:59:59.000Z

    This dissertation focuses on the exploratory synthesis of compounds that contain R6ZI12 (R= Ce, Gd, Er; Z=Mn, Fe, Co, C2) clusters with the goal of finding magnetically interesting compounds. Several new compounds were made via high temperature...

  5. Natural attenuation: Chlorinated and recalcitrant compounds

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    Natural, or intrinsic, attenuation is an increasingly important component of site closure strategy. At first maligned as a do-nothing alternative, natural attenuation is now being recognized as a legitimate approach that can supplement and sometimes even supplant more costly approaches. Having gained more widespread acceptance as an option at hydrocarbon-contaminated sites, natural attenuation is now beginning to emerge as an option for sites contaminated with chlorinated solvents and other recalcitrant compounds such as MTBE. This book brings together the latest research and field applications, with chapters covering field characterization and monitoring, transformation processes, natural attenuation of MTBE, and a number of natural attenuation case studies.

  6. Compound droplet manipulations on fiber arrays

    E-Print Network [OSTI]

    Weyer, Floriane; Dreesen, Laurent; Vandewalle, Nicolas

    2015-01-01T23:59:59.000Z

    Recent works demonstrated that fiber arrays may constitue the basis of an open digital microfluidics. Various processes, such as droplet motion, fragmentation, trapping, release, mixing and encapsulation, may be achieved on fiber arrays. However, handling a large number of tiny droplets resulting from the mixing of several liquid components is still a challenge for developing microreactors, smart sensors or microemulsifying drugs. Here, we show that the manipulation of tiny droplets onto fiber networks allows for creating compound droplets with a high complexity level. Moreover, this cost-effective and flexible method may also be implemented with optical fibers in order to develop fluorescence-based biosensor.

  7. Ternary compound electrode for lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  8. Ternary compound electrode for lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Godshall, Ned A. (Stanford, CA); Huggins, Robert A. (Stanford, CA)

    1982-01-01T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  9. Compound and Elemental Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open Energy Information Goff & Janik,Compound

  10. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

    2010-01-01T23:59:59.000Z

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  11. Fuel and Fuel Additive Registration Testing of Ethanol-Diesel Blend for O2Diesel, Inc.

    SciTech Connect (OSTI)

    Fanick, E. R.

    2004-02-01T23:59:59.000Z

    O2 Diesel Inc. (formerly AAE Technologies Inc.) tested a heavy duty engine with O2Diesel (diesel fuel with 7.7% ethanol and additives) for regulated emissions and speciation of vapor-phase and semi-volatile hydrocarbon compounds. This testing was performed in support of EPA requirements for registering designated fuels and fuel additives as stipulated by sections 211(b) and 211(e) of the Clean Air Act.

  12. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    SciTech Connect (OSTI)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01T23:59:59.000Z

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  13. Method of digesting an explosive nitro compound

    DOE Patents [OSTI]

    Shah, Manish M. (Richland, WA)

    2000-01-01T23:59:59.000Z

    The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

  14. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect (OSTI)

    Gary, Charles K.

    2013-11-12T23:59:59.000Z

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 ?m which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  15. Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution In Thermoplastic-Natural Rubber Blend Composites

    SciTech Connect (OSTI)

    Ahmad, Sahrim; Rasid, Rozaidi; Mouad, A. T. [Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Aziz Mohamed, A.; Abdullah, Jaafar; Dahlan, M.; Mohamad, Mahathir; Jamro, Rafhayudi; Hamzah Harun, M. [Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia); Yazid, Hafizal [Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Hafizal Yazid, Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Abdullah, W. Saffiey W.

    2010-01-05T23:59:59.000Z

    X-ray microtomography and ImageJ 1.39 u is used as a tool to quantify volume percentage of B{sub 4}C as fillers in thermoplastic-natural rubber blend composites. The use of percentage of area occupied by fillers as obtain from ImageJ from the microtomography sliced images enables the proposed technique to easily obtain the amount volume percentage of B{sub 4}C in the composite non-destructively. Comparison with other technique such as density measurement and chemical analysis proves the proposed technique as one of the promising approach.

  16. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non?Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, Keith [National Renewable Energy Laboratory (NREL); West, Brian H [ORNL; Clark, Wendy [National Renewable Energy Laboratory (NREL); Graves, Ronald L [ORNL; Orban, John [Battelle, Columbus; Przesmitzki, Steve [National Renewable Energy Laboratory (NREL); Theiss, Timothy J [ORNL

    2009-02-01T23:59:59.000Z

    In summer 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20--gasoline blended with 15 and 20% ethanol--on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This first report provides the results available to date from the first stages of a much larger overall test program. Results from additional projects that are currently underway or in the planning stages are not included in this first report. The purpose of this initial study was to quickly investigate the effects of adding up to 20% ethanol to gasoline on the following: (1) Regulated tailpipe emissions for 13 popular late model vehicles on a drive cycle similar to real-world driving and 28 small non-road engines (SNREs) under certification or typical in use procedures. (2) Exhaust and catalyst temperatures of the same vehicles under more severe conditions. (3) Temperature of key engine components of the same SNREs under certification or typical in-use conditions. (4) Observable operational issues with either the vehicles or SNREs during the course of testing. As discussed in the concluding section of this report, a wide range of additional studies are underway or planned to consider the effects of intermediate ethanol blends on materials, emissions, durability, and driveability of vehicles, as well as impacts on a wider range of nonautomotive engines, including marine applications, snowmobiles, and motorcycles. Section 1 (Introduction) gives background on the test program and describes collaborations with industry and agencies to date. Section 2 (Experimental Setup) provides details concerning test fuels, vehicle and SNRE selection, and test methods used to conduct the studies presented in this report. Section 3 (Results and Discussion) summarizes the vehicle and SNRE studies and presents data from testing completed to date. Section 4 (Next Steps) describes planned future activities. The appendixes provide test procedure details, vehicle and SNRE emissions standards, analysis details, and additional data and tables from vehicle and SNRE tests.

  17. Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study

    SciTech Connect (OSTI)

    Haas, Francis M.; Chaos, Marcos; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-12-15T23:59:59.000Z

    In this brief communication, we present new experimental species profile measurements for the low and intermediate temperature oxidation of ethanol under knock-prone conditions. These experiments show that ethanol exhibits no global low temperature reactivity at these conditions, although we note the heterogeneous decomposition of ethanol to ethylene and water. Similar behavior is reported for an E85 blend in n-heptane. Kinetic modeling results are presented to complement these experiments and elucidate the interaction of ethanol and primary reference fuels undergoing cooxidation. (author)

  18. Evolution of crystalline structures of poly([epsilon]-caprolactone)/polycarbonate blends; 1: Isothermal crystallization kinetics as probed by synchrotron small-angle x-ray scattering

    SciTech Connect (OSTI)

    Cheung, Y.W.; Stein, R.S. (Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering); Chu, B.; Wu, G. (State Univ. of New York at Stony Brook, Long Island, NY (United States))

    1994-06-20T23:59:59.000Z

    Evolution of the poly([epsilon]-caprolactone) (PCL) lamellae in blends of PCL/PC (polycarbonate) was monitored by synchrotron small-angle X-ray scattering (SAXS). The effects of crystallization temperature, PC concentration, and PC crystallinity on the PCL lamellar growth in the PCL-rich blends were investigated. The half-crystallization time derived from the temporal change of the peak intensity increased with crystallization temperature and generally increased with the addition of PC. For a given blend composition, the lamellar growth rate increased with increasing PC crystallinity. The interlamellar spacing initially varied with time and then approached a plateau value at the later stage of crystallization. An insertion mechanism is proposed in which the PCL is crystallized in the amorphous intralamellar phase. This model is also consistent with the quantitative SAXS results, which suggested that random mixing of PCL and PC lamellae occurred in the semicrystalline (PCL)/semicrystalline (PC) state.

  19. Study of the Crystalline Morphology Evolution of PET and PET/PC Blends by Time-resolved Synchrotron Small Angle X-ray Scattering (SAXS) and DSC

    SciTech Connect (OSTI)

    Barbosa, Irineu; Larocca, Nelson M.; Hage, Elias [Dep. de Engenharia de Materiais, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Plivelic, Tomas S.; Torriani, Iris L. [Laboratorio Nacional de Luz Sincrotron, Campinas, SP (Brazil); Mantovani, Gerson L. [Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas, Universidade Federal do ABC, 09090-400 Santo Andre, SP (Brazil)

    2009-01-29T23:59:59.000Z

    Isothermal melt crystallization of poly(ethylene terephthalate)(PET) and PET/PC (polycarbonate) blend, with and without a transesterification catalyst, was studied by time-resolved small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) in order to achieve the variation of the morphological parameters throughout the whole crystallization time. For neat PET, the catalyst promotes a decrease of the crystal lamellar thickness but for the blend no variations were observed. The effect of incorporation of catalyst in crystallization kinetics was very distinct in PET pure and the blend: in the former the catalyst leads to an increase of this kinetics while for the latter it was observed a decreasing.

  20. Adsorption -capacity data for 283 organic compounds

    SciTech Connect (OSTI)

    Yaws, C.L.; Bu, L.; Nijhawan, S. [Lamar Univ., Beaumont, TX (United States)

    1995-05-01T23:59:59.000Z

    Adsorption on activated carbon is a widely used method for removing volatile organic compounds (VOCs) from gases and other exhaust streams. This article presents a compilation of adsorption-capacity data as a function of the VOC concentration in the gas. The results are useful in engineering and environmental studies, and in the design of carbon-based adsorption systems to remove unwanted organic pollutants from gases. For vapor control, carbon-based systems typically combine a carbon-adsorption unit with a secondary control method to reclaim or destroy the vapors desorbed during carbon-bed regeneration. To remove organics dissolved in wastewater, air stripping is typically used to transfer the organics to a vapor stream. Carbon adsorption is then used to separate the organics from the stripper exhaust. Collected vapors can be recovered for reuse or destroyed, depending on their value.

  1. Fission Barriers of Compound Superheavy Nuclei

    E-Print Network [OSTI]

    J. C. Pei; W. Nazarewicz; J. A. Sheikh; A. K. Kerman

    2009-02-27T23:59:59.000Z

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for $^{264}$Fm, $^{272}$Ds, $^{278}$112, $^{292}$114, and $^{312}$124. For nuclei around $^{278}$112 produced in "cold fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around $^{292}$114 synthesized in "hot fusion" experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied.

  2. Clathrate compounds and method of manufacturing

    DOE Patents [OSTI]

    Nolas, George S. (Tampa, FL); Witanachchi, Sarath (Tampa, FL); Mukherjee, Pritish (Tampa, FL)

    2009-05-19T23:59:59.000Z

    The present invention comprises new materials, material structures, and processes of fabrication of such that may be used in technologies involving the conversion of light to electricity and/or heat to electricity, and in optoelectronics technologies. The present invention provide for the fabrication of a clathrate compound comprising a type II clathrate lattice with atoms of silicon and germanium as a main framework forming lattice spacings within the framework, wherein the clathrate lattice follows the general formula Si.sub.136-yGe.sub.y, where y indicates the number of Ge atoms present in the main framework and 136-y indicates the number of Si atoms present in the main framework, and wherein y>0.

  3. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry

    SciTech Connect (OSTI)

    Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-12-01T23:59:59.000Z

    High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

  4. Combustion properties of coal-char blends: NO{sub x} emission characteristics. Interim final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Khan, L.; Khan, S. [Illinois State Geological Survey, Champaign, IL (United States); Smoot, L.D.; Germane, G.J.; Eatough, C.N. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1993-12-31T23:59:59.000Z

    Under pulverized coal combustion conditions, NO{sub x} formed during the release of volatile matter far exceed NO{sub x} formed from combustion of the resulting char. It is believed that interactions of NO{sub x} with char is responsible for the reduced NO{sub x} formation from the combustion of char. The goal of this research is to assess the potential technical and economical benefits of co-firing coal-char blends in pulverized coal boilers to reduce NO{sub x}. The rationale for the proposed research is that the presence of char in the flame during the initial stages of combustion may provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. This project is a cooperative effort between the Illinois State Geological Survey (ISGS) and BYU/ACERC. Seven hundred and fifty pounds of three coal-char blends containing 12.5%, 25%, and 50% char and 125 pounds of a coal-activated carbon blend containing 12.5% activated carbon were prepared. The volatile matter contents of the blends ranged from 27.3 to 35.6% (dry basis). Char (16.2 wt% volatile matter) was made from an Illinois No. 6 coal (Peabody Coal Company) in a continuous feed charring oven under mild gasification conditions. Nine combustion tests will be performed with the coal and blends in a 0.5--1.0 MBtu/hr combustor located at BYU. Combustion data will be analyzed to determine the effect of blend type, stoichiometry, and flame temperature on NO{sub x} formation, ignition characteristics, flame stability, and combustion efficiency. A four month no-cost extension has been requested for the project. The results of the combustion tests will be reported in the final technical report in December 1993.

  5. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10T23:59:59.000Z

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  6. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper (Boulder, CO); Reedy, Robert (Golden, CO)

    2008-02-12T23:59:59.000Z

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  7. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30T23:59:59.000Z

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  8. aromatic compound mixtures: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and mineralization potentials of gasoline monoaromatics and methyl tert-butyl ether (MTBE), compounds that commonly co-exist in groundwater contaminant plumes. A mixed culture...

  9. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  10. Comment on Tunable generation and adsorption of energetic compounds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: A tool for testing and Comment on Tunable generation and adsorption of energetic...

  11. antiparasitic compounds based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a particular Einmahl, Uwe 77 Association Behavior of Pyrene Compounds as Models for Asphaltenes Environmental Management and Restoration Websites Summary: has been studied...

  12. acid model compounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acids with R Wang, Jianbo 42 Association Behavior of Pyrene Compounds as Models for Asphaltenes Environmental Management and Restoration Websites Summary: has been studied...

  13. The radioactive Substances (Prepared Uranium Thorium Compounds) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No. 2711 ATOMIC ENERGY AND RADIOACI1VE SUBSTANCES The Radioactive Substances (prepared Uranium and Thorium Compounds) Exemption Order 1962...

  14. antifungal compounds enzymatic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unfriendly bleaching agents (perborates and percarbonates), which cause aquatic eutrophication, although without these compounds detergents are much less efficient for the...

  15. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Info (EERE)

    New Zealand (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area, New...

  16. Compound and Elemental Analysis At Breitenbush Hot Springs Area...

    Open Energy Info (EERE)

    Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood, 2002)...

  17. Compound and Elemental Analysis At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Compound and Elemental Analysis...

  18. Compound and Elemental Analysis At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Thompson,...

  19. Model Compound Studies of Fuel Cell Membrane Degradation

    Broader source: Energy.gov [DOE]

    Presentation on Model Compound Studies of Fuel Cell Membrane Degradation to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  20. Compound and Elemental Analysis At Seven Mile Hole Area (Larson...

    Open Energy Info (EERE)

    Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Standard X-ray diffractometer (XRD) analyses were used in the...

  1. Second-harmonic generation in transition-metal-organic compounds

    SciTech Connect (OSTI)

    Frazier, C.C.; Harvey, M.A.; Cockerham, M.P.; Hand, H.M.; Chauchard, E.A.; Lee, C.H.

    1986-10-23T23:59:59.000Z

    The second-harmonic generation efficiencies of over 60 transition-metal-organic compounds in powder form were measured, using 1.06 ..mu..m light from a Nd:YAG laser. Most of the studied compounds were either group VI metal carbonyl arene, pyridyl, or chiral phosphine complexes. Four the complexes doubled the laser fundamental as well as or better than ammonium dihydrogen phosphate (ADP). The study shows that the same molecular features (e.g., conjugation and low-lying spectroscopic charge transfer) that contribute to second-order optical nonlinearity in organic compounds also enhance second-order effects in transition-metal-organic compounds.

  2. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Geothermal...

  3. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells...

  4. Process for preparing a chemical compound enriched in isotope content

    DOE Patents [OSTI]

    Michaels, Edward D. (Spring Valley, OH)

    1982-01-01T23:59:59.000Z

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  5. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Compound and Elemental Analysis Activity Date - 2002 Usefulness not indicated DOE-funding Unknown Notes "Detailed chemical and isotopic studies not only help quantify the...

  6. aromatic chemical compounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index 41 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical Preparation...

  7. aromatic nitro compounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the reactions of amines with aldehydes and with aromatic nitro - compounds in acetonitrile. Open Access Theses and Dissertations Summary: ??Kinetic and equilibrium studies of...

  8. Compound and Elemental Analysis At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental...

  9. Prediction of New Hydrogen Storage Compounds and Mixtures

    Broader source: Energy.gov (indexed) [DOE]

    8, 2006 DOE Theory Focus Session on Hydrogen Storage Materials Prediction of New Hydrogen Storage Compounds and Mixtures Vidvuds Ozoli UCLA Research supported by DOE grants No....

  10. antimalarial compounds measured: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    William Carter; William P. L. Carter 1995-01-01 16 Logconcavity, ultralogconcavity, and a maximum entropy property of discrete compound Poisson measures Computer Technologies and...

  11. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01T23:59:59.000Z

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  12. 2007 Inventory of Radiochemistry Detector Elements and Compounds

    SciTech Connect (OSTI)

    Kenneally, J; Roberts, K

    2007-04-05T23:59:59.000Z

    Since the last report, there have been no material changes in the detector element inventories in buildings 151 and 332 at LLNL. Stable element inventories in building 151 have remained stable since the inventory in September 2005. For the first time in many years, Stockpile Radiochemistry personnel viewed radioactive tracer materials that reside in building 332. A list of LLNL tracers and locations are available under separate cover. Despite the recent NNSA agreement to retain 2.8 kg of {sup 233}U for programmatic purposes, we have yet to identify a location that is appropriate and will accept the material. A recent visit to the Oak Ridge National Laboratory (ORNL) in September 2006 revealed nearly 190 kg of material with very high {sup 233}U content scheduled for down-blending in various chemical and isotopic forms. The chemical form, isotopic and chemical purities of this material were such that roughly 150 kg of the material was of comparable composition to the desired tracer package material and would be acceptable for use in an underground test, should the US even conduct such a test. Efforts continue to remove 2.8 kg of material from the down-blend cue and reserve it for the Test Readiness mission.

  13. Argonne National Laboratory MCA Shipment Worksheet

    E-Print Network [OSTI]

    Kemner, Ken

    (to be completed by requestor) Ship To: Company Name Address City, State, Zip Attention: Phone Has in log book. 7. Container marked in compliance with 49 CFR. Remarks and/or abnormal or unusual conditions

  14. Volume, Number of Shipments Surpass Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory," said Pete Maggiore, assistant manager for environmental operations at the NNSA Los Alamos Site Office. "We exceeded our goals and are on track to double both volume...

  15. Annual Transportation Report for Radioactive Waste Shipments...

    National Nuclear Security Administration (NNSA)

    Generators Shipping ToFromOn the NTS APPROVED GENERATOR, STATE GENERATOR CODE 1 ARGONNE NATIONAL LABORATORY, IL AE 2 BECHTEL JACOBS OAK RIDGE, TN OR 3 BOEING ROCKETDYNE, CA...

  16. Microsoft Word - ORNL_first_shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE LMI-EFRCAddendum 1April 1,5Vehicle Technologies,

  17. Lab sets new record for waste shipments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVenture Acceleration

  18. User Shipments | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services

  19. Los Alamos shipments to Waste Control Specialists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5invests inLos8, 2014 Los Alamos

  20. User Shipments | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services

  1. First Savannah River Shipment Arrives At WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof of Ferromagnetic CarbonFirstDepartment

  2. Rocky Flats resumes shipments to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15 toAdvancesRock Physics ofRocky Flats

  3. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soilASTI-SORTI Comparison T. M.090041

  4. Volume, Number of Shipments Surpass Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -Visualizing Brain Metals

  5. WIPP Receives 500th Waste Shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE Awards Contract for WIPP Mobile4 WIPP5200

  6. WIPP receives 9,000th shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE Awards Contract for19,WIPP receives 9,000th

  7. Microsoft Word - 10000th_shipment.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPA /9-1595:UFC 2300.003,826:UFCFor Immediate

  8. Preparation of high nitrogen compound and materials therefrom

    DOE Patents [OSTI]

    Huynh, My Hang V. (Los Alamos, NM); Hiskey, Michael A. (Los Alamos, NM)

    2006-10-10T23:59:59.000Z

    The high-nitrogen compound of the formula ##STR00001## was prepared. Pyrolysis of the compound yields carbon nitrides C.sub.2N.sub.3 and C.sub.3N.sub.5. The carbon nitrides vary in their density, texture, and morphology.

  9. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOE Patents [OSTI]

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06T23:59:59.000Z

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  10. Contraction scour in compound channels with cohesive soil beds

    E-Print Network [OSTI]

    Israel Devadason, Benjamin Praisy

    2009-05-15T23:59:59.000Z

    .................................................................................4 1.3 Approaches And Methodologies..............................................................5 II BASIC CONCEPTS AND PARAMETERS IN BRIDGE SCOUR .....................8 2.1 Introduction......................................................................................................31 4.5 General Test Arrangement .....................................................................35 V FLUME TESTS ? THE COMPOUND CHANNEL MODEL............................43 5.1 The Compound Channel Model...

  11. Contraction scour in compound channels with cohesive soil beds

    E-Print Network [OSTI]

    Israel Devadason, Benjamin Praisy

    2008-10-10T23:59:59.000Z

    .................................................................................4 1.3 Approaches And Methodologies..............................................................5 II BASIC CONCEPTS AND PARAMETERS IN BRIDGE SCOUR .....................8 2.1 Introduction......................................................................................................31 4.5 General Test Arrangement .....................................................................35 V FLUME TESTS – THE COMPOUND CHANNEL MODEL............................43 5.1 The Compound Channel Model...

  12. Method for converting asbestos to non-carcinogenic compounds

    DOE Patents [OSTI]

    Selby, Thomas W. (Kingston, TN)

    1996-01-01T23:59:59.000Z

    Hazardous and carcinogenic asbestos waste characterized by a crystalline fibrous structure is transformed into non-carcinogenic, relatively nonhazardous, and non-crystalline solid compounds and gaseous compounds which have commercial utilization. The asbestos waste is so transformed by the complete fluorination of the crystalline fibrous silicate mineral defining the asbestos.

  13. Method for converting asbestos to non-carcinogenic compounds

    DOE Patents [OSTI]

    Selby, T.W.

    1996-08-06T23:59:59.000Z

    Hazardous and carcinogenic asbestos waste characterized by a crystalline fibrous structure is transformed into non-carcinogenic, relatively nonhazardous, and non-crystalline solid compounds and gaseous compounds which have commercial utilization. The asbestos waste is so transformed by the complete fluorination of the crystalline fibrous silicate mineral defining the asbestos. 7 figs.

  14. Method for selective dehalogenation of halogenated polyaromatic compounds

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Petrosius, Steven C. (Library, PA)

    1994-01-01T23:59:59.000Z

    A method for dehalogenating halogenated polyaromatic compounds is provided wherein the polyaromatic compounds are mixed with a hydrogen donor solvent and a carbon catalyst in predetermined proportions, the mixture is maintained at a predetermined pressure, and the mixture is heated to a predetermined temperature and for a predetermined time.

  15. Polymers containing borane or carborane cage compounds and related applications

    DOE Patents [OSTI]

    Bowen, III, Daniel E. (Olathe, KS); Eastwood, Eric A. (Raymore, MO)

    2012-06-05T23:59:59.000Z

    Polymers comprising residues of borane and/or carborane cage compound monomers having at least one polyalkoxy silyl substituent. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Methods of making and applications for using such polymers are also disclosed.

  16. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOE Patents [OSTI]

    Benkeser, Robert A. (West Lafayette, IN); Laugal, James A. (Lostant, IL); Rappa, Angela (Baltimore, MD)

    1985-01-01T23:59:59.000Z

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  17. Mutual Rényi information for two disjoint compound systems

    E-Print Network [OSTI]

    Howard J. Schnitzer

    2014-11-03T23:59:59.000Z

    The leading term for the mutual R\\'enyi information is studied for two widely separated identical compound systems for free scalar fields in $(d+1)$ Euclidean space. The compound system consists of two identical spheres in contact, with a result consistent with a universal form for the leading term for the mutual R\\'enyi information.

  18. Corona method and apparatus for altering carbon containing compounds

    DOE Patents [OSTI]

    Sharma, Amit K. (Richland, WA); Camaioni, Donald M. (Richland, WA); Josephson, Gary B. (Richland, WA)

    1999-01-01T23:59:59.000Z

    The present invention is a method and apparatus for altering a carbon containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.

  19. Corona Method And Apparatus For Altering Carbon Containing Compounds

    DOE Patents [OSTI]

    Sharma, Amit K. (Plainsboro, NJ); Camaioni, Donald M. (Richland, WA); Josephson; Gary B. (Richland, WA)

    2004-05-04T23:59:59.000Z

    The present invention is a method and apparatus for altering a carbon-containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon-containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.

  20. Device for collecting chemical compounds and related methods

    DOE Patents [OSTI]

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01T23:59:59.000Z

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  1. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Foster, Prof. Dave [University of Wisconsin] [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  2. Biodiesel Production From Animal Fats And Its Impact On The Diesel Engine With Ethanol-Diesel Blends: A Review

    E-Print Network [OSTI]

    Darunde Dhiraj S; Prof Deshmukh Mangesh M

    Abstract — Mainly animal fats and vegetable oils are used for the production of biodiesel. Several types of fuels can be derived from triacylglycerol-containing feedstock. Biodiesel which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol (methanol/ethanol) under mild conditions in the presence of a base catalyst. This paper discuses fuel production, fuel properties, environmental effects including exhaust emissions and co-products. This also describes the use of glycerol which is the by-product in esterification process along with biodiesel. The impact of blending of biodiesel with ethanol and diesel on the diesel engine has described.

  3. Compound cast product and method for producing a compound cast product

    DOE Patents [OSTI]

    Meyer, Thomas N. (3987 Murray Highlands Cir., Murrysville, PA 15668-1747); Viswanathan, Srinath (1104 Albermarle La., Knoxville, TN 37923)

    2002-09-17T23:59:59.000Z

    A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52). The first and second molten materials (37, 38) are injected into the mold cavity (16) by the injectors (24) acting against the force of gravity. The injectors (24) are positioned such that the first and second molten materials (37, 38) are injected into different areas of the mold cavity (16). The molten materials (37, 38) are allowed to solidify and the resulting compound cast product is removed from the mold cavity (16).

  4. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect (OSTI)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01T23:59:59.000Z

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward the goal of developing a portable test kit for screening halogenated VOCs in the field.

  5. Plasticization and Reinforcement in a Boron Cage Compound Polyurethane Nanocomposite: A Dielectric Study

    SciTech Connect (OSTI)

    Bowen, Dan; Liu, J.; Zhang, X.; Eastwood, E.; Bowler, N.

    2012-09-21T23:59:59.000Z

    In order to control and modify the physical properties of nanocomposite systems, it is essential to understand the nano-filler/polymer structure-property relationships. Boron cage compounds (BCCs) are a class of icosahedral, closed cage molecules that are of interest due to their high boron content and inherent neutron absorbing/shielding properties, and because of their ability to act as molecular nano-particles. When the BCC n-hexylcarborane is blended with a polybutadiene (PBD)/polyurethane (PU) segmented copolymer (EN8) an increase in the glass transition (Tg) temperature of the PBD phase (reinforcement) and a decrease in the Tg temperatures of the PU phases (plasticization) are observed. These observations were investigated by examining the dielectric relaxation properties of copolymer samples with and without added n-hexylcarborane (0wt% and 5wt% n-hexylcarborane) using broadband dielectric spectroscopy in the frequency range from 0.01 to 1 MHz and temperature range from -140 to 130 °C. Parametric fitting techniques aided in the identification of two ? relaxation processes associated with the glass transitions of the soft PBD phase and the hard urethane phases, and a secondary ? relaxation process due to the localized motions of side groups. The conductivities at low frequencies were also identified and modeled. Differential Scanning Calorimetry (DSC) did not indicate the presence of a crystalline component within the copolymer samples, so interfacial polarization (Maxwell-Wagner-Sillars) relaxation is not possible. A relaxation map (Arrhenius diagram) associated with these processes has been developed from the experimental data to elucidate the role of n-hexylcarborane in the molecular dynamics of the system. Values of fitting parameters, calculated Tg values, and a fragility index are also given for comparison. Reduced localized motion of the soft PBD phase, as well as reinforcement of the hard urethane phases is observed upon the introduction of n-hexylcarborane. The hypothesis that the n-hexylcarborane content preferentially locates within the hard urethane phases is supported by the observed decrease of the fragility index and Tg of the urethane phases.

  6. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (625 Gulfwood Rd., Knoxville, TN 37923)

    1987-01-01T23:59:59.000Z

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  7. Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

    SciTech Connect (OSTI)

    Xiaopeng Shan

    2003-08-05T23:59:59.000Z

    Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH{sup +}3{sup -} and mechanisms of ligand displacement and oxidation were proposed.

  8. Oxygen-stabilized zirconium-vanadium intermetallic compound

    DOE Patents [OSTI]

    Mendelsohn, M.H.; Gruen, D.M.

    1981-10-06T23:59:59.000Z

    An oxygen stabilized intermetallic compound having the formula Zr/sub x/OV/sub y/ where x = 0.7 to 2.0 and y = 0.18 to 0.33 is described. The compound is capable of reversibly sorbing hydrogen at temperatures from - 196/sup 0/C to 450/sup 0/C at pressures down to 10/sup -6/ Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO/sub 2/.

  9. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1987-07-14T23:59:59.000Z

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  10. Mixed anion materials and compounds for novel proton conducting membranes

    DOE Patents [OSTI]

    Poling, Steven Andrew; Nelson, Carly R.; Martin, Steve W.

    2006-09-05T23:59:59.000Z

    The present invention provides new amorphous or partially crystalline mixed anion chalcogenide compounds for use in proton exchange membranes which are able to operate over a wide variety of temperature ranges, including in the intermediate temperature range of about 100 .degree. C. to 300.degree. C., and new uses for crystalline mixed anion chalcogenide compounds in such proton exchange membranes. In one embodiment, the proton conductivity of the compounds is between about 10.sup.-8 S/cm and 10.sup.-1 S/cm within a temperature range of between about -60 and 300.degree. C. and a relative humidity of less than about 12%..

  11. Characterization of nitrogen compound types in hydrotreated Paraho shale oil

    SciTech Connect (OSTI)

    Holmes, S.A.; Latham, D.R.

    1980-10-01T23:59:59.000Z

    Results from the separation and characterization of nitrogen compound types in hydrotreated Paraho shale oil samples were obtained. Two samples of Paraho shale oil were hydrotreated by Chevron Research Company such that one sample contained about 0.05 wt. percent nitrogen and the other sample contained about 0.10 wt. percent nitrogen. A separation method concentrate specific nitrogen compound types was developed. Characterization of the nitrogen types was accomplished by infrared spectroscopy, mass spectrometry, potentiometric titration, and elemental analysis. The distribution of nitrogen compound types in both samples and in the Paraho crude shale oil is compared.

  12. aromatic heterocyclic compounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and Their Ions. 6....

  13. Lattice mismatched compound semiconductors and devices on silicon

    E-Print Network [OSTI]

    Yang, Li, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    III-V compound semiconductors, due to their superior electron mobility, are promising candidates for n-type metal-oxide-semiconductor field effect transistors (MOSFETs). However, the limited size of III-V substrates and ...

  14. Volatile Organic Compound Emissions from Dairy Cows and

    E-Print Network [OSTI]

    Goldstein, Allen

    , acetone + propanal, dimethylsulfide, and m/z 109 (likely 4-methyl-phenol). The compounds with highest. Agricultural pro- cesses, notably animal operations, are no longer exempt from emission controls as a result with a pro

  15. Process for synthesizing compounds from elemental powders and product

    DOE Patents [OSTI]

    Rabin, B.H.; Wright, R.N.

    1993-12-14T23:59:59.000Z

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  16. Electrochemically driven phase transformation in energy storage compounds

    E-Print Network [OSTI]

    Gao, Yuhua

    2011-01-01T23:59:59.000Z

    Nanoscale lithium transition metal phosphate olivines have become commercially important as positive electrode materials in a new generation of lithium-ion batteries. Not surprisingly, many energy storage compounds undergo ...

  17. Are BKME effects on fish caused by chlorinated compounds?

    SciTech Connect (OSTI)

    Burnison, B.K.; Hodson, P.V.; Parrott, J. [National Water Research Institute, Ontario (Canada)] [and others

    1995-12-31T23:59:59.000Z

    Much of the debate about the use and environmental impacts of chlorinated compounds has been fueled by attempts to regulate the effluents discharged by pulp and paper mills. Swedish field studies have associated effects on fish health and reproduction with the discharge of AOX. A recent study has demonstrated that the effect of black liquor is three orders of magnitude more potent than the first chlorine dioxide bleachery effluent on fish. Black liquors from various pulp mills, including a mill which uses alcohol to extract lignin, also suggest that effects on fish could be caused by non-chlorinated wood extractives, Chemical analysis of isolated fractions from final BKME effluent and pure compound bioassays also indicate the high probability that non-chlorinated compounds may be responsible for fish effects. While chlorination may increase the potency of these compounds, it is clear that chlorine is not essential for effects on fish.

  18. astatine compound nuclei: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Fissibility of compound nuclei Nuclear Experiment (arXiv) Summary: Collisions between 248Cm and 48Ca are...

  19. Microfluidic in vivo screen identifies compounds enhancing neuronal

    E-Print Network [OSTI]

    Haggarty, Stephen

    Compound screening is a powerful tool to identify new therapeutic targets, drug leads, and elucidate the fundamental mechanisms of biological processes. We report here the results of the first in vivo small-molecule screens ...

  20. Model Compound Studies of Fuel Cell Membrane Degradation

    Broader source: Energy.gov (indexed) [DOE]

    fluoride handle Model compound work, with nmr & LCMS workup has begun in our lab Acknowledgement Acknowledgement Financial Support Provided by DOE (Contract DE-FC36-03GO13098)...