National Library of Energy BETA

Sample records for blending components derived

  1. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  2. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  3. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  4. Electrochemical components employing polysiloxane-derived binders

    DOE Patents [OSTI]

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  5. Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study

    SciTech Connect (OSTI)

    Shoffner, Brent; Johnson, Ryan; Heimrich, Martin J.; Lochte, Michael

    2010-11-01

    The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

  6. Chlorinated organic compounds evolved during the combustion of blends of refuse-derived fuels and coals

    SciTech Connect (OSTI)

    Xiaodong Yang; Napier, J.; Sisk, B.; Wei-Ping Pan; Riley, J.T.; Lloyd, W.G.

    1996-12-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR and MS systems. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GUMS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic; compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  7. Biodiesel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

  8. Methodology for modeling the devolatilization of refuse-derived fuel from thermogravimetric analysis of municipal solid waste components

    SciTech Connect (OSTI)

    Fritsky, K.J.; Miller, D.L.; Cernansky, N.P.

    1994-09-01

    A methodology was introduced for modeling the devolatilization characteristics of refuse-derived fuel (RFD) in terms of temperature-dependent weight loss. The basic premise of the methodology is that RDF is modeled as a combination of select municipal solid waste (MSW) components. Kinetic parameters are derived for each component from thermogravimetric analyzer (TGA) data measured at a specific set of conditions. These experimentally derived parameters, along with user-derived parameters, are inputted to model equations for the purpose of calculating thermograms for the components. The component thermograms are summed to create a composite thermogram that is an estimate of the devolatilization for the as-modeled RFD. The methodology has several attractive features as a thermal analysis tool for waste fuels. 7 refs., 10 figs., 3 tabs.

  9. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  10. Emissions with butane/propane blends

    SciTech Connect (OSTI)

    1996-11-01

    This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

  11. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    SciTech Connect (OSTI)

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  12. Impact of Biodiesel on Fuel System Component Durability

    SciTech Connect (OSTI)

    Terry, B.

    2005-09-01

    A study of the effects of biodiesel blends on fuel system components and the physical characteristics of elastomer materials.

  13. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  14. Stocks of Motor Gasoline Blending Components

    Gasoline and Diesel Fuel Update (EIA)

    194,259 203,187 212,640 217,489 220,765 226,935 1983-2016 PADD 1 51,306 53,633 57,200 56,763 58,920 62,421 2004-2016 PADD 2 43,744 46,809 50,163 51,441 51,859 54,773 2004-2016 PADD...

  15. Process for blending coal with water immiscible liquid

    DOE Patents [OSTI]

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  16. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    SciTech Connect (OSTI)

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and F (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.

  17. Phase Segregation in Polystyrene?Polylactide Blends

    SciTech Connect (OSTI)

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  18. Alternative Fuels Data Center: Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15

  19. RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY

    SciTech Connect (OSTI)

    SHUFORD DH; STEGEN G

    2010-04-19

    Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

  20. Alternative Fuels Data Center: Biodiesel Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics

  1. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  2. Low-Level Ethanol Fuel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

  3. South Texas Blending | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Texas Blending Place: Laredo, Texas Zip: 78045 Product: Biodiesel producer based in Texas. References: South Texas Blending1 This article is a stub....

  4. Tough Blends of Polylactide and Castor Oil

    SciTech Connect (OSTI)

    Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A.

    2012-10-10

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

  5. Method to blend separator powders

    DOE Patents [OSTI]

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  6. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect (OSTI)

    Wallner, T.

    2011-08-01

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

  7. Intrinsically safe moisture blending system

    DOE Patents [OSTI]

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  8. Refinery Net Input of Motor Gasoline Blending Components (Net...

    U.S. Energy Information Administration (EIA) Indexed Site

    -2 43 27 -8 2005-2015 PADD 2 -47,612 -49,433 -47,203 -45,883 -44,387 -51,509 2005-2015 Ind., Ill. and Ky. -31,427 -32,488 -29,386 -30,133 -29,898 -34,929 2005-2015 Minn., Wis.,...

  9. Tropexx - Blending System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Tropexx - Blending System Y-12 National Security Complex Contact Y12 About This Technology Publications: PDF Document Publication Fact Sheet (784 KB) PDF Document Publication Patent (88 KB) Technology Marketing SummaryThe Tropexx Blending System is a high-resolution blending system that works with gases, vapors and volatile (readily vaporizable) liquids in addition to moisture. Tropexx can be used to check

  10. Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Biofuels and Biofuel Blends Robert McCormick Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies May 16, 2013 Project ID: FT003 This ...

  11. Powder Injection Molding of Titanium Components

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  12. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect (OSTI)

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  13. Green emitting phosphors and blends thereof

    DOE Patents [OSTI]

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  14. Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI Exhaust Speciation - ORNL Reference Fuel Blends Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends *Accurately measure exhaust profile from an HCCI engine with a ...

  15. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  16. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  17. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and ...

  18. EffectsIntermediateEthanolBlends.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Mid-Level Ethanol Blends Test ...

  19. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications Title A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition...

  20. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect (OSTI)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  1. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  2. Two glass transitions in miscible polymer blends?

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-06-28

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  3. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect (OSTI)

    Pauls, R. E.

    2011-05-01

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  4. Vehicle Technologies Office: Intermediate Ethanol Blends

    Broader source: Energy.gov [DOE]

    Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

  5. WI Biodiesel Blending Progream Final Report

    SciTech Connect (OSTI)

    Redmond, Maria E; Levy, Megan M

    2013-04-01

    The Wisconsin State Energy Office?¢????s (SEO) primary mission is to implement cost?¢???effective, reliable, balanced, and environmentally?¢???friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

  6. Quality Assessment of Biodiesel and Biodiesel Blends | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assessment of Biodiesel and Biodiesel Blends Quality Assessment of Biodiesel and Biodiesel Blends The results of a quality survey of B20 fuel in the United States were ...

  7. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 ...

  8. INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2005-02-01

    Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

  9. Mid-Level Ethanol Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Level Ethanol Blends Mid-Level Ethanol Blends 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ft_05_knoll.pdf More Documents & Publications Mid-Level Ethanol Blends Test Program Biofuels Quality Surveys Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009

  10. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    SciTech Connect (OSTI)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  11. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  12. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  13. The Blend Down Monitoring System Demonstration at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Benton, J.; Close, D.; Johnson, W., Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-07-25

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor {sup 235}U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF{sub 6} flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities.

  14. Understanding Polymorphism Formation in Electrospun Fibers of Immiscible Poly(vinylidene fluoride) Blends

    SciTech Connect (OSTI)

    G Zhong; L Zhang; R Su; K Wang; H Fong; L Zhu

    2011-12-31

    Effects of electric poling, mechanical stretching, and dipolar interaction on the formation of ferroelectric ({beta} and/or {gamma}) phases in poly(vinylidene fluoride) (PVDF) have been studied in electrospun fibers of PVDF/polyacrylonitrile (PAN) and PVDF/polysulfone (PSF) blends with PVDF as the minor component, using wide-angle X-ray diffraction and Fourier transform infrared techniques. Experimental results of as-electrospun neat PVDF fibers (beaded vs. bead-free) showed that mechanical stretching during electrospinning, rather than electric poling, was effective to induce ferroelectric phases. For as-electrospun PVDF blend fibers with the non-polar PSF matrix, mechanical stretching during electrospinning again was capable of inducing some ferroelectric phases in addition to the major paraelectric ({alpha}) phase. However, after removing the mechanical stretching in a confined melt-recrystallization process, only the paraelectric phase was obtained. For as-electrospun PVDF blend fibers with the polar (or ferroelectric) PAN matrix, strong intermolecular interactions between polar PAN and PVDF played an important role in the ferroelectric phase formation in addition to the mechanical stretching effect during electrospinning. Even after the removal of mechanical stretching through the confined melt-recrystallization process, a significant amount of ferroelectric phases persisted. Comparing the ferroelectric phase formation between PVDF/PSF and PVDF/PAN blend fibers, we concluded that the local electric field-dipole interactions were the determining factor for the nucleation and growth of polar PVDF phases.

  15. Emissions from ethanol-blended fossil fuel flames

    SciTech Connect (OSTI)

    Akcayoglu, Azize

    2011-01-15

    A fundamental study to investigate the emission characteristics of ethanol-blended fossil fuels is presented. Employing a heterogeneous experimental setup, emissions are measured from diffusion flames around spherical porous particles. Using an infusion pump, ethanol-fossil fuel blend is transpired into a porous sphere kept in an upward flowing air stream. A typical probe of portable digital exhaust gas analyzer is placed in and around the flame with the help of a multi-direction traversing mechanism to measure emissions such as un-burnt hydrocarbons, carbon monoxide and carbon dioxide. Since ethanol readily mixes with water, emission characteristics of ethanol-water blends are also studied. For comparison purpose, emissions from pure ethanol diffusion flames are also presented. A simplified theoretical analysis has been carried out to determine equilibrium surface temperature, composition of the fuel components in vapor-phase and heat of reaction of each blend. These theoretical predictions are used in explaining the emission characteristics of flames from ethanol blends. (author) This paper presents the results of an experimental study of flow structure in horizontal equilateral triangular ducts having double rows of half delta-wing type vortex generators mounted on the duct's slant surfaces. The test ducts have the same axial length and hydraulic diameter of 4 m and 58.3 mm, respectively. Each duct consists of double rows of half delta wing pairs arranged either in common flow-up or common flow-down configurations. Flow field measurements were performed using a Particle Image Velocimetry Technique for hydraulic diameter based Reynolds numbers in the range of 1000-8000. The secondary flow field differences generated by two different vortex generator configurations were examined in detail. The secondary flow is found stronger behind the second vortex generator pair than behind the first pair but becomes weaker far from the second pair in the case of Duct1. However, the strength of the secondary flow is found nearly the same behind the first and the second vortex generator pair as well as far from the second vortex generator pair in the case of Duct2. Both ducts are able to create a counter-rotating and a second set of twin foci. Duct2 is able to create the second set of twin foci in an earlier streamwise location than Duct1, as these foci are well-known to their heat transfer augmentation. A larger vortex formation area and a greater induced vorticity field between vortex pairs are observed for Duct2 compared with Duct1. As the induced flow field between the vortex pairs increases the heat transfer, and as the flow field between the vortex cores is found larger in the case of Duct2, therefore, it is expected to obtain better heat transfer characteristics for Duct2 compared with Duct1. (author)

  16. Vehicle Technologies Office: Intermediate Ethanol Blends | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Intermediate Ethanol Blends Vehicle Technologies Office: Intermediate Ethanol Blends Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy Policy Act of 2005 and the Energy Security and Independence Act of 2007) requires the country use as much as 36 billion gallons of renewable fuels annually by 2022, most of which will be ethanol. However,

  17. Conductive Polymer/Fullerene Blend Thin Films with Honeycomb...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Conductive PolymerFullerene Blend Thin Films with Honeycomb Framework Brookhaven National Laboratory...

  18. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll Brian West Wendy Clark...

  19. Fact Sheet: Effects of Intermediate Ethanol Blends | Department...

    Broader source: Energy.gov (indexed) [DOE]

    initiated a test program to assess the potential impacts of higher intermediate ethanol blends on conventional vehicles and other engines that rely on gasoline. The test program ...

  20. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  1. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    SciTech Connect (OSTI)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

  2. Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) to someone by E-mail Share Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Facebook Tweet about Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and

  3. Performance of Biofuels and Biofuel Blends | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft003_mccormick_2012_o.pdf More Documents & Publications Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Recent Research to Address Technical Barriers to Increased Use of Biodiesel

  4. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,..."Natural Gas ... " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,..."Natu...

  5. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    SciTech Connect (OSTI)

    Cai, Hao; Canter, Christina E.; Dunn, Jennifer B.; Tan, Eric; Biddy, Mary; Talmadge, Michael; Hartley, Damon S.; Snowden-Swan, Lesley

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  6. Calcination of calcium carbonate and blend therefor

    DOE Patents [OSTI]

    Mallow, William A.; Dziuk, Jr., Jerome J.

    1989-01-01

    A method for calcination of a calcium carbonate material comprising heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a catalyst; said catalyst comprising at least one fused salt having the formula MCO.sub.3.CaCO.sub.3.CaO.H.sub.2 O.sub.x, wherein M is an alkali metal and x is 0 to 1 and formed by fusing MCO.sub.3 and CaCO.sub.3 in a molar ratio of about 1:2 to 2:1, and a blend adapted to be heated to CaO comprising a calcium carbonate material and at least one such fused salt.

  7. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-08-26

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H{sup +}] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  8. Phosphor blends for high-CRI fluorescent lamps

    DOE Patents [OSTI]

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan; Beers, William Winder; Toth, Katalin; Balazs, Laszlo D.

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  9. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations

  10. Time phased alternate blending of feed coals for liquefaction

    DOE Patents [OSTI]

    Schweigharett, Frank; Hoover, David S.; Garg, Diwaker

    1985-01-01

    The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

  11. Photonic polymer-blend structures and method for making

    DOE Patents [OSTI]

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  12. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  13. NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2012-01-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  14. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  15. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

  16. Macrophase Separation of Blends of Diblock Copolymers in Thin Films

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Macrophase Separation of Blends of Diblock Copolymers in Thin Films Citation Details In-Document Search Title: Macrophase Separation of Blends of Diblock Copolymers in Thin Films Authors: Williamson, Lance D. ; Nealey, Paul F. [1] + Show Author Affiliations (UC) Publication Date: 2015-08-26 OSTI Identifier: 1203744 Resource Type: Journal Article Resource Relation: Journal Name: Macromolecules; Journal Volume: 48; Journal Issue: (12) ; 06, 2015 Research

  17. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  18. A Novel Method of Injection Molding Titanium Components

    SciTech Connect (OSTI)

    Nyberg, Eric A.; Simmons, Kevin L.; Weil, K. Scott

    2005-05-01

    We have developed a unique blend of powder injection molding feedstock materials in which only a small volume fraction of binder (< 8%) is required; the remainder of the mixture consists of the metal powder and a solid aromatic solvent. Because of the nature of the decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process.

  19. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect (OSTI)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut fr Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  20. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  1. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  2. Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors

    SciTech Connect (OSTI)

    Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M.

    2014-11-03

    Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

  3. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  4. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema (OSTI)

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2010-01-08

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  5. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines June 22, 2015 - ...

  6. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry

    SciTech Connect (OSTI)

    Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape

    2005-12-01

    High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

  7. Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels

    Broader source: Energy.gov [DOE]

    Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

  8. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect (OSTI)

    Labbe, D.

    2009-11-15

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  9. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  10. U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants

    SciTech Connect (OSTI)

    Leich, D., LLNL

    1998-07-27

    The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

  11. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOE Patents [OSTI]

    Skotheim, Terje

    1984-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  12. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOE Patents [OSTI]

    Skotheim, T.

    A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  13. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005

  14. Major Components of Lending

    Broader source: Energy.gov [DOE]

    The major components of a clean energy financing program are described below, centered around the characteristics and sources of capital.

  15. Reactor component automatic grapple

    DOE Patents [OSTI]

    Greenaway, Paul R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  16. Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Mixtures of ethanol, gasoline, and higher alcohols were evaluated to determine if they offer superior performance to ethanol/gasoline blends in meeting the Renewal Fuels Standard II. PDF icon deer12_ickes.pdf More Documents & Publications Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Impact of ethanol and butanol as oxygenates on SIDI engine efficiency and emissions using steady-state and transient test procedures Drop In Fuels: Where the Road Leads

  17. High-Octane Mid-Level Ethanol Blend Market Assessment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High-Octane Mid-Level Ethanol Blend Market Assessment Caley Johnson, Emily Newes, Aaron Brooker, and Robert McCormick National Renewable Energy Laboratory Steve Peterson Lexidyne, LLC Paul Leiby, Rocio Uria Martinez, and Gbadebo Oladosu Oak Ridge National Laboratory Maxwell L. Brown Colorado School of Mines Technical Report NREL/TP-5400-63698 December 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance

  18. Effect of Biodiesel Blends on NOx Emissions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_pedersen.pdf More Documents & Publications Key Benefits in Using Ethanol-Diesel Blends Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Lean NOx Trap Formulation Effect on Performance with In-Cylinder Regeneration

  19. Review Of Rheology Models For Hanford Waste Blending

    SciTech Connect (OSTI)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 μm diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 μm in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation experience). As experience is gained, the use of blending models that have been validated with real waste may become useful to predict future blends; Obtain more data measurements to check the validity of unknown coefficients for a given blending equation.

  20. Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends

    SciTech Connect (OSTI)

    Szybist, James P; Youngquist, Adam D; Wagner, Robert M; Moore, Wayne; Foster, Matthew; Confer, Keith

    2010-01-01

    Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for gasoline, which is knock-prone at these high CR, in order to maintain compatibility. By using EIVC and LIVC strategies, good efficiency is maintained with gasoline, but power is reduced by about 34%.

  1. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobs, Benjamin W.; Ayres, Virginia M.; Petkov, Mihail P.; Halpern, Joshua B.; He, Maoqi; Baczewski, Andrew D.; McElroy, Kaylee; Crimp, Martin A.; Zhang, Jiaming; Shaw, Harry C.

    2016-02-01

    Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  2. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines June 22, 2015 - 4:39pm Addthis The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy's Bioenergy Technologies Office has released a Request for Information (RFI) seeking stakeholder input on the following topics related to the use of advanced biofuel blends in small engines:

  3. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IMPACT OF LOW OCTANE HYDROCARBON BLENDING STREAMS ON "E85" ENGINE OPTIMIZATION Jim Szybist ... Year ETHANOL IS CURRENTLY THE LARGEST VOLUME BIOFUEL, VERY IMPORTANT FOR EISA COMPLIANCE * ...

  4. Determining the Impact of MSW as a Feedstock Blending Agent Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Oral Presentation for 11th Annual World Congress on Industrial Biotechnology. May 12-15, ... from optimal blends and process on fermentation to determine any negative (or ...

  5. Effects of intermediate ethanol blends on legacy vehicles and small non-road engines, report 1

    SciTech Connect (OSTI)

    West, Brian; Knoll, Keith; Clark, Wendy; Graves, Ronald; Orban, John; Przesmitzki, Steve; Theiss, Timothy

    2008-10-01

    Report on the test program to assess the viability of using intermediate ethanol blends as a contributor to meeting national goals in the use of renewable fuels.

  6. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect (OSTI)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  7. Hydrogen effects on materials for CNG/H2 blends.

    SciTech Connect (OSTI)

    Farese, David; Keller, Jay O.; Somerday, Brian P.

    2010-09-01

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  8. Table A1: Tank Manufacturer Compatibility with Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    A1: Tank Manufacturer Compatibility with Ethanol Blends E10 E100 E10 E100 Manufacturer ✔ ✔ Continued from below FIBERGLASS a Highland Tank ✔ ✔ Containment Solutions ✔ ✔ J.L. Houston Co. ✔ ✔ Owens Corning (single wall 1965-1994) ✔ ✘ Kennedy Tank and Manufacturing Co., Inc. ✔ ✔ Owens Corning (double wall 1965- July 1, 1990) ✔ ✘ Lancaster Tanks and Steel Products ✔ ✔ Owens Corning (double wall July 2, 1990-December 31, 1994) ✔ ✔ Lannon Tank Corporation ✔ ✔

  9. Table B1. Pipe Manufacturer Compatibility with Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    B1. Pipe Manufacturer Compatibility with Ethanol Blends Manufacturer Product Model Ethanol Compatibility Piping-All Companies have UL 971 listing for E100 Advantage Earth Products Piping 1.5", 2", 3", 4" E0-E100 Brugg Piping FLEXWELL-HL, SECON-X, NITROFLEX, LPG E0-E100 Franklin Fueling Piping Franklin has third-party certified piping compatible with up to E85. Contact manufacturer for specific part numbers. E0-E85 OPW Piping FlexWorks, KPS, Pisces (discontinued) E0-E100 NOV

  10. Montena Components | Open Energy Information

    Open Energy Info (EERE)

    Components Jump to: navigation, search Name: Montena Components Place: Rossens, Switzerland Zip: CH 1728 Product: Montena Components is a manufacturer of ultracapacitors and...

  11. Integrating Program Component Executables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Program Component Executables on Distributed Memory Architectures via MPH Chris Ding and Yun He Computational Research Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, USA chqding@lbl.gov, yhe@lbl.gov Abstract A growing trend in developing large and complex ap- plications on today's Teraflop computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the climate

  12. JV Task 112-Optimal Ethanol Blend-Level Investigation

    SciTech Connect (OSTI)

    Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

    2008-01-31

    Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

  13. Properties and hydration of blended cements with steelmaking slag

    SciTech Connect (OSTI)

    Kourounis, S.; Tsivilis, S. . E-mail: stsiv@central.ntua.gr; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-06-15

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C{sub 2}S and its low content in calcium silicates.

  14. The Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    none,

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the United States today and the potential impact of ethanol on gasoline prices at higher blending concentrations (10%, 15% and 20% of the total U.S. gasoline consumption).

  15. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito

    2008-05-15

    Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

  16. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-09-01

    This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

  17. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends

    SciTech Connect (OSTI)

    2013-09-17

    This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

  18. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009

    Broader source: Energy.gov [DOE]

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009

  19. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non?Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, Keith; West, Brian H; Clark, Wendy; Graves, Ronald L; Orban, John; Przesmitzki, Steve; Theiss, Timothy J

    2009-02-01

    In summer 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20--gasoline blended with 15 and 20% ethanol--on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This first report provides the results available to date from the first stages of a much larger overall test program. Results from additional projects that are currently underway or in the planning stages are not included in this first report. The purpose of this initial study was to quickly investigate the effects of adding up to 20% ethanol to gasoline on the following: (1) Regulated tailpipe emissions for 13 popular late model vehicles on a drive cycle similar to real-world driving and 28 small non-road engines (SNREs) under certification or typical in use procedures. (2) Exhaust and catalyst temperatures of the same vehicles under more severe conditions. (3) Temperature of key engine components of the same SNREs under certification or typical in-use conditions. (4) Observable operational issues with either the vehicles or SNREs during the course of testing. As discussed in the concluding section of this report, a wide range of additional studies are underway or planned to consider the effects of intermediate ethanol blends on materials, emissions, durability, and driveability of vehicles, as well as impacts on a wider range of nonautomotive engines, including marine applications, snowmobiles, and motorcycles. Section 1 (Introduction) gives background on the test program and describes collaborations with industry and agencies to date. Section 2 (Experimental Setup) provides details concerning test fuels, vehicle and SNRE selection, and test methods used to conduct the studies presented in this report. Section 3 (Results and Discussion) summarizes the vehicle and SNRE studies and presents data from testing completed to date. Section 4 (Next Steps) describes planned future activities. The appendixes provide test procedure details, vehicle and SNRE emissions standards, analysis details, and additional data and tables from vehicle and SNRE tests.

  20. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect (OSTI)

    Toulson, Dr. Elisa; Allen, Casey M; Miller, Dennis J; McFarlane, Joanna; Schock, Harold; Lee, Tonghun

    2011-01-01

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  1. Understanding how processing additives tune nanoscale morphology of high efficiency organic photovoltaic blends: From casting solution to spun-cast thin film

    SciTech Connect (OSTI)

    Shao, Ming [ORNL; Keum, Jong Kahk [ORNL; Kumar, Rajeev [ORNL; Chen, Jihua [ORNL; Browning, Jim [ORNL; Chen, Wei [Argonne National Laboratory (ANL); Jianhui, Hou [Chinese Academy of Sciences (CAS), Institute of Chemistry; Do, Changwoo [ORNL; Littrell, Ken [ORNL; Sanjib, Das [University of Tennessee, Knoxville (UTK); Rondinone, Adam Justin [ORNL; Geohegan, David B [ORNL; Sumpter, Bobby G [ORNL; Xiao, Kai [ORNL

    2014-01-01

    Adding a small amount of a processing additive to the casting solution of organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, we investigate the effects of the processing additive diiodooctane (DIO) on the morphology of OPV blend of PBDTTT-C-T and fullerene derivative, PC71BM in a casting solution and in spun-cast thin films by using neutron/x-ray scattering, neutron reflectometry and other characterization techniques. The results reveal that DIO has no effect on the solution structures of PBDTTT-C-T and PC71BM. In the spun-cast films, however, DIO is found to promote significantly the molecular ordering of PBDTTT-C-T and PC71BM, and phase segregation, resulting in the improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation as a solvent and due to evaporationg during the film formation. Such information may enable improved rational design of ternary blends to more consistently achieve improved PCE for OPVs.

  2. Ceramic component for electrodes

    DOE Patents [OSTI]

    Marchant, David D.; Bates, J. Lambert

    1980-01-01

    A ceramic component suitable for preparing MHD generator electrodes having the compositional formula: Y.sub.x (Mg.sub.y Cr.sub.z).sub.w Al.sub.(1-w) O.sub.3 where x=0.9 to 1.05, y=0.02 to 0.2, z=0.8 to 1.05 and w=1.0 to 0.5. The component is resistant to the formation of hydration products in an MHD environment, has good electrical conductivity and exhibits a lower electrochemical corrosion rate than do comparable compositions of lanthanum chromite.

  3. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  4. Identification and quantification of organic chemicals in supplemental fuel blends

    SciTech Connect (OSTI)

    Salter, F.

    1996-12-31

    Continental Cement Company, Inc. (Continental) burns waste fuels to supplement coal in firing the kiln. It is to be expected that federal and state agencies want an accounting of the chemicals burned. As rules and regulations become more plentiful, a company such as Continental must demonstrate that it has made a reasonable attempt to identify and quantify many specific organic compounds. The chemicals on the SARA 313 list can change frequently. Also the number and concentrations of compounds that can disqualify a material from consideration as a supplemental fuel at Continental continues to change. A quick and reliable method of identifying and quantifying organics in waste fuel blends is therefore crucial. Using a Hewlett-Packard 5972 GC/MS system Continental has developed a method of generating values for the total weight of compounds burned. A similar procedure is used to verify that waste streams meet Continental`s acceptance criteria.

  5. Influence of Substrate on Crystallization in Polythiophene/fullerene Blends

    SciTech Connect (OSTI)

    C He; D Germack; J Kline; D Delongchamp; D Fischer; C Snyder; M Toney; J Kushmerick; L Richter

    2011-12-31

    The nanoscale morphology of the active layer in organic, bulk heterojunction (BHJ) solar cells is crucial to device performance. Often a combination of casting conditions and post deposition thermal treatment is used to optimize the morphology. In general, the development of microscopic crystals is deleterious, as the exciton diffusion length is {approx}10 nm. We find that the microscopic crystallization behavior in polythiophene/fullerene blends is strongly influenced by the substrate on which the BHJ is cast. With a silicon oxide substrate, the crystal nucleation density is high and significant crystallization occurs at a temperature of 140 C. On more hydrophobic substrates, significantly higher temperatures are required for observable crystallization. This difference is attributed to the interfacial segregation of the PCBM, controlled by the substrate surface energy. The substrate dependence of crystallization has significant implications on the fullerene crystal growth mechanisms and practical implications for device studies.

  6. Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.

    SciTech Connect (OSTI)

    Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

    2009-11-01

    The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

  7. A charge carrier transport model for donor-acceptor blend layers

    SciTech Connect (OSTI)

    Fischer, Janine Widmer, Johannes; Koerner, Christian; Vandewal, Koen; Leo, Karl; Kleemann, Hans; Tress, Wolfgang; Riede, Moritz

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for the characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t}?=?0.14?eV, N{sub t}?=?1.2??10{sup 18?}cm{sup ?3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.

  8. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  9. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  10. Injection molded component

    DOE Patents [OSTI]

    James, Allister W; Arrell, Douglas J

    2014-09-30

    An intermediate component includes a first wall member, a leachable material layer, and a precursor wall member. The first wall member has an outer surface and first connecting structure. The leachable material layer is provided on the first wall member outer surface. The precursor wall member is formed adjacent to the leachable material layer from a metal powder mixed with a binder material, and includes second connecting structure.

  11. Energetic component treatability study

    SciTech Connect (OSTI)

    Gildea, P.D.; Brandon, S.L.; Brown, B.G. [and others

    1997-11-01

    The effectiveness of three environmentally sound processes for small energetic component disposal was examined experimentally in this study. The three destruction methods, batch reactor supercritical water oxidation, sodium hydroxide base hydrolysis and calcium carbonate cookoff were selected based on their potential for producing a clean solid residue and minimum release of toxic gases after component detonation. The explosive hazard was destroyed by all three processes. Batch supercritical water oxidation destroyed both the energetics and organics. Further development is desired to optimize process parameters. Sodium hydroxide base hydrolysis and calcium carbonate cookoff results indicated the potential for scrubbing gaseous detonation products. Further study and testing are needed to quantify the effectiveness of these later two processes for full-scale munition destruction. The preliminary experiments completed in this study have demonstrated the promise of these three processes as environmentally sound technologies for energetic component destruction. Continuation of these experimental programs is strongly recommended to optimize batch supercritical water oxidation processing, and to fully develop the sodium hydroxide base hydrolysis and calcium carbonate cookoff technologies.

  12. Surface mount component jig

    DOE Patents [OSTI]

    Kronberg, James W.

    1990-08-07

    A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.

  13. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  14. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  15. Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach

    SciTech Connect (OSTI)

    Zhang, Lei; Kong, Song-Charng

    2010-11-15

    Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

  16. Polymer blend containing a modified dense star polymer or dendrimer and a matrix polymer

    DOE Patents [OSTI]

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents in forming a polymer blend.

  17. Polymer blend containing a modified dense star polymer or dendrimer and a matrix polymer

    DOE Patents [OSTI]

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents in forming a polymer blend.

  18. The effect of block copolymer on the phase behavior of a polymer blend

    SciTech Connect (OSTI)

    Sung, L.; Jackson, C.L.; Hess, D.

    1995-12-31

    The effect of an interfacial modifier on the phase behavior of a blend has been investigated using time-resolved fight scattering and small angle neutron scattering techniques. A low molecular weight binary blend of deuterated polystyrene/polybutadiene (PSD/PB) with PSD-PB diblock copolymer as the added interfacial modifier was studied. We observed that the critical temperature of the blend decreases with increasing copolymer content and the kinetics of the phase separation (via spinodal decomposition) slows down in the presence of the copolymer. The transition from early to late stage spinodal decomposition in a near critical mixture of the binary blend was analyzed and compared to available theories. In addition, transmission electron microscopy and optical microscopy studies were used to examine the morphology of the system under various temperature quench conditions.

  19. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  20. Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about performance of biofuels and biofuel blends.

  1. Evaluation of Ethanol Blends for PHEVs using Simulation andEngine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop Evaluation of Ethanol ... Program Annual Merit Review and Peer Evaluation PDF icon vss049shidore2011o.pdf More ...

  2. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  3. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Moyer, Bruce A

    2012-12-01

    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  4. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  5. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  6. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1

    SciTech Connect (OSTI)

    Knoll, Keith; West, Brian; Clark, Wendy; Graves, Ronald; Orban, John; Przesmitzki, Steve; Theiss, Timothy

    2009-02-01

    This report (February 2009) is an update of the original version, which was published in October 2008. This report is the result of the U.S. Department of Energy's test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels.

  7. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and

  8. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay Keller of Sandia National Laboratories at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 PDF icon cng_h2_workshop_2_keller.pdf More Documents & Publications US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Hydrogen Release Behavior Overview of HyRAM (Hydrogen

  9. Self-assembly of mixtures of nanorods in binary, phase-separating blends

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect assembly of mixtures of nanorods in binary, phase-separating blends Citation Details In-Document Search Title: Self-assembly of mixtures of nanorods in binary, phase-separating blends Aligned nanorod inclusions have the potential to significantly improve both the photovoltaic and mechanical properties of polymeric materials. Establishing facile methods for driving or "corralling" the nanorods to self-assemble into such aligned morphologies could

  10. A New Generation of Building Insulation by Foaming Polymer Blend Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with CO2 | Department of Energy A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2 A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2 ISTN extruded polystyrene (XPS) board produced in factory demonstration ISTN extruded polystyrene (XPS) board produced in factory demonstration Lead Performer: Industrial Science & Technology Network - Lancaster, PA DOE Funding: $400,000 Cost Share: $80,000 Project Term: 1/1/2014 -

  11. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models for salt batch mixing and transfer pump operations. This major scientific advance in mixing technology resulted in multi-million dollar cost savings to SRR. New techniques were developed for both experiment and analysis to complete this research. Supporting this success, research findings are summarized in the Conclusions section of this report, and technical recommendations for design and operation are included in this section of the report.

  12. Sprayed skin turbine component

    DOE Patents [OSTI]

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  13. Resistance of fly ash-Portland cement blends to thermal shock

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore » of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  14. Resistance of fly ash-Portland cement blends to thermal shock

    SciTech Connect (OSTI)

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydration of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators

  15. Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase Windows

    SciTech Connect (OSTI)

    M Tureau; L Rong; B Hsiao; T Epps

    2011-12-31

    The phase behavior of poly(isoprene-b-styrene-b-methyl methacrylate) (ISM) copolymers near the styrene-rich network phase window was examined through the use of neat triblock copolymers and copolymer/homopolymer blends. Both end-block and middle-block blending protocols were employed using poly(isoprene) (PI), poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) homopolymers. Blended specimens exhibited phase transformations to well-ordered nanostructures (at homopolymer loadings up to 26 vol % of the total blend volume). Morphological consistency between neat and blended specimens was established at various locations in the ISM phase space. Copolymer/homopolymer blending permitted the refinement of lamellar, hexagonally packed cylinder, and disordered melt phase boundaries as well as the identification of double gyroid (Q{sup 230}), alternating gyroid (Q{sup 214}), and orthorhombic (O{sup 70}) network regimes. Additionally, the experimental phase diagram exhibited similar trends to those found in a theoretical ABC triblock copolymer phase diagram with symmetric interactions and statistical segments lengths generated by Tyler et al.

  16. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect (OSTI)

    Garca-Mat, M.; De la Torre, A.G.; Len-Reina, L.; Aranda, M.A.G.; CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona ; Santacruz, I.

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 2 and 72 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  17. High Performance Laminates Using Blended Urethane Resin Chemistry

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Jones, George G.; Walsh, Sean P.; Wood, Geoff M.

    2005-03-24

    Hybrid blended resin systems have the potential to provide excellent impact performance in structured laminates. Although mostly under development for sheet molding compound (SMC) applications using glass fiber with high levels of fillers, the resins have been found to be useful in liquid molding applications with other high-performance fiber systems. A research pro-gram to develop the molding capability, property data, and capability to model the composites using newly de-veloped codes and modeling techniques was initiated through the Department of Energys Office of Freedom-Car and Vehicle Technologies. Results have shown ex-cellent adhesion to different fiber systems as evidenced by mechanical properties, and a capability to develop very good impact results thereby allowing thin panel structures to be developed. Comparison to predicted me-chanical properties has been achieved and mechanisms for the development of observed high energy absorption under impact loadings are being investigated. Scale ef-fects based on panel thickness, fiber type loading, and position in laminate are being investigated. DOE pro-gram sponsorship was provided by Dr. Sidney Diamond, Technical Area Development Manager for High-Strength Weight-Reduction Materials.

  18. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect (OSTI)

    Krishna, C.R.

    2010-10-01

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

  19. COMPARISON OF EXPERIMENTAL RESULTS TO CFD MODELS FOR BLENDING IN A TANK USING DUAL OPPOSING JETS

    SciTech Connect (OSTI)

    Leishear, R.

    2011-08-07

    Research has been completed in a pilot scale, eight foot diameter tank to investigate blending, using a pump with dual opposing jets. The jets re-circulate fluids in the tank to promote blending when fluids are added to the tank. Different jet diameters and different horizontal and vertical orientations of the jets were investigated. In all, eighty five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of several miles of two inch diameter, serpentine, vertical cooling coils below the liquid surface for a full scale, 1.3 million gallon, liquid radioactive waste storage tank. Two types of tests were performed. One type of test used a tracer fluid, which was homogeneously blended into solution. Data were statistically evaluated to determine blending times for solutions of different density and viscosity, and the blending times were successfully compared to computational fluid dynamics (CFD) models. The other type of test blended solutions of different viscosity. For example, in one test a half tank of water was added to a half tank of a more viscous, concentrated salt solution. In this case, the fluid mechanics of the blending process was noted to significantly change due to stratification of fluids. CFD models for stratification were not investigated. This paper is the fourth in a series of papers resulting from this research (Leishear, et.al. [1- 4]), and this paper documents final test results, statistical analysis of the data, a comparison of experimental results to CFD models, and scale-up of the results to a full scale tank.

  20. Cooling system for electronic components

    DOE Patents [OSTI]

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  1. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  2. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  3. Synthesis of Methyl Methacrylate from Coal-Derived Syngas

    SciTech Connect (OSTI)

    Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

    1998-04-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

  4. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect (OSTI)

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  5. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  6. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2014-03-03

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

  7. Multi-tipped optical component

    DOE Patents [OSTI]

    D'Urso, Brian R.; Simpson, John T.

    2010-04-13

    An optical component has a plurality of parallel noncontiguous optical conduits of at least one protrusive phase material embedded in a recessive phase material that acts as a support structure. The optical conduits extend from a proximal surface to a distal surface of the optical component. The distal surface has a plurality of spaced apart surface features of the protrusive phase material. Each independent optical conduits act as waveguides for a wavelength or range of wavelengths. The optical component can be formed such that the protruding surface features at the distal end of the component form an ordered array. An optical instrument can include the optical component in conjunction with a light source for illuminating a sample and a detector in optical communication optical component via the optical conduits.

  8. Multi-component assembly casting

    DOE Patents [OSTI]

    James, Allister W.

    2015-10-13

    Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.

  9. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect (OSTI)

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  10. Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tetrahedral Shaped Nanocrystals with Emission Tunable to Near-Infrared Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral Shaped Nanocrystals with Emission Tunable to Near-Infrared Authors: Deng, Z., Schulz, O., Lin, S., Ding, B., Liu, X., Wei, X., Ros, R., Liu, Y., Yan, H., and Francis, M. Title: Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral Shaped Nanocrystals with Emission Tunable to Near-Infrared Source: Journal of the American

  11. The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization | Department of Energy The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization PDF icon deer12_szybist.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Gasoline-Like Fuel Effects on Advanced

  12. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Technical Report NREL/TP-5600-51995 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Blending Hydrogen

  13. Derived Annual Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    74-1988 For Methodology Concerning the Derived Estimates Total Consumption of Offsite-Produced Energy for Heat and Power by Industry Group, 1974-1988 Total Energy *** Electricity...

  14. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  15. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B.

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  16. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  17. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    SciTech Connect (OSTI)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-06-05

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.

  18. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOE Patents [OSTI]

    Skotheim, T.

    1984-09-28

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  19. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOE Patents [OSTI]

    Skotheim, Terje

    1986-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  20. Apparatus for remotely handling components

    DOE Patents [OSTI]

    Szkrybalo, Gregory A.; Griffin, Donald L.

    1994-01-01

    The inventive apparatus for remotely handling bar-like components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of the first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components.

  1. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    SciTech Connect (OSTI)

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

  2. Ceramic component for MHD electrode

    DOE Patents [OSTI]

    Marchant, David D.; Bates, Junior L.

    1981-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf.sub.x In.sub.y A.sub.z O.sub.2 where x=0.1 to 0.4, y=0.3 to 0.6, z=0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  3. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect (OSTI)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  4. Application Components | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Apply » Application Components Application Components Application available at www.zintellect.com/Posting/Details/1997 A complete application consists of the following documents. Use this checklist to keep track of the required documents. Curriculum Vitae (CV) CV must be uploaded by the applicant as part of the application and must include the following: Applicant Information. Education History. List all institutions from which you received or expect to receive a degree beginning with

  5. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  6. Pushing schedule derivation method

    SciTech Connect (OSTI)

    Henriquez, B.

    1996-12-31

    The development of a Pushing Schedule Derivation Method has allowed the company to sustain the maximum production rate at CSH`s Coke Oven Battery, in spite of having single set oven machinery with a high failure index as well as a heat top tendency. The stated method provides for scheduled downtime of up to two hours for machinery maintenance purposes, periods of empty ovens for decarbonization and production loss recovery capability, while observing lower limits and uniformity of coking time.

  7. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

  8. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  9. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

    2009-02-01

    Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

  10. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  11. Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

    2010-06-01

    Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

  12. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  13. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  14. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  15. SimwYpes(tm) and RonJohn Blend | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SimwYpes(tm) and RonJohn ... SimwYpes(tm) and RonJohn Blend The mp4 video format is not supported by this browser. Download video Captions: On Time: 2:20 min. Created to remove residual amounts of beryllium oxide and beryllium particulate from solid surfaces without leaving a residue, SimwYpes are ideal for multiple uses. Quick, gentle, but effective. The inventors of RonJohn solvent talk about its invention and uses

  16. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  17. Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373

    SciTech Connect (OSTI)

    Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

  18. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  19. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  20. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    SciTech Connect (OSTI)

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S.; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R.; Simmons, Blake A.; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  1. Self-degradable Slag/Class F Fly Ash-Blend Cements

    SciTech Connect (OSTI)

    Sugama, T.; Warren, J.; Butcher, T.; Lance Brothers; Bour, D.

    2011-03-01

    Self-degradable slag/Class F fly ash blend pozzolana cements were formulated, assuming that they might serve well as alternative temporary fracture sealers in Enhanced Geothermal System (EGS) wells operating at temperatures of {ge} 200 C. Two candidate formulas were screened based upon material criteria including an initial setting time {ge} 60 min at 85 C, compressive strength {ge} 2000 psi for a 200 C autoclaved specimen, and the extent of self-degradation of cement heated at {ge} 200 C for it was contacted with water. The first screened dry mix formula consisted of 76.5 wt% slag-19.0 wt% Class F fly ash-3.8 wt% sodium silicate as alkali activator, and 0.7 wt% carboxymethyl cellulose (CMC) as the self-degradation promoting additive, and second formula comprised of 57.3 wt% slag, 38.2 wt% Class F fly ash, 3.8 wt% sodium silicate, and 0.7 wt% CMC. After mixing with water and autoclaving it at 200 C, the aluminum-substituted 1.1 nm tobermorite crystal phase was identified as hydrothermal reaction product responsible for the development of a compressive strength of 5983 psi. The 200 C-autoclaved cement made with the latter formula had the combined phases of tobermorite as its major reaction product and amorphous geopolymer as its minor one providing a compressive strength of 5271 psi. Sodium hydroxide derived from the hydrolysis of sodium silicate activator not only initiated the pozzolanic reaction of slag and fly ash, but also played an important role in generating in-situ exothermic heat that significantly contributed to promoting self-degradation of cementitious sealers. The source of this exothermic heat was the interactions between sodium hydroxide, and gaseous CO{sub 2} and CH{sub 3}COOH by-products generated from thermal decomposition of CMC at {ge} 200 C in an aqueous medium. Thus, the magnitude of this self-degradation depended on the exothermic temperature evolved in the sealer; a higher temperature led to a sever disintegration of sealer. The exothermic temperature was controlled by the extent of thermal decomposition of CMC, demonstrating that CMC decomposed at higher temperature emitted more gaseous reactants. Hence, such large emission enhanced the evolution of in-situ exothermic heat. In contrast, the excessive formation of geopolymer phase due to more incorporation of Class F fly ash into this cementitious system affected its ability to self-degrade, reflecting that there was no self-degradation. The geopolymer was formed by hydrothermal reactions between sodium hydroxide from sodium silicate and mullite in Class F fly ash. Thus, the major reason why geopolymer-based cementitiuos sealers did not degrade after heated sealers came in contact with water was their lack of free sodium hydroxide.

  2. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  3. Component Modeling Approach Software Tool

    SciTech Connect (OSTI)

    2010-08-23

    The Component Modeling Approach Software Tool (CMAST) establishes a set of performance libraries of approved components (frames, glass, and spacer) which can be accessed for configuring fenestration products for a project, and btaining a U-factor, Solar Heat Gain Coefficient (SHGC), and Visible Transmittance (VT) rating for those products, which can then be reflected in a CMA Label Certificate for code compliance. CMAST is web-based as well as client-based. The completed CMA program and software tool will be useful in several ways for a vast array of stakeholders in the industry: Generating performance ratings for bidding projects Ascertaining credible and accurate performance data Obtaining third party certification of overall product performance for code compliance

  4. Component Modeling Approach Software Tool

    Energy Science and Technology Software Center (OSTI)

    2010-08-23

    The Component Modeling Approach Software Tool (CMAST) establishes a set of performance libraries of approved components (frames, glass, and spacer) which can be accessed for configuring fenestration products for a project, and btaining a U-factor, Solar Heat Gain Coefficient (SHGC), and Visible Transmittance (VT) rating for those products, which can then be reflected in a CMA Label Certificate for code compliance. CMAST is web-based as well as client-based. The completed CMA program and software toolmore » will be useful in several ways for a vast array of stakeholders in the industry: Generating performance ratings for bidding projects Ascertaining credible and accurate performance data Obtaining third party certification of overall product performance for code compliance« less

  5. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w Ether Imports - Motor Gasoline Blend. Components, RBOB w Alcohol Imports - Motor Gasoline Blend. Components, ...

  6. Algae Derived Biofuel

    SciTech Connect (OSTI)

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  7. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    SciTech Connect (OSTI)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing at realistic conditions (e.g., elevated pressures) and differential conversions (to measure true kinetics, to avoid deactivation, and to avoid condensable concentrations of products in the outlet gas).

  8. Laser ultrasonic multi-component imaging

    DOE Patents [OSTI]

    Williams, Thomas K.; Telschow, Kenneth

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  9. Fueling Components Testing and Certification | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Components Testing and Certification Fueling Components Testing and Certification These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF ...

  10. Rotor component displacement measurement system

    DOE Patents [OSTI]

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  11. Three-component gyrotropic metamaterial

    SciTech Connect (OSTI)

    Tralle, Igor, E-mail: tralle@ur.edu.pl; Zi?ba, Pawe?; Pa?ko, Wioletta [Faculty of Mathematics and Natural Sciences, Theoretical Physics Department, University of Rzeszw, Pigonia 1, 35-310 Rzeszw (Poland)

    2014-06-21

    All of the proposed ever since designs of metamaterials are characterized by ever-increasing sophistication of fabrication methods. Here, a comparatively simple recipe for the fabrication of a metamaterial, which is both gyrotropic and of the simultaneously negative permittivity and permeability, is proposed. The idea is to make a mixture of three ingredients, where one of them would be responsible for the negativity of ?, while the other two would be responsible for the negativity of ?. The first component of the mixture is the swarm of single-domain ferromagnetic nano-particles, immersed in a mixture of other two, silver and mercury cadmium telluride. By carrying out the computer simulations, the domains of gyromagnetic metamaterial exist, relative to all parameters characterizing the model, that is, the temperature, external magnetic field, parameters of nano-particles, and the fraction of cadmium in Hg{sub 1?x}Cd{sub x}Te-compound as well as relative concentrations of the mixture components are established.

  12. Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet

    SciTech Connect (OSTI)

    Rich, Bechtold; Thomas, John F; Huff, Shean P; Szybist, James P; West, Brian H; Theiss, Timothy J; Timbario, Tom; Goodman, Marc

    2007-08-01

    The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

  13. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  14. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  15. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect (OSTI)

    Boehm, H.; Braun-Unkhoff, M.

    2008-04-15

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased. (author)

  16. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

  17. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; Hartman, Alan; Tupta, Mary Ann; Baczewski, Andrew David; Crimp, Martin A.; Halpern, Joshua B.; He, Maoqi; Shaw, Harry C.

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  18. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

  19. Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Nuclear Engineering Division

    2005-04-29

    Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

  20. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

  1. The Use of Triangular-Shaped PV Arrays to Better Blend into Historical Structures

    Broader source: Energy.gov [DOE]

    When considering the installation of a solar PV array on a designated historical structure, placement of each solar panel requires extra attention to aesthetic considerations. If the solar array cannot be installed behind the structure or “hidden” on a roof plane that is not visible from the public street or sidewalk, it can sometimes be installed as an architectural feature that blends into the historical structure. One way to do this is to utilize triangular-shaped PV panels that conform with the building’s roof lines.

  2. Multi-tipped optical component

    DOE Patents [OSTI]

    D'urso, Brian R; Simpson, John T

    2010-04-13

    An optical component includes a support structure having a first composition including a recessive phase material and a second composition including protrusive phase material, the protrusive phase material defining a plurality of spaced apart surface features, each of the surface features comprising a distal end opposite the support structure, integrated with the support structure, and protruding distally from a surface of the support structure, each of the surface features reducing in cross sectional area distally from the support structure to provide a lowest cross sectional area at the distal end, the recessive phase material supporting and separating the surface features and defining a contiguous recessed surface area between the surface features, at least two of the protrusive features being characterized as optical waveguides.

  3. Properties, Behavior and Material Compatibility of Hydrogen, Natural Gas and Blends — Materials Testing and Design Requirements for Hydrogen Components and Tanks

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  4. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect (OSTI)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jrgen

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the CSH and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the CSH. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the CSH and a higher coarse porosity. -- Highlights: The reaction of quartz powder at 80 C strongly enhances the compressive strength. Almost no strength increase of fly ash blended OPC at 80 C was found after 2 days. Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. Temperature dependent change of the system was simulated by thermodynamic modelling. Destabilisation of ettringite above 50 C correlates with sulphate content of CSH.

  5. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    SciTech Connect (OSTI)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  6. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  7. Derived Annual Estimates of Manufacturing Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  8. On the electric micro-field in plasmas: statistics of the spatial derivatives

    SciTech Connect (OSTI)

    Guerricha, S.; Chihi, S.; Meftah, M. T.

    2008-10-22

    Using the Monte-Carlo simulation we calculated for some specific plasmas, the distribution functions of the derivatives of the micro-field components. Some of them are compared to those calculated earlier by other authors.

  9. An In-situ X-ray Scattering Study During Uniaxial Stretching of Ionic Liquid/Ultra-high Molecular Weight Polyethylene Blends

    SciTech Connect (OSTI)

    X Li; Y Mao; H Ma; F Zuo; B Hsiao; B Chu

    2011-12-31

    An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at high temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.

  10. Battery components employing a silicate binder

    DOE Patents [OSTI]

    Delnick, Frank M.; Reinhardt, Frederick W.; Odinek, Judy G.

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  11. A Plan for Modularization of Tritium Components

    Office of Environmental Management (EM)

    Tritium Components Randy Davis Davis Consultants M-TRT-H-00089 Savannah River Nuclear Solutions, LLC April 22, 2014 M-TRT-H-00089 Current Approach * All "tritium wetted components" ...

  12. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Weapons Components Successfully Dismantled | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing ...

  13. Manufacturing complex silica aerogel target components

    SciTech Connect (OSTI)

    Defriend Obrey, Kimberly Ann [Los Alamos National Laboratory; Day, Robert D [Los Alamos National Laboratory; Espinoza, Brent F [Los Alamos National Laboratory; Hatch, Doug [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Feng, Shihai [Los Alamos National Laboratory

    2008-01-01

    Aerogel is a material used in numerous components in High Energy Density Physics targets. In the past these components were molded into the proper shapes. Artifacts left in the parts from the molding process, such as contour irregularities from shrinkage and density gradients caused by the skin, have caused LANL to pursue machining as a way to make the components.

  14. Clean Diesel Component Improvement Program

    SciTech Connect (OSTI)

    2005-06-30

    The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.

  15. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

  16. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect (OSTI)

    Pihl, Josh A; Toops, Todd J; Fisher, Galen; West, Brian H

    2014-01-01

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  17. Methanol/ethanol/gasoline blend-fuels demonstration with stratified-charge-engine vehicles: Consultant report. Final report

    SciTech Connect (OSTI)

    Pefley, R.; Adelman, H.; Suga, T.

    1980-03-01

    Four 1978 Honda CVCC vehicles have been in regular use by California Energy Commission staff in Sacramento for 12 months. Three of the unmodified vehicles were fueled with alcohol/gasoline blends (5% methanol, 10% methanol, and 10% ethanol) with the fourth remaining on gasoline as a control. The operators did not know which fuels were in the vehicles. At 90-day intervals the cars were returned to the Univerity of Santa Clara for servicing and for emissions and fuel economy testing in accordance with the Federal Test Procedures. The demonstration and testing have established the following: (1) the tested blends cause no significant degradation in exhaust emissions, fuel economy, and driveability; (2) the tested blends cause significant increases in evaporative emissions; (3) analysis of periodic oil samples shows no evidence of accelerated metal wear; and (4) higher than 10% alcohols will require substantial modification to most existing California motor vehicles for acceptable emissions, performance, and fuel economy. Many aspects of using methanol and ethanol fuels, both straight and in blends, in various engine technologies are discussed.

  18. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  19. Method of using infrared radiation for assembling a first component with a second component

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Whitson, Barry G. (Corryton, TN); Blue, Craig A. (Knoxville, TN)

    1999-01-01

    A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

  20. Expandable Metal Liner For Downhole Components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  1. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  2. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect (OSTI)

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  3. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  4. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect (OSTI)

    Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2008-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

  5. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect (OSTI)

    Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2009-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

  6. PUBLIC AND REGULATORY ACCEPTANCE OF BLENDING OF RADIOACTIVE WASTE VS DILUTION

    SciTech Connect (OSTI)

    Goldston, W.

    2010-11-30

    On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and then dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.

  7. Derivative

    National Nuclear Security Administration (NNSA)

    Robert C. Jones, Colleen M. Beck, and Barbara A. Holz Division of Earth and Ecosystem Sciences Cultural Resources Technical Report No.102 Desert Research Institute Las Vegas, ...

  8. Uranium Weapons Components Successfully Dismantled | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons stockpile, the National Nuclear Security Administration announced that uranium components from two major nuclear weapons systems formerly deployed on U.S. Air Force missiles and aircraft have been dismantled at the Y-12 National Security Complex in Oak Ridge, TN. Y-12 workers

  9. Cold worked ferritic alloys and components

    DOE Patents [OSTI]

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  10. Solid tags for identifying failed reactor components

    DOE Patents [OSTI]

    Bunch, Wilbur L.; Schenter, Robert E.

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  11. Component and System Qualification Workshop Proceedings

    Broader source: Energy.gov [DOE]

    Proceedings from the U.S. DOE Hydrogen Component and System Qualification Workshop, held at Sandia National Laboratory in Livermore, CA, on November 4, 2010.

  12. Porous templated pyrolytic carbons as electrocatalyst components...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Porous templated pyrolytic carbons as electrocatalyst components. Citation Details In-Document Search ... Publication Date: 2008-03-01 OSTI Identifier: 1146178 Report ...

  13. Building Component Library | Open Energy Information

    Open Energy Info (EERE)

    Technology characterizations Resource Type: Dataset Website: bcl.nrel.gov Cost: Free OpenEI Keyword(s): buildings, nrel, data, component Language: English Building...

  14. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Component Manufacturing Facilities Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Advanced ...

  15. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  18. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect (OSTI)

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.

  19. Blend Down Monitoring System Fissile Mass Flow Monitor and its Implementation at the Siberian Chemical Enterprise, Seversk, Russia

    SciTech Connect (OSTI)

    Uckan, T

    2005-07-28

    In this paper the implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the Siberian Chemical Enterprise (SChE), Seversk, Russia, are presented. The FMFM, developed by Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS) for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower assay ({approx}4%) product low enriched uranium (PLEU) to the United States from down-blended weapon-grade HEU are meeting the nonproliferation goals of the government-to-government HEU purchase agreement signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999. The second BDMS has been operational at Electro Chemical Plant, Zelenogorsk, since March 2003. These systems are successfully providing HEU transparency data to the United States. The third BDMS was successfully installed on the HEU down-blending tee in the SChE Enrichment Plant in October 2004. The FMFM makes use of a set of thermalized {sup 252}Cf spontaneous neutron sources for modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments retained in the flow. The FMFM provides unattended nonintrusive measurements of the {sup 235}U mass flow of the UF{sub 6} gas in the blending tee legs of HEU, the LEU blend stock, and the resulting P-LEU. The FMFM also confirms that highly enriched UF{sub 6} gas identified in the HEU leg flows through the blending tee into the P-LEU leg. This report contains details of the SChE FMFM equipment characteristics as well as the technical installation requirements and the latest measurement results.

  20. Sol-gel derived sorbents

    DOE Patents [OSTI]

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  1. Interaction of half-quantized vortices in two-component Bose-Einstein condensates

    SciTech Connect (OSTI)

    Eto, Minoru; Kasamatsu, Kenichi; Nitta, Muneto; Takeuchi, Hiromitsu; Tsubota, Makoto

    2011-06-15

    We study the asymptotic interaction between two half-quantized vortices in two-component Bose-Einstein condensates. When two vortices in different components are placed at distance 2R, the leading order of the force between them is found to be (lnR/{xi}-1/2)/R{sup 3}, in contrast to 1/R between vortices placed in the same component. We derive it analytically using the Abrikosov ansatz and the profile functions of the vortices, confirmed numerically with the Gross-Pitaevskii model. We also find that the short-range cutoff of the intervortex potential linearly depends on the healing length.

  2. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  3. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, Myles A. (Falmouth, MA); Morris, Robert S. (Fairhaven, MA)

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  4. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect (OSTI)

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  5. Densified edge seals for fuel cell components

    DOE Patents [OSTI]

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1982-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  6. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  7. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  8. Hot gas path component cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  9. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004

    SciTech Connect (OSTI)

    Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

    2005-11-01

    The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

  10. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect (OSTI)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

  11. Mesoporous Silica Films with Long-Range Order Prepared from Strongly Segregated Block Copolymer/Homopolymer Blend Templates

    SciTech Connect (OSTI)

    Tirumala, Vijay R.; Pai, Rajaram A.; Agarwal, Sumit; Testa, Jason J.; Bhatnagar, Gaurav; Romang, Alvin H.; Chandler, Curran; Gorman, Brian P.; Jones, Ronald L.; Lin, Eric K.; Watkins, James J.

    2008-06-30

    Well-ordered mesoporous silica films were prepared by infusion and selective condensation of Si alkoxides within preorganized block copolymer/homopolymer blend templates using supercritical CO{sub 2} as the delivery medium. The morphologies of the mesoporous silica films reflect significant improvements in the strength of segregation and long-range order of template blends of poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymers with selectively associating homopolymers such as poly(acrylic acid) or poly(4-hydroxystyrene) prior as compared to templates comprised of the neat copolymer. Control over film porosity, pore ordering, and morphology of the films is achieved through simple variations in the homopolymer concentration. The films were characterized using X-ray reflectivity, small-angle X-ray scattering, and transmission electron microscopy.

  12. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  13. Tetrahydroquinoline Derivatives as Potent and Selective Factor...

    Office of Scientific and Technical Information (OSTI)

    Tetrahydroquinoline Derivatives as Potent and Selective Factor XIa Inhibitors Citation Details In-Document Search Title: Tetrahydroquinoline Derivatives as Potent and Selective ...

  14. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  15. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect (OSTI)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  16. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  17. Study of fractionation of refrigerant blends in contact with lubricants and measurement of the solubility, density, and viscosity

    SciTech Connect (OSTI)

    Cavestri, R.C.; Falconi, E.A.

    1999-07-01

    The fractionation of two refrigerant blends was studied using the gas equilibrium method. The amount of fractionation was measured by maintaining a constant composition of the refrigerant gas vapor over the lubricant, which was equal in composition to the liquid refrigerant gas blend introduced into the viscometer. Specifically, the concentration of the dissolved refrigerant gas in the lubricant ranges from 0.6% to 78% by weight in the specified temperature range of {minus}25 C to 125 C and within the highest test pressure of 500 psia (3.45 MPa). The polyolester chosen for this study was a 32 ISO VG complex branched acid pentaerythritol product. Smoothed graphical data presented were obtained from individual isothermal measurements. These individual isothermal measurement temperatures detail the composition of the equilibrium gas fractionation of R-32 and R-134a in the lubricant, mixed vapor pressure, concentration of the total mixed blend as percent by weight in the lubricant and viscosity in centipoise (cP) and centistokes (cSt). The raw data are presented in a smoothed graphical form based on a fixed vapor composition.

  18. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  19. Downhole component with a pressure equalization passageway

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Dahlgren, Scott; Reynolds, Jay T.; Breihan, James W.; Briscoe, Michael A.

    2006-08-22

    The present invention includes a downhole component adapted for transmitting downhole data. The downhole component includes a threaded end on a downhole component. The threaded end furthermore includes an interior region, and exterior region, and a mating surface wherein a cavity is formed. A data transmission element is disposed in the cavity and displaces a volume of the cavity. At least one passageway is formed in the threaded region between interior and exterior regions. The passageway is in fluid communication with both the interior and exterior regions and thereby relieves pressure build up of thread lubricant upon tool joint make up.

  20. NHI Component Technical Readiness Evaluation System

    SciTech Connect (OSTI)

    Steven R. Sherman; Dane F. Wilson; Steven J. Pawel

    2007-09-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R&D decisions.

  1. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOE Patents [OSTI]

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  2. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  3. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  4. Correlations of Polyimides and Blended Polyimides for High Temperature Gas Separations

    SciTech Connect (OSTI)

    John R. Klaehn; Christopher J. Orme; Thomas A. Luther; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2002-03-01

    High performance polymers are of interest for high temperature gas separations, especially for the sequestration of carbon dioxide. A new family of high performance imide polymers has been identified as a successful membrane capture material. VTEC polyimides possess desired thermal properties (up to 500 C) along with being robust and flexible even after multiple thermal cycles (up to 400 C). Polyimides (PI) are excellent materials for high selectivity for smaller kinetic diameter gases such as H2 and CO2; however, they have low fluxes. We blended small amounts of different polymers with VTEC polyimide, which changes the fluxes. Another critical problem when working with glassy polymers is their moisture content. It has been found that water entrapped within the polymer matrix (left over from the solvent, or physisorbed) can also cause the polymer to change dramatically. Additionally presence of molecular water in the polymers void volume has been validated through Positron Annihilation Lifetime (PAL) spectroscopy. In this presentation, polymer characterization and gas-separation testing results will be discussed.

  5. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; et al

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20more » mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  6. Stationary turbine component with laminated skin

    DOE Patents [OSTI]

    James, Allister W.

    2012-08-14

    A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.

  7. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  8. Testing, Manufacturing, and Component Development Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's testing, manufacturing, and component development projects for utility-scale and distributed wind energy from fiscal years 2006 to 2014.

  9. Thermochemical nanolithography components, systems, and methods

    DOE Patents [OSTI]

    Riedo, Elisa; Marder, Seth R.; de Heer, Walt A.; Szoskiewicz, Robert J.; Kodali, Vamsi K.; Jones, Simon C.; Okada, Takashi; Wang, Debin; Curtis, Jennifer E.; Henderson, Clifford L.; Hua, Yueming

    2013-06-18

    Improved nanolithography components, systems, and methods are described herein. The systems and methods generally employ a resistively heated atomic force microscope tip to thermally induce a chemical change in a surface. In addition, certain polymeric compositions are also disclosed.

  10. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, L.M.; Haynes, H.D.; Ayers, C.W.

    1996-01-16

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components. 14 figs.

  11. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, Larry M.; Haynes, Howard D.; Ayers, Curtis W.

    1996-01-01

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.

  12. SA3654 Component characterization. Final report

    SciTech Connect (OSTI)

    Meir, G.W.

    1996-06-01

    AlliedSignal Inc., Federal Manufacturing & Technologies (FM&T), was provided with production capability assurance program (PCAP) funding to develop, characterize, and qualify purchased product components for use on the PRESS-A program. The SA3654, N-Channel, Power MOSFET was identified as a component needing such activity to support PRESS-A. This report presents the characterization activities and results for the SA3654.

  13. RDCDS Meteorologoical Component Quick Installation Guide

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.

    2007-11-20

    This guide provides step-by-step instructions for the deployment of one of the Rapidly Deployable Chemical Defense System (RDCDS) weather stations and central control system. Instructions for the deployment and operation of the Atmospheric Systems Corporation miniSODAR™ (SOnic Detection and Ranging) can be found in accompanying manuals developed by Atmospheric Systems Corporation. A detailed description of the system and its components can be found in the manual entitled Description of the RDCDS Meteorological Component.

  14. Symposium on electroslag component casting: proceedings

    SciTech Connect (OSTI)

    Judkins, R.R.; Hobday, J.M.

    1984-03-01

    The US Department of Energy (DOE), Office of Fossil Energy, Office of Surface Coal Gasification, has established a Materials Program to develop and apply appropriate materials to coal gasification plant components. The overall goals of the Surface Gasification Materials Program (SGMP) are to improve operational reliability and system durability and to reduce fabrication and operating costs of coal gasification plant components. The SGMP Electroslag Component Casting Project is directed to the development of electroslag casting (ESC) technology for use in coal conversion components such as valve bodies, pump housings, and pipe fittings. The aim is to develop a sufficient data base to permit ESC to become an ASME Code-accepted process. It is also intended to transfer the ESC process technology to private industry. This symposium was planned to discuss not only the SGMP Electroslag Component Casting Project but the activities and experiences of other organizations as well. The symposium addressed descriptions of electroslag processes; a worldwide perspective on the status of ESC technology; and details of production, mechanical properties, economics, and use of ESC for coal gasification components. Ten papers were presented, and a panel discussion was held to provide participants an opportunity to express their opinions and to offer recommendations on the content of the DOE program. This document constitutes the proceedings of that symposium. The papers included here are minimally edited transcripts of the presentations made at the symposium. All papers have been processed for inclusion in the Energy Data Base.

  15. Component Repair Times Obtained from MSPI Data

    SciTech Connect (OSTI)

    Eide, Steven A.

    2015-05-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only unplanned outages associated with failures of the component of interest, and only unplanned outages associated with PRA failures of the component of interest. The paper will describe how component repair times can be generated from each set and which approach is most applicable. Repair time information will be summarized for MSPI pumps and diesel generators using data over 2003 – 2007. Also, trend information over 2003 – 2012 will be presented to indicate whether the 2003 – 2007 repair time information is still considered applicable. For certain types of pumps, mean repair times are significantly higher than the typically assumed 24 h duration.

  16. DECELERATING RELATIVISTIC TWO-COMPONENT JETS

    SciTech Connect (OSTI)

    Meliani, Z.; Keppens, R. E-mail: Rony.Keppens@wis.kuleuven.b

    2009-11-10

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin and launching mechanism, making their effective inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced Rayleigh-Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then occur when the relative kinetic energy flux of the inner to the outer jet grows beyond a certain threshold.

  17. Progress in photovoltaic system and component improvements

    SciTech Connect (OSTI)

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E.; Bower, W.; Bonn, R.; Hund, T.D.

    1998-07-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  18. Binder enhanced refuse derived fuel

    DOE Patents [OSTI]

    Daugherty, Kenneth E.; Venables, Barney J.; Ohlsson, Oscar O.

    1996-01-01

    A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.

  19. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  20. Protection of lithographic components from particle contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Rader, Daniel J.

    2000-01-01

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  1. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Daly, Jeffery E.

    2009-05-05

    A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.

  2. Component evaluation testing and analysis algorithms.

    SciTech Connect (OSTI)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  3. Component technology for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.

    1994-09-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling space power program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for a DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their program goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. This paper will present an overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings.

  4. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  5. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  6. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  7. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  8. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect (OSTI)

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  9. Blend Down Monitoring System Fissile Mass Flow Monitor Implementation at the ElectroChemical Plant, Zelenogorsk, Russia

    SciTech Connect (OSTI)

    Uckan, T.

    2005-11-11

    The implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the ElectroChemical Plant (ECP), Zelenogorsk, Russia, are presented in this report. The FMFM, developed at Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS), developed for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower-assay ({approx}4%) product low enriched uranium (P-LEU) to the United States from down-blended weapons-grade HEU are meeting the nonproliferation goals of the government-to-government HEU Purchase Agreement, signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999 and is successfully providing HEU transparency data to the United States. The second BDMS was installed at ECP in February 2003. The FMFM makes use of a set of thermalized californium-252 ({sup 252}Cf) spontaneous neutron sources for a modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments. The FMFM provides unattended, nonintrusive measurements of the {sup 235}U mass flow in the HEU, LEU blend stock, and P-LEU process legs. The FMFM also provides the traceability of the HEU flow to the product process leg. This report documents the technical installation requirements and the expected operational characteristics of the ECP FMFM.

  10. VALIDATION OF FIRESIDE PERFORMANCE INDICES: FOULING/CORROSION EVALUATION OF MDF PARTICLEBOARD AND BLENDS WITH WHEAT STRAW BOARD

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; Jay R. Gunderson; Donald P. McCollor

    1999-02-01

    Sauder Woodworking currently fires a large portion of all wood wastes in a boiler producing process steam. It is investigating using particleboard made from wheat straw in its manufacturing process and is concerned with the effects of the inorganics on its boiler. Wheat straw board contains higher ash contents and increased levels of potassium, creating concern over fouling characteristics in Sauder's tight boiler design. In addition, the wheat straw board contains high concentrations of chlorine, which may affect boiler tube corrosion when fired in combination with the particleboard wastes currently generated. Sauder has engaged the services of the Energy & Environmental Research Center (EERC) at the University of North Dakota to investigate the potential detrimental effects of firing blends containing wheat straw on boiler tube fouling and corrosion. Additional funding for this project was provided through the U.S. Department of Energy Jointly Sponsored Research Program (DOE JSRP) project ''Validation of Fireside Performance Indices'' to validate, improve, and expand the PCQUEST (Predictive Coal Quality Effects Screening Tool) program. The PCQUEST fuel database is constantly expanding and adding new fuels, for which the algorithms may need refinement and additional verification in order to accurately predict index values. A key focus is on performing advanced and conventional fuel analyses and adding these analyses to the PCQUEST database. Such fuels include coals of all ranks and origins, upgraded coals, petroleum coke, biomass and biomass-coal blends, and waste materials blended with coal. Since there are differences in the chemical and mineral form of the inorganic content in biomass and substantial differences in organic matrix characteristics, analysis and characterization methods developed for coal fuels may not be applicable. The project was seen to provide an excellent opportunity to test and improve the ability of PCQUEST to handle nontypical soil and biomass minerals.

  11. Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends

    SciTech Connect (OSTI)

    Huo, Ming-Ming Zhang, Jian-Ping E-mail: hjhzlz@iccas.ac.cn; Department of Chemistry, Renmin University of China, Beijing 100872 ; Hu, Rong Xing, Ya-Dong Liu, Yu-Chen Ai, Xi-Cheng; Hou, Jian-Hui E-mail: hjhzlz@iccas.ac.cn

    2014-02-28

    Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b{sup ?}]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ?0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P{sup +} yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC{sub 61}BM and PBDTTT-C:PC{sub 61}BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC{sub 61}BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P{sup +} migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC{sub 61}BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.

  12. Investigation of the Effects of Biodiesel-based Na on Emissions Control Components

    SciTech Connect (OSTI)

    Brookshear, D. William; Nguyen, Ke; Toops, Todd J; Bunting, Bruce G; Howe, Janet E

    2012-01-01

    A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented accelerated Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.

  13. Table Definitions, Sources, and Explanatory Notes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ton. Barrel A unit of volume equal to 42 U.S. gallons. Biomass-Based Diesel Fuel Biodiesel and other renewable diesel fuel or diesel fuel blending components derived from...

  14. Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study

    SciTech Connect (OSTI)

    Haas, Francis M.; Chaos, Marcos; Dryer, Frederick L.

    2009-12-15

    In this brief communication, we present new experimental species profile measurements for the low and intermediate temperature oxidation of ethanol under knock-prone conditions. These experiments show that ethanol exhibits no global low temperature reactivity at these conditions, although we note the heterogeneous decomposition of ethanol to ethylene and water. Similar behavior is reported for an E85 blend in n-heptane. Kinetic modeling results are presented to complement these experiments and elucidate the interaction of ethanol and primary reference fuels undergoing cooxidation. (author)

  15. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect (OSTI)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  16. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

  17. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 8, July 1996--August 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1996-08-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  18. Investigation of critical equivalence ratio and chemical speciation in flames of ethylbenzene-ethanol blends

    SciTech Connect (OSTI)

    Therrien, Richard J.; Ergut, Ali; Levendis, Yiannis A.; Richter, Henning; Howard, Jack B.; Carlson, Joel B.

    2010-02-15

    This work investigates five different one-dimensional, laminar, atmospheric pressure, premixed ethanol/ethylbenzene flames (0%, 25%, 50%, 75% and 90% ethanol by weight) at their soot onset threshold ({phi}{sub critical}). Liquid ethanol/ethylbenzene mixtures were pre-vaporized in nitrogen, blended with an oxygen-nitrogen mixture and, upon ignition, burned in premixed one-dimensional flames at atmospheric pressure. The flames were controlled so that each was at its visual soot onset threshold, and all had similar temperature profiles (determined by thermocouples). Fixed gases, light volatile hydrocarbons, polycyclic aromatic hydrocarbons (PAH), and oxygenated aromatic hydrocarbons were directly sampled at three locations in each flame. The experimental results were compared with a detailed kinetic model, and the modeling results were used to perform a reaction flux analysis of key species. The critical equivalence ratio was observed to increase in a parabolic fashion as ethanol concentration increased in the fuel mixture. The experimental results showed increasing trends of methane, ethane, and ethylene with increasing concentrations of ethanol in the flames. Carbon monoxide was also seen to increase significantly with the increase of ethanol in the flame, which removes carbon from the PAH and soot formation pathways. The PAH and oxygenated aromatic hydrocarbon values were very similar in the 0%, 25% and 50% ethanol flames, but significantly lower in the 75% and 90% ethanol flames. These results were in general agreement with the model and were reflected by the model soot predictions. The model predicted similar soot profiles for the 0%, 25% and 50% ethanol flames, however it predicted significantly lower values in the 75% and 90% ethanol flames. The reaction flux analysis revealed benzyl to be a major contributor to single and double ring aromatics (i.e., benzene and naphthalene), which was identified in a similar role in nearly sooting or highly sooting ethylbenzene flames. The presence of this radical was significantly reduced as ethanol concentration was increased in the flames, and this effect in combination with the lower carbon to oxygen ratios and the enhanced formation of carbon monoxide, are likely what allowed higher equivalence ratios to be reached without forming soot. (author)

  19. Conductivity enhancement in PVA−PEO−EC−LiCF−{sub 3}SO{sub 3} blends upon swift heavy O{sup 7+} ion irradiation

    SciTech Connect (OSTI)

    Joge, Prajakta Kanchan, D. K. Sharma, Poonam Jayswal, Manish; Awasthi, D. K.

    2014-04-24

    In the present study, the PVA−PEO−EC−LiCF−{sub 3}SO{sub 3} blend system was prepared using solution cast technique. The system was prepared by taking 5 different concentrations LiCF{sub 3}SO{sub 3} in the range of 3wt% to 11 wt%, at a fixed proportion of the rest of the constituents. These blend films had been exposed to O{sup 7+} radiations of 80 MeV at a current of 1pnA at a fluence of 1×10{sup 12} ions/cm{sup 2}. The conductivity variation of the specimens is investigated using impedance spectroscopy wherein; the conductivity enhances drastically upon irradiation at all the concentrations of salt. The thermal characteristics of the blend films are being studied using Differential Scanning Calorimetry.

  20. Coatings and films derived from clay/wax nanocomposites

    DOE Patents [OSTI]

    Chaiko, David J.; Leyva, Argentina A.

    2006-11-14

    The invention provides methods for making clay/wax nanocomposites and coatings and films of same with improved chemical resistance and gas barrier properties. The invention further provides methods for making and using emulsions of such clay/wax nanocomposites. Typically, an organophillic clay is combined with a wax or wax/polymer blend such that the cohesion energy of the clay matches that of the wax or wax/polymer blend. Suitable organophilic clays include mica and phyllosilicates that have been surface-treated with edge or edge and surface modifying agents. The resulting nanocomposites have applications as industrial coatings and in protective packaging.

  1. Three component vibrational time reversal communication

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Brian E.; Ulrich, Timothy J.; Ten Cate, James A.

    2015-01-01

    Time reversal provides an optimal prefilter matched signal to apply to a communication signal before signal transmission. Time reversal allows compensation for wave speed dispersion and can function well in reverberant environments. Time reversal can be used to focus elastic energy to each of the three components of motion independently. A pipe encased in concrete was used to demonstrate the ability to conduct communications of information using three component time reversal. Furthermore, the ability of time reversal to compensate for multi-path distortion (overcoming reverberation) will be demonstrated and the rate of signal communication will be presented. [The U.S. Department ofmore » Energy, through the LANL/LDRD Program, is gratefully acknowledged for supporting this work.]« less

  2. System for inspecting large size structural components

    DOE Patents [OSTI]

    Birks, Albert S. (Columbus, OH); Skorpik, James R. (Kennewick, WA)

    1990-01-01

    The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.

  3. Energy deposition in STARFIRE reactor components

    SciTech Connect (OSTI)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry.

  4. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  5. Atmosphere Component in Community Earth System Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atiq Warraich About Us Atiq Warraich - Technical Lead/Project Manager Atiq Warraich

    Atmosphere Component in Community Earth System Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  6. Data transmission system for a downhole component

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., Tracy H.; Pixton, David S.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron; Briscoe, Michael A.

    2006-05-09

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  7. Data Transmission System For A Downhole Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael

    2005-01-18

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  8. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  9. Methods for integrating a functional component into a microfluidic device

    DOE Patents [OSTI]

    Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.

    2014-08-19

    Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.

  10. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes PDF icon multicomponent.pdf ...

  11. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt027apepeaslee2012p.pdf More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component...

  12. Primer on Clean Energy Lending: The Major Components and Options...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Primer on Clean Energy Lending: The Major Components and Options Primer on Clean Energy Lending: The Major Components and Options PDF icon Chapter 1: Primer on Clean Energy...

  13. Balance of Plant Needs and Integration of Stack Components for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Needs and Integration of Stack Components for Stationary Power and CHP Applications Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP ...

  14. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Improving Energy Efficiency by Developing Components for ...

  15. Crystal structures of the components of the Staphylococcus aureus...

    Office of Scientific and Technical Information (OSTI)

    Crystal structures of the components of the Staphylococcus aureus leukotoxin ED Citation Details In-Document Search Title: Crystal structures of the components of the ...

  16. Improved Processing of High Alloy Steels for Wear Components...

    Office of Scientific and Technical Information (OSTI)

    Steels for Wear Components in Energy Generation Systems, Transportation and ... Title: Improved Processing of High Alloy Steels for Wear Components in Energy Generation ...

  17. Friction and Wear Enhancement of Titanium Alloy Engine Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Wear Enhancement of Titanium Alloy Engine Components Friction and Wear Enhancement of Titanium Alloy Engine Components 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  18. Miracle Wind Power Components Manufacture Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind energy...

  19. Friction Modeling for Lubricated Engine and Drivetrain Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling for Lubricated Engine and Drivetrain Components Friction Modeling for Lubricated Engine and Drivetrain Components 2010 DOE Vehicle Technologies and Hydrogen Programs...

  20. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  1. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems of America, ...

  2. DAVID Fuel Cell Components SL | Open Energy Information

    Open Energy Info (EERE)

    manufacture and marketing of components and devices for PEM fuel cells, direct methanol fuel cells (DMFC) and fuel reformers. References: DAVID Fuel Cell Components SL1...

  3. Table 11.2 Electricity: Components of Net Demand, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity: Components of Net Demand, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Electricity Components; Unit: Million ...

  4. Table 11.4 Electricity: Components of Onsite Generation, 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; ... Next MECS will be fielded in 2015 Table 11.4 Electricity: Components of Onsite Generation, ...

  5. Instrument for analysis of electric motors based on slip-poles component

    DOE Patents [OSTI]

    Haynes, H.D.; Ayers, C.W.; Casada, D.A.

    1996-11-26

    A new instrument is described for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician. 4 figs.

  6. Instrument for analysis of electric motors based on slip-poles component

    DOE Patents [OSTI]

    Haynes, Howard D.; Ayers, Curtis W.; Casada, Donald A.

    1996-01-01

    A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.

  7. Thermal Study of Inverter Components: Preprint

    SciTech Connect (OSTI)

    Sorensen, N. R.; Thomas, E. V.; Quintana, M. A.; Barkaszi, S.; Rosenthal, A.; Zhang, Z.; Kurtz, S.

    2012-06-01

    Thermal histories of inverter components were collected from operating inverters from several manufacturers and three locations. The data were analyzed to determine thermal profiles, the dependence on local conditions, and to assess the effect on inverter reliability. Inverter temperatures were shown to increase with the power dissipation of the inverters, follow diurnal and annual cycles, and have a dependence on wind speed. An accumulated damage model was applied to the temperature profiles and an example of using these data to predict reliability was explored.

  8. Method of making low work function component

    DOE Patents [OSTI]

    Robinson, Vance (Niskayuna, NY); Weaver, Stanton Earl (Northville, NY); Michael, Joseph Darryl (Delmar, NY)

    2011-11-15

    A method for fabricating a component is disclosed. The method includes: providing a member having an effective work function of an initial value, disposing a sacrificial layer on a surface of the member, disposing a first agent within the member to obtain a predetermined concentration of the agent at said surface of the member, annealing the member, and removing the sacrificial layer to expose said surface of the member, wherein said surface has a post-process effective work function that is different from the initial value.

  9. RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS

    SciTech Connect (OSTI)

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2011-06-06

    Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

  10. Cooling arrangement for a gas turbine component

    DOE Patents [OSTI]

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-02-10

    A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.

  11. Turbine engine component with cooling passages

    DOE Patents [OSTI]

    Arrell, Douglas J.; James, Allister W.

    2012-01-17

    A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.

  12. Evaluation of cement kiln laboratories testing hazardous waste derived fuels

    SciTech Connect (OSTI)

    Nichols, R.E.

    1998-12-31

    Cement kiln operators wishing to burn hazardous waste derived fuels in their kilns must submit applications for Resource Conservation Recovery Act permits. One component of each permit application is a site-specific Waste Analysis Plan. These Plans describe the facilities` sampling and analysis procedures for hazardous waste derived fuels prior to receipt and burn. The Environmental Protection Agency has conducted on-site evaluations of several cement kiln facilities that were under consideration for Resource Conservation Recovery Act permits. The purpose of these evaluations was to determine if the on-site sampling and laboratory operations at each facility complied with their site-specific Waste Analysis Plans. These evaluations covered sampling, laboratory, and recordkeeping procedures. Although all the evaluated facilities were generally competent, the results of those evaluations revealed opportunities for improvement at each facility. Many findings were noted for more than one facility. This paper will discuss these findings, particularly those shared by several facilities (specific facilities will not be identified). Among the findings to be discussed are the ways that oxygen bombs were scrubbed and rinsed, the analytical quality control used, Burn Tank sampling, and the analysis of pH in hazardous waste derived fuels.

  13. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  14. DERIVATION OF STOCHASTIC ACCELERATION MODEL CHARACTERISTICS FOR...

    Office of Scientific and Technical Information (OSTI)

    FOR SOLAR FLARES FROM RHESSI HARD X-RAY OBSERVATIONS Citation Details In-Document Search Title: DERIVATION OF STOCHASTIC ACCELERATION MODEL CHARACTERISTICS FOR SOLAR FLARES ...

  15. Proceedings of refuse-derived fuel (RDF)

    SciTech Connect (OSTI)

    Saltiel, C. )

    1991-01-01

    This book contains proceedings of Refuse-Derived Fuel (RDF)-Quality. Standards and Processing. Topics covered include: An Overview of RDF Processing Systems: Current Status, Design Features, and Future Trends. The Impact of Recycling and Pre-Combustion Processing of Municipal Solid Waste on Fuel Properties and Steam Combustion. The Changing Role of Standards in the Marketing of RDF. Refuse Derived Fuel Quality Requirements for Firing in Utility, Industrial or Dedicated Boilers. Refuse-Derived Fuel Moisture Effects on Boiler Performance and Operability. Refuse Derived Fuels: Technology, Processing, Quality and Combustion Experiences.

  16. Hydrogen from Bio-Derived Liquids (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  17. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  18. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  19. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  20. Process Diagnosis Expert System Using First Principles and Functional Component

    Energy Science and Technology Software Center (OSTI)

    1998-11-24

    PRODIAG is an expert system that performs online diagnosis of faulty components in thermal hydraulic processes. Given measurements of temperatures, pressure, flows, and liquid levels, PRODIAG identifies the possible faulty component candidates at the process level. It is a stand alone code, but can be used in conjunction with a component level program to distinguish among the possible faulty component candidates.

  1. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea; Storey, John Morse; Lewis Sr, Samuel Arthur; Daw, C Stuart; Foster, Prof. Dave; Rutland, Prof. Christopher J.

    2010-01-01

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  2. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    SciTech Connect (OSTI)

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  3. Robust bearing estimation for 3-component stations

    SciTech Connect (OSTI)

    CLAASSEN,JOHN P.

    2000-02-01

    A robust bearing estimation process for 3-component stations has been developed and explored. The method, called SEEC for Search, Estimate, Evaluate and Correct, intelligently exploits the inherent information in the arrival at every step of the process to achieve near-optimal results. In particular the approach uses a consistent framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, to construct metrics helpful in choosing the better estimates or admitting that the bearing is immeasurable, and finally to apply bias corrections when calibration information is available to yield a single final estimate. The algorithm was applied to a small but challenging set of events in a seismically active region. It demonstrated remarkable utility by providing better estimates and insights than previously available. Various monitoring implications are noted from these findings.

  4. Robust Bearing Estimation for 3-Component Stations

    SciTech Connect (OSTI)

    Claassen, John P.

    1999-06-03

    A robust bearing estimation process for 3-component stations has been developed and explored. The method, called SEEC for Search, Estimate, Evaluate and Correct, intelligently exploits the in- herent information in the arrival at every step of the process to achieve near-optimal results. In particular, the approach uses a consistent framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, to construct metrics helpful in choosing the better estimates or admitting that the bearing is immeasurable, andjinally to apply bias corrections when calibration information is available to yield a single final estimate. The method was applied to a small but challenging set of events in a seismically active region. The method demonstrated remarkable utility by providing better estimates and insights than previously available. Various monitoring implications are noted fiom these findings.

  5. Futuristic concepts in engines and components

    SciTech Connect (OSTI)

    1995-12-31

    This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

  6. Compound cooling flow turbulator for turbine component

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J

    2014-11-25

    Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.

  7. Thermal barrier coatings for turbine components

    DOE Patents [OSTI]

    Subramanian, Ramesh; Sabol, Stephen M.; Goedjen, John G.; Sloan, Kelly M.; Vance, Steven J.

    2002-01-01

    A turbine component, such as a turbine blade having a metal substrate (22) is coated with a metal MCrAlY alloy layer (24) and then a thermal barrier layer (20) selected from LaAlO.sub.3, NdAlO.sub.3, La.sub.2 Hf.sub.2 O.sub.7, Dy.sub.3 Al.sub.5 O.sub.12, HO.sub.3 Al.sub.3 O.sub.12, ErAlO.sub.3, GdAlO.sub.3, Yb.sub.2 Ti.sub.2 O.sub.7, LaYbO.sub.3, Gd.sub.2 Hf.sub.2 O.sub.7 or Y.sub.3 Al.sub.5 O.sub.12.

  8. Cost Analysis of Bio-Derived Liquids Reforming (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Derived Liquids Reforming (Presentation) Cost Analysis of Bio-Derived Liquids Reforming (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed ...

  9. Evaluation of aging degradation of structural components

    SciTech Connect (OSTI)

    Chopra, O.K.; Shack, W.J.

    1992-03-01

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at < 232{degrees}C. The shift in CTT is not as severe as that observed in surveillance samples from the High Flux Isotope Reactor (HFIR): however, it shows very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor. The results indicate that fluence rate has not effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center dot}s at the low operating temperature of the Shippingport NST, i.e., 55{degrees}C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y.

  10. Evaluation of aging degradation of structural components

    SciTech Connect (OSTI)

    Chopra, O.K.; Shack, W.J.

    1992-03-01

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at < 232{degrees}C. The shift in CTT is not as severe as that observed in surveillance samples from the High Flux Isotope Reactor (HFIR): however, it shows very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor. The results indicate that fluence rate has not effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center_dot}s at the low operating temperature of the Shippingport NST, i.e., 55{degrees}C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y.

  11. Phase Chemistry of Tank Sludge Residual Components

    SciTech Connect (OSTI)

    KRUMHANSL,JAMES L.; LIU,JUN; NAGY,KATHRYN L.; BRADY,PATRICK V.

    1999-11-29

    We are attempting to understand the solid phase chemistry of the high level nuclear waste (HLW) stored in tanks at Hanford. Because this waste is compositionally complex, our approach is to study experimentally the aging dynamics of simplified systems whose bulk chemistry approximates that of the tank sludges. After a basic understanding of these dynamics has been attained we plan to increase the compositional complexities one component at a time, in order to assess the influence of each component. Results will allow for reliable prediction of sludge phase chemistry over a range of sludge compositions. Iron and aluminum comprise the bulk of most HLW sludges, so we chose to begin by studying the behavior of iron-aluminum systems. Fe/Al ratios were chosen to approximate those relevant to the solutions that produced the sludge. Aluminum and iron concentrations in the various process fluids are summarized and compared to our experimental starting solutions in Table 1 (process solution data from Krumhansl, personal communication, 1998). Our low aluminum experiments serve as direct analogues to both Bismuth Phosphate and low-Fe PUREX waste. Cornell and Giovanoli (1985) found that, in a pure iron system at 70 C, a 10-fold or even 50-fold increase in suspension concentration had only very slight effects on the final aged products. Since our experiments have similar Al/Fe ratios to some high Fe-PUREX process solutions our results are probably relevant to those wastes as well. However, our results may not apply to the high-Fe and high-Al PUREX wastes, as discussed below. The high Al experiments were designed specifically to simulate REDOX waste.

  12. Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC 70BM blend

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hansson, Rickard; Ericsson, Leif K. E.; Holmes, Natalie P.; Rysz, Jakub; Opitz, Andreas; Campoy-Quiles, Mariano; Wang, Ergang; Barr, Matthew G.; Kilcoyne, A. L. David; Zhou, Xiaojing; et al

    2015-02-13

    The distribution of electron donor and acceptor in the active layer is known to strongly influence the electrical performance of polymer solar cells for most of the high performance polymer:fullerene systems. The formulation of the solution from which the active layer is spincoated plays an important role in the quest for morphology control. We have studied how the choice of solvent and the use of small amounts of a low vapour pressure additive in the coating solution influence the film morphology and the solar cell performance for blends of poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) and [6,6]-phenyl C71-butyric acid methyl ester (PC70BM). We havemore » investigated the lateral morphology using atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM), the vertical morphology using dynamic secondary ion mass spectrometry (d-SIMS) and variable-angle spectroscopic ellipsometry (VASE), and the surface composition using near-edge X-ray absorption fine structure (NEXAFS). The lateral phase-separated domains observed in films spincoated from single solvents, increase in size with increasing solvent vapour pressure and decreasing PC70BM solubility, but are not observed when 1-chloronaphthalene (CN) is added. A strongly TQ1-enriched surface layer is formed in all TQ1:PC70BM blend films and rationalized by surface energy differences. The photocurrent and power conversion efficiency strongly increased upon the addition of CN, while the leakage current decreased by one to two orders of magnitude. The higher photocurrent correlates with the finer lateral structure and stronger TQ1-enrichment at the interface with the electron-collecting electrode. This indicates that the charge transport and collection are not hindered by this polymer-enriched surface layer. Neither the open-circuit voltage nor the series resistance of the devices are sensitive to the differences in morphology.« less

  13. Communication adapter for use with a drilling component

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Hall; Jr.; H. Tracy; Bradford, Kline; Rawle, Michael

    2007-04-03

    A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

  14. Waste Package Component Design Methodology Report

    SciTech Connect (OSTI)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.

  15. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect (OSTI)

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  16. Commercial Off-the-Shelf (COTS) Components and Enterprise Component Information System (eCIS)

    SciTech Connect (OSTI)

    John Minihan; Ed Schmidt; Greg Enserro; Melissa Thompson

    2008-06-30

    The purpose of the project was to develop the processes for using commercial off-the-shelf (COTS) parts for WR production and to put in place a system for implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. Much of the effort was devoted to determining if the use of COTS parts was possible. A basic question: How does the Nuclear Weapons Complex (NWC) begin to use COTS in the weapon Stockpile Life Extension Programs with high reliability, affordability, while managing risk at acceptable levels? In FY00, it was determined that a certain weapon refurbishment program could not be accomplished without the use of COTS components. The elements driving the use of COTS components included decreased cost, greater availability, and shorter delivery time. Key factors that required implementation included identifying the best suppliers and components, defining life cycles and predictions of obsolescence, testing the feasibility of using COTS components with a test contractor to ensure capability, as well as quality and reliability, and implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. The primary effort of this project then was to concentrate on the risks involved in the use of COTS and address the issues of part and vendor selection, procurement and acceptance processes, and qualification of the parts via part and sample testing. The Enterprise Component Information System (eCIS) was used to manage the information generated by the COTS process. eCIS is a common interface for both the design and production of NWC components and systems integrating information between SNL National Laboratory (SNL) and the Kansas City Plant (KCP). The implementation of COTS components utilizes eCIS from part selection through qualification release. All part related data is linked across an unclassified network for access by both SNL and KCP personnel. The system includes not only NWC part information but also includes technical reference data for over 25 Million electronic and electromechanical commercial and military parts via a data subscription. With the capabilities added to the system through this project, eCIS provides decision support, parts list/BOM analysis, editing, tracking, workflows, reporting, and history/legacy information integrating manufacturer reference, company technical, company business, and design data.

  17. Non-destructive component separation using infrared radiant energy

    DOE Patents [OSTI]

    Simandl, Ronald F.; Russell, Steven W.; Holt, Jerrid S.; Brown, John D.

    2011-03-01

    A method for separating a first component and a second component from one another at an adhesive bond interface between the first component and second component. Typically the method involves irradiating the first component with infrared radiation from a source that radiates substantially only short wavelengths until the adhesive bond is destabilized, and then separating the first component and the second component from one another. In some embodiments an assembly of components to be debonded is placed inside an enclosure and the assembly is illuminated from an IR source that is external to the enclosure. In some embodiments an assembly of components to be debonded is simultaneously irradiated by a multi-planar array of IR sources. Often the IR radiation is unidirectional. In some embodiments the IR radiation is narrow-band short wavelength infrared radiation.

  18. Nondestructive characterization of structural ceramic components

    SciTech Connect (OSTI)

    Ellingson, W.A.; Steckenrider, J.S.; Sivers, E.A.; Ling, J.R.

    1994-06-01

    Advanced structural ceramic components under development for heat-engine applications include both monolithic and continuous fiber composites (CFC). Nondestructive characterization (NDC) methods being developed differ for each material system. For monolithic materials, characterization during processing steps is important. For many CFC, only post process characterization is possible. Many different NDC systems have been designed and built A 3D x-ray micro computed tomographic (3DXCT) imaging system has been shown to be able to map density variations to better than 3% in pressure slip cast Si{sub 3}N{sub 4} monolithic materials. In addition, 3DXCT coupled to image processing has been shown to be able to map through-thickness fiber orientations in 2D lay-ups of 0{degrees}/45{degrees}, 0{degrees}/75{degrees}, 0{degrees}/90{degrees}, in SiC/SiC CVI CFC. Fourier optics based laser scatter systems have been shown to be able to detect surface and subsurface defects (as well as microstructural variations) in monolithic Si{sub 3}N{sub 4} bearing balls. Infrared methods using photothermal excitation have been shown to be able to detect and measure thermal diffusivity differences on SiC/SiC 2D laminated CFC which have been subjected to different thermal treatments including thermal shock and oxidizing environments. These NDC methods and their applications help provide information to allow reliable usage of ceramics in advanced heat engine applications.

  19. Two component-three dimensional catalysis

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2002-01-01

    This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.

  20. Method and apparatus for component separation using microwave energy

    DOE Patents [OSTI]

    Morrow, Marvin S. (Kingston, TN); Schechter, Donald E. (Ten Mile, TN); Calhoun, Jr., Clyde L. (Knoxville, TN)

    2001-04-03

    A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

  1. Growing attraction of refuse-derived fuels

    SciTech Connect (OSTI)

    Singh, R.

    1981-09-08

    A review of Dr. Andrew Porteous' book, Refuse Derived Fuels is presented. The escalating price of fossil fuel, particularily oil, together with the high cost of handling and transporting refuse makes the idea of refuse-derived fuel production an attractive and economic proposition. Refuse-derived fuel production is discussed and the various manufacturing processes in the UK and the USA are described. The pyrolysis of refuse for the production of gas, oil or heat and the production of methane and ethyl alcohol or other possibilities for refuse conversion.

  2. Combustion of refuse derived fuel in a fluidized bed

    SciTech Connect (OSTI)

    Piao, Guilin; Aono, Shigeru; Mori, Shigekatsu; Deguchi, Seiichi; Fujima, Yukihisa; Kondoh, Motohiro; Yamaguchi, Masataka

    1998-12-31

    Power generation from Refuse Derived Fuel (RDF) is an attractive utilization technology of municipal solid waste. To explain the behavior of RDF-fired fluidized bed incinerator, the commercial size RDF was continuously burnt in a 30 x 30 cm bubbling type fluidized-bed combustor. It was found that 12 kg/h of RDF feed rate was too high feed for this test unit and the Co level was higher than 500 ppm. However, 10 kg/h of RDF was a proper feed rate and the Co level was kept under 150 ppm. Secondary air injection and changing air ratio from the pipe grid were effective for the complete combustion of RDE. It was also found that HCl concentration in flue gas was controlled by the calcium component contained in RDF and its level was decreased with decreasing the combustor temperature.

  3. Storage lipid biosynthesis in microspore-derived Brassica napus embryos

    SciTech Connect (OSTI)

    Taylor, D.C.; Underhill, E.W.; Weber, N. ); Pomeroy, M.K. ); Edwards, L. )

    1989-04-01

    Erucic acid, a fatty acid which is confined to the neutral lipids in developing seed cotyledons or rape, was chosen as a marker to study triacylglycerol (TAG) biosynthesis in a Brassica napus L. cv Reston microspore-derived embryo culture system. Accumulation and changes in acyl composition of TAGs during embryogenesis strongly paralleled that observed during seed development. Homogenates of 29-day cultured embryos were examined for the ability to incorporate erucoyl moieties into storage lipids. In the presence of {sup 14}C erucoyl CoA and various acceptors, including glycerol-3-phosphate (G3P), {sup 14}C erucic acid was rapidly incorporated into the TAG fraction. However, in contrast to studies with {sup 14}C oleoyl CoA, there was no measurable radioactivity in any Kennedy Pathway intermediates or within membrane lipid components. Analysis of the radiolabelled TAG species suggested that erucoyl moieties were incorporated into the sn-3 position by a highly active diacylglyercol acyltransferase.

  4. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  5. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  6. Metal Cutting for Large Component Removal

    SciTech Connect (OSTI)

    Hulick, Robert M.

    2008-01-15

    Decommissioning of commercial nuclear power plants presents technological challenges. One major challenge is the removal of large components mainly consisting of the reactor vessel, steam generators and pressurizer. In order to remove and package these large components nozzles must be cut from the reactor vessel to precise tolerances. In some cases steam generators must be segmented for size and weight reduction. One innovative technology that has been used successfully at several commercial nuclear plant decommissioning is diamond wire sawing. Diamond wire sawing is performed by rotating a cable with diamond segments attached using a flywheel approximately 24 inches in diameter driven remotely by a hydraulic pump. Tension is provided using a gear rack drive which also takes up the slack in the wire. The wire is guided through the use of pulleys keeps the wire in a precise location. The diamond wire consists of 1/4 inch aircraft cable with diamond beads strung over the cable separated by springs and brass crimps. Standard wire contains 40 diamond beads per meter and can be made to any length. Cooling the wire and controlling the spread of contamination presents significant challenges. Under normal circumstances the wire is cooled and the cutting kerf cleaned by using water. In some cases of reactor nozzle cuts the use of water is prohibited because it cannot be controlled. This challenge was solved by using liquid Carbon Dioxide as the cooling agent. The liquid CO{sub 2} is passed through a special nozzle which atomizes the liquid into snowflakes which is introduced under pressure to the wire. The snowflakes attach to the wire keeping it cool and to the metal shavings. As the CO{sub 2} and metal shavings are released from the wire due to its fast rotation, the snowflakes evaporate leaving only the fine metal shavings as waste. Secondary waste produced is simply the small volume of fine metal shavings removed from the cut surface. Diamond wire sawing using CO{sub 2} cooling has been employed for cutting the reactor nozzles at San Onofre Unit 1 and at Connecticut Yankee. These carbon steel nozzles ranged up to 54 inch diameter with a 15 inch thick wall and an interior stainless cladding. Diamond wire sawing using traditional water cooling has been used to segment the reactor head at Rancho Seco and for cutting reactor nozzles and control rod drive tubes at Dairyland Power's Lacrosse BWR project. Advantages: - ALARA: All cutting is preformed remotely significantly reducing dose. Stringing of wires is accomplished using long handle tools. - Secondary waste is reduced to just the volume of material cut with the diamond wire. - The potential for airborne contamination is eliminated. Due to the flexibility of the wire, any access restrictions and interferences can be accommodated using pulleys and long handle tools. - The operation is quiet. Disadvantages: - With Liquid Carbon Dioxide cooling and cleaning, delivery of the material must be carefully planned. The longer the distance from the source to the cut area, the greater the chance for pressure drop and subsequent problems with line freezing. - Proper shrouding and ventilation are required for environmental reasons. In each case, the metal structures were cut at a precise location. Radiation dose was reduced significantly by operating the equipment from a remote location. The cuts were very smooth and completed on schedule. Each project must be analyzed individually and take into account many factors including access, radiological conditions, environmental conditions, schedule requirements, packaging requirements and size of cuts.

  7. SCM Forcing Data Derived from NWP Analyses

    SciTech Connect (OSTI)

    Jakob, Christian

    2008-01-15

    Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru.

  8. Tax Credit for Forest Derived Biomass

    Broader source: Energy.gov [DOE]

    Forest-derived biomass includes tree tops, limbs, needles, leaves, and other woody debris leftover from activities such as timber harvesting, forest thinning, fire suppression, or forest health m...

  9. Casimir Energy Associated With Fractional Derivative Field

    SciTech Connect (OSTI)

    Lim, S. C.

    2007-04-28

    Casimir energy associated with fractional derivative scalar massless field at zero and positive temperature can be obtained using the regularization based on generalized Riemann zeta function of Epstein-Hurwitz type.

  10. Authorization basis status report (miscellaneous TWRS facilities, tanks and components)

    SciTech Connect (OSTI)

    Stickney, R.G.

    1998-04-29

    This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

  11. Characterization and Hydrodesulfurization Properties of Catalysts Derived

    Office of Scientific and Technical Information (OSTI)

    from Amorphous Metal-Boron Materials (Journal Article) | SciTech Connect Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials Citation Details In-Document Search Title: Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials Unsupported and silica-supported amorphous metal-boron materials (Ni-B, Mo-O-B, and Ni-Mo-O-B) were prepared by NaBH{sub 4} reduction of aqueous or

  12. Analytical energy gradient for the two-component normalized elimination of the small component method

    SciTech Connect (OSTI)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter

    2015-06-07

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg{sub 2} and Cn{sub 2}, which are due to the admixture of more bonding character to the highest occupied spinors.

  13. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  14. Spectral Components Analysis of Diffuse Emission Processes (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Spectral Components Analysis of Diffuse Emission Processes Citation Details In-Document Search Title: Spectral Components Analysis of Diffuse Emission Processes We develop a novel method to separate the components of a diffuse emission process based on an association with the energy spectra. Most of the existing methods use some information about the spatial distribution of components, e.g., closeness to an external template, independence of

  15. DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Polymer Electrolyte Membrane Fuel Cell Components DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components These tables list the U.S. Department of Energy (DOE) technical targets for polymer electrolyte membrane (PEM) fuel cell components: membranes, electrocatalysts, membrane electrode assemblies, and bipolar plates. These tables assist component developers in evaluating progress without testing full systems. More information about targets can be

  16. NDE Development for ACERT Engine Components | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    9 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_18_sun.pdf More Documents & Publications NDE Development for ACERT Engine Components NDE DEVELOPMENT FOR ACERT ENGINE COMPONENTS Durability of ACERT Engine Components

  17. MPH: A Library for Distributed Multi-Component Environment

    Energy Science and Technology Software Center (OSTI)

    2001-05-01

    A growing trend in developing large and complex applications on today's Teraflops compyters is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. We develop MPH, a multi-component handshaking library that allows component models recognize and talk to each other in a convenient and consisten way, thus to run multi-component ulti-executable applications effectively on distributed memory architectures. MPH provides the following capabilities: component name registration, resource allocation, inter-component communication, inquiry on themore » multi-component environment, standard in/out redirect. It supports the following four integration mechanisms: Multi-Component Single-Executable (MCSE); Single-Component Multi-Executable (SCME); Multi-Component Multi-Executable (MCME); Multi-instance Multi-Executable (MIME). MPH currently works on IBM SP, SGI Origin, Compaq AlphaSC, Cray T3E, and PC clusters. It is being adopted in NCAR's CCSM and Colorado State University's icosahedra grid coupled model. A joint communicator between any two components could be created. MPI communication between local processors and remote processors are invoked through component names and the local id. More functions are available to inquire the global-id, local-id, number of executales, etc.« less

  18. Recovery of precious metals from military electronic components

    SciTech Connect (OSTI)

    Gundiler, I.H.; Lutz, J.D.; Neiswander, P.G.

    1996-09-01

    Sandia National Laboratories developed a process to identify and remove the hazardous sub-components from dismantled weapons components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminium and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non- hazardous waste.

  19. Process for protecting bonded components from plating shorts

    DOE Patents [OSTI]

    Tarte, Lisa A.; Bonde, Wayne L.; Carey, Paul G.; Contolini, Robert J.; McCarthy, Anthony M.

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  20. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment including the dome was removed, a concrete cover was to be placed over the remaining footprint and the groundwater monitored for an indefinite period to ensure compliance with environmental regulations.

  1. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

  2. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  3. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  4. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    DOE/GO-102016-4854 February 2016 Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  5. Lateral Spectrum Splitting Concentrator Photovoltaics: Direct Measurement of Component and Submodule Efficiency

    SciTech Connect (OSTI)

    Xiaoting, W.; Waite, N.; Murcia, P.; Emery, K.; Steiner, M.; Kiamilev, F.; Goossen, K.; Honsberg, C.; Barnett, A.

    2012-03-01

    To achieve high energy conversion efficiency, a solar module architecture called lateral spectrum splitting concentrator photovoltaics (LSSCPV) is being developed. LSSCPV can concentrate available sunlight and laterally split a single beam into bands with different spectra for absorption by different solar cells with band gaps matched to the split spectrum. Test assemblies of a sample LSSCPV architecture were constructed, each of which contains four p-n junctions and two optical pieces. Independent experiments or simulations had been implemented on the components but by using optimal assumptions. In order to examine the actual performances of all the components, which are dependent on each other and the light source, direct outdoor measurements were made. A set of self-consistent efficiency definitions was articulated and a test bed was developed to measure the parameters required by the efficiency calculation. By comparing the component efficiency items derived from the outdoor measurement and the expected values based on independent simulations, the potential opportunities for efficiency improvement are determined. In the outdoor measurement at the University of Delaware, the optical component demonstrated 89.1% efficiency. Additional assemblies were tested at the National Renewable Energy Laboratory. One assembly demonstrated 36.7% submodule efficiency, which compares favorably with the 32.6% previously reported verified submodule efficiency.

  6. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect (OSTI)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  7. Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films

    SciTech Connect (OSTI)

    Kanemoto, Katsuichi Nakatani, Hitomi; Domoto, Shinya

    2014-10-28

    We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5 × 10{sup 16 }cm{sup −3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

  8. Second derivatives for approximate spin projection methods

    SciTech Connect (OSTI)

    Thompson, Lee M.; Hratchian, Hrant P.

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

  9. Derivative expansion of the effective action

    SciTech Connect (OSTI)

    Cheyette, O.

    1987-04-01

    This paper describes some methods for calculating derivative terms in the one loop effective action for a quantum field theory. The functional approach and background field method are first used to derive the general form of the one loop determinant. Then the determinant is expanded in powers of derivatives of the background fields. The form of this expansion is described for the simple case of an interacting scalar field, and then for the more complicated problem of a non-abelian gauge field. Finally, the expansion is applied to the task of calculating Higgs mass dependent effects in the Glashow-Weinberg-Salam model, and all terms which grow with the Higgs mass M/sub H/ are found in the one loop approximation. The result of this calculation is used to find the dependence of the gauge boson mass ratio rho on M/sub H/, and also to estimate the size of corrections to W and Z scattering theorems.

  10. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  11. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  12. High speed point derivative microseismic detector

    DOE Patents [OSTI]

    Uhl, James Eugene; Warpinski, Norman Raymond; Whetten, Ernest Blayne

    1998-01-01

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

  13. High speed point derivative microseismic detector

    DOE Patents [OSTI]

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    1998-06-30

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

  14. Constraining higher derivative supergravity with scattering amplitudes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yifan; Yin, Xi

    2015-08-31

    We study supersymmetry constraints on higher derivative deformations of type IIB supergravity by consideration of superamplitudes. Thus, combining constraints of on-shell supervertices and basic results from string perturbation theory, we give a simple argument for the non-renormalization theorem of Green and Sethi, and some of its generalizations.

  15. ANL/EAD/TM-9 Derivation

    Office of Legacy Management (LM)

    ANL/EAD/TM-9 Derivation of Uranium Residual Radioactive Material Guidelines for the Former Alba Craft Laboratory Site, Oxford, Ohio _ _ ,_ _., by M. Nimmagadda, E. Faillace, and C. Yu Environmental Assessment Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 January 1994 Work sponsored by United States Department of Energy MASTER CONTENTS NOTATION ......................................................... v SUMMARY

  16. NREL: Energy Systems Integration Facility - Prototype and Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Prototype and Component Development To support prototype and component development, the Energy Systems Integration Facility can accommodate research, development, and demonstration of power system components such as PV inverters, residential smart meters, and appliances for physical testing or simulation using state-of-the-art hardware-in-the-loop technologies. Equipment can be developed, tested, and evaluated under normal and abnormal conditions at scale. Capability Details The

  17. Energy Department Announces $8 Million to Develop Advanced Components for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave, Tidal, and Current Energy Systems | Department of Energy 8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems January 12, 2015 - 11:00am Addthis The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic (MHK) control and component technologies. In the United States,

  18. Aluminum Bronze Alloys to Improve Furnace Component Life | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aluminum Bronze Alloys to Improve Furnace Component Life Aluminum Bronze Alloys to Improve Furnace Component Life Improved System Increases Steelmaking Furnace Efficiency, Safety, and Productivity Hoods, roofs, and sidewall systems in basic oxygen furnaces (BOFs) and electric arc furnaces (EAFs) enable effluent gases in excess of 3000°F to be properly captured, cooled, and processed prior to delivery to the environmental control equipment. Traditionally, these carbon steel components

  19. Two Component Signal Transduction in Desulfovibrio Species (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Two Component Signal Transduction in Desulfovibrio Species Citation Details In-Document Search Title: Two Component Signal Transduction in Desulfovibrio Species The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators

  20. Macroencapsulation Equivalency Guidance for Classified Weapon Components and NNSSWAC Compliance

    SciTech Connect (OSTI)

    Poling, J.

    2012-05-15

    The U.S. Department of Energy (DOE) complex has a surplus of classified legacy weapon components generated over the years with no direct path for disposal. The majority of the components have been held for uncertainty of future use or no identified method of sanitization or disposal. As more weapons are retired, there is an increasing need to reduce the amount of components currently in storage or on hold. A process is currently underway to disposition and dispose of the legacy/retired weapons components across the DOE complex.

  1. Ghana-GTZ Electrification Component of the Promotion of Private...

    Open Energy Info (EERE)

    Topics Background analysis Website http:www.gtz.deenthemenum Country Ghana Western Africa References Electrification Component of the Promotion of Private Sector Programme...

  2. Friction and Wear Enhancement of Titanium Alloy Engine Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction and Wear Enhancement of Titanium Alloy Engine Components Vehicle Technologies Office Merit Review 2014: Can hard coatings and lubricant anti-wear additives work together? ...

  3. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling 2009 DOE Hydrogen Program and Vehicle Technologies ...

  4. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC 2011 DOE Hydrogen and Fuel ...

  5. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Energy Efficient HVAC System ...

  6. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Discusses results from TE ...

  7. Scientific Solutions (TRL 5 6 Component) - Underwater Active...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network ... CX-009160: Categorical Exclusion Determination EA-1916: Draft Environmental Assessment ...

  8. Energy Department Announces $8 Million to Develop Advanced Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Components for Wave, Tidal, and Current Energy Systems Energy Department Announces ... environmentally friendly, cost-competitive electricity from water resources. ...

  9. Heavy-ion Accelerators for Testing Microelectronic Components...

    Office of Science (SC) Website

    Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of ...

  10. Sandia Energy - Goal 1: Degradation Study of Components and Subsystems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Degradation Study of Components and Subsystems Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Inverter Reliability Program...

  11. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Presentation given ...

  12. Physics of Reliability: Evaluating Design Insights for Component...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Funding Opportunity Physics of Reliability: Evaluating Design Insights for ...

  13. An overview of component qualification using Bayesian statistics...

    Office of Scientific and Technical Information (OSTI)

    using Bayesian statistics and energy methods. Citation Details In-Document Search Title: An overview of component qualification using Bayesian statistics and energy methods. ...

  14. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery ...

  15. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation PDF icon vss033carlson2011o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced ...

  16. Lower-Energy Energy Storage System (LEESS) Component Evaluation...

    Office of Scientific and Technical Information (OSTI)

    LEESS; COMPONENT EVALUATION; LITHIUM ION; CAPACITORS; Transportation Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs)...

  17. Components Responsible for the Health Effects of Inhaled Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responsible for the Health Effects of Inhaled Engine Emissions Components Responsible for the Health Effects of Inhaled Engine Emissions Presentation given at the 2007 Diesel ...

  18. Table A19. Components of Total Electricity Demand by Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Components of Total Electricity Demand by Census Region and" " Economic Characteristics of ...ansfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)",...

  19. Multi-component Nanoparticle Based Lubricant Additive to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Based Lubricant Additive to Improve Efficiency and Durability in Engines Multi-component Nanoparticle Based Lubricant Additive to Improve Efficiency and ...

  20. A Comparison Between Principal Component and Self-Organizing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Category: Atmospheric State and Surface This study evaluates the effectiveness of principal component and self-organizing map analyses as faithful...

  1. Multi-component Cu-Strengthened Steel Welding Simulations: Atom...

    Office of Scientific and Technical Information (OSTI)

    Steel Welding Simulations: Atom Probe Tomography and Synchrotron X-ray Diffraction Analyses Citation Details In-Document Search Title: Multi-component Cu-Strengthened Steel Welding ...

  2. Fact #748: October 8, 2012 Components of Household Expenditures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Household Expenditures on Transportation, 1984-2010 Fact 748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 The overall share of annual household ...

  3. Component Overpressure Growth and Characterization of High Resistivity...

    Office of Scientific and Technical Information (OSTI)

    Component Overpressure Growth and Characterization of High Resistivity CdTe Crystals for ... method using zone-refined precursor materials (Cd and Te) under a Cd overpressure. ...

  4. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets (Presentation) Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming ...

  5. Structures of Lung Cancer-Derived EGFR Mutants and Inhibitor...

    Office of Scientific and Technical Information (OSTI)

    Structures of Lung Cancer-Derived EGFR Mutants and Inhibitor Complexes: Mechanism of ... Citation Details In-Document Search Title: Structures of Lung Cancer-Derived EGFR Mutants ...

  6. Renormalized linear kinetic theory as derived from quantum field...

    Office of Scientific and Technical Information (OSTI)

    Renormalized linear kinetic theory as derived from quantum field theory: A novel ... Citation Details In-Document Search Title: Renormalized linear kinetic theory as derived ...

  7. MISR-Derived Statistics of Cumulus Geometry at TWP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    derived from satellite (Figure 4a) and surface (Figure 5a) observations. Summary To test the potential for deriving the basic statistics (mean, standard deviation, and...

  8. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007 ...

  9. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen ... Team Research Review Cost Analysis of Bio-Derived Liquids Reforming (Presentation) ...

  10. Biomass-derived Hydrogen-evolution catalyst and electrode - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass-derived Hydrogen-evolution catalyst and electrode Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Biomass-derived...

  11. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect (OSTI)

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  12. TiO{sub 2} nanocomposite with reduced graphene oxide through facile blending and its photocatalytic behavior for hydrogen evolution

    SciTech Connect (OSTI)

    Pei, Fuyun; Liu, Yingliang; Zhang, Li; Wang, Shengping; Xu, Shengang Cao, Shaokui

    2013-08-01

    Graphical abstract: - Highlights: TRG-COOH nanocomposite as a photocatalyst for hydrogen evolution is prepared. The reduction of graphene oxide reconstructs a part of conjugated structure. The band gap is red-shifted due to the reconstruction of conjugated structure. RG-COOH covered and anchored by P25 blocks the aggregation and the stacking. The photocatalytic efficiency of TRG-COOH was increased under 500 W Xenon lamp. - Abstract: TRG-COOH nanocomposite is prepared as a photocatalyst for hydrogen evolution by blending TiO{sub 2} with reduced graphene oxide (RG-COOH). TRG-COOH is characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and photoluminescent spectra. XPS result shows the reduction of monolayer graphene oxide (GO). The band gap is red-shifted from 3.25 eV for P25, which consists of 20% rutile and 80% anatase, to 2.95 eV for TGO and then to 2.80 eV for TRG-COOH due to the introduction of GO and the reconstruction of conjugated structure. TEM image illustrates that RG-COOH in TRG-COOH is covered and anchored by P25, which blocks the aggregation of TiO{sub 2} nanoparticles and the stacking of monolayer graphene. This allows RG-COOH to take a good role of electron-sink and electron-transporting bridge. The photocatalytic efficiency of TRG-COOH is respectively increased under Xenon lamp about 8.9 and 2.7 times compared to P25 and TGO.

  13. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOE Patents [OSTI]

    Kramer, Daniel P. (Centerville, OH)

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements.

  14. System diagnostics using qualitative analysis and component functional classification

    DOE Patents [OSTI]

    Reifman, Jaques; Wei, Thomas Y. C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system.

  15. Method of forming densified edge seals for fuel cell components

    DOE Patents [OSTI]

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1981-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  16. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  17. System diagnostics using qualitative analysis and component functional classification

    DOE Patents [OSTI]

    Reifman, J.; Wei, T.Y.C.

    1993-11-23

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures.

  18. Durability of ACERT Engine Components | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_11_lin.pdf More Documents & Publications Durability of ACERT Engine Components Durability of ACERT Engine Components Materials for Advanced Engine Valve Train

  19. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-02-13

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  20. Effectiveness-weighted control of cooling system components

    DOE Patents [OSTI]

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  1. Triamine chelants, their derivatives, complexes and conjugates

    DOE Patents [OSTI]

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1995-01-01

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula: ##STR1## wherein n, m, R, R.sup.1, R.sup.2 and L are defined in the specification.

  2. Uncertainty estimates for derivatives and intercepts

    SciTech Connect (OSTI)

    Clark, E.L.

    1994-09-01

    Straight line least squares fits of experimental data are widely used in the analysis of test results to provide derivatives and intercepts. A method for evaluating the uncertainty in these parameters is described. The method utilizes conventional least squares results and is applicable to experiments where the independent variable is controlled, but not necessarily free of error. A Monte Carlo verification of the method is given.

  3. Biomass Derivatives Competitive with Heating Oil Costs.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average * Fuel costs vary widely based on feedstock, location, and technology option * Retail pellet costs are based on current prices in NE (~$243/ton) * Densifying biomass for heating (e.g. pyrolysis oil or pellets) can be a cost- competitive feedstock for residential heating system * These are not "drop-in" fuels

  4. Triamine chelants, their derivatives, complexes and conjugates

    DOE Patents [OSTI]

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1995-03-07

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula, as shown in the accompanying diagrams, wherein n, m, R, R{sup 1}, R{sup 2} and L are defined in the specification.

  5. NREL's Building Component Library for Use with Energy Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Building Component Library (BCL) is the U.S. Department of Energys comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

  6. NREL's Building Component Library for Use with Energy Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

  7. Evidence of aging effects on certain safety-related components

    SciTech Connect (OSTI)

    Magleby, H.L.; Atwood, C.L.; MacDonald, P.E.; Edson, J.L.; Bramwell, D.L.

    1996-01-01

    In response to interest shown by the Nuclear Energy Agency (NEA), Principal Working Group I (PWG- 1) of the Committee on the Safety of Nuclear Installations (CSNI) conducted a generic study on the effects of aging of active components in nuclear power plants. (This focus on active components is consistent with PWG-l`s mandate; passive components are primarily within the mandate of PWG-3.) Representatives from France, Sweden, Finland, Japan, the United States, and the United Kingdom participated in the study by submitting reports documenting aging studies performed in their countries. This report consists of summaries of those reports, along with a comparison of the various statistical analysis methods used in the studies. The studies indicate that with some exceptions, active components generally do not present a significant aging problem in nuclear power plants. Design criteria and effective preventative maintenance programs, including timely replacement of components, are effective in mitigating potential aging problems. However, aging studies (such as qualitative and statistical analyses of failure modes and maintenance data) are an important part of efforts to identify and solve potential aging problems. Solving these problems typically includes such strategies as replacing suspect components with improved components, and implementing improved maintenance programs.

  8. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable

  9. APS beamline standard components handbook, Version 1. 3

    SciTech Connect (OSTI)

    Hahn, U.; Shu, D.; Kuzay, T.M.

    1993-02-01

    This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

  10. Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model

    SciTech Connect (OSTI)

    Ruiz-Arias, Jose A.; Tovar-Pescador, Joaquin; Cebecauer, Tomas; Suri, Marcel

    2010-09-15

    Downscaling of the Meteosat-derived solar radiation ({proportional_to}5 km grid resolution) is based on decomposing the global irradiance and correcting the systematic bias of its components using the elevation and horizon shadowing that are derived from the SRTM-3 digital elevation model (3 arc sec resolution). The procedure first applies the elevation correction based on the difference between coarse and high spatial resolution. Global irradiance is split into direct, diffuse circumsolar and diffuse isotropic components using statistical models, and then corrections due to terrain shading and sky-view fraction are applied. The effect of reflected irradiance is analysed only in the theoretical section. The method was applied in the eastern Andalusia, Spain, and the validation was carried out for 22 days on April, July and December 2006 comparing 15-min estimates of the satellite-derived solar irradiance and observations from nine ground stations. Overall, the corrections of the satellite estimates in the studied region strongly reduced the mean bias of the estimates for clear and cloudy days from roughly 2.3% to 0.4%. (author)

  11. ENERGY DERIVATIVES FOR CONFIGURATION INTERACTION WAVEFUNCTIONS

    SciTech Connect (OSTI)

    Dupuis, M.

    1980-09-01

    Equations providing the first and second derivatives of a configuration interaction (CI) energy with respect to an external parameter are provided. We assume no restriction on the form of the CI expansion built from molecular orbitals obtained in a multiconfiguration Hartree-Fock (MCHF) calculation. Also the coupled perturbed multi-configuration Hartree-Fock formalism is presented for a general MCHF wavefunction and provides the first order and second order changes of the molecular orbital expansion coefficients with respect to an external parameter.

  12. Derivation of an Applied Nonlinear Schroedinger Equation.

    SciTech Connect (OSTI)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens; Rambo, Patrick K.; Karelitz, David B.

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  13. H2A Delivery Components Model and Analysis

    Broader source: Energy.gov [DOE]

    Presentation on H2A Delivery Components Model and Analysis for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  14. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  15. Embedded wireless sensors for turbomachine component defect monitoring

    DOE Patents [OSTI]

    Tralshawala, Nilesh; Sexton, Daniel White

    2015-11-24

    Various embodiments include detection systems adapted to monitor at least one physical property of a component in a turbomachine. In some embodiments a detection system includes at least one sensor configured to be affixed to a component of a turbomachine, the at least one sensor for sensing information regarding at least one physical property of the turbomachine component during operation of the turbomachine, a signal converter communicatively coupled to the at least one sensor and at least one RF communication device configured to be affixed to a stationary component of the turbomachine, the radio frequency communication device configured to communicate with the at least one signal converter via an RF antenna coupled to the signal converter.

  16. Seismic ruggedness of aged electrical components: Final report (Phase 2)

    SciTech Connect (OSTI)

    Gleason, J.F.

    1987-01-01

    Seismic tests on new and aged components have shown that, for many types of commonly used nuclear plant electrical components, deterioration due to aging does not significantly affect the ability of the components to function during and after a seismic event. This was demonstrated for capacitors, circuit breakers, contactors (motor starters), control station assemblies, electronic alarms, electronics, fuses, fuse blocks, inductors, meters, motors, pressure transmitters, power supplies, relays, RTDs, solenoid valves, terminal blocks, time delay relays, transformers and switches. A few switch types (limit, pressure and rotary) were observed to be more prone to contact chatter in an aged condition than in an unaged condition. However, the ability of these devices to switch during and after shaking was not affected by aging. These results can be referenced to eliminate the cost of aging prior to seismic qualification testing for many types of electrical components.

  17. Green Functions for the Radial Electric Component of the Monopole...

    Office of Scientific and Technical Information (OSTI)

    Green Functions for the Radial Electric Component of the Monopole Wake Field in a Round Resistive Chamber Citation Details In-Document Search Title: Green Functions for the Radial...

  18. Spectral Components Analysis of Diffuse Emission Processes (Journal...

    Office of Scientific and Technical Information (OSTI)

    This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ... We develop a novel method to separate the components of a diffuse emission process based ...

  19. Mapping the Two-component Regulatory Networks in Desulfovibrio...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Mapping the Two-component Regulatory Networks in Desulfovibrio vulgaris ... Our goal is to map these RRs to the genes they regulate using a DNA-affinity-purification-...

  20. Structural Automotive Components from Composite Materials | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy lm_08_kia.pdf More Documents & Publications Structural Automotive Components from Composite Materials Advanced Materials and Processing of Composites for High Volume Applications Advanced Materials and Processing of Composites for High Volume Applications

  1. System and method for detecting cells or components thereof

    DOE Patents [OSTI]

    Porter, Marc D.; Lipert, Robert J.; Doyle, Robert T.; Grubisha, Desiree S.; Rahman, Salma

    2009-01-06

    A system and method for detecting a detectably labeled cell or component thereof in a sample comprising one or more cells or components thereof, at least one cell or component thereof of which is detectably labeled with at least two detectable labels. In one embodiment, the method comprises: (i) introducing the sample into one or more flow cells of a flow cytometer, (ii) irradiating the sample with one or more light sources that are absorbed by the at least two detectable labels, the absorption of which is to be detected, and (iii) detecting simultaneously the absorption of light by the at least two detectable labels on the detectably labeled cell or component thereof with an array of photomultiplier tubes, which are operably linked to two or more filters that selectively transmit detectable emissions from the at least two detectable labels.

  2. Identification of Martian Regolith Sulfur Components In Shergottites...

    Office of Scientific and Technical Information (OSTI)

    Title: Identification of Martian Regolith Sulfur Components In Shergottites Using Sulfur K XANES and FeS Ratios. Authors: Sutton, S.R. ; Ross, D.K. ; Rao, M.N. ; Nyquist, L.E. 1 ...

  3. Energy Department Announces $20 Million to Develop Advanced Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The industrial sector consumes over a quarter of the electricity produced in the United ... WBG components-which control or convert electrical energy into usable power-can operate at ...

  4. Turbine repair process, repaired coating, and repaired turbine component

    DOE Patents [OSTI]

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  5. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 3: Appendices

    SciTech Connect (OSTI)

    Ohlsson, O.

    1994-07-01

    This report contains the data resulting from the co-firing of b-dRDF pellets and coal in a 440-MW{sub e} cyclone-fired combustor. These tests were conducted under a Collaborative Research and Development Agreement (CRADA). The CRADA partners included the U.S. Department of Energy (DOE), National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), Otter Tail Power Company, Green Isle Environmental, Inc., XL Recycling Corporation, and Marblehead Lime Company. The report is made up of three volumes. This volume contains other supporting information, along with quality assurance documentation and safety and test plans. With this multi-volume approach, readers can find information at the desired level of detail, depending on individual interest or need.

  6. NREL: Energy Systems Integration - Prototype and Component Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototype and Component Development NREL develops and tests prototype technologies in its Energy Systems Integration Facility, which can accommodate large power system components. Unique feature such as petascale computing, interconnected AC and DC power circuits, an integrated SCADA system, megawatt-scale power-in-the-loop, and state-of-the-art data analysis and visualization capabilities enable us to help companies bring new technologies to market with more confidence and less risk. Creating

  7. Plasmoid Formation in Current Sheet with Finite Normal Magnetic Component

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Plasmoid Formation in Current Sheet with Finite Normal Magnetic Component Citation Details In-Document Search Title: Plasmoid Formation in Current Sheet with Finite Normal Magnetic Component Authors: Zhu, P. ; Raeder, J. Publication Date: 2013-06-07 OSTI Identifier: 1102825 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 110; Journal Issue: 23; Journal ID: ISSN 0031-9007 Publisher:

  8. Porous templated pyrolytic carbons as electrocatalyst components. (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Porous templated pyrolytic carbons as electrocatalyst components. Citation Details In-Document Search Title: Porous templated pyrolytic carbons as electrocatalyst components. Abstract not provided. Authors: Coker, Eric Nicholas ; Steen, William A. ; Miller, James E. ; Alam, Todd Michael Publication Date: 2008-03-01 OSTI Identifier: 1146178 Report Number(s): SAND2008-1659J 520033 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article Resource

  9. Bio-inspired nanocomposite assemblies as smart skin components. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Bio-inspired nanocomposite assemblies as smart skin components. Citation Details In-Document Search Title: Bio-inspired nanocomposite assemblies as smart skin components. There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats,

  10. Component-Centered Approach Towards Oxidation Studies of Complex Biofuels.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Component-Centered Approach Towards Oxidation Studies of Complex Biofuels. Citation Details In-Document Search Title: Component-Centered Approach Towards Oxidation Studies of Complex Biofuels. Abstract not provided. Authors: Rotavera, Brandon ; Welz, Oliver ; Sheps, Leonid ; Scheer, Adam Michael ; Savee, John David ; Osborn, David L. ; Simmons, Blake ; Taatjes, Craig A. ; Ali, Mohamad A. ; Lee, Taek Soon ; Violi, Angela Publication Date: 2013-07-01

  11. Improving Energy Efficiency by Developing Components for Distributed

    Broader source: Energy.gov (indexed) [DOE]

    Cooling and Heating Based on Thermal Comfort Modeling | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_48_gundlach.pdf More Documents & Publications Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating

  12. CLASSIFICATION OF THE MGR NON-FUEL COMPONENTS DISPOSAL CONTAINER

    SciTech Connect (OSTI)

    J.A. Ziegler

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) non-fuel components disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  13. Lower-Energy Energy Storage System (LEESS) Component Evaluation (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Lower-Energy Energy Storage System (LEESS) Component Evaluation Citation Details In-Document Search Title: Lower-Energy Energy Storage System (LEESS) Component Evaluation Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to

  14. Quality Assurance Program Application for the Component Test Capability

    SciTech Connect (OSTI)

    Stephanin L. Austad

    2009-06-01

    This paper documents the application of quality requirements to Component Test Capability (CTC) Project activities for each CTC alternative. Four alternatives are considered for quality program application: do nothing, vendor testing, existing testing facility modification, and Component Test Facility. It also describes the advantages and disadvantages of using the existing Next Generation Nuclear Plant Quality Program Plan with CTC modifications versus a stand-alone CTC Quality Program Plan.

  15. An overview of component qualification using Bayesian statistics and energy

    Office of Scientific and Technical Information (OSTI)

    methods. (Technical Report) | SciTech Connect An overview of component qualification using Bayesian statistics and energy methods. Citation Details In-Document Search Title: An overview of component qualification using Bayesian statistics and energy methods. The below overview is designed to give the reader a limited understanding of Bayesian and Maximum Likelihood (MLE) estimation; a basic understanding of some of the mathematical tools to evaluate the quality of an estimation; an

  16. Isotopic evidence for a martian regolith component in martian meteorites.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Isotopic evidence for a martian regolith component in martian meteorites. Citation Details In-Document Search Title: Isotopic evidence for a martian regolith component in martian meteorites. No abstract prepared. Authors: Rao, M.N. ; Nyquist, L.E. ; Bogard, D.D. ; Garrison, D.H. ; Sutton, S. [1] ; UC) [2] + Show Author Affiliations (NASA JSC) ( Publication Date: 2009-03-23 OSTI Identifier: 1009059 Resource Type: Conference Resource Relation: Conference: Lunar

  17. Mapping the Two-component Regulatory Networks in Desulfovibrio vulgaris

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Mapping the Two-component Regulatory Networks in Desulfovibrio vulgaris Citation Details In-Document Search Title: Mapping the Two-component Regulatory Networks in Desulfovibrio vulgaris D. vulgaris Hildenborough has 72 response regulators. The Desulfovibrio are sulfate reducing bacteria that are important in the sulfur and carbon cycles in anoxic habitats. Its large number of two componenent systems are probably critical to its ability to sense and

  18. CSP Component Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Research and Development CSP Component Research and Development University of California Los Angeles University of California Los Angeles High Operating Temperature Liquid Metal Heat Transfer Fluids Read more Argonne National Laboratory Argonne National Laboratory High-Efficiency Thermal Energy Storage System for CSP Read more Jet Propulsion Laboratory Jet Propulsion Laboratory Low-Cost, Lightweight Solar Concentrators Read more HiTek Services HiTek Services Low-Cost Heliostat

  19. University of Maryland component of the Center for Multiscale Plasma

    Office of Scientific and Technical Information (OSTI)

    Dynamics: Final Technical Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report Citation Details In-Document Search Title: University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA

  20. An overview of component qualification using Bayesian statistics and energy

    Office of Scientific and Technical Information (OSTI)

    methods. (Technical Report) | SciTech Connect Technical Report: An overview of component qualification using Bayesian statistics and energy methods. Citation Details In-Document Search Title: An overview of component qualification using Bayesian statistics and energy methods. The below overview is designed to give the reader a limited understanding of Bayesian and Maximum Likelihood (MLE) estimation; a basic understanding of some of the mathematical tools to evaluate the quality of an