Powered by Deep Web Technologies
Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"U.S. Blender Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Input of Residuum (Thousand Barrels)","U.S. Blender Net Input of Gasoline Blending Components (Thousand Barrels)","U.S. Blender Net Input of Reformulated...

2

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

3

U.S. Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total Input 1,184,435 1,522,193 1,850,204 2,166,784 2,331,109 2,399,318 2005-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,445 5,686 6,538 7,810 10,663 2008-2012 Pentanes Plus 2,012 474 1,808 1,989 2,326 4,164 2005-2012 Liquid Petroleum Gases 2,971 3,878 4,549 5,484 6,499 2008-2012 Normal Butane 2,943 2,971 3,878 4,549 5,484 6,499 2005-2012 Isobutane 2005-2006 Other Liquids 1,518,748 1,844,518 2,160,246 2,323,299 2,388,655 2008-2012 Oxygenates/Renewables 234,047 274,974 286,837 295,004 2009-2012 Methyl Tertiary Butyl Ether (MTBE) 2005-2006 Renewable Fuels (incl. Fuel Ethanol) 234,047 274,974 286,837 295,004 2009-2012 Fuel Ethanol 131,810 182,772 232,677 273,107 281,507 287,433 2005-2012

4

U.S. Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Input 206,541 217,867 212,114 216,075 219,783 208,203 2005-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 891 352 376 196 383 1,397 2008-2013 Pentanes Plus 261 301 313 67 287 393 2005-2013 Liquid Petroleum Gases 630 51 63 129 96 1,004 2008-2013 Normal Butane 630 51 63 129 96 1,004 2005-2013 Isobutane 2005-2006 Other Liquids 205,650 217,515 211,738 215,879 219,400 206,806 2008-2013 Oxygenates/Renewables 25,156 26,576 26,253 26,905 27,788 25,795 2009-2013 Methyl Tertiary Butyl Ether (MTBE) 2005-2006 Renewable Fuels (incl. Fuel Ethanol) 25,156 26,576 26,253 26,905 27,788 25,795 2009-2013 Fuel Ethanol 24,163 25,526 24,804 25,491 25,970 24,116 2005-2013

5

,"U.S. Blender Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/2005" Monthly","9/2013","1/15/2005" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_inpt3_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt3_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:22:43 AM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRB_NUS_1","M_EPL0_YIB_NUS_MBBL","MPPRB_NUS_1","M_EPLL_YIB_NUS_MBBL","MBNRB_NUS_1","MBIRB_NUS_1","M_EPOL_YIB_NUS_MBBL","M_EPOOXR_YIB_NUS_MBBL","MMTRB_NUS_1","M_EPOOR_YIB_NUS_MBBL","MFERB_NUS_1","M_EPOORD_YIB_NUS_MBBL","M_EPOORO_YIB_NUS_MBBL","M_EPPU_YIB_NUS_MBBL","M_EPOUN_YIB_NUS_MBBL","M_EPOUK_YIB_NUS_MBBL","M_EPOUH_YIB_NUS_MBBL","M_EPOUR_YIB_NUS_MBBL","MBCRB_NUS_1","MO1RB_NUS_1","M_EPOBGRR_YIB_NUS_MBBL","MO3RB_NUS_1","MO4RB_NUS_1","MO2RB_NUS_1","MO5RB_NUS_1","MO6RB_NUS_1","MO7RB_NUS_1","MO9RB_NUS_1"

6

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

7

,"Weekly Blender Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Production" Blender Net Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Blender Net Production",20,"Weekly","12/13/2013","6/4/2010" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pet_pnp_wprodb_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_wprodb_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 10:39:19 AM"

8

Refiner Crude Oil Inputs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Day) Refiner Percent Operable Utilization Net Inputs (Refiner and Blender) of Motor Gasoline Blending Comp Net Inputs (Refiner and Blender) of RBOB Blending Components Net...

9

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

10

,"U.S. Blender Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/2005" Monthly","9/2013","1/15/2005" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_refp3_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp3_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:29:29 AM" "Back to Contents","Data 1: U.S. Blender Net Production" "Sourcekey","M_EP00_YPB_NUS_MBBL","MGFRZ_NUS_1","MGRRZ_NUS_1","MG1RZ_NUS_1","M_EPM0RO_YPB_NUS_MBBL","MG4RZ_NUS_1","MG5RZ_NUS_1","M_EPM0CAL55_YPB_NUS_MBBL","M_EPM0CAG55_YPB_NUS_MBBL","MG6RZ_NUS_1","M_EPPV_YPB_NUS_MBBL","M_EPJK_YPB_NUS_MBBL","M_EPPK_YPB_NUS_MBBL","M_EPD0_YPB_NUS_MBBL","M_EPDXL0_YPB_NUS_MBBL","M_EPDM10_YPB_NUS_MBBL","M_EPD00H_YPB_NUS_MBBL","M_EPPR_YPB_NUS_MBBL","M_EPPRX_YPB_NUS_MBBL","M_EPPRY_YPB_NUS_MBBL","M_EPPRH_YPB_NUS_MBBL","M_EPPNS_YPB_NUS_MBBL","M_EPPL_YPB_NUS_MBBL","M_EPPA_YPB_NUS_MBBL","M_EPPM_YPB_NUS_MBBL","M_EPPG_YPB_NUS_MBBL"

11

,"U.S. Blender Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/2005" Annual",2012,"6/30/2005" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_refp3_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp3_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:29:28 AM" "Back to Contents","Data 1: U.S. Blender Net Production" "Sourcekey","M_EP00_YPB_NUS_MBBL","MGFRZ_NUS_1","MGRRZ_NUS_1","MG1RZ_NUS_1","M_EPM0RO_YPB_NUS_MBBL","MG4RZ_NUS_1","MG5RZ_NUS_1","M_EPM0CAL55_YPB_NUS_MBBL","M_EPM0CAG55_YPB_NUS_MBBL","MG6RZ_NUS_1","M_EPPV_YPB_NUS_MBBL","M_EPJK_YPB_NUS_MBBL","M_EPPK_YPB_NUS_MBBL","M_EPD0_YPB_NUS_MBBL","M_EPDXL0_YPB_NUS_MBBL","M_EPDM10_YPB_NUS_MBBL","M_EPD00H_YPB_NUS_MBBL","M_EPPR_YPB_NUS_MBBL","M_EPPRX_YPB_NUS_MBBL","M_EPPRY_YPB_NUS_MBBL","M_EPPRH_YPB_NUS_MBBL","M_EPPNS_YPB_NUS_MBBL","M_EPPL_YPB_NUS_MBBL","M_EPPA_YPB_NUS_MBBL","M_EPPM_YPB_NUS_MBBL","M_EPPG_YPB_NUS_MBBL"

12

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 526,996 566,851 559,032 581,600 578,456 543,388 1981-2013 Crude Oil 445,937 474,296 474,991 497,241 489,887 468,825 1981-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,805 11,759 12,769 13,227 13,760 16,794 1981-2013 Pentanes Plus 4,949 4,341 4,752 4,734 5,331 5,666 1981-2013 Liquefied Petroleum Gases 7,856 7,418 8,017 8,493 8,429 11,128 1981-2013 Ethane 1981-1992 Normal Butane 2,668 1,880 1,998 2,014 2,083 4,711 1981-2013 Isobutane 5,188 5,538 6,019 6,479 6,346 6,417 1981-2013 Other Liquids 68,254 80,796 71,272 71,132 74,809 57,769 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 32,667 34,665 34,097 35,446 36,356 33,881 1981-2013

13

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,204,500 6,277,893 6,169,893 6,345,372 6,422,710 6,406,693 1981-2012 Crude Oil 5,532,097 5,361,287 5,232,656 5,374,094 5,404,347 5,489,516 1981-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 184,383 177,559 177,194 161,479 178,884 186,270 1981-2012 Pentanes Plus 64,603 55,497 59,100 56,686 63,385 63,596 1981-2012 Liquefied Petroleum Gases 119,780 122,062 118,094 104,793 115,499 122,674 1981-2012 Ethane 1981-1992 Normal Butane 48,292 50,024 48,509 43,802 47,571 52,246 1981-2012 Isobutane 71,488 72,038 69,585 60,991 67,928 70,428 1981-2012 Other Liquids 488,020 739,047 760,043 809,799 839,479 730,907 1981-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

14

PADD 3 Weekly Inputs & Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Utilization 97.4 95.3 94.8 94.9 95.9 92.2 2010-2015 Refiner and Blender Net Inputs Motor Gasoline Blending Components -2,174 -2,008 -2,012 -2,095 -2,214 -2,291 2004-2015 RBOB -283...

15

U.S. Weekly Inputs & Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Utilization 95.4 93.5 93.5 94.4 93.9 91 1990-2015 Refiner and Blender Net Inputs Motor Gasoline Blending Components 8 234 445 192 -558 -219 2004-2015 RBOB 167 330 371 103 9 261...

16

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

17

Alternative Fuels Data Center: Biofuels Blender Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Blender Biofuels Blender Requirements to someone by E-mail Share Alternative Fuels Data Center: Biofuels Blender Requirements on Facebook Tweet about Alternative Fuels Data Center: Biofuels Blender Requirements on Twitter Bookmark Alternative Fuels Data Center: Biofuels Blender Requirements on Google Bookmark Alternative Fuels Data Center: Biofuels Blender Requirements on Delicious Rank Alternative Fuels Data Center: Biofuels Blender Requirements on Digg Find More places to share Alternative Fuels Data Center: Biofuels Blender Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Blender Requirements Blenders of ethanol and gasoline and biodiesel and diesel fuels outside of the bulk transfer terminal system must obtain a blender's license and are

18

Alternative Fuels Data Center: Blender Pump Dispensers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blender Pump Blender Pump Dispensers to someone by E-mail Share Alternative Fuels Data Center: Blender Pump Dispensers on Facebook Tweet about Alternative Fuels Data Center: Blender Pump Dispensers on Twitter Bookmark Alternative Fuels Data Center: Blender Pump Dispensers on Google Bookmark Alternative Fuels Data Center: Blender Pump Dispensers on Delicious Rank Alternative Fuels Data Center: Blender Pump Dispensers on Digg Find More places to share Alternative Fuels Data Center: Blender Pump Dispensers on AddThis.com... Blender Pump Dispensers Updated April 2, 2012 Federal and local initiatives to increase the use of ethanol in transportation have resulted in an increase of new ideas and applications for flexible fuel vehicles (FFVs) and E85, a high-level gasoline blend

19

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/2005" 3,"Monthly","9/2013","1/15/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Monthly","9/2013","1/15/1986" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:05 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOORO_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

20

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Annual",2012,"6/30/2005" 2,"Annual",2012,"6/30/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Annual",2012,"6/30/1986" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:04 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Blender Pump Dispensers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

dispensers? Blender pumps are fuel dispensers that draw fuel from two separate storage tanks and can dispense preprogrammed blends of those two fuels. Many conventional stations...

22

U.S. Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 1,522,193 1,850,204 2,166,766 2,330,990 2,399,279 2008-2012 Finished Motor Gasoline 1,184,435 1,522,193 1,848,167 2,164,209 2,324,739 2,391,313 2005-2012 Reformulated 1,029,439 1,055,409 1,064,631 1,076,458 1,066,648 1,063,540 2005-2012 Blended w/ Fuel Ethanol 1,029,359 1,055,358 1,065,792 1,069,661 1,066,648 1,063,540 2005-2012 Other 51 -1,161 6,797 2008-2010 Conventional 154,996 466,784 783,536 1,087,751 1,258,091 1,327,773 2005-2012 Blended w/ Fuel Ethanol 446,467 907,989 1,357,540 1,652,466 1,735,637 1,799,131 2005-2012 Ed55 and Lower 1,651,858 1,734,741 1,798,274 2010-2012 Greater than Ed55 608 896 857 2010-2012 Other -291,471 -441,205 -574,004 -564,715 -477,546 -471,358 2005-2012

23

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

24

U.S. Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 206,531 217,853 212,120 216,071 219,787 208,210 2008-2013 Finished Motor Gasoline 205,588 216,710 210,486 214,709 218,049 206,535 2005-2013 Reformulated 88,973 94,345 92,636 93,564 95,363 88,941 2005-2013 Blended w/ Fuel Ethanol 88,973 94,345 92,636 93,564 95,363 88,941 2005-2013 Other 2008-2010 Conventional 116,615 122,365 117,850 121,145 122,686 117,594 2005-2013 Blended w/ Fuel Ethanol 151,894 159,545 154,485 159,963 162,369 150,365 2005-2013 Ed55 and Lower 151,823 159,443 154,392 159,872 162,264 150,264 2010-2013 Greater than Ed55 71 102 93 91 105 101 2010-2013 Other -35,279 -37,180 -36,635 -38,818 -39,683 -32,771 2005-2013 Finished Aviation Gasoline

25

Alternative Fuels Data Center: Biodiesel Blender Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blender Tax Blender Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blender Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blender Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blender Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blender Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blender Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blender Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blender Tax Credit A licensed fuel supplier who blends biodiesel or green diesel with diesel fuel may claim an income tax credit of $0.05 per gallon for fuel containing

26

Alternative Fuels Data Center: Status Update: Ethanol Blender Pump  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Blender Pump Dispenser Certified (August 2010) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Twitter Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Google Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Delicious Rank Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Digg Find More places to share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on

27

Alternative Fuels Data Center: Status Update: Ethanol Blender...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blender pumps are fuel dispensers that draw fuel from two separate bulk storage tanks and can dispense preprogrammed blends of those fuels into vehicles. Many stations...

28

U.S. Total Weekly Refiner & Blender Net Production  

Gasoline and Diesel Fuel Update (EIA)

Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly 4-Week Average Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 12/06/13 12/13/13 12/20/13 12/27/13 01/03/14 01/10/14 View History Finished Motor Gasoline 8,982 9,311 9,715 9,078 9,120 8,325 1982-2014 Finished Motor Gasoline (less Adjustment) 9,428 9,376 9,916 9,002 8,782 8,874 1982-2014 Reformulated 2,891 2,983 3,163 2,871 2,634 2,781 1993-2014 Blended with Fuel Ethanol 2,891 2,983 3,163 2,871 2,634 2,781 2004-2014 Other 0 0 0 0 0 0 2004-2014 Conventional 6,537 6,393 6,752 6,131 6,148 6,093 1994-2014

29

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,567,929 6,641,293 6,527,069 6,735,067 6,815,590 6,794,407 1981-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 1981-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 1981-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 1993-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 1993-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 1981-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 1995-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 1993-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 1981-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 1993-2012

30

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 559,639 599,643 591,916 616,905 613,451 578,101 1981-2013 Liquefied Refinery Gases 24,599 26,928 25,443 26,819 25,951 19,023 1981-2013 Ethane/Ethylene 464 426 407 441 487 379 1981-2013 Ethane 317 277 283 312 332 232 1993-2013 Ethylene 147 149 124 129 155 147 1993-2013 Propane/Propylene 16,840 17,792 16,966 17,839 18,063 17,254 1981-2013 Propane 8,051 8,949 8,756 9,002 9,153 8,816 1995-2013 Propylene 8,789 8,843 8,210 8,837 8,910 8,438 1993-2013 Normal Butane/Butylene 7,270 8,876 8,122 8,676 7,664 1,738 1981-2013 Normal Butane 7,447 9,044 8,314 8,832 8,067 1,743 1993-2013 Butylene -177 -168 -192 -156 -403 -5 1993-2013 Isobutane/Isobutylene

31

U.S. Refinery and Blender Net Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

18,146 17,882 18,452 18,673 18,564 19,106 1983-2013 Liquefied Refinery Gases 630 623 659 619 630 623 1984-2013 EthaneEthylene 18 19 20 20 18 7 1985-2013 Ethane 13 14 14 14 13 7...

32

Refinery & Blender Net Production of Finished Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

2008 2009 2010 2011 2012 2013 View History U.S. 3,128,673 3,206,726 3,306,400 3,306,028 3,267,022 3,370,460 1945-2013 PADD 1 723,212 872,233 993,681 1,055,660 1,044,853 1,062,487...

33

Blender Pump Fuel Survey: CRC Project E-95  

SciTech Connect (OSTI)

To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

Alleman, T. L.

2011-07-01T23:59:59.000Z

34

The walking dead: Blender as a tool for paleontologists with a case study on extinct arachnids  

Science Journals Connector (OSTI)

...comparable to Blender. These include 3ds Max, Autodesk Maya, ZBrush and Cinema 4D, to name a few...subtly in their focus and capabilities. Of these Autodesk Maya ( http://www.autodesk.com/products/autodesk-maya/overview...

Russell Garwood; Jason Dunlop

35

Blender Pump Fuel Survey: CRC Project E-95-2  

SciTech Connect (OSTI)

With the increasing fuel diversity in the marketplace, the Coordinating Research Council and the U.S. Department of Energy's National Renewable Energy Laboratory conducted a survey of mid-level ethanol blends (MLEBs) in the market. A total of 73 fuel samples were collected from 20 retail stations. To target Class 4 volatility, the fuel samples were collected primarily in the midwestern United States in the month of February. Samples included the gasoline (E0), Flex Fuel, and every MLEB that was offered from each of the 20 stations. Photographs of each station were taken at the time of sample collection, detailing the pump labeling and configuration. The style and labeling of the pump, hose, and dispenser nozzle are all important features to prevent misfueling events. The physical location of the MLEB product relative to the gasoline product can also be important to prevent misfueling. In general, there were many differences in the style and labeling of the blender pumps surveyed in this study. All samples were analyzed for volatility and ethanol content. For the MLEB samples collected, the fuels tended to be lower in ethanol content than their indicated amount; however, the samples were all within 10 vol% of their indicated blend level. One of the 20 Flex Fuel samples was outside of the allowable limits for ethanol content. Four of the 20 Flex Fuel samples had volatility below the minimum requirement for Class 4.

Williams, A.; Alleman, T. L.

2014-05-01T23:59:59.000Z

36

U.S. Refinery Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 320,455 348,984 346,918 365,525 358,673 335,185 2005-2013 Crude Oil 445,937 474,296 474,991 497,241 489,887 468,825 2005-2013 Natural Gas Plant Liquids 11,914 11,407 12,393 13,031 13,377 15,397 2005-2013 Pentanes Plus 4,688 4,040 4,439 4,667 5,044 5,273 2005-2013 Liquefied Petroleum Gases 7,226 7,367 7,954 8,364 8,333 10,124 2005-2013 Normal Butane 2,038 1,829 1,935 1,885 1,987 3,707 2005-2013 Isobutane 5,188 5,538 6,019 6,479 6,346 6,417 2005-2013 Other Liquids -137,396 -136,719 -140,466 -144,747 -144,591 -149,037 2005-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 7,511 8,089 7,844 8,541 8,568 8,086 2005-2013 Hydrogen 5,792 6,200 6,050 6,477 6,520 6,226 2009-2013

37

U.S. Refinery Net Input  

Gasoline and Diesel Fuel Update (EIA)

Liquids -779,701 -1,084,475 -1,350,447 -1,483,820 -1,657,748 -1,720,549 2005-2013 HydrogenOxygenatesRenewables Other Hydrocarbons 56,487 59,797 73,935 83,918 89,360 97,576...

38

Petroleum Supply Annual  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

6.PDF Table 16. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2013 (Thousand Barrels) Commodity PAD District 1 - East...

39

Net Metering  

Broader source: Energy.gov [DOE]

In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became...

40

Net Metering  

Broader source: Energy.gov (indexed) [DOE]

No limit specified (Board of Public Utilities may limit to 2.5% of peak demand) 9 * California o Net Excess Generation (NEG): Credited to customer's next bill at retail rate. - At...

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Net Metering  

Broader source: Energy.gov [DOE]

North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts ...

42

Net Metering  

Broader source: Energy.gov [DOE]

[http://nebraskalegislature.gov/FloorDocs/101/PDF/Final/LB436.pdf LB 436], signed in May 2009, established statewide net metering rules for all electric utilities in Nebraska. The rules apply to...

43

Net Metering  

Broader source: Energy.gov [DOE]

Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005 and 2007. Systems up to one megawatt (MW) in capacity that generate electricity...

44

Automatic input rectification  

E-Print Network [OSTI]

We present a novel technique, automatic input rectification, and a prototype implementation, SOAP. SOAP learns a set of constraints characterizing typical inputs that an application is highly likely to process correctly. ...

Long, Fan

45

Automatic Input Rectification  

E-Print Network [OSTI]

We present a novel technique, automatic input rectification, and a prototype implementation called SOAP. SOAP learns a set of constraints characterizing typical inputs that an application is highly likely to process ...

Long, Fan

2011-10-03T23:59:59.000Z

46

TART input manual  

SciTech Connect (OSTI)

The TART code is a Monte Carlo neutron/photon transport code that is only on the CRAY computer. All the input cards for the TART code are listed, and definitions for all input parameters are given. The execution and limitations of the code are described, and input for two sample problems are given. (WHK)

Kimlinger, J.R.; Plechaty, E.F.

1982-04-01T23:59:59.000Z

47

On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic  

E-Print Network [OSTI]

Variations in power input to the ocean using a recent global “reanalysis” extending back to 1871 show a strong trend in the net power input since then, a trend dominated by the Southern Ocean region. This trend is interpreted ...

Zhai, Xiaoming

48

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 393 - - - - 330 -111 -46 4 562 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 406 0 2 15 -333 - - 0 20 9 61 Pentanes Plus .................................................. 58 0 - - - -33 - - 0 6 9 10 Liquefied Petroleum Gases .............................. 348 - - 2 15 -299 - -

49

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,197 - - - - 1,186 - -47 -4 2,340 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 14 4 - - - -60 83 20 43 Pentanes Plus .................................................. 32 0 - - - - - - -1 26 2 5 Liquefied Petroleum Gases .............................. 37 - - 14 4 - - - -59

50

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 24 - - - - 854 -10 42 -28 935 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 42 0 27 67 119 - - -30 26 1 259 Pentanes Plus .................................................. 7 0 - - - - - - 0 - 0 7 Liquefied Petroleum Gases .............................. 35 - - 27 67 119 - - -30 26

51

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,114 - - - - 1,730 800 -85 62 3,442 55 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 446 -16 121 74 -25 - - -12 105 111 395 Pentanes Plus .................................................. 50 -16 - - 1 82 - - -4 31 101 -12 Liquefied Petroleum Gases .............................. 396 - - 121 73 -107 - - -8 74 11 407

52

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 26 - - - - 864 11 23 -4 919 9 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 45 0 39 49 73 - - -4 20 8 182 Pentanes Plus .................................................. 8 0 - - 1 0 - - 0 0 1 7 Liquefied Petroleum Gases .............................. 37 - - 39 49 73 - - -4 20 7 175 Ethane/Ethylene ...........................................

53

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 511 - - - - 289 -169 -49 4 579 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 316 0 13 11 -264 - - 2 16 15 44 Pentanes Plus .................................................. 50 0 - - 0 -38 - - 0 6 13 -7 Liquefied Petroleum Gases ..............................

54

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Blenders Net Input of Crude Oil " Blenders Net Input of Crude Oil " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Refinery & Blenders Net Input of Crude Oil ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_inpt_a_epc0_yir_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt_a_epc0_yir_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

55

NUPlans Budgeting Grant Input View  

E-Print Network [OSTI]

NUPlans Budgeting Grant Input View FMS704 NUPlansGrantInputViewV2 Last updated 4/7/2014 - rb © 2014 Northwestern University FMS704 NUPlans Contributor Budgeting 1 of 5 NUPlans Grant Input View NUPlans enables schools and units with grant projects to input grant expense estimates per project for the next fiscal

Shull, Kenneth R.

56

,"U.S. Weekly Supply Estimates"  

U.S. Energy Information Administration (EIA) Indexed Site

Supply Estimates" Supply Estimates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil Production",1,"Weekly","12/13/2013","1/7/1983" ,"Data 2","Refiner Inputs and Utilization",4,"Weekly","12/13/2013","8/20/1982" ,"Data 3","Refiner and Blender Net Inputs",6,"Weekly","12/13/2013","4/9/2004" ,"Data 4","Refiner and Blender Net Production",20,"Weekly","12/13/2013","8/20/1982" ,"Data 5","Ethanol Plant Production",1,"Weekly","12/13/2013","6/4/2010"

57

Prioritization Tool Measurement Input Form  

Broader source: Energy.gov [DOE]

BTO encourages stakeholders to recommend updates and improvements to the Prioritization Tool by using the below Measure Input Form.

58

Word Pro - S3  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery and Blender Net Inputs and Net Production Refinery and Blender Net Inputs and Net Production (Million Barrels per Day) Net Inputs and Net Production, 1949-2012 Net Production, Selected Products, 1949-2012 Net Inputs and Net Production, Monthly Net Production, Selected Products, Monthly 38 U.S. Energy Information Administration / Monthly Energy Review November 2013 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 5 10 15 20 Other Net Inputs b Crude Oil Net Inputs a Total Net Production Total Net Inputs J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 0 2 4 6 8 10 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 2 4 6 8 10 Distillate Fuel Oil d Jet Fuel e Residual Fuel Oil Motor Gasoline c a Includes lease condensate. b Natural gas plant liquids and other liquids. c Beginning in 1993, includes fuel ethanol blended into motor gasoline.

59

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

60

Table A13. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

3. Selected Combustible Inputs of Energy for Heat, Power, and" 3. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type," " Census Region, Census Division, and End Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural Gas(c)",,"and Breeze)","RSE" ,"Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","LPG","(1000 short","Row"

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Massachusetts Program Type Net Metering Provider Department of Public Utilities In Massachusetts, the state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric cooperatives in Massachusetts.) Class I, Class II, Class III net metering facilities In Massachusetts, there are several categories of net-metering facilities.

62

A TIME-DERIVATIVE NEURAL NET ARCHITECTURE -AN ALTERNATIVE TO THE  

E-Print Network [OSTI]

this architecture by utilizing temporal context inthe form of time delays. In this 'On kave From Computer Systems;architecture,the input to a neuron at a given time is computed as a weightedsum of not only the present outputsA TIME-DERIVATIVE NEURAL NET ARCHITECTURE -AN ALTERNATIVE TO THE TIME-DELAY NEURAL NET ARCHITECTURE

63

Instructions for Submitting Documents to OpenNet  

Broader source: Energy.gov (indexed) [DOE]

Submitting Documents to OpenNet Submitting Documents to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name and Password. If you don't already have one, go to the OpenNet web site at: http://www.osti.gov/opennet. 1. Click on the LOGIN link on the top right. 2. Read the information and check the "I agree..." box. 3. Click on the "Request data submission access..." link at the bottom of the page. 4. Fill out the form. One of the required fields is the Site Input Code field. This field provides a drop down list of DOE Sites. All users with the same Site Input Code can edit all the records for that site. If your Site Code is not in the list or you need a site code more specific to your office than those listed,

64

Timeline for Net Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

17.5 7302010 Yes Biennially x By July 31 of each Forecast Year, BPA publishes all Load Following customers' Net Requirements data for the two years of the upcoming Rate...

65

Net Metering Resources  

Broader source: Energy.gov [DOE]

State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed...

66

Ashland Electric- Net Metering  

Broader source: Energy.gov [DOE]

In 1996, Ashland adopted a net-metering program that includes simple interconnection guidelines. The program encourages the adoption of renewable-energy systems by committing the city to purchase,...

67

American Samoa- Net Metering  

Broader source: Energy.gov [DOE]

The American Samoa Power Authority (ASPA), a government-owned electric utility, is the only power provider in this U.S. territory of almost 70,000 people. ASPA's "Interconnection and Net Energy...

68

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Arkansas Program Type Net Metering Provider Arkansas Economic Development Commission In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved final rules for net metering in July 2002. Subsequent legislation enacted in April 2007 (HB 2334) expanded the availability of net metering; increased the capacity

69

Intermediate inputs and economic productivity  

Science Journals Connector (OSTI)

...US sectoral-level production functions. Both the...316) and plastics and rubber-(326). The relationship...coefficients of the production function sum to a quantity...inputs were used in the production process. 16 This estimate...products 326 plastics and rubber products 327 non-metallic...

2013-01-01T23:59:59.000Z

70

Resources Abstracts Input Transaction Form  

E-Print Network [OSTI]

#12;Resources Abstracts Input Transaction Form 4. Title 5. Report Date 6.Urban Aquaculture Covered The University of the District of Columbia 12. Sponsoring Organization Water Resources Research of the rainbow trout (Salmo gairdneri) in a closed recycling water system in an urban environment is described

District of Columbia, University of the

71

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Program Info State New Mexico Program Type Net Metering Provider New Mexico Public Regulation Commission Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA)*, which pertains to systems up to 80 megawatts (MW) in capacity. Previously, net metering in New Mexico was limited to systems up to 10 kilowatts (kW) in capacity. Net-metered customers are credited or paid for any monthly net excess generation (NEG) at the utility's avoided-cost rate. If a customer has net

72

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Fed. Government Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Washington State University Washington's net-metering law applies to systems up to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power technologies (including fuel cells). All customer classes are eligible, and all utilities -- including municipal utilities and electric cooperatives -- must offer net metering.

73

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Vermont Program Type Net Metering Provider Vermont Department of Public Service NOTE: Legislation enacted in May 2012 (HB475) further amends Vermont's net metering policy. Vermont's original net-metering legislation was enacted in 1998, and the law has been expanded several times subsequently. Any electric customer in Vermont may net meter after obtaining a Certificate of Public Good from the Vermont Public Service Board (PSB). Solar net metered systems 10 kilowatts

74

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State North Carolina Program Type Net Metering Provider North Carolina Utilities Commission The North Carolina Utilities Commission (NCUC) requires the state's three investor-owned utilities -- Duke Energy, Progress Energy and Dominion North Carolina Power -- to make net metering available to customers that own and operate systems that generate electricity using solar energy, wind energy, hydropower, ocean or wave energy, biomass resources, combined heat and

75

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Missouri Program Type Net Metering Provider Missouri Public Service Commission Missouri enacted legislation in June 2007 (S.B. 54)* requiring all electric utilities -- investor-owned utilities, municipal utilities and electric cooperatives -- to offer net metering to customers with systems up to 100 kilowatts (kW) in capacity that generate electricity using wind energy, solar-thermal energy, hydroelectric energy, photovoltaics (PV), fuel cells

76

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Water Wind Program Info State Maryland Program Type Net Metering Provider Maryland Public Service Commission Note: The program web site listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing implementation of net metering in Maryland, such as meeting agendas, minutes, and draft utility tariffs.

77

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Program Info State District of Columbia Program Type Net Metering Provider DC Public Service Commission In the District of Columbia (DC), net metering is currently available to residential and commercial customer-generators with systems powered by renewable-energy sources, combined heat and power (CHP), fuel cells and microturbines, with a maximum capacity of 1 megawatt (MW). The term "renewable energy sources" is defined as solar, wind, tidal, geothermal, biomass, hydroelectric power and digester gas. In October 2008, the Clean

78

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State New Hampshire Program Type Net Metering Provider New Hampshire Public Utilities Commission New Hampshire requires all utilities selling electricity in the state to offer net metering to customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas, bio-oil or

79

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Virginia Program Type Net Metering Provider Virginia Department of Mines, Minerals, and Energy '''''Note: In March 2011, Virginia enacted HB 1983, which increased the residential net-metering limit to 20 kW. However, residential facilities with a capacity of greater than 10 kW must pay a monthly standby charge. The Virginia State Corporation Commission approved standby charges for transmissions and distribution components as proposed by Virginia Electric and Power Company (Dominion Virginia Power) on November 3, 2011.'''''

80

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Industrial Residential Local Government Multi-Family Residential Nonprofit Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State West Virginia Program Type Net Metering Provider West Virginia Public Service Commission Net metering in West Virginia is available to all retail electricity customers. System capacity limits vary depending on the customer type and electric utility type, according to the following table. Customer Type IOUs with 30,000 customers or more IOUs with fewer than 30,000 customers, municipal utilities, electric cooperatives

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

QuarkNet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QuarkNet: The science connection you've been waiting for! QuarkNet: The science connection you've been waiting for! The Opportunity: "Your program rejuvenates my soul. It connects me with a cadre of intelligent and excited educators. It reinvigorates my teaching and provides me avenues to extend and enliven the projects that I can offer my students. Without the Quarknet program I am sure that I would have left teaching years ago." The Players: High school students, teachers and physicsts working together on physics research projects exploring the hidden nature of matter, energy, space and time. The Questions: What are the origins of mass? Can the basic forces of nature be unified? How did the universe begin? How will it evolve? LHC & Fermilab Links For Teachers For Students CERN Homepage ATLAS Experiment

82

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Home Weatherization Water Program Info State New York Program Type Net Metering Provider New York State Department of Public Service Note: In October 2012 the New York Public Service Commission (PSC) issued an order directing Central Hudson Gas and Electric to file net metering tariff revisions tripling the aggregate net metering cap for most systems from 1% of 2005 peak demand (12 MW) to 3% of 2005 peak demand (36 MW). The PSC issued another order in June 2013 to raise the aggregate net metering cap

83

NetCDF at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NetCDF NetCDF NetCDF Description and Overview NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. This includes the libnetcdf.a library as well as the NetCDF Operators (NCO), Climate Data Operators (CDO), NCCMP, and NCVIEW packages. Files written with previous versions can be read or written with the current version. Using NetCDF on Cray System There are separate NetCDF installations provided by Cray and by NERSC. On Hopper and Edison, Cray installations are recommended because they are simpler to use. To see the available Cray installations and versions use the following command: module avail cray-netcdf To see the NERSC installations and versions use the following command:

84

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial General Public/Consumer Industrial Residential Fed. Government Local Government State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Oklahoma Program Type Net Metering Provider Oklahoma Corporation Commission Net metering has been available in Oklahoma since 1988 under Oklahoma Corporation Commission (OCC) Order 326195. The OCC's rules require investor-owned utilities and electric cooperatives under the commission's jurisdiction* to file net-metering tariffs for customer-owned renewable-energy systems and combined-heat-and-power (CHP) facilities up to 100 kilowatts (kW) in capacity. Net metering is available to all customer

85

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info State Ohio Program Type Net Metering Provider Ohio Public Utilities Commission '''''Note: In July 2012, the Public Utilities Commission of Ohio (PUCO) opened a docket ([http://dis.puc.state.oh.us/CaseRecord.aspx?CaseNo=12-2050-EL-ORD Case 12-0250-EL-RDR]) to review the net metering rules for investor-owned utilities. Details will be posted as more information is available.''''' Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fuel cells or microturbines.

86

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Commercial Fed. Government Local Government Residential State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Hawaii Program Type Net Metering Provider Hawaii Public Utilities Commission NOTE: Kauai Island Electric Cooperative's (KIUC) net metering program has reached its capacity and has implemented a Net Energy Metering Pilot Program. Hawaii's original net-metering law was enacted in 2001 and expanded in 2004 by HB 2048, which increased the eligible capacity limit of net-metered systems from 10 kilowatts (kW) to 50 kW. In 2005, the law was further amended by SB 1003, which authorized the Hawaii Public Utilities Commission

87

Code input alternatives John C. Wright  

E-Print Network [OSTI]

Code input alternatives John C. Wright John Wright Oct 2009 ­ CSWIM Workshop@ORNL Extensible markup

Wright, John C.

88

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 366,285 - - - - 501,418 159,175 -109,633 -12,929 918,349 11,825 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 122,918 -4,579 37,556 21,926 4,444 - - 15,132 24,244 34,819 108,070 58,830 Pentanes Plus ..................................................

89

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

20 20 September 2013 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,188,751 - - - - 1,015,091 -112,708 94,064 20,399 2,158,191 6,608 0 882,207 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 440,766 -88 123,986 10,625 46,383 - - 16,960 76,972 72,880 454,860 114,138 Pentanes Plus ..................................................

90

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 36,593 - - - - 31,429 - 4,534 890 71,666 - 0 55,877 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,154 -11 1,013 192 - - - -786 2,587 629 918 3,544 Pentanes Plus .................................................. 1,013 -11 - - - - - - -35 842 110 85 36 Liquefied Petroleum Gases ..............................

91

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE7.PDF TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 109,919 - - - - 142,073 -20,272 -3,481 6,003 222,236 - 0 858,776 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 43,678 -17 9,648 1,838 7,546 - - -2,299 8,340 4,663 51,989 65,215 Pentanes Plus .................................................. 4,840 -17 - - 1,688 -3,010 - -

92

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 32 - - - - 843 -1 230 8 1,061 35 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 71 0 45 40 77 - - 1 16 10 205 Pentanes Plus .................................................. 12 0 - - 1 0 - - 0 0 2 9 Liquefied Petroleum Gases ..............................

93

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 300,668 - - - - 297,837 - 31,342 -3,713 633,292 267 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 17,739 -73 18,288 1,401 - - - 3,536 17,170 3,791 12,858 8,270 Pentanes Plus .................................................. 7,914

94

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,787 - - - - 4,456 -667 185 23 7,734 4 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,476 0 410 32 278 - - 81 299 169 1,648 Pentanes Plus .................................................. 181 0 - - 28 -45 - - -9 116 3 53 Liquefied Petroleum Gases .............................. 1,295 - - 410 4 323 - - 89 183 166

95

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 751 - - - - 26,471 -300 1,308 -869 28,999 100 0 9,902 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,313 -7 839 2,091 3,702 - - -929 816 33 8,018 7,618 Pentanes Plus .................................................. 225 -7 - - - - - - 3 - 11 204 31 Liquefied Petroleum Gases

96

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 8,672 - - - - 230,125 -359 62,824 2,069 289,586 9,606 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 19,329 -83 12,151 10,808 21,118 - - 168 4,287 2,821 56,047 6,541 Pentanes Plus ..................................................

97

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF 2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,180 - - - - 1,014 - 146 29 2,312 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 33 6 - - - -25 83 20 30 Pentanes Plus .................................................. 33 0 - - - - - - -1 27 4 3 Liquefied Petroleum Gases .............................. 37 - - 33 6 - - - -24 56 17 27 Ethane/Ethylene

98

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 9,431 - - - - 316,140 4,126 8,393 -1,574 336,230 3,434 0 8,328 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 16,548 -84 14,202 18,043 26,704 - - -1,588 7,264 3,052 66,685 6,377 Pentanes Plus .................................................. 2,828 -84 - - 185 -19 - - 12 63 315 2,520 43 Liquefied Petroleum Gases

99

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,175 - - - - 10,226 -3,426 -1,436 132 17,407 1 0 15,969 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,584 -10 52 460 -10,314 - - -12 611 282 1,891 1,375 Pentanes Plus .................................................. 1,788 -10 - - - -1,036 - - -15 174 273 310 180 Liquefied Petroleum Gases

100

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,327 - - - - 4,646 -720 39 -191 7,482 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,380 -1 304 84 227 - - -113 306 108 1,693 Pentanes Plus .................................................. 155 -1 - - 77 -58 - - 35 106 1 31 Liquefied Petroleum Gases ..............................

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,019 - - - - 52,699 26,041 2,973 12 109,175 1,544 0 93,189 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 14,079 -560 812 2,541 -423 - - -6,605 4,051 2,114 16,889 48,197 Pentanes Plus .................................................. 1,354 -560 - - 21 2,843 - - 110 1,049

102

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,354 - - - - 3,718 -413 345 75 7,905 24 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,615 0 454 39 170 - - 62 282 267 1,666 Pentanes Plus .................................................. 195 0 - - 36 -65 - - 15 113 4 35 Liquefied Petroleum Gases

103

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE9.PDF TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,961 - - - - 10,783 -3,879 896 2,868 17,893 0 0 18,695 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,770 -9 127 502 -11,116 - - -50 621 280 1,423 1,326 Pentanes Plus .................................................. 1,484 -9 - - - -1,152 - - 7 122 264 -70 187 Liquefied Petroleum Gases

104

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 734 - - - - 26,368 419 -1,209 627 25,554 130 0 10,529 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,314 -6 923 1,606 2,621 - - -1,556 707 53 7,254 6,409 Pentanes Plus .................................................. 213 -6 - - - - - - 3 5 6 193 34 Liquefied Petroleum Gases ..............................

105

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE5.PDF TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,902 - - - - 53,695 23,732 5,619 2,406 108,247 2,295 0 95,547 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 13,989 -544 1,333 2,797 949 - - -6,644 3,628 2,687 18,853 41,545 Pentanes Plus .................................................. 1,274 -544 - - 11 4,162 - - 233 966

106

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 139,573 - - - - 79,019 -46,108 -13,333 1,073 158,068 10 0 19,287 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 86,184 -86 3,535 3,052 -71,945 - - 423 4,378 4,054 11,885 1,893 Pentanes Plus ..................................................

107

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

30 30 September 2013 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,101 - - - - 1,091 - 115 -14 2,320 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 65 0 67 5 - - - 13 63 14 47 Pentanes Plus .................................................. 29 0 - - - - - - 1 21 4 3 Liquefied Petroleum Gases ..............................

108

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,386,172 - - - - 1,630,908 -244,084 67,631 8,560 2,830,779 1,288 0 861,333 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 540,336 -180 150,143 11,694 101,692 - - 29,480 109,476 61,693 603,036 96,994 Pentanes Plus .................................................. 66,222 -180 - - 10,282 -16,515 - -

109

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

7  Defining a Net?Zero Energy Net Zero Energy .A.     Defining a Net­Zero Energy Building  Due to the 

Al-Beaini, S.

2010-01-01T23:59:59.000Z

110

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Minnesota Program Type Net Metering Provider Minnesota Department of Commerce '''''Note: H.F. 729, enacted in May 2013, includes many changes to Minnesota's net metering law. These changes are described above, but most will not take effect until rules are implemented at the PUC. The below summary reflects the current rules.''''' Minnesota's net-metering law, enacted in 1983, applies to all investor-owned utilities, municipal utilities and electric cooperatives. All "qualifying facilities" less than 40 kilowatts (kW) in capacity are

111

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Pennsylvania Program Type Net Metering Provider Pennsylvania Public Utility Commission Note: In March 2012 the Pennsylvania Public Utilities Commission (PUC) issued a Final Order (Docket M-2011-2249441) approving the use of third-party ownership models (i.e., system leases or retail power purchase agreements) in conjunction with net metering. The Order allows these types of arrangements for net metered systems, subject to a restriction that the

112

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info State Illinois Program Type Net Metering Provider Illinois Commerce Commission '''''NOTE: Legislation enacted in 2011 and 2012 (S.B. 1652, H.B. 3036, and S.B. 3811) has changed several aspects of net metering in Illinois. For customers in competitive classes as of July 1, 2011, the law prescribes a dual metering and bill crediting system which does not meet the definition of net metering as the term is generally defined. Click here for information regarding competitive classes, and

113

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Iowa Program Type Net Metering Provider Iowa Utilities Board Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ''et seq.'' Iowa's net-metering subrule, adopted by the IUB in July 1984, applies to customers that generate electricity using alternate energy production facilities (AEPs). Net metering is available to all customer classes of Iowa's two investor-owned utilities -- MidAmerican Energy and Interstate Power and

114

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Louisiana Program Type Net Metering Provider Louisiana Public Service Commission '''''Note: Ongoing proceedings related to net metering can be found in Docket R-31417.''''' Louisiana enacted legislation in June 2003 establishing net metering. Modeled on Arkansas's law, Louisiana's law requires investor-owned utilities, municipal utilities and electric cooperatives to offer net metering to customers that generate electricity using solar, wind, hydropower, geothermal or biomass resources. Fuel cells and microturbines that generate electricity entirely derived from renewable resources are

115

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Connecticut Program Type Net Metering Provider Public Utilities Regulatory Authority Connecticut's two investor-owned utilities -- Connecticut Light and Power Company (CL&P) and United Illuminating Company (UI) -- are required to provide net metering to customers that generate electricity using "Class I" renewable-energy resources, which include solar, wind, landfill gas, fuel

116

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Kentucky Program Type Net Metering Provider Kentucky Public Service Commission In April 2008, Kentucky enacted legislation that expanded its net metering law by requiring utilities to offer net metering to customers that generate electricity with photovoltaic (PV), wind, biomass, biogas or hydroelectric systems up to 30 kilowatts (kW) in capacity. The Kentucky Public Service Commission (PSC) issued rules on January 8, 2009. Utilities had 90 days from that date to file tariffs that include all terms and conditions of their net metering programs, including interconnection.

117

Weekly Refiner Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production Refiner Net Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/Region 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History Finished Motor Gasoline 2,168 2,300 2,336 2,359 2,462 2,368 2010-2013 East Coast (PADD 1) 54 53 52 67 71 67 2010-2013 Midwest (PADD 2) 696 745 722 711 798 790 2010-2013 Gulf Coast (PADD 3) 891 916 1,010 1,053 1,011 1,021 2010-2013 Rocky Mountain (PADD 4) 260 248 245 232 279 235 2010-2013 West Coast (PADD 5) 268 338 308 296 302 255 2010-2013 Reformulated 50 49 49 49 48 49 2010-2013 Blended with Ethanol 50 49 49 49 48 49 2010-2013 Other

118

Instructions for Submitting Document to OpenNet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Instructions for Submitting Document to OpenNet Instructions for Submitting Document to OpenNet Instructions for Submitting Document to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name and Password. If you don't already have one, go to the OpenNet web site at: http://www.osti.gov/opennet. Click on the LOGIN link on the top right. Read the information and check the "I agree..." box. Click on the "Request data submission access..." link at the bottom of the page. Fill out the form. One of the required fields is the Site Input Code field. This field provides a drop down list of DOE Sites. All users with the same Site Input Code can edit all the records for that site. If your Site Code is not in the list or you need a site code more specific to your office than those

119

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

120

The Net Effect of Exchange Rates on Agricultural Inputs and Outputs  

E-Print Network [OSTI]

offered a listening ear and support throughout my time here at Texas A&M. viii NOMENCLATURE BACE Bayesian Averaging of Classical Estimates BU Bushel CWT Hundred-weight DAP Di-ammonium Phosphate EIA Energy Information Administration ERS... will be considered for the fuel costs because according to the U.S. Energy Information ?dministration ?in agriculture, diesel fuels more than two-thirds of all farm equipment in the United States??US EIA, 2010b). In 2007 and 2008, fuel costs were 14...

Johnson, Myriah D.

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Effects of Residual Feed Intake Classification on Feed Efficiency, Feeding Behavior, Carcass Traits, and Net Revenue in Angus-Based Composite Steers  

E-Print Network [OSTI]

of $118 to profits of $170 per head (Langemeier et al., 1992). These drastic net revenue differentials are the result of substantial variability in input costs, feeder and fed cattle prices and cattle performance. 4 Past investigations into factors...

Walter, Joel

2012-02-14T23:59:59.000Z

122

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State New Jersey Program Type Net Metering Provider New Jersey Board of Public Utilities New Jersey's net-metering rules apply to all residential, commercial and industrial customers of the state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives). Systems that generate electricity using solar, wind, geothermal, wave, tidal, landfill gas or sustainable biomass resources, including fuel cells (all "Class I" technologies under the state RPS), are

123

net generation | OpenEI  

Open Energy Info (EERE)

net generation net generation Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

124

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Michigan Program Type Net Metering Provider Michigan Public Service Commission '''''The MPSC is reviewing state interconnection and net metering policies in [http://efile.mpsc.state.mi.us/efile/viewcase.php?casenum=15919&submit.x=... Case U-15919].''''' In October 2008, Michigan enacted legislation (P.A. 295) requiring the Michigan Public Service Commission (PSC) to establish a statewide net metering program for renewable-energy systems within 180 days. On May 26, 2009 the Michigan Public Service Commission (PSC) issued an order formally

125

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Colorado Program Type Net Metering Provider Colorado Public Utilities Commission [http://www.leg.state.co.us/clics/clics2009a/csl.nsf/fsbillcont3/571064D8... Senate Bill 51] of April 2009 made several changes, effective September 1, 2009, to the state's net metering rules for investor-owned utilities, as they apply to solar-electric systems. These changes include converting the maximum system size for solar-electric systems from two megawatts (MW) to 120% of the annual consumption of the site; redefining a site to include

126

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Industrial Residential Fed. Government General Public/Consumer Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State California Program Type Net Metering Provider California Public Utilities Commission California's net-metering law originally took effect in 1996 and applies to all utilities with one exception*. The law has been amended numerous times since its enactment, most recently by AB 327 of 2013. '''Eligible Technologies''' The original law applied to wind-energy systems, solar-electric systems and hybrid (wind/solar) systems. In September 2002, legislation (AB 2228)

127

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

and Blender Net Inputs and Blender Net Inputs Definitions Key Terms Definition Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline.

128

An update on the wind power input to the surface geostrophic flow of the World Ocean  

Science Journals Connector (OSTI)

The rate of working of the surface wind stress on the geostrophic component of the surface flow of the World Ocean is revisited. The global mean is found to be about 0.85 to 1.0 TW. Consistent with previous estimates, about 0.75 to 0.9 TW comes from outside the equatorial region (poleward of 3 ? ). The rate of forcing of fluctuating currents integrates to only about 0.02 TW when the equatorial region is included, or close to zero over the extratropical region. Uncertainty in wind power input due to uncertainty in the surface currents is negligible. Results from several different wind stress products are compared, suggesting that uncertainty in wind stress is the dominant source of error. Ignoring the surface currents’ influence upon wind stress leads to a systematic bias in net wind power input; an overestimate of about 10 to 30%. (In previous estimates this positive bias was offset by too weak winds.) Small-scale, zonally elongated structures in the wind power input were found, but have both positive and negative contributions and lead to little net wind power input.

Robert B. Scott; Yongsheng Xu

2009-01-01T23:59:59.000Z

129

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,003,948 - - - - 2,123,490 65,265 6,899 4,157,486 28,318 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 686,936 -4,909 195,516 47,812 - - 36,219 127,051 118,364 643,721 189,672 Pentanes Plus .................................................. 92,842 -4,909 - - 10,243 - -

130

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 5,877 - - - - 8,716 83 -218 14,841 53 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,351 -20 372 252 - - -417 566 206 2,600 Pentanes Plus .................................................. 296 -20 - - 78 - - 37 172 71 75 Liquefied Petroleum Gases .............................. 2,055 - - 372 174 - - -454 394 135 2,525

131

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,486 - - - - 8,527 146 93 14,999 67 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,408 -18 630 170 - - 65 509 314 2,301 Pentanes Plus .................................................. 317 -18 - - 29 - - -13 174 118 50 Liquefied Petroleum Gases .............................. 2,091 - - 630 141 - - 79 335 196 2,251 Ethane/Ethylene ...........................................

132

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. TABLE1.PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases

133

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus .................................................. 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases

134

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

January 2012 January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases .............................. 65,081 - - 13,044 5,236 - - -10,530 10,937 5,559 77,395 101,248 Ethane/Ethylene

135

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 182,188 - - - - 270,188 2,576 -6,767 460,074 1,646 0 1,026,829 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 72,869 -607 11,545 7,801 - - -12,921 17,534 6,391 80,604 128,709 Pentanes Plus .................................................. 9,170 -607 - - 2,421 - - 1,146 5,321 2,200 2,317 17,598 Liquefied Petroleum Gases

136

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,374,021 - - - - 3,120,755 53,567 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus .................................................. 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases

137

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 7,340 - - - - 7,778 239 25 15,229 104 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,516 -18 716 175 - - 133 465 434 2,358 Pentanes Plus .................................................. 340 -18 - - 38 - - 20 168 134 38 Liquefied Petroleum Gases .............................. 2,176 - - 716

138

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2012 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,374,021 - - - - 3,120,755 53,567 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus .................................................. 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases .............................. 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918

139

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,133 - - - - 8,527 205 413 14,374 78 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,384 -19 421 224 - - -366 512 268 2,595 Pentanes Plus .................................................. 285 -19 - - 55 - - -26 160 89 98 Liquefied Petroleum Gases .............................. 2,099 - - 421 169 - - -340 353 179 2,497 Ethane/Ethylene

140

Active QuarkNet Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active QuarkNet Centers Active QuarkNet Centers       QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Centers on a Google Map @ the PTEC website Mentor List Sorted by: Last Name Institution Name First Year in Program Argonne National Laboratory - On sabbatical Black Hills State University Brown, Northeastern & Brandeis Universities Brookhaven National Laboratory, Columbia & Stony Brook Universities Chicago State University Colorado State University Fermilab & University of Chicago Florida Institute of Technology Florida International University Florida State University Hampton, George Mason, William & Mary Universities Idaho State University Indiana University - On sabbatical Johns Hopkins University

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

3 Weekly Inputs & Utilization" 3 Weekly Inputs & Utilization" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Refiner Inputs and Utilization",4,"Weekly","12/13/2013","1/5/1990" ,"Data 2","Refiner and Blender Net Inputs",6,"Weekly","12/13/2013","4/9/2004" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pet_pnp_wiup_dcu_r30_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_wiup_dcu_r30_w.htm"

142

Net Metering | Open Energy Information  

Open Energy Info (EERE)

Metering Metering Jump to: navigation, search For electric customers who generate their own electricity, net metering allows for the flow of electricity both to and from the customer,– typically through a single, bi-directional meter. With net metering, when a customer’'s generation exceeds the customer’'s use, the customer's electricity flows back to the grid, offsetting electricity consumed by the customer at a different time. In effect, the customer uses excess generation to offset electricity that the customer otherwise would have to purchase at the utility’'s full retail rate. Net metering is required by law in most states, but some of these laws only apply to investor-owned utilities,– not to municipal utilities or electric cooperatives. [1] Net Metering Incentives

143

Grid Net | Open Energy Information  

Open Energy Info (EERE)

Net Net Jump to: navigation, search Name Grid Net Address 340 Brannan St Place San Francisco, California Zip 94107 Sector Efficiency Product Sells open, interoperable, policy-based network management software Website http://www.grid-net.com/ Coordinates 37.781265°, -122.393229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.781265,"lon":-122.393229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

From DSM to DSM Net  

Science Journals Connector (OSTI)

The following sections describe the integration of the DSM planning model with process modeling approaches of Petri nets . First, the process correctness criteria for the Dynamic new-Product Design Process (D...

Arie Karniel; Yoram Reich

2011-01-01T23:59:59.000Z

145

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fuel Vehicles Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Delaware Program Type Net Metering Provider Delaware Public Service Commission In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fuels. Grid-interactive electric vehicles are also eligible for net metering treatment for electricity that they put on the grid, although these vehicles do not themselves generate electricity. The maximum capacity of a net-metered system is 25 kilowatts (kW) for residential customers; 100 kW for farm customers on residential rates; two megawatts (MW) per meter for

146

Valley Electric Association- Net Metering  

Broader source: Energy.gov [DOE]

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

147

Word Pro - S3  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Table 3.2 Refinery and Blender Net Inputs and Net Production (Thousand Barrels per Day) Refinery and Blender Net Inputs a Refinery and Blender Net Production b Crude Oil d NGPL e Other Liquids f Total Distillate Fuel Oil g Jet Fuel h LPG c Motor Gasoline j Residual Fuel Oil Other Products k Total Propane i Total 1950 Average .................... 5,739 259 19 6,018 1,093 h ( ) NA 80 2,735 1,165 947 6,019 1955 Average .................... 7,480 345 32 7,857 1,651 155 NA 119 3,648 1,152 1,166 7,891 1960 Average .................... 8,067 455 61 8,583 1,823 241 NA 212 4,126 908 1,420 8,729 1965 Average .................... 9,043 618 88 9,750 2,096 523 NA 293 4,507 736 1,814 9,970 1970 Average .................... 10,870 763 121 11,754 2,454 827 NA 345 5,699 706 2,082 12,113 1975 Average ....................

148

2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION  

E-Print Network [OSTI]

Power Mix Fuel Type Net System Power Coal 15% Large Hydroelectric 23% Natural Gas 42% Nuclear 11CALIFORNIA ENERGY COMMISSION APRIL 2003 300-03-002 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER and report net system power, annually (Senate Bill 1305, Sher, Chapter 796, statue of 1997)1 . Net system

149

National Climate Assessment: Available Technical Inputs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Available Technical Inputs Print E-mail Available Technical Inputs Print E-mail Technical inputs for the 2013 National Climate Assessment were due March 1, 2012. Please note that these reports were submitted independently to the National Climate Assessment for consideration and have not been reviewed by the National Climate Assessment Development and Advisory Committee. Links to agency-sponsored reports will be posted here as they are made available. Sectors National Climate Assessment Health Sector Literature Review and Bibliography. Technical Input for the Interagency Climate Change and Human Health Group, September 2012. Overview Bibliography Bibliography User's Guide Search Strategy and Results Walthall et al. 2012. Climate Change and Agriculture in the United States: Effects and Adaptation. USDA Technical Bulletin 1935. Washington, DC. 186 pages. | Report FAQs

150

Evaluation of boolean formulas with restricted inputs  

E-Print Network [OSTI]

In this thesis, I will investigate the running time of quantum algorithms for evaluating boolean functions when the input is promised to satisfy certain conditions. The two quantum algorithms considered in this paper are ...

Zhan, Bohua

2010-01-01T23:59:59.000Z

151

Generation of RTL verification input stimulus  

E-Print Network [OSTI]

This thesis presents an approach for generating input stimulus for verification of register-transfer level (RTL) design of VLSI circuits. RTL design is often subjected to a significant verification effort due to errors introduced during manual...

Selvarathinam, Anand Manivannan

2012-06-07T23:59:59.000Z

152

LCA of cropping systems with different external input levels for energetic purposes  

Science Journals Connector (OSTI)

Biofuels could become increasingly important for agriculture; however there is growing concern regarding the possible environmental drawbacks due to the risks of increased inputs during crop cultivation. These risks need to be evaluated in order to assess the best management practices. In this study, a life cycle assessment (LCA) was carried out: (i) to evaluate the environmental impacts of three cropping systems characterized by different external input levels (low S1, medium S2 and high S3) applied to sunflower and maize, both in rotation with wheat, in a Mediterranean region; (ii) to estimate the environmental benefits of the optimization of cropping systems for energy management. Output–input ratio, net energy balance, global warming potential (GWP), eutrophication potential (EP) and acidification potential (AP) were used as LCA impact categories. Data from cropping systems (external input and crop yields) were collected from a long-term experiment carried out in the coastal plain of Tuscany; data regarding fertilizers, machinery and pesticide production were taken from literature. The results obtained showed S1 with the highest output–input ratios and the lowest impact for the selected impact categories. The other cropping systems S2 and S3 showed limited differences between them for all the impact categories evaluated. Fertilizer use and application, irrigation and machinery use caused most of the environmental impacts and energy consumption. The allocation procedure, showing residues as co-products, had a strong influence on the overall efficiency of agricultural systems.

Pietro Goglio; Enrico Bonari; Marco Mazzoncini

2012-01-01T23:59:59.000Z

153

The input power of distributed sources  

Science Journals Connector (OSTI)

An alternative to the conventional method of calculation of net power radiated by flux integration is presented. This method allows power radiated by distributed sources to be calculated by an integral only over the source region. Furthermore the method is applicable to calculation of radiation from distributed sources in flow. Examples of power radiation for the geometry of the finite cylinder are given for both stationary and moving media. Analytic results are presented for the long wavelength approximation.

Marian Smith

1988-01-01T23:59:59.000Z

154

Opportunities for Public Input Into DOE Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities for Public Input Into DOE Projects Opportunities for Public Input Into DOE Projects There are currently several DOE-proposed activities that citizens can comment on in the near future. Here is a summary of each, as well as a description of how to provide your input into the project: Hanford Draft Closure and Waste Management Environmental Impact Statement Idahoans might be interested in this document because one of the proposed actions involves sending a small amount of radioactive waste (approximately 5 cubic meters of special reactor components) to the Idaho Nuclear Technology and Engineering Center on DOE's Idaho Site for treatment. Here is a link to more information about the document: http://www.hanford.gov . A public hearing on the draft EIS will be held in Boise on Tuesday, Feb. 2 at the Owyhee Plaza Hotel. It begins at 6 p.m.

155

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Heating & Cooling Commercial Heating & Cooling Wind Program Info State Indiana Program Type Net Metering Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission (IURC) adopted rules for net metering in September 2004, requiring the state's investor-owned utilities (IOUs) to offer net metering to all electric customers. The rules, which apply to renewable energy resource projects [defined by IC 8-1-37-4(a)(1) - (8)] with a maximum capacity of 1 megawatt (MW), include the following

156

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Oregon Program Type Net Metering Oregon has established separate net-metering programs for the state's primary investor-owned utilities (PGE and PacifiCorp), and for its municipal utilities and electric cooperatives. '''PGE and PacifiCorp Customers''' The Oregon Public Utilities Commission (PUC) adopted new rules for net metering for PGE and PacifiCorp customers in July 2007, raising the individual system limit from 25 kilowatts (kW) to two megawatts (MW) for non-residential applications. (The rules do not apply to customers of Idaho

157

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Wyoming Program Type Net Metering Provider Wyoming Public Service Commission Wyoming enacted legislation in February 2001 that established statewide net metering. The law applies to investor-owned utilities, electric cooperatives and irrigation districts. Eligible technologies include solar, wind, biomass and hydropower systems up to 25 kilowatts (kW) in capacity. Systems must be intended primarily to offset part or all of the customer-generator's requirements for electricity. Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits at the utility's avoided-cost

158

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institutional Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Arizona Program Type Net Metering Provider Arizona Corporation Commission Net metering is available to customers who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power (CHP) or fuel cell technologies. The ACC has not set a firm kilowatt-based limit on system size capacity; instead, systems must be sized to not exceed 125% of the customer's total connected load. If there is no available load data for the customer, the generating system may not

159

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Wisconsin Program Type Net Metering Provider Public Service Commission of Wisconsin The Public Service Commission of Wisconsin (PSC) issued an order on January 26, 1982 requiring all regulated utilities to file tariffs allowing net metering to customers that generate electricity with systems up to 20 kilowatts (kW)* in capacity. The order applies to investor-owned utilities and municipal utilities, but not to electric cooperatives. All distributed-generation (DG) systems, including renewables and combined heat and power (CHP), are eligible. There is no limit on total enrollment.

160

QuarkNet at Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QuarkNet at Work Information for Active Mentors & Teachers     QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Information Active Centers Calendar Contacts Expectations: for Teachers, for Mentors Information on Other Funding Sources Program Overview Support: for Teachers, for Centers Staff Job Description Activities Essential Practices - Teaching with Inquiry (word.doc) Classroom Activities e-Labs: CMS - Cosmic Ray Boot Camp Project Activities Databases: Data Entry (password only) 2012 Center Reporting Resources Important Findings from Previous Years Mentor Tips Associate Teacher Institute Toolkit Print Bibliography - Online Resources Imaging Detector Principles of Professionalism for Science Educators - NSTA position

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...  

Open Energy Info (EERE)

U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

162

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

163

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

164

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

165

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

166

Watfactory Virtual Manufacturing Process Varying Inputs  

E-Print Network [OSTI]

with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

Zhu, Mu

167

Automatic interpretation of loosely encoded input  

Science Journals Connector (OSTI)

Knowledge-based systems are often brittle when given unanticipated input, i.e. assertions or queries that misalign with the ontology of the knowledge base. We call such misalignments ''loose speak''. We found that loose speak occurs frequently in interactions ... Keywords: Knowledge based systems, Metonymy, Noun compound, Question answering

James Fan; Ken Barker; Bruce Porter

2009-02-01T23:59:59.000Z

168

Contractive Systems with Inputs Eduardo D. Sontag  

E-Print Network [OSTI]

Contractive Systems with Inputs Eduardo D. Sontag Dedicated to Y. Yamamoto on the occasion of his 60th birthday Abstract. Contraction theory provides an elegant way of analyzing the behaviors-contained introduction to some basic results, with a focus on contractions with respect to non-Euclidean metrics. 1

Sontag, Eduardo

169

Green Computing input for better outcomes  

E-Print Network [OSTI]

Journal Profile: Udi Dahan Green Maturity Model for Virtualization Profiling Energy Usage for Efficient suggests that tracking energy consumption at every level will become the factor of success for greenGreen Computing input for better outcomes Learn the discipline, pursue the art, and contribute

Amir, Yair

170

Input to Priorities Panel August 7, 2012  

E-Print Network [OSTI]

Input to Priorities Panel August 7, 2012 Jeff Freidberg MIT 1 #12;The Emperor of Fusion has · Comparison (1 GW overnight cost) · Coal $ 3B · Gas $ 1B · Nuclear $ 4B · Wind $ 2B · Solar-T $ 3B · ITER $25B

171

Dale Meade regarding input international collaboration panel  

E-Print Network [OSTI]

Dale Meade regarding input international collaboration panel 1 message Saskia to add 2 comments to this discussion: 1. This regards not only international collaborations, but also national collaborations. We need to decide on using 1 video conferencing system. One of the main

172

Variability of Load and Net Load in Case of Large Scale Distributed Wind Power  

SciTech Connect (OSTI)

Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

2011-01-01T23:59:59.000Z

173

Idaho Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Idaho Power - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Idaho Power Company Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar, wind, hydropower, biomass or fuel cells; (2) limits residential systems to

174

Avista Utilities - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

175

SRP - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SRP - Net Metering SRP - Net Metering SRP - Net Metering < Back Eligibility Commercial Residential Savings Category Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Net Metering Provider SRP Salt River Project (SRP) modified an existing net-metering program for residential and commercial customers in November 2013. Net metering is now available to customers who generate electricity using photovoltaic (PV), geothermal, or wind systems up to 300 kilowatts (kW) in AC peak capacity. The kilowatt-hours (kWh) delivered to SRP are subtracted from the kWh delivered from SRP for each billing cycle. If the kWh calculation is net positive for the billing cycle, SRP will bill the net kWh to the customer under the applicable price plan, Standard Price Plan E-21, E-23, E-26,

176

T-623: HP Business Availability Center Input Validation Hole...  

Broader source: Energy.gov (indexed) [DOE]

Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting...

177

Tribal Leaders Provide White House with Input on Bolstering Climate...  

Energy Savers [EERE]

Tribal Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 -...

178

U-252: Barracuda Web Filter Input Validation Flaws Permit Cross...  

Broader source: Energy.gov (indexed) [DOE]

2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September...

179

U-219: Symantec Web Gateway Input Validation Flaws Lets Remote...  

Broader source: Energy.gov (indexed) [DOE]

9: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input...

180

Feasibility of Achieving Net-Zero-Energy Net-Zero-Cost  

E-Print Network [OSTI]

1 Feasibility of Achieving Net- Zero-Energy Net-Zero-Cost Homes I.S. Walker, Al-Beaini, SSimjanovic,JohnStanley,BretStrogen,IainWalker FeasibilityofAchieving ZeroNetEnergy,Zero NetCostHomes #12;4 ACKNOWLEDGEMENTS

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes 1 fey, 1David Feasibility of Achieving a ZeroNetEnergy, ZeroNetCost Homes 1 #12;2 ACKNOWLEDGEMENTS The material building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened

182

Hyperbolic Dirac Nets for medical decision support. Theory, methods, and comparison with Bayes Nets  

Science Journals Connector (OSTI)

We recently introduced the concept of a Hyperbolic Dirac Net (HDN) for medical inference on the grounds that, while the traditional Bayes Net (BN) is popular in medicine, it is not suited to that domain: there are many interdependencies such that any ... Keywords: Bayes Net, Complex, Decision support system, Dirac, Expert system, Hyperbolic, Hyperbolic Dirac Net, Medical inference

Barry Robson

2014-08-01T23:59:59.000Z

183

Constrained CP-nets Steve Prestwich  

E-Print Network [OSTI]

Constrained CP-nets Steve Prestwich , Francesca Rossi ďż˝ , Kristen Brent Venable ďż˝, Toby Walsh 1, soft constraints, and CP-nets. We construct a set of hard constraints whose solutions are the optimal to represent preferences, we will consider CP-nets [6, 3], which is a quali- tative approach where preferences

Walsh, Toby

184

Constrained CP-nets Steve Prestwich1  

E-Print Network [OSTI]

Constrained CP-nets Steve Prestwich1 , Francesca Rossi2 , Kristen Brent Venable2 , Toby Walsh1 1, soft constraints, and CP nets. We construct a set of hard constraints whose solutions are the optimal. Among the many existing approaches to represent preferencess, we will consider CP nets [5,3], which

Rossi, Francesca

185

2007 NET SYSTEM POWER REPORT STAFFREPORT  

E-Print Network [OSTI]

-2007.......................................................................5 Figure 3: Natural Gas and Coal Shares of Net System Power Mix Become Larger 1999-2007.....7 ListCALIFORNIA ENERGY COMMISSION 2007 NET SYSTEM POWER REPORT STAFFREPORT April 2008 CEC-200 .................................................................................................................. 1 Net System Power Findings

186

The CloudNets Network Virtualization Architecture  

E-Print Network [OSTI]

Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

Schmid, Stefan

187

Application of computer voice input/output  

SciTech Connect (OSTI)

The advent of microprocessors and other large-scale integration (LSI) circuits is making voice input and output for computers and instruments practical; specialized LSI chips for speech processing are appearing on the market. Voice can be used to input data or to issue instrument commands; this allows the operator to engage in other tasks, move about, and to use standard data entry systems. Voice synthesizers can generate audible, easily understood instructions. Using voice characteristics, a control system can verify speaker identity for security purposes. Two simple voice-controlled systems have been designed at Los Alamos for nuclear safeguards applicaations. Each can easily be expanded as time allows. The first system is for instrument control that accepts voice commands and issues audible operator prompts. The second system is for access control. The speaker's voice is used to verify his identity and to actuate external devices.

Ford, W.; Shirk, D.G.

1981-01-01T23:59:59.000Z

188

Generalized Input-Output Inequality Systems  

SciTech Connect (OSTI)

In this paper two types of generalized Leontief input-output inequality systems are introduced. The minimax properties for a class of functions associated with the inequalities are studied. Sufficient and necessary conditions for the inequality systems to have solutions are obtained in terms of the minimax value. Stability analysis for the solution set is provided in terms of upper semi-continuity and hemi-continuity of set-valued maps.

Liu Yingfan [Department of Mathematics, Nanjing University of Post and Telecommunications, Nanjing 210009 (China)], E-mail: yingfanliu@hotmail.com; Zhang Qinghong [Department of Mathematics and Computer Science, Northern Michigan University, Marquette, MI 49855 (United States)], E-mail: qzhang@nmu.edu

2006-09-15T23:59:59.000Z

189

Net Energy Billing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Billing Energy Billing Net Energy Billing < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Maine Program Type Net Metering Provider Maine Public Utilities Commission All of Maine's electric utilities -- investor-owned utilities (IOUs), consumer-owned utilities (COUs), which include municipal utilities and electric cooperatives -- must offer net energy billing for individual customers. Furthermore IOUs are required to offer net metering for shared ownership customers, while COUs may offer net metering to shared ownership

190

Thermophilic Anaerobic Digestion to Increase the Net Energy Balance of Corn Grain Ethanol  

Science Journals Connector (OSTI)

Thermophilic Anaerobic Digestion to Increase the Net Energy Balance of Corn Grain Ethanol ... However, the calculation did not include the energetic costs to physically replace the evaporator with the integrated digester system (this will be a relatively small fraction of the energy input because the percentage of energy input per unit of ethanol energy output for construction of the entire conventional dry mill is 0.2% (4)); the improved quality in animal feed (DDG vs DDGS); nor the available waste heat from circumventing thin stillage evaporation. ...

Matthew T. Agler; Marcelo L. Garcia; Eric S. Lee; Martha Schlicher; Largus T. Angenent

2008-08-05T23:59:59.000Z

191

Kansas - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kansas - Net Metering Kansas - Net Metering Kansas - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Kansas Program Type Net Metering Provider Kansas Corporation Commission Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing net metering for customers of investor-owned utilities in Kansas. Net metering applies to systems that generate electricity using solar, wind, methane, biomass or hydro resources, and to fuel cells using hydrogen produced by an eligible

192

Progress Energy - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Progress Energy - Net Metering Progress Energy - Net Metering Progress Energy - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering Provider Progress Energy Carolinas In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including ownership of RECs, in South Carolina and standardized

193

Net Metering Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Webinar Net Metering Webinar Net Metering Webinar June 25, 2014 11:00AM MDT Attendees will become familiar with the services provided by utility net metering and their importance in making projects cost-effective. The speakers will provide information based on case histories of how facilities that generate their own electricity from renewable energy sources can feed electricity they do not use back into the grid. Many states have net-metering laws with which utilities must comply. In states without such legislation, utilities may offer net-metering programs voluntarily or as a result of regulatory decisions. The webinar will cover the general differences between states' legislation and implementation and how the net-metering benefits can vary widely for facilities in different areas of

194

Duke Energy - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Duke Energy - Net Metering Duke Energy - Net Metering Duke Energy - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering In August 2009, the South Carolina Public Service Commission issued an [http://dms.psc.sc.gov/pdf/matters/F05030FC-E19A-9225-B838F72EDF4557DC.pdf] order mandating net metering be made available by the regulating utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including

195

Guam - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guam - Net Metering Guam - Net Metering Guam - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info Program Type Net Metering Provider Guam Energy Office Guam's Public Utilities Commission (PUC) reviewed net metering and interconnection during a regular meeting in February 2009 (Docket 08-10). Please contact the [http://www.guampuc.com/ Guam PUC] for the results of that docket review. In 2004, Guam enacted legislation requiring the Guam Power Authority (GPA) to allow net metering for customers with fuel cells, microturbines, wind energy, biomass, hydroelectric, solar energy or hybrid systems of these

196

Net Metering Rules (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) < Back Eligibility Commercial Industrial Installer/Contractor Investor-Owned Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arkansas Program Type Net Metering Provider Arkansas Public Service Commission The Net Metering Rules are promulgated under the authority of the Arkansas Public Service Commission. These rules are created to establish rules for net energy metering and interconnection. These rules are developed pursuant to the Arkansas Renewable Energy Development Act (Arkansas Code Annotated 23-18-603). These rules apply to all electric utilities.

197

TacNet Tracker - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Transmission Find More Like This Return to Search TacNet Tracker Handheld Tracking and Communications Device Sandia National Laboratories Contact SNL About This...

198

NASA Net Zero Energy Buildings Roadmap  

SciTech Connect (OSTI)

In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

2014-10-01T23:59:59.000Z

199

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

for  any net energy consumption with solar panels, the cost energy generation technologies (such as solar panels).   

Al-Beaini, S.

2010-01-01T23:59:59.000Z

200

On the Wind Power Input to the Ocean General Circulation  

E-Print Network [OSTI]

The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

Zhai, Xiaoming

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

INGEN: A COBRA-NC input generator user's manual  

SciTech Connect (OSTI)

The INGEN (INput GENerator) computer program has been developed as a preprocessor to simplify input generation for the COBRA-NC computer program. INGEN uses several empirical correlations and geometric assumptions to simplify the data input requirements for the COBRA-NC computer code. The simplified input scheme is obtained at the expense of much flexibility provided by COBRA-NC. For more complex problems requiring additional flexibility however, INGEN may be used to provide a skeletal input file to which the more detailed input may be added. This report describes the input requirements for INGEN and describes the algorithms and correlations used to generate the COBRA-NC input. 9 refs., 3 figs., 6 tabs.

Wheeler, C.L.; Dodge, R.E.

1986-12-01T23:59:59.000Z

202

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31062,0.88,32.64...

203

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31228,0.91,32.46...

204

Net pay evaluation: a comparison of methods to estimate net pay and net-to-gross ratio using surrogate variables  

E-Print Network [OSTI]

Net pay (NP) and net-to-gross ratio (NGR) are often crucial quantities to characterize a reservoir and assess the amount of hydrocarbons in place. Numerous methods in the industry have been developed to evaluate NP and NGR, depending on the intended...

Bouffin, Nicolas

2009-06-02T23:59:59.000Z

205

How Sensitive is Processor Customization to the Workload's Input Datasets?  

E-Print Network [OSTI]

How Sensitive is Processor Customization to the Workload's Input Datasets? Maximilien Breughe Zheng though is to what extent processor customiza- tion is sensitive to the training workload's input datasets. Current practice is to consider a single or only a few input datasets per workload during the processor

Eeckhout, Lieven

206

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

207

Active QuarkNet Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

first active year) first active year)       QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Institution Contact e-mail Year Brown, Northeastern & Brandeis Universities Richard Dower - rick.dower@roxburylatin.org 1999 Fermilab & University of Chicago Chris Stoughton - stoughto@fnal.gov 1999 Florida State University Horst Wahl - wahl@hep.fsu.edu 1999 Indiana University Rick Van Kooten - rickv@paoli.physics.indiana.edu 1999 University of California - Santa Cruz Steve Ritz - ritz@scipp.ucsc.edu 1999 University of Notre Dame Dan Karmgard - Karmgard.1@nd.edu 1999 University of Oklahoma Michael Strauss - strauss@mail.nhn.ou.edu 1999 University of Rochester Kevin McFarland - ksmcf@pas.rochester.edu 1999

208

Puerto Rico - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Puerto Rico - Net Metering Puerto Rico - Net Metering Puerto Rico - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Program Type Net Metering Provider Autoridad de EnergĂ­a Electrica de Puerto Rico Puerto Rico enacted net-metering legislation in August 2007, allowing customers of Puerto Rico Electric Power Authority (PREPA) to use electricity generated by solar, wind or "other" renewable-energy resources to offset their electricity usage. This law applies to residential systems with a generating capacity of up to 25 kilowatts (kW) and non-residential systems up to one megawatt (MW) in capacity.*

209

LADWP - Net Metering (California) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering (California) Net Metering (California) LADWP - Net Metering (California) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Residential Savings Category Solar Buying & Making Electricity Wind Program Info State California Program Type Net Metering Provider Los Angeles Department of Water and Power LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless an installation requires atypical metering equipment. In these cases the customer must cover the additional metering expenses. The customer must also pay any related interconnection fees. Excess kilowatt-hours (kWh) generated by the customer's system will be

210

Definition: Net Zero | Open Energy Information  

Open Energy Info (EERE)

Zero Zero Jump to: navigation, search Dictionary.png Net Zero A building, home, or community that offsets all of its energy use from renewable energy available within the community's built environment.[1] View on Wikipedia Wikipedia Definition A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption and zero carbon emissions annually. Buildings that produce a surplus of energy over the year may be called "energy-plus buildings" and buildings that consume slightly more energy than they produce are called "near-zero energy buildings" or "ultra-low energy houses". Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant

211

Zero Net Energy Myths and Modes of Thought  

E-Print Network [OSTI]

mypp.html. ———. (2009). "Net-Zero Energy CommercialZero Net Energy Myths and Modes of Thought  Nicholas B.  AC02? 05CH11231. Page | i Zero Net Energy Myths and Modes of

Rajkovich, Nicholas B.

2010-01-01T23:59:59.000Z

212

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Environmental Management (EM)

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

213

Aspinall Courthouse: GSA's Historic Preservation and Net-Zero...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Aspinall Courthouse: GSA's...

214

Nevada Renewable Energy Application For Net Metering Customers...  

Open Energy Info (EERE)

Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

215

Best Practices for Controlling Capital Costs in Net Zero Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy Design and...

216

Community Renewable Energy Success Stories Webinar: Net Zero...  

Office of Environmental Management (EM)

Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version) Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text...

217

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by...

218

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations  

E-Print Network [OSTI]

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations Angel Lozano gives the power allocation policy, referred to as mercury/waterfilling, that maximizes the sum mutual

VerdĂş, Sergio

219

V-139: Cisco Network Admission Control Input Validation Flaw...  

Broader source: Energy.gov (indexed) [DOE]

Sensitive Information U-270:Trend Micro Control Manager Input Validation Flaw in Ad Hoc Query Module Lets Remote Users Inject SQL Commands U-015: CiscoWorks Common...

220

,"New York Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2013 ,"Release Date:","1031...

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Millenial Net Inc | Open Energy Information  

Open Energy Info (EERE)

Millenial Net Inc Millenial Net Inc Jump to: navigation, search Name Millenial Net, Inc. Place Burlington, Massachusetts Zip MA 01803 Sector Services Product Millennial Net is a US-based developer of wireless sensor networking software, systems, and services. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

223

Definition: Net generation | Open Energy Information  

Open Energy Info (EERE)

Net generation Net generation Jump to: navigation, search Dictionary.png Net generation Equal to gross generation less electrical energy consumed at the generating station(s).[1][2] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Gross generation, power, gross generation References ↑ http://www1.eere.energy.gov/site_administration/glossary.html#N ↑ http://205.254.135.24/tools/glossary/index.cfm?id=N Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Net_generation&oldid=480320" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

224

June 25 Webinar to Explore Net Metering  

Broader source: Energy.gov [DOE]

Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

225

Addressing RESTful ADO.NET Data Services  

Science Journals Connector (OSTI)

If you’re a developer, you probably want to learn everything about ADO.NET Data Services as quickly as possible so you can implement it in your company. However, as with most software development that is under...

2009-01-01T23:59:59.000Z

226

Definition of a 'Zero Net Energy' Community  

SciTech Connect (OSTI)

This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

Carlisle, N.; Van Geet, O.; Pless, S.

2009-11-01T23:59:59.000Z

227

Introduction to ASP.NET Web API  

Science Journals Connector (OSTI)

The fact that you are reading this means you are interested in learning something about ASP.NET Web API (application programming interface). Perhaps you are ... to swim a bit deeper into the Web API waters; hence...

Tugberk Ugurlu; Alexander Zeitler; Ali Kheyrollahi

2013-01-01T23:59:59.000Z

228

AllNet: Ubiquitous Interpersonal Communication  

E-Print Network [OSTI]

AllNet: Ubiquitous Interpersonal Communication Edoardo Biagioni University of Hawaii at Mãnoa esb@hawaii (RSA, + AES for long msgs) ­ Then digitally signed I only decrypt if I can verify the signature

Biagioni, Edoardo S.

229

SIXTH FRAMEWORK PROGRAMME PRIORITY "ERA-NET"  

E-Print Network [OSTI]

Co-ordination Action to Establish a Hydrogen and Fuel Cell ERA-Net, Hydrogen Co- ordination Work.....................................................................34 4.5 Hydrogen conversion ­ Fuel cells......................................................................36 4.6 Application of hydrogen and fuel cell technology

230

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

net?zero energy home  (based on the default values with Siemens SP75 cells in EnergyGauge’s PV calculation 

Al-Beaini, S.

2010-01-01T23:59:59.000Z

231

Seismic Deployments and Experiments: PeruNet, GeoNet, and SeismoPhone.  

E-Print Network [OSTI]

Networked Sensing Seismic Deployments and Experiments:PeruNet: Installing a UCLA seismic line in Latin Americadata quality controll •Seismic tomography to reveal slab

2009-01-01T23:59:59.000Z

232

Instructions for Submitting Document to OpenNet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Document to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name and Password. If you don't...

233

Performance Measures For Input Shaping and Command Generation  

E-Print Network [OSTI]

Performance Measures For Input Shaping and Command Generation Kris Kozak Department of Precision performance measures for input shaping and command generation have appeared in the literature, but very rarely have these measures been critically evaluated or thoroughly discussed. In this paper we review

Singhose, William

234

Univariate input models for stochastic simulation , NM Steiger4  

E-Print Network [OSTI]

of the continuous univariate probabilistic input processes that drive discrete-event simulation experiments that accu- rately mimic the behaviour of the random input processes driving the system under study. Often the following interrelated difficulties arise in attempts to use standard distribution families for simulation

235

ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO  

E-Print Network [OSTI]

ADIOS ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO NATIONAL RADIO ASTRONOMY OBSERVATORY TABLES ADIOS - ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE COMPUTER TABLE FOR CONTENTS Page I Module and Apple Card (Photograph) Figure 3 Complete Apple/ADIOS System (Photograph) Figure 4 Analog

Groppi, Christopher

236

Soft-Input Soft-Output Sphere Decoding Christoph Studer  

E-Print Network [OSTI]

Soft-Input Soft-Output Sphere Decoding Christoph Studer Integrated Systems Laboratory ETH Zurich Laboratory ETH Zurich, 8092 Zurich, Switzerland Email: boelcskei@nari.ee.ethz.ch Abstract--Soft-input soft, 8092 Zurich, Switzerland Email: studer@iis.ee.ethz.ch Helmut Bölcskei Communication Technology

237

Link: exploiting the web of data to generate test inputs  

Science Journals Connector (OSTI)

Applications that process complex data, such as maps, personal data, book information, travel data, etc., are becoming extremely common. Testing such applications is hard, because they require realistic and coherent test inputs that are expensive to ... Keywords: System testing, Web of data, realistic test input

Leonardo Mariani; Mauro Pezzč; Oliviero Riganelli; Mauro Santoro

2014-07-01T23:59:59.000Z

238

T-623: HP Business Availability Center Input Validation Hole Permits  

Broader source: Energy.gov (indexed) [DOE]

3: HP Business Availability Center Input Validation Hole 3: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks May 16, 2011 - 3:05pm Addthis PROBLEM: A vulnerability was reported in HP Business Availability Center. A remote user can conduct cross-site scripting attacks. PLATFORM: HP Business Availability Center software 8.06 and prior versions ABSTRACT: The software does not properly filter HTML code from user-supplied input before displaying the input. reference LINKS: SecurityTracker Alert ID:1025535 HP Knowledge Base CVE-2011-1856 Secunia ID: SA44569 HP Document ID:c02823184 | ESB-2011.0525 IMPACT ASSESSMENT: High Discussion: A remote user can cause arbitrary scripting code to be executed by the

239

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 32. Blender Net Inputs of Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 308 5 313 45 44 345 434 Pentanes Plus ...................................................... - - - - 2 75 77 Liquefied Petroleum Gases .................................. 308 5 313 45 42 270 357 Normal Butane .................................................. 308 5 313 45 42 270 357 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

240

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF 0.PDF Table 20. Blender Net Inputs of Petroleum Products by PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 158 5 163 47 18 168 233 Pentanes Plus ...................................................... 5 - 5 - - 5 5 Liquefied Petroleum Gases .................................. 153 5 158 47 18 163 228 Normal Butane .................................................. 153 5 158 47 18 163 228 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Inputs of Petroleum Products by PAD Districts, 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 1,744 80 1,824 345 324 2,161 2,830 Pentanes Plus ...................................................... 63 - 63 - - 87 87 Liquefied Petroleum Gases .................................. 1,681 80 1,761 345 324 2,074 2,743 Normal Butane .................................................. 1,681 80 1,761 345 324 2,074 2,743 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

242

Wavelength meter having single mode fiber optics multiplexed inputs  

DOE Patents [OSTI]

A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

Hackel, R.P.; Paris, R.D.; Feldman, M.

1993-02-23T23:59:59.000Z

243

Wavelength meter having single mode fiber optics multiplexed inputs  

DOE Patents [OSTI]

A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

1993-01-01T23:59:59.000Z

244

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Petroleum and Other Liquids Petroleum and Other Liquids THIS PAGE INTENTIONALLY LEFT BLANK Figure 5.0. Petroleum Flow, 2011 (Million Barrels per Day) U.S. Energy Information Administration / Annual Energy Review 2011 117 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net inputs (0.489). 6 Petroleum products supplied. (s)=Less than 0.005.

245

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Flow, (Million Barrels per Day) Petroleum Flow, (Million Barrels per Day) Petroleum Energy Flow diagram image Footnotes: 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net imputs (0.489). 6 Production minus refinery input. (s)= Less than 0.005. Notes: * Data are preliminary. * Values are derived from source data prior to rounding for publication.

246

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Petroleum Flow, 2011 (Million Barrels per Day) U.S. Energy Information Administration / Annual Energy Review 2011 117 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net inputs (0.489). 6 Petroleum products supplied. (s)=Less than 0.005. Notes: * Data are preliminary. * Values are derived from source data prior to rounding for

247

ARM - Measurement - Net broadband total irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

248

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

249

Chapter 17: Estimating Net Savings: Common Practices  

SciTech Connect (OSTI)

This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM&V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to particular program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and compares the current industry practices for determining net energy savings, but does not prescribe particular methods.

Violette, D. M.; Rathbun, P.

2014-09-01T23:59:59.000Z

250

SolarNet | Open Energy Information  

Open Energy Info (EERE)

SolarNet SolarNet Jump to: navigation, search Name SolarNet Place Healdsburg, California Zip 95448 Sector Solar Product Solar project developer with subsidiaries involved in the distribution, installation and financing of solar projects. Coordinates 38.610645°, -122.868834° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.610645,"lon":-122.868834,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Are net surfers ready for audio banners?  

Science Journals Connector (OSTI)

The internet is the fastest growing medium of all time. In this research, the potential effects of advertising music on net surfers' attitude and recall are investigated by means of an online experiment that took place on the internet, using audio banners and a banner without music, placed on existing websites. The results showed that, even though the net surfer of today is still stimulated insufficiently, from a musical point of view, in online advertisements, the presence of music, and particularly the presence of music with an expected tempo, has a positive affect on the click-through rate of the banner, as well as the attitude towards the advertising and the recall rate of the net surfer. The research aims to take a further step in the comprehension of online advertising music and its fundamental effects.

Caner Dincer

2008-01-01T23:59:59.000Z

252

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

253

Input to the 2012-2021 Strategic Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Federal Climate Efforts Related Federal Climate Efforts Input to the 2012-2021 Strategic Plan Print E-mail Engaging Stakeholders The USGCRP is dedicated to engaging stakeholders in strategic planning efforts. Our community outreach activities created a dialogue with our stakeholders through various communication channels, such as opportunities for interagency collaboration, town hall meetings, public presentations and listening sessions. These channels alongside our 60 day public comment period enabled the program to incorporate stakeholder input int the process of drafting this decadal plan. In addition, we welcome input - particularly on the future direction of USGCRP and on the climate information you need and use. Please send your comments to input@usgcrp.gov. Listening Sessions

254

V-192: Symantec Security Information Manager Input Validation Flaws Permit  

Broader source: Energy.gov (indexed) [DOE]

92: Symantec Security Information Manager Input Validation Flaws 92: Symantec Security Information Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Information Disclosure Attacks V-192: Symantec Security Information Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Information Disclosure Attacks July 4, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in Symantec Security Information Manager PLATFORM: Symantec Security Information Manager Appliance Version 4.7.x and 4.8.0 ABSTRACT: Symantec was notified of multiple security issues impacting the SSIM management console REFERENCE LINKS: SecurityTracker Alert ID: 1028727 Symantec Security Advisory SYM13-006 CVE-2013-1613 CVE-2013-1614 CVE-2013-1615 IMPACT ASSESSMENT: Medium DISCUSSION: The console does not properly filter HTML code from user-supplied input

255

Abandoned Uranium Mines Report to Congress: LM Wants Your Input |  

Broader source: Energy.gov (indexed) [DOE]

Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input April 11, 2013 - 1:33pm Addthis C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts What does this project do? Goal 4. Optimize the use of land and assets Abandoned Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder input on an abandoned uranium mines report to Congress. On January 2, 2013, President Obama signed into law the National Defense Authorization Act for Fiscal Year 2013, which requires the Secretary of Energy, in consultation with the Secretary of the U.S Department of the Interior (DOI) and the Administrator

256

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Broader source: Energy.gov (indexed) [DOE]

Industry Input on Nickel Disposition Strategy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

257

Comparison of wind stress algorithms, datasets and oceanic power input  

E-Print Network [OSTI]

If the ocean is in a statistically steady state, energy balance is a strong constraint, suggesting that the energy input into the world ocean is dissipated simultaneously at the same rate. Energy conservation is one of the ...

Yuan, Shaoyu

2009-01-01T23:59:59.000Z

258

Operation of buck regulator with ultra-low input voltage  

E-Print Network [OSTI]

Based on the LTC3621 and LTC3624, the designed buck regulator proposed in this thesis aims to lower the allowed input voltage and increase efficiency compared to the original part without making significant changes to ...

Harris, Cory Angelo

2014-01-01T23:59:59.000Z

259

Data sheet acquired from Harris Semiconductor Buffered Inputs  

E-Print Network [OSTI]

1 Data sheet acquired from Harris Semiconductor SCHS121D Features · Buffered Inputs · Typical. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250. CAUTION

Kretchmar, R. Matthew

260

Automatic testing of software with structurally complex inputs  

E-Print Network [OSTI]

Modern software pervasively uses structurally complex data such as linked data structures. The standard approach to generating test suites for such software, manual generation of the inputs in the suite, is tedious and ...

Marinov, Darko, 1976-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Face Interface : a methodology for experimental learning of input modalities  

E-Print Network [OSTI]

This thesis demonstrates that creating a system with a visual representation of the face which mirrors the user's facial gestures appears to solve problems in teaching a user to use the new input affordances of face-based ...

Wetzel, Jon William

2007-01-01T23:59:59.000Z

262

T-693: Symantec Endpoint Protection Manager Input Validation Hole Permits  

Broader source: Energy.gov (indexed) [DOE]

3: Symantec Endpoint Protection Manager Input Validation Hole 3: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks T-693: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks August 15, 2011 - 3:42pm Addthis PROBLEM: Two vulnerabilities were reported in Symantec Endpoint Protection Manager. A remote user can conduct cross-site scripting attacks. A remote user can conduct cross-site request forgery attacks. PLATFORM: Version(s): 11.0 RU6(11.0.600x), 11.0 RU6-MP1(11.0.6100), 11.0 RU6-MP2(11.0.6200), 11.0 RU6-MP3(11.0.6300) ABSTRACT: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks. reference LINKS:

263

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

and Operation in Zero-Net- Energy Buildings with Demandand Operation in Zero-Net-Energy Buildings with Demandhas launched the Zero-Net- Energy (ZNE) Commercial Building

Stadler, Michael

2009-01-01T23:59:59.000Z

264

Charged-Particle Thermonuclear Reaction Rates: III. Nuclear Physics Input  

E-Print Network [OSTI]

The nuclear physics input used to compute the Monte Carlo reaction rates and probability density functions that are tabulated in the second paper of this series (Paper II) is presented. Specifically, we publish the input files to the Monte Carlo reaction rate code RatesMC, which is based on the formalism presented in the first paper of this series (Paper I). This data base contains overwhelmingly experimental nuclear physics information. The survey of literature for this review was concluded in November 2009.

Christian Iliadis; Richard Longland; Art Champagne; Alain Coc

2010-04-23T23:59:59.000Z

265

Discrete Koenigs Nets and Discrete Isothermic Surfaces  

Science Journals Connector (OSTI)

......then any) of the four points , . (2) Let be...leads to These points satisfy the Moutard...circular net its lift into the light cone...Thereby conditions like points lie in a d-dimensional...then any) of the four points , . (2......

Alexander I. Bobenko; Yuri B. Suris

2009-01-01T23:59:59.000Z

266

.NET gadgeteer: a platform for custom devices  

Science Journals Connector (OSTI)

.NET Gadgeteer is a new platform conceived to make it easier to design and build custom electronic devices and systems for a range of ubiquitous and mobile computing scenarios. It consists of three main elements: solder-less modular electronic hardware; ...

Nicolas Villar; James Scott; Steve Hodges; Kerry Hammil; Colin Miller

2012-06-01T23:59:59.000Z

267

Rocky Mountain Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

268

ARM - Reading netCDF, HDF, and GRIB Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DocumentationReading netCDF, HDF, and GRIB Files DocumentationReading netCDF, HDF, and GRIB Files Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan Data Product Registration and Submission Reading netCDF and HDF Data Files Time in ARM netCDF Data Files Data Archive Documentation ARM Archive's Catalog of Data Streams (Updated monthly) Access to Historical ARM Data More on Understanding and Finding ARM Data Data Quality Problem Reporting Reading netCDF, HDF, and GRIB Files netCDF Files Most ARM data are stored in netCDF format. This format allows for the definition of data fields and storage of operational information in the header of the file. All ARM netCDF files are in UTC time and represent time as "seconds since January 1, 1970,'' which is called the "epoch time.'' For

269

City of St. George - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of St. George - Net Metering City of St. George - Net Metering City of St. George - Net Metering < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Program Info State Utah Program Type Net Metering Provider City of St. George The St. George City Council adopted a [http://www.sgcity.org/wp/power/NetMeteringPolicy.pdf net-metering program for area utilities], including interconnection procedures, in October 2005.* The interconnection procedures include different requirements, based on system size, for systems up to 10 megawatts (MW). Net metering is available to residential and commercial customers that generate electricity using photovoltaic (PV) systems. The net metering agreements currently available on the utility's web site only pertain to

270

Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

271

New Jersey Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) New Jersey Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

272

Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

273

Rhode Island Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

274

Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

275

Tennessee Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Tennessee Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

276

Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

277

New York Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) New York Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

278

Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

279

Connecticut Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Connecticut Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

280

Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

New Hampshire Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) New Hampshire Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

282

Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

283

Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

284

North Carolina Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) North Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

285

Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

286

Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

287

California Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) California Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

288

Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

289

Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

290

Pennsylvania Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Pennsylvania Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

291

Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

292

Oregon Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Oregon Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

293

South Dakota Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

294

Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

295

Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

296

Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

297

Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

298

Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

299

Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

300

South Carolina Natural Gas LNG Storage Net Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) South Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Collective Impact for Zero Net Energy Homes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Collective Impact for Zero Net Energy Homes Collective Impact for Zero Net Energy Homes This presentation was delivered at the U.S. Department of Energy Building America meeting on...

302

Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania  

Science Journals Connector (OSTI)

Evaluation of three different ITN delivery strategies co-existing in Tanzania which enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population.

Rashid A Khatib; Gerry F Killeen; Salim MK Abdulla; Elizeus Kahigwa; Peter D McElroy; Rene PM Gerrets; Hassan Mshinda; Alex Mwita; S Patrick Kachur

2008-06-02T23:59:59.000Z

303

Porting the .NET Micro Framework A Microsoft Technical White Paper  

E-Print Network [OSTI]

Porting the .NET Micro Framework A Microsoft Technical White Paper December 10, 2007 AbstractShow-capable devices to port the .NET Micro Framework to new hardware platforms. This white paper introduces the .NET Micro Framework architecture with a view toward porting it to a new hardware platform. It then discusses

Hunt, Galen

304

heavy-snowfall area. The annual NEP (net ecosystem productiv-  

E-Print Network [OSTI]

Net includes temperate deciduous, coniferous and mixed forests. #12;FFPRI...FluxNet sites, Japan radiation radiation and air temperature was an important factor. In contrast, at the decidu- ous broad-leaved forests, Japan by Yoshikazu Ohtani Figure 1: Flux towers and forests in FFPRI FluxNet, Japan. The FFPRI Flux

305

Net Zero Energy Military Installations: A Guide to  

E-Print Network [OSTI]

Net Zero Energy Military Installations: A Guide to Assessment and Planning Samuel Booth, John;Technical Report Net Zero Energy Military NREL/TP-7A2-48876 Installations: A Guide to August 2010 Assessment .......................................................................................................................................1 1 Introduction: Net Zero Energy In DoD Context

306

NetGator: Malware Detection Using Program Interactive Challenges  

E-Print Network [OSTI]

NetGator: Malware Detection Using Program Interactive Challenges Brian Schulte, Haris Andrianakis, we present a scalable approach called Network Interrogator (NetGator) to detect network-based malware that attempts to exfiltrate data over open ports and protocols. NetGator operates as a transparent proxy using

Stavrou, Angelos

307

Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15 13 15 11 11 9 10 21 79 154 1990's 181 154 180 4 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Washington Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

308

Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 48 106 337 1 3 11 2 1 385 315 1990's 56 49 52 78 289 194 709 172 50 64 2000's 101 118 13 42 71 154 13 54 46 47 2010's 12 20 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Minnesota Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

309

District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 2 1 46 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas District of Columbia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition)

310

Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 484 498 984 352 332 373 155 136 743 899 1990's 24 72 126 418 987 609 882 178 80 498 2000's 319 186 48 160 124 382 41 245 181 170 2010's 115 89 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Maryland Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

311

Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 57 64 68 23 53 45 44 40 34 82 1990's 81 46 45 84 123 96 301 137 17 12 2000's 44 39 23 143 30 31 46 40 27 3 2010's 2 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Iowa Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

312

Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3,127 10,532 5,621 3,844 82 221 196 247 254 305 1990's 220 222 132 110 252 75 266 135 80 119 2000's 261 107 103 126 131 132 124 145 123 205 2010's 4 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Pennsylvania Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

313

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

314

Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 65 60 2,129 1,278 326 351 1 1 2 1,875 1990's 0 0 0 0 371 4 785 719 40 207 2000's 972 31 62 1,056 917 15 78 66 6 10 2010's 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Missouri Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

315

Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Rhode Island Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

316

DOE Seeks Input On Addressing Contractor Pension and Medical Benefits  

Broader source: Energy.gov (indexed) [DOE]

Input On Addressing Contractor Pension and Medical Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced in the Federal Register that it is seeking public comment on how to address the increasing costs and liabilities of contractor employee pension and medical benefits. Under the Department of Energy's unique Management and Operating and other site management contracts, DOE reimburses its contractors for allowable costs incurred in providing contractor employee pension and medical benefits to current employees and retirees. In FY2006, these costs reached approximately $1.1 billion - a more than 226 percent increase since FY2000 - and are expected to grow in future years.

317

Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 57 151 84 28 121 124 248 241 292 1990's 209 185 166 199 123 130 94 14 16 12 2000's 73 51 7 14 5 0 3 2 52 2010's 732 701 660 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Georgia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

318

Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Delaware Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

319

South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 24 50 1 0 0 0 0 10 16 1990's 10 3 10 9 61 37 87 30 4 5 2000's 13 5 3 57 5 4 0 1 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas South Dakota Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

320

New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 774 720 582 328 681 509 362 464 492 592 1990's 205 128 96 154 160 90 147 102 103 111 2000's 180 86 66 58 91 84 92 9 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas New Hampshire Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

OECD Input-Output Tables | Open Energy Information  

Open Energy Info (EERE)

OECD Input-Output Tables OECD Input-Output Tables Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Input-Output Tables Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: Co-benefits assessment, Market analysis, Co-benefits assessment, Pathways analysis Resource Type: Dataset Website: www.oecd.org/document/3/0,3343,en_2649_34445_38071427_1_1_1_1,00.html Country: Sweden, Finland, Japan, South Korea, Argentina, Australia, China, Israel, United Kingdom, Portugal, Romania, Greece, Poland, Slovakia, Chile, India, Canada, New Zealand, United States, Denmark, Norway, Spain, Austria, Italy, Netherlands, Ireland, France, Belgium, Brazil, Czech Republic, Estonia, Germany, Hungary, Luxembourg, Mexico, Slovenia, South Africa, Turkey, Indonesia, Switzerland, Taiwan, Russia

322

Formalization of computer input and output: the Hadley model  

Science Journals Connector (OSTI)

Current digital evidence acquisition tools are effective, but are tested rather than formally proven correct. We assert that the forensics community will benefit in evidentiary ways and the scientific community will benefit in practical ways by moving beyond simple testing of systems to a formal model. To this end, we present a hierarchical model of peripheral input to and output from von Neumann computers, patterned after the Open Systems Interconnection model of networking. The Hadley model categorizes all components of peripheral input and output in terms of data flow; with constructive aspects concentrated in the data flow between primary memory and the computer sides of peripherals' interfaces. The constructive domain of Hadley is eventually expandable to all areas of the I/O hierarchy, allowing for a full view of peripheral input and output and enhancing the forensics community's capabilities to analyze, obtain, and give evidentiary force to data.

Matthew Gerber; John Leeson

2004-01-01T23:59:59.000Z

323

Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 144 1,584 1,077 291 239 343 298 180 245 251 1990's 111 146 40 94 29 68 48 37 33 31 2000's 20 6 6 57 191 273 91 0 0 1 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Connecticut Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

324

South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 74 184 63 73 62 87 31 22 191 201 1990's 17 47 26 34 154 62 178 10 0 18 2000's 63 6 3 15 2 86 75 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas South Carolina Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

325

Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 12 42 90 39 25 36 13 26 36 78 1990's 3 8 12 13 84 33 73 19 4 11 2000's 13 0 1 1 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Tennessee Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

326

FishNet: Finding and Maintaining Information on the Net Paul De Bra 1 and Pim Lemmens  

E-Print Network [OSTI]

FishNet: Finding and Maintaining Information on the Net Paul De Bra 1 and Pim Lemmens Department whether links are still valid and whether documents they point to have been modified or moved. ffl Fish of a given set of (addresses of) documents. FishNet keeps track of the evolution of a domain of interest

De Bra, Paul

327

Empirical analysis of energy consumption behaviour An input to an effective energy plan in Nigeria  

Science Journals Connector (OSTI)

Shortages in commercial energy (gas, fuel oil, electricity and kerosene) supplies have become increasingly marked in Nigeria, and this has been graphically illustrated by incessant power failures. Primarily such shortages have been created by unprecedented increases in energy use derived from the growth in demand for consumer goods such as electrical equipment and motor vehicles, in addition to a huge expansion of the services sector and light manufacturing following the oil boom of the 1970s. The long-run implications of such demand increases were not fully appreciated or adequately forecast because of the general feeling that Nigeria had the privileged position of being a net oil exporter and producer of gas. However, the reality of energy shortages has led to the consequences of lost output and restrictions placed upon the further expansion of the service sector. With little hope of a short-run solution to the problem, a long-term view needs to begin by acquiring a comprehensive knowledge of the energy consumption behaviour of the household sector as an input into a more wide ranging energy plan for the country. This article focuses on how such knowledge can help achieve this objective.

Obas John Ebohon

1992-01-01T23:59:59.000Z

328

Economic impacts and challenges of China’s petroleum industry: An input–output analysis  

Science Journals Connector (OSTI)

It is generally acknowledged that the petroleum industry plays an important role in China’s national economic and social development. The direct, indirect, and induced impacts of China’s petroleum industry are analyzed in this study by using the Input–Output approach. The study also considers the main challenges that China’s economy might face in the future. The research results suggest the following: (1) The total economic impacts coefficients on output, given each unit of final demands change in extraction of petroleum and processing of petroleum, are 1.9180 and 3.2747 respectively, and the corresponding economic impacts coefficients on GDP are 1.0872 and 0.9001 respectively; (2) Extraction of petroleum has a more direct impact on GDP, while processing of petroleum has a greater effect on the total output; (3) Extraction of petroleum’s total economic impacts coefficients on both output and GDP have remained stable in recent years after a period of long decline; processing of petroleum’s total economic impacts coefficient on output is steadily increasing; (4) Import uncertainty, the likelihood of rising oil prices, and net oil exports caused by items manufactured with petroleum products (i.e. “Made in China” goods) are the main challenges the petroleum industry will cause for China’s overall economy.

Tang Xu; Zhang Baosheng; Feng Lianyong; Marwan Masri; Afshin Honarvar

2011-01-01T23:59:59.000Z

329

Table 3. U.S. Inputs to Biodiesel Production  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Inputs to Biodiesel Production U.S. Inputs to Biodiesel Production (million pounds) 2011 January 8 17 - W 150 W 14 11 February 26 13 - W 150 W 14 11 March 68 14 - W 190 W 19 27 April 88 20 - W 236 W 15 47 May 113 21 - W 264 W 16 36 June 75 34 - W 311 W 23 49 July 77 35 - W 367 W 26 64 August 84 37 W W 398 W 34 38 September 84 27 W W 430 W

330

net zero | OpenEI Community  

Open Energy Info (EERE)

44 44 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142229644 Varnish cache server net zero Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing

331

Definition: Net Interchange Schedule | Open Energy Information  

Open Energy Info (EERE)

Interchange Schedule Interchange Schedule Jump to: navigation, search Dictionary.png Net Interchange Schedule The algebraic sum of all Interchange Schedules with each Adjacent Balancing Authority.[1] Related Terms Balancing Authority, Adjacent Balancing Authority, Interchange, Interchange Schedule, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Net_Interchange_Schedule&oldid=502531" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

332

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

333

Long Island Power Authority - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Long Island Power Authority - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Program Info State New York Program Type Net Metering Provider Long Island Power Authority : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm-based biogas and wind energy systems. It also adopted a measure to increase the aggregate net metering cap for solar, agricultural biogas, residential micro-CHP and

334

Montana Electric Cooperatives - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Cooperatives - Net Metering Electric Cooperatives - Net Metering Montana Electric Cooperatives - Net Metering < Back Eligibility Commercial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Montana Program Type Net Metering Provider Montana Electric Cooperatives' Association The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or part by most of the 26 electric cooperatives in Montana. A map of the service areas of each of member cooperative is available on the MECA web site. To determine if a specific cooperative offers net metering, view the MECA

335

Farmington Electric Utility System - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

336

SCE&G - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SCE&G - Net Metering SCE&G - Net Metering SCE&G - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including ownership of RECs, in South Carolina and standardized

337

Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach  

E-Print Network [OSTI]

We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central ($b\\leq 2.75$ fm) Pb+Pb/Au+Au collisions from $E_{lab}=2A$ GeV to $\\sqrt{s_{NN}}=200$ GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low $\\sqrt{s_{NN}}$.

Marlene Nahrgang; Tim Schuster; Michael Mitrovski; Reinhard Stock; Marcus Bleicher

2012-09-03T23:59:59.000Z

338

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: · Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage · Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

339

"Why Are Some Firms More Innovative? Knowledge Inputs, Knowledge Stocks,  

E-Print Network [OSTI]

"Why Are Some Firms More Innovative? Knowledge Inputs, Knowledge Stocks, and the Role of Global, Exporting, Knowledge and Technological Change Abstract Why do some firms create more knowledge than others stock of knowledge. But there is very little empirical evidence on production functions for new ideas

Sadoulet, Elisabeth

340

Fast RNA Structure Alignment for Crossing Input Rolf Backofena  

E-Print Network [OSTI]

is to predict for every input sequence the minimum free-energy non-crossing structure (in O(n3 ) time function. Since the structure of RNA is evolu- tionarily more conserved than its sequence, predicting a folding with minimal free energy [5, 6, 7, 8, 9]. Albeit this so-named thermodynamic approach is a success

Tsur, Dekel

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Input to review of STFC UK Nuclear Physics Community  

E-Print Network [OSTI]

Input to review of STFC UK Nuclear Physics Community Introduction STFC covers essentially and project funding for Astronomy, Nuclear Physics, Particle Physics and Space Science Since STFC was formed programme. Grant funding Nuclear Physics grant funding was in EPSRC until 2007 and then moved to STFC

Crowther, Paul

342

Global sensitivity analysis of computer models with functional inputs  

E-Print Network [OSTI]

function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear with scalar input variables. For example, in the nuclear engineering domain, global SA tools have been applied (Helton et al. [7]), environmental model of dose calculations (Iooss et al. [10]), reactor dosimetry

Boyer, Edmond

343

Toward a Theory of Input Acceptance for Transactional Memories  

E-Print Network [OSTI]

-core architectures requires numerous events to be treated upon reception. In fact, the transactional code executed, experimental validation compares the presented TM designs in terms of input acceptance with realistic workloads database systems transac- tional events can be buffered on the server-side before treatment

Guerraoui, Rachid

344

The Matrix Converter Drive Performance Under Abnormal Input Voltage Conditions  

E-Print Network [OSTI]

that generates variable magnitude variable frequency output voltage from the ac utility line. It has high power voltage disturbance related performance issues of the MC drive. Since the MC is a direct frequencyThe Matrix Converter Drive Performance Under Abnormal Input Voltage Conditions Jun-Koo Kang

Hava, Ahmet

345

Grays Harbor PUD - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Grays Harbor PUD - Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Grays Harbor PUD Grays Harbor PUD's net-metering program differs slightly from what is required by Washington state law in that Grays Harbor PUD reimburses customers for net excess generation (NEG), at the end of each year, at 50% of the utility's retail rate. State law allows utilities to require customers to surrender NEG to the utility, without reimbursement, at the end of a 12-month billing cycle. Grays Harbor PUD has voluntarily gone

346

City of New Orleans - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of New Orleans - Net Metering City of New Orleans - Net Metering City of New Orleans - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Louisiana Program Type Net Metering Provider City Council Utilities Regulatory Office In May 2007, the New Orleans City Council adopted net-metering rules that are similar to rules adopted by the Louisiana Public Service Commission (PSC) in November 2005. The City Council's rules require Entergy New Orleans, an investor-owned utility regulated by the city, to offer net metering to customers with systems that generate electricity using solar energy, wind energy, hydropower, geothermal or biomass resources. Fuel

347

SaskPower Net Metering (Saskatchewan, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SaskPower Net Metering (Saskatchewan, Canada) SaskPower Net Metering (Saskatchewan, Canada) SaskPower Net Metering (Saskatchewan, Canada) < Back Eligibility Commercial Agricultural Industrial Residential Savings Category Solar Buying & Making Electricity Program Info Funding Source SaskPower State Saskatchewan Program Type Net Metering Provider SaskPower Residents, farms and businesses with approved Environmental Preferred Technologies of up to 100 kilowatts (kW) of nominal (nameplate) generating capacity can deliver their excess electricity to our electrical grid. SaskPower will pay a one-time rebate, equivalent to 20% of eligible costs to a maximum payment of $20,000, for an approved and grid interconnected net metering project. The Net Metering Rebate is available to SaskPower, Saskatoon Light and Power and City of Swift Current electricity customers

348

Washington City Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Washington City Power - Net Metering Washington City Power - Net Metering Washington City Power - Net Metering < Back Eligibility General Public/Consumer Savings Category Solar Buying & Making Electricity Wind Program Info State Utah Program Type Net Metering Provider Washington City Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity using photovoltaic (PV) systems or wind-energy systems up to 10 kilowatts (kW) in capacity. At the customer's expense, the municipal utility will provide a single, bidirectional meter to measure the in-flow and out-flow of electricity at the customer's home. Systems are restricted to being sized to provide no more than 120% of the historic maximum monthly energy consumption of the

349

U.S. Virgin Islands - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering < Back Eligibility Commercial Fed. Government Institutional Local Government Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Wind Program Info Program Type Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy system up to 10 kilowatts (kW) in capacity. In July 2009, the legislature passed Act 7075 that raised the capacity limits to 20 kW for residential systems, 100 kW for commercial systems, and 500 kW for public (which includes government, schools, hospitals). The aggregate capacity limit of all net-metered systems is five megawatts

350

Murray City Power - Net Metering Pilot Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Program Info State Utah Program Type Net Metering Provider Murray City Power Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10 kilowatts (kW).* The utility will install and maintain a revenue meter capable of registering the bi-directional flow of electricity at the customer's facility. Any customer net excess generation (NEG) is carried over to the customer's next bill as a kilowatt-hour credit. Each April, any remaining NEG credits are

351

City of Brenham - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Brenham - Net Metering City of Brenham - Net Metering City of Brenham - Net Metering < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Nonprofit Residential Schools State Government Savings Category Bioenergy Wind Buying & Making Electricity Energy Sources Solar Program Info State Texas Program Type Net Metering Provider City of Brenham In September 2010, the City of Brenham passed an ordinance adopting net metering and interconnection procedures. Customer generators up to 10 megawatts (MW) are eligible to participate, although customer generators with systems 20 kilowatts (kW) or less are eligible for a separate rider and expedited interconnection. The utility will install and maintain a meter capable of measuring flow of electricity in both directions. Any net

352

Documentation of Calculation Methodology, Input Data, and Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documentation of Calculation Methodology, Input Data, and Infrastructure Documentation of Calculation Methodology, Input Data, and Infrastructure for the Home Energy Saver Web Site Title Documentation of Calculation Methodology, Input Data, and Infrastructure for the Home Energy Saver Web Site Publication Type Report LBNL Report Number LBNL-51938 Year of Publication 2005 Authors Pinckard, Margaret J., Richard E. Brown, Evan Mills, James D. Lutz, Mithra M. Moezzi, Celina S. Atkinson, Christopher A. Bolduc, Gregory K. Homan, and Katie Coughlin Document Number LBNL-51938 Pagination 108 Date Published July 13 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract The Home Energy Saver (HES, http://HomeEnergySaver.lbl.gov) is an interactive web site designed to help residential consumers make decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major categories (end uses); heating, cooling, water heating, major appliances, lighting, and miscellaneous equipment. The approach taken by the Home Energy Saver is to provide users with initial results based on a minimum of user input, allowing progressively greater control in specifying the characteristics of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations. Real-world electricity tariffs are used for many locations, making the bill estimates even more accurate. Where information about the house is not available from the user, default values are used based on end-use surveys and engineering studies. An extensive body of qualitative decision-support information augments the analytical results.

353

Environmental Transport Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]).

M. Wasiolek

2004-09-10T23:59:59.000Z

354

Inhalation Exposure Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

K. Rautenstrauch

2004-09-10T23:59:59.000Z

355

Medicaid — Implications for the Health Safety Net  

Science Journals Connector (OSTI)

...Medicaid helps to finance health and long-term care for more than 55 million low-income children and parents, people with severe disabilities, and elderly Americans, at an annual cost of nearly $300 billion to the federal and state governments. The program currently provides health coverage to 1 in 4 U.S... Medicaid is the nation's health safety net, but as Diane Rowland explains, its growing role and increasing costs in the face of state budgetary pressures and the federal deficit have made it a target for reform that could fundamentally reshape the ...

Rowland D.

2005-10-06T23:59:59.000Z

356

PSA Vol 1 Tables Revised Ver 2 Print.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, 2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND,...

357

Petroleum Supply Annual 2005, Volume 1  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2005 (Thousand Barrels per Day) Field Production Refinery and Blender Net Production Imports...

358

New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,574 11,504 9,786 9,896 8,616 13,421 12,099 13,774 14,846 14,539 1990's 9,962 14,789 14,362 14,950 7,737 7,291 6,778 6,464 9,082 5,761 2000's 8,296 12,330 3,526 473 530 435 175 379 489 454 2010's 457 392 139 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas New Jersey Supplemental Supplies of Natural Gas

359

Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 1,838 63 2,006 2,470 2,689 2,142 2,199 1,948 2,088 1990's 2,361 2,032 1,437 791 890 15 315 134 11 4 2000's 339 6 1 13 39 16 19 33 28 18 2010's 12 9 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Nebraska Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

360

Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3 3,038 2,473 2,956 2,773 2,789 2,754 2,483 2,402 2,402 1990's 19,106 15,016 14,694 12,795 13,688 21,378 21,848 22,238 21,967 20,896 2000's 12,423 4,054 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Michigan Supplemental Supplies of Natural Gas

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,868 9,133 8,877 7,927 9,137 8,934 8,095 8,612 10,322 9,190 1990's 15,379 6,778 7,158 8,456 8,168 7,170 6,787 6,314 5,292 4,526 2000's 4,772 5,625 5,771 5,409 5,308 5,285 6,149 6,869 6,258 7,527 2010's 5,148 4,268 4,412 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Colorado Supplemental Supplies of Natural Gas

362

Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 69,169 69,850 64,812 62,032 43,866 24,444 5,182 18 44 348 1990's 849 891 1,051 992 1,432 904 1,828 1,423 1,194 1,200 2000's 1,442 1,149 79 1,002 492 579 423 608 460 522 2010's 353 296 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Ohio Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

363

Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,190 2,993 2,899 2,775 2,449 2,655 2,630 2,461 2,801 2,844 1990's 2,817 2,725 2,711 2,705 2,831 2,793 2,761 2,617 2,715 2,752 2000's 2,769 2,689 2,602 2,602 2,626 2,606 2,613 2,683 2,559 2,447 2010's 2,472 2,467 2,510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Hawaii Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

364

Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15,366 21,828 17,586 10,732 6,545 3,668 2,379 1,404 876 692 1990's 317 120 105 61 154 420 426 147 68 134 2000's 26 16 137 324 80 46 51 15 13 10 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Massachusetts Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

365

Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1,602 5,056 3,496 4,142 4,027 2,711 2,351 3,890 4,243 3,512 1990's 3,015 3,077 3,507 3,232 2,457 3,199 3,194 3,580 3,149 5,442 2000's 5,583 5,219 1,748 2,376 2,164 1,988 1,642 635 30 1 2010's 1 5 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Indiana Supplemental Supplies of Natural Gas

366

North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 196 417 102 0 8,335 40,370 49,847 51,543 49,014 54,408 1990's 53,144 52,557 58,496 57,680 57,127 57,393 55,867 53,179 54,672 53,185 2000's 49,190 51,004 53,184 53,192 47,362 51,329 54,361 51,103 50,536 53,495 2010's 54,813 51,303 52,541 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas

367

Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 36,713 29,509 19,005 19,734 17,308 19,805 22,980 12,514 9,803 9,477 1990's 8,140 6,869 8,042 9,760 7,871 6,256 3,912 4,165 2,736 2,527 2000's 1,955 763 456 52 14 15 13 11 15 20 2010's 17 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Illinois Supplemental Supplies of Natural Gas

368

,"South Carolina Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South...

369

,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode...

370

,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

371

,"Connecticut Natural Gas LNG Storage Net Withdrawals (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

372

,"U.S. Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","9302014" ,"Next...

373

,"New Jersey Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New...

374

,"North Carolina Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

375

,"New Hampshire Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New...

376

Maritime Electric- Net Metering (Prince Edward Island, Canada)  

Broader source: Energy.gov [DOE]

In December 2005 The Renewable Energy Act and associated Regulations came into effect. A Government policy objective incorporated in the Act was the introduction of net metering for...

377

Transportation Security SensorNet: A Service Oriented Architecture  

E-Print Network [OSTI]

Transportation Security SensorNet: A Service Oriented Architecture for Cargo Monitoring Martin..................................................................................................................2 C. Service Oriented Architecture .................................................................4 B. Adobe - Service Oriented Architecture

Kansas, University of

378

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

379

,"New York Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","12...

380

Chapter 23: Estimating Net Savings: Common Practices. The Uniform...  

Energy Savers [EERE]

an understanding of the relationship between efficiency levels embedded in base-case load forecasts and the additional net reductions from programs. * Assessing the degree to which...

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Intersection of Net Metering and Retail Choice: An Overview...  

Office of Environmental Management (EM)

five different theoretical models describing different ways competitive suppliers and utilities provide net metering options for their customers. They then provided case studies to...

382

Deep Energy Efficiency and Getting to Net Zero  

Broader source: Energy.gov [DOE]

Presentation covers energy efficiency and getting to net zero and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

383

FY 2002 Generation Audited Accumulated Net Revenues, February...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 021003 February 2003 Bonneville Power Administration Power Business Line FY 2002 Generation Audited Accumulated Net Revenues for Financial- Based Cost Recovery Adjustment...

384

FY 2003 Generation Audited Accumlated Net Revenues, March 2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2004 Bonneville Power Administration Power Business Line FY 2003 Generation (PBL) Audited Accumulated Net Revenues for Financial-Based Cost Recovery Adjustment Clause (FB...

385

Transactions and Zero-Safe Nets Roberto Bruni and Ugo Montanari  

E-Print Network [OSTI]

Transactions and Zero-Safe Nets Roberto Bruni and Ugo Montanari Dipartimento di Informatica present an approach to the modeling of transactions based on zero-safe nets. They extend ordinary PT nets be uniformly adapted to zero-safe nets. In particular, we show that each zero-safe net has two associated PT

Bruni, Roberto

386

A Method for Correcting Catches of Fish Larvae For the Size Selection of Plankton Nets  

E-Print Network [OSTI]

corrected by determining the ratio between a stan- dard net and a test net with either zero extrusion or. . zero avoidance. However, when avoidance of the test net with zero extrusion or when extrusion through test net with zero avoidance differs from the stan- dard net, then the usual method of correcting

387

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network [OSTI]

and Energy Management in Zero-Net-Energy Buildings Michaeland Energy Management in Zero-Net-Energy Buildings 1 Michaelgoal of achieving zero-net-energy commercial buildings (

Stadler, Michael

2010-01-01T23:59:59.000Z

388

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

389

A comparative study of avionics control input methods  

E-Print Network [OSTI]

Standardization of avionics locations in early models of small general aviation aircraft was almost non-existent, due largely to limited panel space and lack of human engineering considerations. Aircraft were typically purchased with a limited avionics package... Major Subject: Industrial Engineering A COMPARATIVE STUDY OF AVIONICS CONTROL INPUT METHODS A Thesis by JOHN ROBERT BARBER, JR. Approved as to style and content by: C airman of C ittee Dr. R. Dale H ingson Co-ch i n Dr. Rodger J. Koppa Member...

Barber, John Robert

1984-01-01T23:59:59.000Z

390

Inhalation Exposure Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the physical attributes of airborne particulate matter, such as the airborne concentrations of particles and their sizes. The conditions of receptor exposure (duration of exposure in various microenvironments), breathing rates, and dosimetry of inhaled particulates are discussed in more detail in ''Characteristics of the Receptor for the Biosphere Model'' (BSC 2005 [DIRS 172827]).

M. Wasiolek

2006-06-05T23:59:59.000Z

391

ARM - Reading netCDF, HDF, and GRIB Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govDataReading netCDF, HDF, and GRIB Files govDataReading netCDF, HDF, and GRIB Files Reading netCDF, HDF, and GRIB Files netCDF Files Most ARM data are stored in netCDF format. This format allows for the definition of data fields and storage of operational information in the header of the file. All ARM netCDF files are in UTC time and represent time as "seconds since January 1, 1970,'' which is called the "epoch time.'' For example, an epoch time of 1 means "Thu Jan 1 00:00:01 1970''; an epoch time of 992794875 is "Sun Jun 17 16:21:15 2001.'' To learn more about how to convert epoch time, see Time in ARM netCDF Data Files. More information on the netCDF format and tools is available from UCAR at http://www.unidata.ucar.edu/packages/netcdf/index.html. HDF Files Some data files also contain one or more measurements distributed over a

392

Shapes of geodesic nets. Alexander Nabutovsky and Regina Rotman  

E-Print Network [OSTI]

Shapes of geodesic nets. Alexander Nabutovsky and Regina Rotman August 14, 2006 Abstract Let M n infinitely many geometrically distinct geodesic nets on this manifold. We will also show that either the length of a shortest pe­ riodic geodesic is bounded in terms of the volume of a manifold M n

Nabutovsky, Alexander

393

Bayes Net Toolbox practical Charles Fox, University of Sheffield  

E-Print Network [OSTI]

this network (which is a Directed Acyclic graph, or 'DAG'), we create an adjacency matrix: N = 4 %the number of nodes in the network dag = zeros(N,N) %connectivity matrix for the net (directed acyclic graph) C = 1 matlab >>cd bayesnet >>cd FullBNT1.0.4/ >>addpath(genpathKPM(pwd)) Creating your first Bayes net

Barker, Jon

394

CP-nets and Nash equilibria Krzysztof R. Apt  

E-Print Network [OSTI]

CP-nets and Nash equilibria Krzysztof R. Apt ¢¡ £¤¡ ¥ , Francesca Rossi ¦ , and Kristen Brent, the Netherlands Department of Pure and Applied Mathematics, University of Padova, Italy Abstract. CP instead of payoff functions. We show then that the optimal outcomes of a CP-net are ex- actly the Nash

Rossi, Francesca

395

Translating Orc Features into Petri nets and the Join Calculus #  

E-Print Network [OSTI]

Translating Orc Features into Petri nets and the Join Calculus # Roberto Bruni 1 , Hern@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk Abstract. Cook and Misra's Orc is an elegant language the key novel features of Orc by comparing it with variations of Petri nets. The comparison shows that Orc

Bruni, Roberto

396

Translating Orc Features into Petri nets and the Join Calculus  

E-Print Network [OSTI]

Translating Orc Features into Petri nets and the Join Calculus Roberto Bruni1, Hern´an Melgratti2@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk Abstract. Cook and Misra's Orc is an elegant language the key novel features of Orc by comparing it with variations of Petri nets. The comparison shows that Orc

Bruni, Roberto

397

ORIGINAL ARTICLE Quantification of net primary production of Chinese  

E-Print Network [OSTI]

ORIGINAL ARTICLE Quantification of net primary production of Chinese forest ecosystems with spatial Abstract Net primary production (NPP) of terrestrial ecosystems provides food, fiber, construction materials, and energy to humans. Its demand is likely to increase substantially in this century due

Zhang, Tonglin

398

Artificial Neural Nets and Cylinder Pressures in Diesel  

E-Print Network [OSTI]

Artificial Neural Nets and Cylinder Pressures in Diesel Engine Fault Diagnosis * Gopi O diagnosis system for a diesel engine, which uses artificial neural nets to identify faults on the basis­temporal representation of cylinder pressures. Draw cards and power cards are regularly assessed for the condition

Sharkey, Amanda

399

HYPER-I-NET: European Research Network on Hyperspectral Imaging  

E-Print Network [OSTI]

sensor design and cal- ibration/validation [3], [4] to advanced data processing [5]­ [8], and science-I-NET), a recently started Marie Curie Research Training Network. The project is designed to build-I-NET is at the confluence of heterogeneous disciplines, such as sensor design including optics and electronics, aerospace

Plaza, Antonio J.

400

Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation?  

E-Print Network [OSTI]

from the gas balance at night (when GPP is zero) and then GPP is calculated from Eq. 2. This gas COMMENTARY Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation? Gary M. Lovett ABSTRACT Net ecosystem production (NEP), defined as the difference between gross primary production

Berkowitz, Alan R.

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Petri nets for modelling metabolic pathways: a survey  

Science Journals Connector (OSTI)

In the last 15 years, several research efforts have been directed towards the representation and the analysis of metabolic pathways by using Petri nets. The goal of this paper is twofold. First, we discuss how the knowledge about metabolic pathways can ... Keywords: Metabolic pathways, Petri nets, Qualitative and quantitative analysis, Tools

Paolo Baldan; Nicoletta Cocco; Andrea Marin; Marta Simeoni

2010-12-01T23:59:59.000Z

402

Targeting Net Zero Energy for Military Installations (Presentation)  

SciTech Connect (OSTI)

Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Burman, K.

2012-05-01T23:59:59.000Z

403

NREL: TroughNet - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data and Resources Data and Resources This site features data and resources about parabolic trough power plant technology, including: Industry partners U.S. power plant data Solar data Models and tools System and component testing Also see our publications on parabolic trough power plants. Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources Industry Partners Power Plant Data Solar Data Models & Tools System & Component Testing FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

404

NREL: TroughNet - Email Updates - Subscribe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Email Updates - Subscribe Email Updates - Subscribe Subscribe to receive email updates about parabolic trough technology, including: Status on R&D and deployment projects Workshops and other events New publications New data and resources. Please provide and submit the following information. Name (first & last): Organization/Affiliation: Email Address: Submit Clear Form Unsubscribe Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

405

Austin Energy - Net Metering (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) < Back Eligibility Commercial Savings Category Bioenergy Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State Texas Program Type Net Metering Provider Austin Energy Austin Energy, the municipal utility of Austin Texas, offers net metering for renewable energy systems up to 20 kilowatts (kW) to its non-residential retail electricity customers. The definition of renewable includes solar*, wind, geothermal, hydroelectric, wave and tidal energy, biomass, and biomass-based waste products, including landfill gas. Systems must be used primarily to offset a portion or all of a customer's on-site electric load. Metering is accomplished using a single meter capable of registering the

406

Building Energy Software Tools Directory: Degree Day .Net  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degree Day .Net Degree Day .Net Logo for Degree Day.net Website that generates heating and cooling degree days for locations worldwide. Degree days are commonly used in calculations relating to building energy consumption. Once you have chosen a weather station (of which there are thousands available) and specified the degree days you want (e.g. what base temperature, do you want them broken down in daily, weekly or monthly format), Degree Days.net will calculate your degree days, and give them to you as a CSV file that you can open directly in a spreadsheet. Screen Shots Keywords degree days, HDD, CDD Validation/Testing A comprehensive suite of automated tests have been written to test the software. Expertise Required Degree Days.net makes it very easy to specify and generate degree days, so

407

Notices F. NTIA Consultations With FirstNet on  

Broader source: Energy.gov (indexed) [DOE]

6 Federal Register 6 Federal Register / Vol. 77, No. 162 / Tuesday, August 21, 2012 / Notices F. NTIA Consultations With FirstNet on the State and Local Implementation Grant Program Requirements As previously discussed, the Act directs NTIA to consult with FirstNet to establish the requirements of the State and Local Implementation Grant Program not later than 6 months after the date of the Act's enactment, or by August 22, 2012. The Act also required that FirstNet be established no later than August 20, 2012. The Act's framework, which essentially placed the creation of FirstNet and the development of the grant program requirements on parallel tracks, proved challenging for NTIA as it attempted to fulfill the statutory mandate to consult with FirstNet in establishing the State and Local

408

Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) |  

Broader source: Energy.gov (indexed) [DOE]

Scotia Energy Electricity - Net Metering Program (Nova Scotia, Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Multi-Family Residential Residential Schools Savings Category Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State Nova Scotia Program Type Net Metering Provider Nova Scotia Power, Inc Nova Scotia Power Inc. Net Metering allows residential and commercial customers to connect small, renewable energy generating units to the provincial power grid. Generating units that produce renewable energy such as wind, solar, small hydro or biomass can be added to homes or businesses with the addition of a bi-directional meter. This meter monitors the electricity generated by the

409

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Landfill Waste, and Zero Net Greenhouse Gas Emissions by 2020 Speaker(s): John Elliott Date: May 14, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Andrea Mercado John will highlight sustainability efforts at UC Merced, particularly with respect to its Triple Zero Commitment to zero net energy, zero landfill waste, and climate neutrality by 2020. From a technical perspective, the campus zero net energy strategy relies primarily on energy efficiency, solar energy, and plasma gasification, along with various smart grid strategies. Zero waste efforts currently emphasize composting and control of purchasing to simplify recycling efforts. Campus efforts are only beginning to address climate neutrality beyond initial attainment of zero

410

Definition of a Zero Net Energy Community | Open Energy Information  

Open Energy Info (EERE)

Definition of a Zero Net Energy Community Definition of a Zero Net Energy Community Jump to: navigation, search Name Net Zero Agency/Company /Organization National Renewable Energy Laboratory Partner Nancy Carlisle, Otto Van Geet, Shanti Pless Focus Area Energy Efficiency, Buildings, People and Policy Phase Determine Baseline, Evaluate Options Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2009/11/01 Website http://www.nrel.gov/docs/fy10o References Definition of a 'Zero Net Energy' Community[1] Overview This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewable energy available within the community's built environment. It assists a community also by showing the importance of this classification by encouraging

411

US Nuclear Regulatory Commission Input to DOE Request for Information Smart  

Broader source: Energy.gov (indexed) [DOE]

US Nuclear Regulatory Commission Input to DOE Request for US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New Technologies" and "Reliability and Cyber-Security," US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input More Documents & Publications Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Reply Comments of Entergy Services, Inc. Progress Energy draft regarding Smart Grid RFI: Addressing Policy and

412

Residential oil burners with low input and two stages firing  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

Butcher, T.; Krajewski, R.; Leigh, R. [and others

1997-12-31T23:59:59.000Z

413

Heat transfer analysis in Stirling engine heat input system  

SciTech Connect (OSTI)

One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

Chung, W.; Kim, S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

1995-12-31T23:59:59.000Z

414

Fact #837: September 8, Gap between Net Imports and Total Imports...  

Broader source: Energy.gov (indexed) [DOE]

7: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Fact 837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net...

415

A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)  

E-Print Network [OSTI]

Rita Jail Creeps Towards Zero Net Energy (ZNE) Chris Marnay,Jail Creeps Towards Zero Net Energy (ZNE) Chris Marnay –Jail is unlikely to meet zero net energy in the near future.

Marnay, Chris

2011-01-01T23:59:59.000Z

416

E-Print Network 3.0 - adding wire nets Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of applications. What is the 1-Wire Net? The 1-Wire net... architecture that uses a resistor pull-up to a nominal 5V supply at the master. A 1-Wire net-based system... interfaces...

417

DIAGNOSING, BENCHMARKING AND TRANSFORMING THE LEED CERTIFIED FIU SIPA BUILDING INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB)  

E-Print Network [OSTI]

, the energy score is not benchmarked against the AIA and DOE 2030 Challenge to make buildings carbon-neutral INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB) Thomas Spiegelhalter Florida International University-Department of Construction Management Miami, FL 33174 e-mail: yckang@fiu.edu Nezih Pala FIU- Department of Electrical

Pala, Nezih

418

NetSeed User Manual NetSeed is a toolkit for identifying the seed set of networks, available as an online tool  

E-Print Network [OSTI]

of Washington and is available online at http://elbo.gs.washington.edu/tools/NetSeed/. NetSeed>Web NetSeed>Web allows researchers to calculate the seed set of a network online and requires only a web browser. The NetSeed>Web and functional analysis options. Overview of use To determine the seed set of a network using NetSeed>Web

Borenstein, Elhanan

419

Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum...  

Broader source: Energy.gov (indexed) [DOE]

6: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing Fact 736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The...

420

NREL: News - NREL and Army Validate Energy Savings for Net Zero...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a net zero energy initiative that includes all of its installations across the state. Fort Bliss (Texas) and Fort Carson (Colo.) are piloting integrated net zero energy, water,...

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Soil-related Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash deposition and, as a direct consequence, radionuclide concentration in resuspended particulate matter in the atmosphere. The analysis was performed in accordance with the technical work plan for the biosphere modeling and expert support (TWP) (BSC 2003 [163602]). This analysis revises the previous one titled ''Evaluate Soil/Radionuclide Removal by Erosion and Leaching'' (CRWMS M&O 2001 [152517]). In REV 00 of this report, the data generated were fixed (i.e., taking no account of uncertainty and variability) values. This revision incorporates uncertainty and variability into the values for the bulk density, elemental partition coefficients, average annual loss of soil from erosion, resuspension enhancement factor, and field capacity water content.

A. J. Smith

2003-07-02T23:59:59.000Z

422

Soil-Related Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This analysis revises the previous version with the same name (BSC 2003 [DIRS 161239]), which was itself a revision of one titled ''Evaluate Soil/Radionuclide Removal by Erosion and Leaching'' (CRWMS M&O 2001 [DIRS 152517]). In Revision 00 of this report, the data generated were fixed values (i.e., taking no account of uncertainty and variability). Revision 01 (BSC 2003 [DIRS 161239]) incorporated uncertainty and variability into the values for the bulk density, elemental partition coefficients, average annual loss of soil from erosion, resuspension enhancement factor, and field capacity water content. The current revision of this document improves the transparency and traceability of the products without changing the details of the analysis. This analysis report supports the treatment of six of the features, events, and processes (FEPs) applicable to the Yucca Mountain reference biosphere (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The use of the more recent FEP list in DTN: MO0407SEPFEPLA.000 [DIRS 170760] represents a deviation from the detail provided in the TWP (BSC 2004 [DIRS 169573]), which referenced a previous version of the FEP list. The parameters developed in this report support treatment of these six FEPs addressed in the biosphere model that are listed in Table 1-1. Inclusion and treatment of FEPs in the biosphere model is described in the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460], Section 6.2).

A. J. Smith

2004-09-09T23:59:59.000Z

423

T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm'...  

Broader source: Energy.gov (indexed) [DOE]

ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting...

424

U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site...  

Broader source: Energy.gov (indexed) [DOE]

Attacks U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks December 2, 2011 - 5:24am Addthis PROBLEM: Adobe Flex SDK Input Validation Flaw Permits...

425

E-Print Network 3.0 - ac input power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

factor with high total harmonic... input cur- rent shape at near unity power factor. Advantages of the proposed topology are: no dc... as well as input supply variations. Matrix...

426

V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting...  

Broader source: Energy.gov (indexed) [DOE]

8: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks May 31, 2013 - 6:00am Addthis...

427

V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting...  

Broader source: Energy.gov (indexed) [DOE]

4: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks April 2, 2013 - 1:13am Addthis...

428

T-602: BlackBerry Enterprise Server Input Validation Flaw in...  

Broader source: Energy.gov (indexed) [DOE]

02: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks T-602: BlackBerry Enterprise Server Input Validation...

429

Integrating surprisal and uncertain-input models in online sentence comprehension: formal techniques and empirical results  

Science Journals Connector (OSTI)

A system making optimal use of available information in incremental language comprehension might be expected to use linguistic knowledge together with current input to revise beliefs about previous input. Under some circumstances, such an error-correction ...

Roger Levy

2011-06-01T23:59:59.000Z

430

,"Weekly Refiner Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production" Refiner Net Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Refiner Net Production",21,"Weekly","12/13/2013","6/4/2010" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pet_pnp_wprodr_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_wprodr_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 10:39:21 AM"

431

Time-lag of record inputs to the international nuclear information system bibliographic database  

Science Journals Connector (OSTI)

This paper discusses the timeliness in inputting bibliographical records to international databases with a case study of the international nuclear information system bibliographic database from the inception (1970) to the year 2008. The authors have attempted to calculate the overall and average inputting time-lag of the database. The time-lags of inputting countries and international organisations are analysed separately. The study also tries to identify the nature of inputs that are responsible for this delayed response.

E.R. Prakasan; Nita Bhaskar; K. Bhanumurthy

2011-01-01T23:59:59.000Z

432

QuarkNet Workshop: Beyond Human Error  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Human Error Human Error QuarkNet Workshop for High School Science Teachers 8:30 am to 4:00 pm, August 1 -3, 2012 at Fermi National Accelerator Laboratory This was a three-day workshop for high school science teachers. Measurement and error are key ingredients for all science applications. Both align with the Next Generation Science Standards, but many high school students struggle to understand the importance of error analysis and prevention. Over the three days we examined multiple experiments going on at Fermilab and discussed the ways that scientists take measurements and reduce error on these projects. Participants met and worked with scientists from Fermilab and University of Chicago to look at how error analysis takes place at Fermilab and bridged those ideas into high school classes. Teachers discussed lesson plans available at Fermilab and their own methods of teaching error analysis. Additionally, participants heard from high school students who participated in summer research as they presented their findings and linked students' learning back to the teachers' understanding of error recognition and analysis.

433

Environmental Transport Input Parameters for the Biosphere Model  

SciTech Connect (OSTI)

This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values developed in this report, and the related FEPs, are listed in Table 1-1. The relationship between the parameters and FEPs was based on a comparison of the parameter definition and the FEP descriptions as presented in BSC (2003 [160699], Section 6.2). The parameter values developed in this report support the biosphere model and are reflected in the TSPA through the biosphere dose conversion factors (BDCFs). Biosphere modeling focuses on radionuclides screened for the TSPA-LA (BSC 2002 [160059]). The same list of radionuclides is used in this analysis (Section 6.1.4). The analysis considers two human exposure scenarios (groundwater and volcanic ash) and climate change (Section 6.1.5). This analysis combines and revises two previous reports, ''Transfer Coefficient Analysis'' (CRWMS M&O 2000 [152435]) and ''Environmental Transport Parameter Analysis'' (CRWMS M&O 2001 [152434]), because the new ERMYN biosphere model requires a redefined set of input parameters. The scope of this analysis includes providing a technical basis for the selection of radionuclide- and element-specific biosphere parameters (except for Kd) that are important for calculating BDCFs based on the available radionuclide inventory abstraction data. The environmental transport parameter values were developed specifically for use in the biosphere model and may not be appropriate for other applications.

M. A. Wasiolek

2003-06-27T23:59:59.000Z

434

We have developed a software system that takes standard electro-cardiogram (ECG) input and interprets this input along with user-  

E-Print Network [OSTI]

a software system that takes standard electro- cardiogram (ECG) input and interprets this input along months 30 patients were monitored using a digital ECG system and this information was used to test that T wave inversions are sometimes seen on normal ECGs. Control ECGs of normal hearts were also taken

O'Sullivan, Carol

435

Largest American Net Zero Energy Campus Community Embraces Clean Energy |  

Broader source: Energy.gov (indexed) [DOE]

Largest American Net Zero Energy Campus Community Embraces Clean Largest American Net Zero Energy Campus Community Embraces Clean Energy Largest American Net Zero Energy Campus Community Embraces Clean Energy April 9, 2012 - 4:10pm Addthis Based on its sustainable design, UC Davis' new net zero energy community is designed to generate as much energy as it consumes. | Video courtesy of the University of California at Davis. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? UC Davis is planning to incorporate a biodigester -- a source of renewable energy -- into plans for its new housing development. The biodigester will turn organic waste into electricity. The organic waste is burned and produces biogas that a turbine converts into electricity. A new housing development on the University of California at Davis (UC

436

Grid Net, Inc. Comments to DOE RFI 2010-11129  

Broader source: Energy.gov (indexed) [DOE]

Net, Inc. Comments to DOE RFI 2010-11129 2010 Net, Inc. Comments to DOE RFI 2010-11129 2010 DOE RFI 2010-11129 NBP RFI: Communications Requirements Titled "Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy" Submitted by Grid Net, Inc. July 12, 2010 Attention: Maureen C. McLaughlin, Senior Legal Advisor to the General Counsel Grid Net, Inc. Comments to DOE RFI 2010-11129 2010 Summary and Highlights Thank you for the opportunity to provide comments for the Department of Energy RFI 2010-11129, our detailed responses to your questions are below for your consideration. The key points we'd like to get

437

Generation of a Consistent Terrestrial Net Primary Production Data Set  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation of a Consistent Terrestrial Net Generation of a Consistent Terrestrial Net Primary Production Data Set Final Report NASA Reference Number TE/99-0005 May 3, 2001 Richard J. Olson and Jonathan M. O. Scurlock Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6407 This project, "Generation of a Consistent Terrestrial Net Primary Production Data Set", is a coordinated, international effort to compile global estimates of terrestrial net primary productivity (NPP) for parameterization, calibration, and validation of NPP models. The project (NASA Reference Number TE/99-0005) was funded by the National Aeronautics and Space Administration (NASA), Office of Earth Science, Terrestrial Ecology Program under Interagency Agreement number 2013-M164-A1, under

438

Estimated Annual Net Change in Soil Carbon per US County  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimated Annual Net Change in Soil Carbon per US County These data represent the estimated net change (Megagram per year) in soil carbon due to changes in the crop type and tillage intensity. Estimated accumulation of soil carbon under Conservation Reserve Program (CRP)lands is included in these estimates. Negative values represent a net flux from the atmosphere to the soil; positive values represent a net flux from the soil to the atmosphere. As such, soil carbon sequestration is represented here as a negative value. The method of analysis is based on empirical relationshipsbetween land management and soil carbon. The method for modeling land management and estimating soil carbonchange, used to generate these data, is described in the following publication:

439

City of Danville - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Danville - Net Metering Danville - Net Metering City of Danville - Net Metering < Back Eligibility Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Program Info State Virginia Program Type Net Metering For a renewable fuel generator with a capacity of 25 kilowatts (kW) or less, a notification form shall be submitted at least 30 days prior to the date the customer intends to interconnect their renewable fuel generator to the Utility's facilities. Renewable fuel generators with capacity over 25 kW are required to submit forms no later than 60 days prior to planned interconnection. The Utility will review and determine whether the requirements for Interconnection have been met. More information on this

440

Community Renewable Energy Success Stories Webinar: Net Zero Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Zero Energy Net Zero Energy Communities (text version) Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories - Net Zero Energy Communities," originally presented on October 16, 2012. Operator: The broadcast is now starting. All attendees are in listen-only mode. Ken Kelly: Good afternoon, and welcome to today's webinar sponsored by the U.S. Department of Energy. This is Ken Kelly, and Courtney Kendall broadcasting live from the National Renewable Energy Laboratory. We'll give folks a few more minutes to call in and logon. So while we wait, Courtney was going to go over some of the logistics and then we'll begin with today's webinar.

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:57:42 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CO2"...

442

Fermilab | Newsroom | Press Releases | September 27, 2012: QuarkNet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Notre Dame were two of the initial QuarkNet centers. Marge Bardeen, head of the Fermilab Education Office, started the Fermilab center 15 years ago. Her vision was to inspire and...

443

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:33 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

444

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:32 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

445

Petri Net Based Research of Home Automation Communication Protocol  

Science Journals Connector (OSTI)

The popularity of home automation has been increasing greatly in recent years. ... distributed, uncertain or randomized protocol model) of home automation, many questions concerned. For instance, is ... net to de...

Guangxuan Chen; Yanhui Du; Panke Qin; Jin Du…

2013-01-01T23:59:59.000Z

446

October 16, 2012, Webinar: Net-Zero-Energy Communities  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar was held October 16, 2012, and provided information on net-zero-energy communities in California and Hawaii. Download the presentations below, watch the webinar (WMV 159 MB), or view...

447

Transformation Nets -A Runtime Model for Transformation Languages  

E-Print Network [OSTI]

Transformation Nets - A Runtime Model for Transformation Languages Johannes Schoenboeck Institute transformation languages. Although numerous approaches are available, they lack convenient facilities for supporting debugging and understand- ing of the transformation logic. This is not least because

Hochreiter, Sepp

448

Robust manufacturing system design using petri nets and bayesian methods  

E-Print Network [OSTI]

robust design configuration, designers need accurate methods to model various uncertainties and efficient ways to search for feasible configurations. The dissertation work uses a multi-objective Genetic Algorithm (GA) and Petri net based modeling...

Sharda, Bikram

2008-10-10T23:59:59.000Z

449

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

450

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

451

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

452

Gross Input to Atmospheric Crude Oil Distillation Units  

U.S. Energy Information Administration (EIA) Indexed Site

Day) Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 PADD 1 1,134 1,188 1,178 1,142 1,122 1,130 1985-2013 East Coast 1,077 1,103 1,080 1,058 1,031 1,032 1985-2013 Appalachian No. 1 57 85 98 84 90 97 1985-2013 PADD 2 3,151 3,087 3,336 3,572 3,538 3,420 1985-2013 Ind., Ill. and Ky. 2,044 1,947 2,069 2,299 2,330 2,266 1985-2013

453

Interface module for transverse energy input to dye laser modules  

DOE Patents [OSTI]

An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

English, Jr., Ronald E. (Tracy, CA); Johnson, Steve A. (Tracy, CA)

1994-01-01T23:59:59.000Z

454

Modeling Mobile Agent Systems with High Level Petri Nets Dianxiang Xu and Yi Deng  

E-Print Network [OSTI]

Modeling Mobile Agent Systems with High Level Petri Nets Dianxiang Xu and Yi Deng School-based approach for architectural modeling of mobile agent systems. Agent template (net) is proposed to model as a component, consisting of mobility environment (system net), agent templates (agent nets), and internal

455

Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net  

E-Print Network [OSTI]

, the Elastic Net can yield a sparse esti- mate with more than n non-zero weights (Efron et al., 2004). One canExploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net Alexander Lorbert- tion called the Pairwise Elastic Net is pro- posed. Like the Elastic Net, it simultane- ously performs

Blei, David M.

456

Executing Transactions in Zero-Safe Nets ? Roberto Bruni and Ugo Montanari  

E-Print Network [OSTI]

Executing Transactions in Zero-Safe Nets ? Roberto Bruni and Ugo Montanari Dipartimento di in distributed systems by using zero-safe nets, which extend pt nets with a simple mechanism for transition synchronization. In particular, starting from the zero-safe net that represents a certain system, we give

Bruni, Roberto

457

Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net  

E-Print Network [OSTI]

. Furthermore, un- like the Lasso, the Elastic Net can yield a sparse esti- mate with more than n non-zero477 Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net Alexander to regression regulariza- tion called the Pairwise Elastic Net is pro- posed. Like the Elastic Net, it simultane

Low, Steven H.

458

Extending the Zero-Safe approach to Coloured, Recon gurable and Dynamic Nets ?  

E-Print Network [OSTI]

Extending the Zero-Safe approach to Coloured, Recon#12;gurable and Dynamic Nets ? Roberto Bruni their execution). Starting from zero-safe nets | a well-studied extension of Place/Transition Petri nets | we show how the zero-safe approach can be smoothly applied to a hierarchy of nets of increasing

Bruni, Roberto

459

U-001:Symantec IM Manager Input Validation Flaws | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U-001:Symantec IM Manager Input Validation Flaws U-001:Symantec IM Manager Input Validation Flaws U-001:Symantec IM Manager Input Validation Flaws October 3, 2011 - 12:45pm Addthis PROBLEM: Symantec IM Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Code Execution Attacks. PLATFORM: Version(s): prior to 8.4.18 ABSTRACT: Symantec IM Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Code Execution Attacks. reference LINKS: Security Advisory: SYM11-012 SecurityTracker Alert ID: 1026130 IMPACT ASSESSMENT: Medium Discussion: Several vulnerabilities were reported in Symantec IM Manager. A remote user can conduct cross-site scripting attacks. A remote user can inject SQL commands. Several scripts do not properly filter HTML code from user-supplied input before displaying the input [CVE-2011-0552]. A remote user can create a

460

Jordan Boyd-Graber, Christiane Fellbaum, Daniel Osherson, and Robert Schapire. Adding Dense, Weighted, Connections to WordNet. Proceedings of the Global WordNet Conference, 2006.  

E-Print Network [OSTI]

Jordan Boyd-Graber, Christiane Fellbaum, Daniel Osherson, and Robert Schapire. Adding Dense, Weighted, Connections to WordNet. Proceedings of the Global WordNet Conference, 2006. @inproceedings{Boyd of the Global {WordNet} Conference}, Author = {Jordan Boyd-Graber and Christiane Fellbaum and Daniel Osherson

Boyd-Graber, Jordan

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","Breeze)","Other(e)","Factors" ,...

462

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row"...

463

The SCALE Verified, Archived Library of Inputs and Data - VALID  

SciTech Connect (OSTI)

The Verified, Archived Library of Inputs and Data (VALID) at ORNL contains high quality, independently reviewed models and results that improve confidence in analysis. VALID is developed and maintained according to a procedure of the SCALE quality assurance (QA) plan. This paper reviews the origins of the procedure and its intended purpose, the philosophy of the procedure, some highlights of its implementation, and the future of the procedure and associated VALID library. The original focus of the procedure was the generation of high-quality models that could be archived at ORNL and applied to many studies. The review process associated with model generation minimized the chances of errors in these archived models. Subsequently, the scope of the library and procedure was expanded to provide high quality, reviewed sensitivity data files for deployment through the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). Sensitivity data files for approximately 400 such models are currently available. The VALID procedure and library continue fulfilling these multiple roles. The VALID procedure is based on the quality assurance principles of ISO 9001 and nuclear safety analysis. Some of these key concepts include: independent generation and review of information, generation and review by qualified individuals, use of appropriate references for design data and documentation, and retrievability of the models, results, and documentation associated with entries in the library. Some highlights of the detailed procedure are discussed to provide background on its implementation and to indicate limitations of data extracted from VALID for use by the broader community. Specifically, external users of data generated within VALID must take responsibility for ensuring that the files are used within the QA framework of their organization and that use is appropriate. The future plans for the VALID library include expansion to include additional experiments from the IHECSBE, to include experiments from areas beyond criticality safety, such as reactor physics and shielding, and to include application models. In the future, external SCALE users may also obtain qualification under the VALID procedure and be involved in expanding the library. The VALID library provides a pathway for the criticality safety community to leverage modeling and analysis expertise at ORNL.

Marshall, William BJ J [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

2013-01-01T23:59:59.000Z

464

V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

4: Splunk Web Input Validation Flaw Permits Cross-Site 4: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-124: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks April 2, 2013 - 1:13am Addthis PROBLEM: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks PLATFORM: Version(s): 4.3.0 through 4.3.5 ABSTRACT: A vulnerability was reported in Splunk Web. REFERENCE LINKS: SecurityTracker Alert ID: 1028371 Splunk IMPACT ASSESSMENT: High DISCUSSION: Splunk Web does not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target user's browser. The code will originate from the site running the Splunk Web software and will run in the security context of that site. As a result, the code will be able to access the

465

U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

2: Barracuda Web Filter Input Validation Flaws Permit 2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September 6, 2012 - 6:00am Addthis PROBLEM: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks PLATFORM: Barracuda Web Filter 5.0.015 is vulnerable; other versions may also be affected. ABSTRACT: Barracuda Web Filter Authentication Module Multiple HTML Injection Vulnerabilities reference LINKS: Barracuda Networks Barracuda Networks Security ID: BNSEC-279/BNYF-5533 SecurityTracker Alert ID: 1027500 Bugtraq ID: 55394 seclists.org IMPACT ASSESSMENT: Medium Discussion: Two scripts not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to

466

T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits  

Broader source: Energy.gov (indexed) [DOE]

70: Skype Input Validation Flaw in 'mobile phone' Profile Entry 70: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks July 18, 2011 - 7:09am Addthis PROBLEM: A vulnerability was reported in Skype. A remote user can conduct cross-site scripting attacks. PLATFORM: 5.3.0.120 and prior versions ABSTRACT: The software does not properly filter HTML code from user-supplied input in the The "mobile phone" profile entry before displaying the input. reference LINKS: SecurityTracker Alert ID: 1025789 Skype Security Advisory KoreSecure News H Security ID: 1279864 IMPACT ASSESSMENT: High Discussion: Skype suffers from a persistent Cross-Site Scripting vulnerability due to a lack of input validation and output sanitization of the "mobile phone"

467

U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

0: Adobe Flex SDK Input Validation Flaw Permits Cross-Site 0: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks December 2, 2011 - 5:24am Addthis PROBLEM: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks. PLATFORM: Adobe Flex SDK 4.5.1 and earlier 4.x versions for Windows, Macintosh and Linux Adobe Flex SDK 3.6 and earlier 3.x versions for Windows, Macintosh and Linux ABSTRACT: Flex applications created using the Flex SDK may not properly filter HTML code from user-supplied input before displaying the input. reference LINKS: Adobe Security Bulletin CVE-2011-2461 SecurityTracker Alert ID: 1026361 IMPACT ASSESSMENT: High Discussion: A remote user may be able to cause arbitrary scripting code to be executed

468

T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits  

Broader source: Energy.gov (indexed) [DOE]

8: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' 8: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks August 22, 2011 - 3:54pm Addthis PROBLEM: A vulnerability was reported in Adobe ColdFusion. A remote user can conduct cross-site scripting attacks. PLATFORM: Adobe ColdFusion 9.x ABSTRACT: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks. reference LINKS: Adobe Vulnerability Report Adobe Security Bulletin ColdFusion Support SecurityTracker Alert ID: 1025957 IMPACT ASSESSMENT: Medium Discussion: The 'probe.cfm' script does not properly filter HTML code from user-supplied input in the 'name' parameter before displaying the input. A remote user can create a specially crafted URL that, when loaded by a

469

T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits  

Broader source: Energy.gov (indexed) [DOE]

0: Skype Input Validation Flaw in 'mobile phone' Profile Entry 0: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks July 18, 2011 - 7:09am Addthis PROBLEM: A vulnerability was reported in Skype. A remote user can conduct cross-site scripting attacks. PLATFORM: 5.3.0.120 and prior versions ABSTRACT: The software does not properly filter HTML code from user-supplied input in the The "mobile phone" profile entry before displaying the input. reference LINKS: SecurityTracker Alert ID: 1025789 Skype Security Advisory KoreSecure News H Security ID: 1279864 IMPACT ASSESSMENT: High Discussion: Skype suffers from a persistent Cross-Site Scripting vulnerability due to a lack of input validation and output sanitization of the "mobile phone"

470

U-132: Apache Wicket Input Validation Flaw in 'wicket:pageMapName'  

Broader source: Energy.gov (indexed) [DOE]

2: Apache Wicket Input Validation Flaw in 'wicket:pageMapName' 2: Apache Wicket Input Validation Flaw in 'wicket:pageMapName' Parameter Permits Cross-Site Scripting Attacks U-132: Apache Wicket Input Validation Flaw in 'wicket:pageMapName' Parameter Permits Cross-Site Scripting Attacks March 23, 2012 - 7:42am Addthis PROBLEM: Apache Wicket Input Validation Flaw in 'wicket:pageMapName' Parameter Permits Cross-Site Scripting Attacks PLATFORM: Apache Wicket 1.4.x ABSTRACT: A remote user can conduct cross-site scripting attacks. reference LINKS: Apache Wicket CVE-2012-0047 SecurityTracker Alert ID: 1026839 IMPACT ASSESSMENT: High Discussion: The software does not properly filter HTML code from user-supplied input in the 'wicket:pageMapName' request parameter before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target

471

Evaluation of Indian input to the international nuclear information system database  

Science Journals Connector (OSTI)

The study is aimed at analysing the INIS bibliographic records of publications in India during the period 2000-2008. The analysis includes the inputting trend, time-lag, contributing journals, country collaboration, content analysis through the classification and keywords. India has a total number of 14,697 records input to the database with an yearly average of 1631 records. The timeliness of input is very noteworthy as 29.15% of all articles are input in the same publication year, 52.57% articles are of only one year delay in inputting. Pramana, Journal of Medical Physics, Radiation Protection and Environment are found as the most contributed Indian journals. Scientists from USA, Germany, Japan, etc., are the main contributors. Nuclear physics and radiation physics, specific nuclear reactors and associated plants, particle accelerators, inorganic, organic, physical and analytical chemistry, etc., are main areas of the Indian input.

Anil Kumar; E.R. Prakasan; Sandeep Kadam; Nita Bhaskar

2011-01-01T23:59:59.000Z

472

T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits  

Broader source: Energy.gov (indexed) [DOE]

8: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' 8: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks T-698: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks August 22, 2011 - 3:54pm Addthis PROBLEM: A vulnerability was reported in Adobe ColdFusion. A remote user can conduct cross-site scripting attacks. PLATFORM: Adobe ColdFusion 9.x ABSTRACT: Adobe ColdFusion Input Validation Flaw in 'probe.cfm' Permits Cross-Site Scripting Attacks. reference LINKS: Adobe Vulnerability Report Adobe Security Bulletin ColdFusion Support SecurityTracker Alert ID: 1025957 IMPACT ASSESSMENT: Medium Discussion: The 'probe.cfm' script does not properly filter HTML code from user-supplied input in the 'name' parameter before displaying the input. A remote user can create a specially crafted URL that, when loaded by a

473

ARM - Time in ARM NetCDF Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govDataTime in ARM NetCDF Files govDataTime in ARM NetCDF Files Page Contents Introduction Time Zones Epoch Time Time Variables Conversion Examples and Hints Perl Example C Example Fortran Example IDL Example Notes on Generating Epoch Times Contact Information Time in ARM NetCDF Files Introduction This document explains most of the issues related to the use of time in ARM netCDF data files. Time Zones All ARM netCDF files are in UTC. Note that this has some implications for solar-based data; we tend to split our files at midnight, but the sun is still up at 0000 UTC at SGP in the late spring and summer, and all the time at TWP. This means a given solar arc may be broken across two different files. That's just the way it is; using local time in ARM files would have been a bigger mess. Note that splitting files at 0000 UTC is not an ARM standard, and many

474

Summary of Input to DOE Request for Information DE-FOA-0000225  

Broader source: Energy.gov [DOE]

Presentation on Sumary of Input to DOE Request for Information DE-FOA-0000225 - U.S. DOE Fuel Cells Technology Program

475

Fossil energy use in conventional and low-external-input cropping systems.  

E-Print Network [OSTI]

??The production of fossil fuels will crest within the next decade and with reliance of modern conventional agriculture on fossil fuel energy inputs, food production… (more)

Cruse, Michael James

2009-01-01T23:59:59.000Z

476

Combining frequency and time domain approaches to systems with multiple spike train input and output  

E-Print Network [OSTI]

between neuronal spike trains. Prog Biophys Mol Biol Vapnikto systems with multiple spike train input and output D. R.Keywords Multiple spike trains · Neural coding · Maximum

Brillinger, D. R.; Lindsay, K. A.; Rosenberg, J. R.

2009-01-01T23:59:59.000Z

477

E-Print Network 3.0 - alpha motoneurone input Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as input resistance (Ri,), membrane time constant (T... Spinalization on Ankle Extensor Motoneurons II. Motoneuron Electrical Properties S. HOCHMAN AND D. A. Mc......

478

A CSP Timed Input-Output Relation and a Strategy for Mechanised Conformance Verification  

Science Journals Connector (OSTI)

Here we propose a timed input-output conformance relation (named CSPTIO) based on the process algebra CSP. In contrast to other relations, CSPTIO...

Gustavo Carvalho; Augusto Sampaio…

2013-01-01T23:59:59.000Z

479

Factors Controlling the Input of Electrical Energy into a Fish in an ...  

Science Journals Connector (OSTI)

In order to determine the electrical energy - input into a fish, both voltage and resistance, as applied to the fish itself, should be known. Neither of these quantities ...

1999-12-13T23:59:59.000Z

480

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion...

Note: This page contains sample records for the topic "blender net inputs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FORMALIZATION OF INPUT AND OUTPUT IN MODERN OPERATING SYSTEMS: THE HADLEY MODEL.  

E-Print Network [OSTI]

??We present the Hadley model, a formal descriptive model of input and output for modern computer operating systems. Our model is intentionally inspired by the… (more)

Gerber, Matthew

2005-01-01T23:59:59.000Z

482

Historic Railroad Building Goes Net Zero | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

483

Historic Railroad Building Goes Net Zero | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

484

A modified greedy channel router with net assignment at the left edge  

E-Print Network [OSTI]

the vertical constraint graph is updated by the algorithm. At the first iteration, since netl, net3, and net5 end at zone 1, and net6 starts from zone 2, L becomes ( 1, 3, 5 ) and R becomes ( 6 ) at step s3 and s4 respectively. 15 TABLE I. Zone..., 7 5, 6 9 5, 6, 9 3, 8 (c) 4, 10 - - Track 1 1 7 ? ? Track 2 5, 6, 9 - - Track 3 Track4-- 2 3, 8 - - Track 5 Fig. 8. Illustration of algorithm. 17 At step s5, either netl and net6 or net3 and net6 can not be merged because the merging...

Oh, Chuldong

2012-06-07T23:59:59.000Z

485

Demand response compensation, net Benefits and cost allocation: comments  

SciTech Connect (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

486

Net?exchange analysis of the Earth greenhouse effect increase  

Science Journals Connector (OSTI)

In this paper we propose an analysis of the greenhouse effect on the basis of a net?exchange formulation for clear sky atmospheres. This formulation allows access to exchanges beetwen the differents elements of the atmosphere (gas layers the ground and space). When the greenhouse gas concentration increases we first use a simple configuration to analyse the variations of analytic monochromatic net exchange rates. The same type of analysis is then applied to the Earth atmosphere for a clear?sky middle latitude summer configuration with an increase in water vapour of 20% at all altitudes.

Nicolas Meilhac; Jean?Louis Dufresne; Vincent Eymet; Richard Fournier

2009-01-01T23:59:59.000Z

487

Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Targeting Net Zero Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations Prepared for the U.S. Department of Energy Federal Energy Management Program By National Renewable Energy Laboratory Kate Anderson, Tony Markel, Mike Simpson, John Leahey, Caleb Rockenbaugh, Lars Lisell, Kari Burman, and Mark Singer October 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

488

Generalized Mercury/Waterfilling for Multiple-Input Multiple-Output Channels  

E-Print Network [OSTI]

Generalized Mercury/Waterfilling for Multiple-Input Multiple-Output Channels Fernando P procedure that generalizes the mercury/waterfilling algorithm, previously proposed for parallel non-interfering chan- nels. In this generalization the mercury level accounts for the sub- optimal (non-Gaussian) input

VerdĂş, Sergio

489

April 3-4, 2007/ARR Engineering Input to System Code and  

E-Print Network [OSTI]

with providing input to system code - Assessing high-leverage engineering parameters to guide integrated trade 3-4, 2007/ARR 2 Schematic of ARIES Next Step Study as I Understand It (TBD) Design Requirements to Demonstrate Those System Code Development and Integration (ARIES-AT as starting point) Translating Input to

Raffray, A. René

490

Polar study of ionospheric ion outflow versus energy input Yihua Zheng,1  

E-Print Network [OSTI]

versus energy input is performed by using multi- instrument data (TIDE, EFI, MFI, HYDRA) from PolarPolar study of ionospheric ion outflow versus energy input Yihua Zheng,1 Thomas E. Moore,2 Forrest/6 Hz), the electron density, temperature, and the electron energy flux. The perturbation fields used

California at Berkeley, University of

491

Pinch-drag-flick vs. spatial input: rethinking zoom & pan on mobile displays  

Science Journals Connector (OSTI)

The multi-touch-based pinch to zoom, drag and flick to pan metaphor has gained wide popularity on mobile displays, where it is the paradigm of choice for navigating 2D documents. But is finger-based navigation really the gold standard' In this paper, ... Keywords: mobile displays, multi-touch input, spatial input, spatially aware displays, user study

Martin Spindler; Martin Schuessler; Marcel Martsch; Raimund Dachselt

2014-04-01T23:59:59.000Z

492

Feeling Music: Integration of Auditory and Tactile Inputs in Musical Meter Perception  

E-Print Network [OSTI]

Feeling Music: Integration of Auditory and Tactile Inputs in Musical Meter Perception Juan Huang1 are integrated in humans performing a musical meter recognition task. Subjects discriminated between two types coherent meter percepts, and 3) Simultaneously presented bimodal inputs where the two channels contained

Wang, Xiaoqin

493

Estimation of input energy in rocket-triggered lightning Vinod Jayakumar,1  

E-Print Network [OSTI]

the input power and energy, each per unit channel length and as a function of time, associated with return- lightning first stroke, based on the conversion of measured optical energy to total energy using energy., 2002] and measured current, I(t), at the channel base to estimate the input power per unit length, P

Florida, University of

494

Asynchronous Gate-Diffusion----Input (GDI) Circuits Arkadiy Morgenshtein, Michael Moreinis and Ran Ginosar  

E-Print Network [OSTI]

1 Asynchronous Gate-Diffusion----Input (GDI) Circuits Arkadiy Morgenshtein, Michael Moreinis, Israel [ran@ee.technion.ac.il] Abstract: Novel Gate-Diffusion Input (GDI) circuits are applied to asynchronous design. A variety of GDI implementations are compared with typical CMOS asynchronous circuits

Ginosar, Ran

495

Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach  

E-Print Network [OSTI]

Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach L. Nehaoua1. For this purpose, we consider a unknown input high order sliding mode observer (UIHOSMO). First, a motorcycle- flected by an important increase of motorcycle's fatalities. Recent statistics confirm this fact

Paris-Sud XI, Université de

496

U-102: Cisco IronPort Encryption Appliance Input Validation Flaw Permits  

Broader source: Energy.gov (indexed) [DOE]

2: Cisco IronPort Encryption Appliance Input Validation Flaw 2: Cisco IronPort Encryption Appliance Input Validation Flaw Permits Cross-Site Scripting Attacks U-102: Cisco IronPort Encryption Appliance Input Validation Flaw Permits Cross-Site Scripting Attacks February 14, 2012 - 8:00am Addthis PROBLEM: A vulnerability was reported in Cisco IronPort Encryption Appliance. PLATFORM: Version(s): prior to 6.5.3 ABSTRACT: A remote user can conduct cross-site scripting reference LINKS: Vendor URL CVE-2012-0340 Security Tracker ID:1026669 IMPACT ASSESSMENT: Medium Discussion: The interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can create a specially crafted URL that, when loaded by a target user, will cause arbitrary scripting code to be executed by the target user's browser. The code will originate from

497

V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting  

Broader source: Energy.gov (indexed) [DOE]

8: Splunk Web Input Validation Flaw Permits Cross-Site 8: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks V-168: Splunk Web Input Validation Flaw Permits Cross-Site Scripting Attacks May 31, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in Splunk Web PLATFORM: Version(s) prior to 5.0.3 ABSTRACT: A reflected cross-site scripting vulnerability was identified in Splunk Web REFERENCE LINKS: SecurityTracker Alert ID: 1028605 Splunk Security Advisory SPL-59895 CVE-2012-6447 IMPACT ASSESSMENT: Medium DISCUSSION: The web interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can create a specially crafted URL that, when loaded by a target user, will cause arbitrary scripting code to be executed by the target user's browser. The code will

498

U-204: HP Network Node Manager i Input Validation Hole Permits Cross-Site  

Broader source: Energy.gov (indexed) [DOE]

4: HP Network Node Manager i Input Validation Hole Permits 4: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks U-204: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks July 3, 2012 - 7:00am Addthis PROBLEM: HP Network Node Manager i Input Validation Hole Permits Cross-Site Scripting Attacks PLATFORM: Version(s): 8.x, 9.0x, 9.1x ABSTRACT: Potential security vulnerabilities have been identified with HP Network Node Manager I (NNMi) for HP-UX, Linux, Solaris, and Windows. The vulnerabilities could be remotely exploited resulting in cross site scripting (XSS). reference LINKS: The Vendor's Advisory SecurityTracker Alert ID: 1027215 CVE-2012-2018 IMPACT ASSESSMENT: Medium Discussion: A vulnerability was reported in HP Network Node Manager i. The software does not properly filter HTML code from user-supplied input before

499

Oak Ridge's EM Program Seeks Public Input on Cleanup | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeks Public Input on Cleanup Seeks Public Input on Cleanup Oak Ridge's EM Program Seeks Public Input on Cleanup April 25, 2013 - 12:00pm Addthis Oak Ridge’s EM leadership informed members of the public about projects and goals and answered questions during a public workshop this week. Oak Ridge's EM leadership informed members of the public about projects and goals and answered questions during a public workshop this week. Local residents and other stakeholders listen to Oak Ridge's EM senior leadership in a public workshop to learn about EM and provide input about future mission work. Local residents and other stakeholders listen to Oak Ridge's EM senior leadership in a public workshop to learn about EM and provide input about future mission work. Oak Ridge EM Manager Mark Whitney addresses participants on EM’s mission and priorities.

500

V-139: Cisco Network Admission Control Input Validation Flaw Lets Remote  

Broader source: Energy.gov (indexed) [DOE]

9: Cisco Network Admission Control Input Validation Flaw Lets 9: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands V-139: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands April 21, 2013 - 11:50pm Addthis PROBLEM: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands PLATFORM: Cisco NAC Manager versions prior to 4.8.3.1 and 4.9.2 ABSTRACT: A vulnerability was reported in Cisco Network Admission Control. REFERENCE LINKS: SecurityTracker Alert ID: 1028451 Cisco Advisory ID: cisco-sa-20130417-nac CVE-2013-1177 IMPACT ASSESSMENT: High DISCUSSION: The Cisco Network Admission Control (NAC) Manager does not properly validate user-supplied input. A remote user can supply a specially crafted parameter value to execute SQL commands on the underlying database.