National Library of Energy BETA

Sample records for blend transit buses

  1. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

    SciTech Connect (OSTI)

    Proc, K.; Barnitt, R.; Hayes, R. R.; Ratcliff, M.; McCormick, R. L.; Ha, L.; Fang, H. L.

    2006-11-01

    Evaluates the emissions, fuel economy, and maintenance of five 40-foot transit buses operated on B20 compared to four on petroleum diesel.

  2. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004

    SciTech Connect (OSTI)

    Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

    2005-11-01

    The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

  3. Transit Users Group Supports Transit Agencies with Natural Gas Buses

    SciTech Connect (OSTI)

    Not Available

    2002-04-01

    Fact sheet describes the benefits of the Transit Users Group, which supports transit groups with compressed natural gas (CNG) buses.

  4. Vehicle Modeling and Verification of CNG-Powered Transit Buses

    E-Print Network [OSTI]

    Hedrick, J. K.; Ni, A.

    2004-01-01

    Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

  5. MTA New York City Transit: Diesel Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Fact sheet describes the performance of diesel hybrid electric buses used at MTA New York City Transit.

  6. Fuel Cells in Transit Buses Transit buses are widely viewed as one of the best strategies for commercializing fuel cells for

    E-Print Network [OSTI]

    Fuel Cells in Transit Buses Summary Transit buses are widely viewed as one of the best strategies for commercializing fuel cells for vehicles and transitioning to a hydrogen economy. Many advantages have been identified regarding the use of transit buses as fuel cell platforms. For example: · Transit buses have well

  7. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2008-07-01

    This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

  8. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    SciTech Connect (OSTI)

    Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

    2005-12-01

    An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

  9. King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Walkowicz, K.

    2006-12-01

    Final technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington. The evaluation lasted 12 months.

  10. SunLine Transit Agency, Hydrogen Powered Transit Buses: Preliminary Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2007-02-01

    This paper provides preliminary results from an evaluation by DOE's National Renewable Energy Laboratory of hydrogen-powered transit buses at SunLine Transit Agency.

  11. New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Eudy, L.

    2006-01-01

    This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

  12. Sunline Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2007-10-01

    This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California.

  13. Evaluation of Orion/BAE Hybrid Buses and Orion CNG Buses at New York City Transit: Preprint

    SciTech Connect (OSTI)

    Eudy, L.; Barnitt, R.; Chandler, K.

    2005-05-01

    This paper prepared for the 2005 American Public Transportation Association Bus & Paratransit Conference discusses the NREL/DOE evaluation of hybrid electric transit buses operated by New York City Transit.

  14. Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel

    Broader source: Energy.gov [DOE]

    In 1995, over 95% of the fuel used in transit buses was diesel. In 2006, diesel fuel constituted just under 75% of the fuel used by transit buses while other fuel types such as compressed natural...

  15. Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences...

    Office of Environmental Management (EM)

    Buses in U.S. Transit Fleets: Summary of Experiences and Current Status Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status This report reviews past...

  16. New York City Transit Diesel Hybrid-Electric Buses Final Results...

    Open Energy Info (EERE)

    New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE NREL Transit Bus Evaluation Project Jump to: navigation, search Name New York City Transit Diesel...

  17. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-11-07

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  18. SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report (Report and Appendices)

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2008-06-01

    This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses.

  19. SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results Update This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California. 42080.pdf More...

  20. King County Metro Transit Hybrid Articulated Transit Buses: Interim Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Walkowicz, K.

    2006-04-01

    Interim technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington.

  1. Comparison of Clean Diesel Buses to CNG Buses | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Clean Diesel Buses to CNG Buses 2003 DEER Conference Presentation: New York City Transit Department of Buses deer2003lowell.pdf More Documents & Publications...

  2. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2009-10-01

    This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

  3. Bay Area Transit Agencies Propel Fuel Cell Buses Toward Commercialization (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This fact sheet describes the Zero Emission Bay Area (ZEBA) demonstration of the next generation of fuel cells buses. Several transit agencies in the San Francisco Bay Area are participating in demonstrating the largest single fleet of fuel cell buses in the United States.

  4. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  5. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2011-11-01

    This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

  6. Fuel economy testing of six 40-foot transit buses. Final report Aug 82-Mar 83

    SciTech Connect (OSTI)

    Francis, G.A.; Nelson, S.R.

    1983-03-01

    The importance of life-cycle cost analyses in transit bus procurement is recognized by the industry and has been a Congressional requirement for grantees. This report documents a program of fuel economy testing of six standard 40-foot buses. The main purpose of this series of tests is to assist transit authorities and bus suppliers by providing accurate comparable fuel consumption data on transit buses produced by different manufacturers. Six buses were selected by the manufacturers and supplied for testing by six transit properties directly from revenue service. This report makes the data available to the industry for discretionary use in estimating life-cycle costs. A list of bus manufacturers and the supplying transit system is provided.

  7. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gigakis, C.

    2010-11-01

    This status report, fourth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory, summarizes progress and accomplishments from demonstrations of fuel cell transit buses in the United States. This year's assessment report provides the results from the fifth year of operation of five Van Hool, ISE, and UTC Power fuel cell buses operating at AC Transit, SunLine, and CTTRANSIT. The achievements and challenges of this bus design, implementation, and operating are presented, with a focus on the next steps for implementing larger numbers and new and different designs of fuel cell buses. The major positive result from nearly five years of operation is the dramatic increase in reliability experienced for the fuel cell power system.

  8. New York City Transit Hybrid and CNG Transit Buses: Final Evaluation Results

    SciTech Connect (OSTI)

    Barnitt, R.; Chandler, K.

    2006-11-01

    This report describes the evaluation results for new Orion VII buses at NYCT with CNG propulsion and new hybrid propulsion.

  9. Two glass transitions in miscible polymer blends?

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-06-28

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  10. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    SciTech Connect (OSTI)

    Eudy, Leslie; Post, Matthew; Gikakis, Christina

    2015-12-11

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. The 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.

  11. Emissions Effects of Using B20 in the Current Transit Bus Fleet

    Broader source: Energy.gov [DOE]

    Transit buses using diesel and biodiesel blends were tested for fuel consumption and emissions on the UDDS, OCTA, and Man duty cycles.

  12. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    SciTech Connect (OSTI)

    Barnitt, R. A.

    2008-06-01

    The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

  13. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  14. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    SciTech Connect (OSTI)

    Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

  15. Emissions characterization of two methanol-fueled transit buses. Final report, April-September 1985

    SciTech Connect (OSTI)

    Ullman, T.L.; Hare, C.T.

    1986-02-01

    Exhaust emissions from the two methanol-powered buses used in the California Methanol Bus Demonstration have been characterized. The M.A.N. SU 240 bus is powered by M.A.N.'s D2566 FMUH methanol engine, and utilizes catalytic exhaust aftertreatment. The GMC RTS II 04 bus is powered by a first-generation DDAD 6V-92TA methanol engine without exhaust aftertreatment. Emissions of HC, CO, NO, unburned methanol, aldehydes, total particulates, and soluble fraction of particulate were determined for both buses over steady-state and transient chassis dynamometer test cycles. Emission levels from the M.A.N. bus were considerably lower than those from the GMC bus, with the exception of NO. Comparison of emission levels from methanol- and diesel-powered buses indicates that substantial reduction in emissions (especially particulate and NO) are possible with careful implementation of methanol fueling.

  16. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  17. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  18. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2014

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is andFederalFuel Cell Buses

  19. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  20. Dual fuel Russian urban transit buses: Economical reduced emissions. Export trade information

    SciTech Connect (OSTI)

    1998-01-01

    This study, conducted by Caterpillar, was funded by the US Trade and Development Agency. The scope of this project was to examine the financial and environmental aspects of introducing new alternative fuel engines to the buses of Russia`s public transportation system. The report consists of the following: (1) executive summary; (2) background/overview; (3) 3306 design, development, test; (4) electronic governed engines; (5) Moscow bus testing; (6) conclusions; (7) appendices. The appendices include: (1) Caterpillar emissions lab report; (2) dyno tests -- dual fuel data sheets; (3) 3360 horizontal engine lub tilt test; (4) 1000 hour endurance test -- engine operator sheets; (5) 1000 hour endurance test -- 250 hour check; (6) Caterpillar dual fuel electronic engines; (7) product description -- dual fuel electronic governed engines; (8) California Environmental Protection Agency -- certification of caterpillar electronic governed engines; (9) annual payback data.

  1. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2008-12-01

    This report provides results from fuel cell bus evaluations at Alameda-Contra Costa Transit District, SunLine Transit Agency, and Santa Clara Valley Transportation Authority.

  2. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunLine Transit Agency Report details the six-month evaluation of the ThunderPower hydrogen fuel cell bus demonstrated at SunLine Transit Agency. sunlinereport.pdf More Documents...

  3. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013

    SciTech Connect (OSTI)

    Eudy, L.; Gikakis, C.

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.

  4. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    SciTech Connect (OSTI)

    Eudy, Leslie; Chandler, Kevin; Gikakis, Christina

    2012-11-01

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results over the last year.

  5. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    SciTech Connect (OSTI)

    Eudy, L.; Chander, K.; Gikakis, C.

    2012-11-01

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results over the last year. There are 25 active FCEBs in demonstrations this year at eight locations.

  6. AC Transit Demos Three Prototype Fuel Cell Buses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | DepartmentVery1, in:QuarterlyA SolarAADensifiedAC Transit

  7. DART's (Dallas Area Rapid Transit) LNG Bus Fleet Start-Up Experience (Alternative Fuel Transit Buses Brochure)

    SciTech Connect (OSTI)

    Battelle

    2000-06-30

    This report, based on interviews and site visits conducted in October 1999, describes the start-up activities of the DART liquefied natural gas program, identifying problem areas, highlighting successes, and capturing the lessons learned in DART's ongoing efforts to remain at the forefront of the transit industry.

  8. Alternative Fuel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManual del vehículoU.S. Department 35th

  9. Case Study: Ebus Hybrid Electric Buses and Trolleys

    SciTech Connect (OSTI)

    Barnitt, R.

    2006-07-01

    Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

  10. Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses

    Broader source: Energy.gov [DOE]

    Emissions and fuel economy data were studied from tests on four diesel and diesel hybrid transit buses using the Houston Metro Bus Cycle.

  11. Brazil's Buses: Simply Successful

    E-Print Network [OSTI]

    Golub, Aaron

    2004-01-01

    of articulated and double-decker buses, while those for Hongnumbers of both double deckers and minibuses. Source:

  12. Webinar: Fuel Cell Buses

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Fuel Cell Buses, originally presented on September 12, 2013.

  13. Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Melendez, M.

    2006-04-01

    Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

  14. Cars, buses, and jobs: Welfare Participants and Employment Access in Los Angeles

    E-Print Network [OSTI]

    Blumenberg, Evelyn A.; Ong, Paul M.

    2002-01-01

    CARS, BUSES, AND JOBS: Welfare Participants and Employment8775, pmong@ucla.edu Blumenberg & Ong Cars, Buses, and Jobs:without difficulty by either car or public transit. However,

  15. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location. 43545-2.pdf More Documents & Publications...

  16. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel...

  17. Fuel Cell School Buses: Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities, Progress, and Plans: Report to Congress ii December 2008 Fuel Cell School Buses Report to Congress Fuel Cell School Buses: Report to Congress Preface This Department of...

  18. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the...

  19. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis3 Annual41Development

  20. Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers

    E-Print Network [OSTI]

    and semicrystalline polymers Vivek Thirtha, Richard Lehman *, Thomas Nosker Department of Materials Science and Engineering, AMIPP Advanced Polymer Center, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA uncompatibilized immiscible polymer blend compositions on the Tg of the amorphous polymer were studied

  1. King County Metro Transit

    SciTech Connect (OSTI)

    Not Available

    2004-12-01

    Fact sheet describes the National Renewable Energy Laboratory's evaluation of King County Metro's articulated hybrid electric transit buses with Allison electric drives.

  2. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  3. National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in evaluating the durability and reliability of fuel cell buses being demonstrated in transit service. Work was performed by the Hydrogen Technology Validation team in the Hydrogen Technologies and Systems Center.

  4. Evaluating Exhaust Emission Performance of Urban Buses Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis...

  5. Enterprise converting buses to biodiesel

    Broader source: Energy.gov [DOE]

    Rental car customers may be able to breathe a little easier during their next trip to the airport. Alamo Rent A Car, Enterprise Rent-A-Car, and National Car Rental, all brands operated by the subsidiaries of Enterprise Holdings, are converting their airport shuttle buses to run on biodiesel fuel. The move is a good one for the environment, and will ultimately reduce the company’s carbon emissions. “We are saving 420,000 gallons of petroleum diesel,”  says Lee Broughton, director of corporate identity and sustainability for Enterprise Holdings.    

  6. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second...

    Broader source: Energy.gov (indexed) [DOE]

    Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. 45670-2.pdf More Documents & Publications...

  7. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third...

    Broader source: Energy.gov (indexed) [DOE]

    describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype...

  8. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses 2002 DEER Conference Presentation:...

  9. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    44646-2.pdf More Documents & Publications SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results SunLine Transit Agency Fuel Cell Transit Bus:...

  10. Fuel Cell School Buses: Report to Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell School Buses: Report to Congress Fuel Cell School Buses: Report to Congress The Department of Energy (DOE) Hydrogen Program has examined the potential for a fuel cell...

  11. Emissions from two methanol-powered buses

    SciTech Connect (OSTI)

    Ullman, T.L.; Hare, C.T.; Baines, T.M.

    1986-01-01

    Emissions from the two methanol-powered buses used in the California Methanol Bus Demonstration have been characterized. The M.A.N. SU 240 bus is powered by M.A.N.'s D2566 FMUH methanol engine, and utilizes catalytic exhaust aftertreatment. The GMC RTS II 04 bus is powered by a first-generation DDAD 6V-92TA methanol engine without exhaust aftertreatment. Emissions of HC, CO, NO/subX/, unburned methanol, aldehydes, total particulates, and the soluble fraction of particulate were determined for both buses over steady-state and transient chassis dynamometer test cycles. Emission levels from the M.A.N. bus were considerably lower than those from the GMC bus, with the exception of NO/subX/. Comparison of emission levels from methanol-and diesel-powered buses indicates that substantial reductions in emissions are possible with careful implementation of methanol fueling.

  12. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  13. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location.

  14. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01

    bus,  the electric buses’ fraction of energy consumed was Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School  Buses, Electric Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric 

  15. New Buses Transport Students and Savings in Texas | Department...

    Energy Savers [EERE]

    Students look underneath one of Fort Worth Independent School District's new hybrid diesel buses. | Photo courtesy of FWISD Students look underneath one of Fort Worth...

  16. Port Authority of Allegheny County: Green Facts Hybrid Buses

    E-Print Network [OSTI]

    Sibille, Etienne

    began using ultra-low sulfur diesel (ULSD) on select buses in April 2005, and went system-wide with ULSD

  17. Fuel Cell Buses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize: Race toFt. CarsonBuses Fuel Cell

  18. Exploration of parameters for the continuous blending of pharmaceutical powders

    E-Print Network [OSTI]

    Lin, Ben Chien Pang

    2011-01-01

    The transition from traditional batch blending to continuous blending is an opportunity for the pharmaceutical industry to reduce costs and improve quality control. This operational shift necessitates a deeper understanding ...

  19. Strategies for Sharing Bottleneck Capacity among Buses and Cars

    E-Print Network [OSTI]

    Guler, Sukran Ilgin

    2012-01-01

    enable buses to bypass the car queues that still form atcrease a bottleneck’s car-carrying capacity, in comparisonthat significant reductions in car delays can result while

  20. Comparative emissions from natural gas and diesel buses

    SciTech Connect (OSTI)

    Clark, N.N.; Gadapati, C.J.; Lyons, D.W.; Wang, W.; Gautam, M.; Bata, R.M. [West Virginia Univ., Morgantown, WV (United States); Kelly, K.; White, C.L. [National Renewable Energy Lab., Golden, CO (United States)

    1995-12-31

    Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods. During the three years of testing, a significant fraction of emissions data was acquired from buses with Cummins L-10 engines designed to operate on either CNG or diesel. The CNG lean burn engines were spark ignited and throttled. Early CNG engines, which were pre-certification demonstration models, have provided the bulk of the data, but data from 9 buses with more advanced technology were also available. It has been found that carbon monoxide (CO) levels from early Cummins L-10 CNG powered buses varied greatly from bus to bus, with the higher values ascribed to either faulty catalytic converters or a rich idle situation, while the later model CNG L-10 engines offered CO levels considerably lower than those typical of diesel engines. The NO{sub x} emissions were on par with those from diesel L-10 buses. Those natural gas buses with engines adjusted correctly for air-fuel ratio, returned very low emissions data. CNG bus hydrocarbon emissions are not readily compared with diesel engine levels since only the non-methane organic gases (NMOG) are of interest. Data show that NMOG levels are low for the CNG buses. Significant reduction was observed in the particulate matter emitted by the CNG powered buses compared to the diesel buses, in most cases the quantity captured was vanishingly small. Major conclusions are that engine maintenance is crucial if emissions are to remain at design levels and that the later generation CNG engines show marked improvement over the earlier models. One may project for the long term that closed loop stoichiometry control is desirable even in lean burn applications.

  1. King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand Cubic Feet) SoldDepartmentGOES-10PV GridPhase 1KineticKing

  2. Fleet DNA Project Data Summary Report for City Transit Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |Final ReporttheHouseNew venture acceleration Hansen25 18

  3. King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-DutyCELLs moreKing

  4. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and...

  5. BC Transit Fuel Cell Bus Project: Evaluation Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-02-01

    This report evaluates a fuel cell electric bus demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. This evaluation report covers two years of revenue service data on the buses from April 2011 through March 2013.

  6. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report #2, Alameda-Contra Costa Transit District (AC Transit) and Appendices

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2010-06-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006, comparing similar diesel buses operating from the same depot. It covers November 2007 through February 2010. Results include implementation experience, fueling station operation, evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and road calls), and a summary of achievements and challenges encountered during the demonstration.

  7. Robust Algorithms for Sorting Railway Cars Christina Busing1

    E-Print Network [OSTI]

    Nabben, Reinhard

    Robust Algorithms for Sorting Railway Cars Christina B¨using1 and Jens Maue2 1 Institut f cars and reassembled to form new outgoing trains. Trains are subject to delay, which may turn deal with this issue by completely disregarding the input order of cars, which pro- vides robustness

  8. Contactless prepaid and bankcards in transit fare collection systems

    E-Print Network [OSTI]

    Brakewood, Candace Elizabeth

    2010-01-01

    Many public transit agencies are considering direct acceptance of contactless credit and debit cards (collectively contactless bankcards) at gates in rail stations and on board buses. Concerns have been raised about riders ...

  9. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartment ofEnergyMethane Recovery

  10. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartment ofEnergyMethane RecoveryThird

  11. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartment ofEnergyMethane RecoveryThirdThird

  12. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  13. AVTA: Plug-In Hybrid Electric School Buses

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing several plug-in hybrid electric school buses in locations in three different states. This research was conducted by the National Renewable Energy Laboratory (NREL).

  14. Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland ConservesElectricSurpassesPropane Buses

  15. Boise Buses Running Strong with Clean Cities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make6,Energy BlueBobBoise Buses Running

  16. Alternative Fuels Data Center: School Buses Go Green in Virginia

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles andProductionRentalSchool Buses Go

  17. VALVE: Variable Length Value Encoder for Off-Chip Data Buses. Dinesh C. Suresh, Banit Agrawal*

    E-Print Network [OSTI]

    Najjar, Walid A.

    VALVE: Variable Length Value Encoder for Off-Chip Data Buses. Dinesh C. Suresh, Banit Agrawal (VALVE) technique to reduce the power consumption in the off-chip data buses. While past research has proposed scheme is capable of detecting and encoding variable length bit patterns in the data values. VALVE

  18. CNG buses fire safety: learnings from recent accidents in France and Germany

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CNG buses fire safety: learnings from recent accidents in France and Germany Lionel PERRETTE Saarland Holding, Sulzbach Saar/ Germany ABSTRACT The use of CNG in bus and private vehicles is growing steadily. Recent fire accidents involving CNG buses have shown that tanks may explode though compliant

  19. HAVO Fuel Cell Buses Hawai`i Natural Energy Institute | School of Ocean & Earth Science & Technology

    E-Print Network [OSTI]

    HAVO Fuel Cell Buses Hawai`i Natural Energy Institute | School of Ocean & Earth Science`i Natural Energy Institute (HNEI) is conducting research to develop and validate fuel cell air filtration systems in support of operating Fuel Cell electric buses in a variety of road grades, elevations, and air

  20. Development of PM trap system for urban buses

    SciTech Connect (OSTI)

    Kumagai, Yasuaki; Nakashima, Naohisa; Miyata, Osamu; Ikeda, Tatuya

    1996-09-01

    In response to stringent particulate matter (PM) emission regulations worldwide, developments of diesel particulate filter (DPF) continue apace in addition to engine modification for PM reduction. Particularly with buses used in urban areas, reduction methods in black smoke emissions are being researched in addition to the efforts to satisfy the aforementioned PM regulations. The system described in this paper was developed for use mainly with buses in large urban concentrations. The system consists of both wall-flow monolith filters for filtration of PM emissions and electric heaters for regeneration. A key feature of this system is that exhaust gas is used for effective combustion of PM during regeneration. Optimization of the exhaust gas flow rate drawn into the filter under regeneration has resulted in regeneration efficiency comparable with those achieved using air pumps. The difficulty of putting DPF systems to practical use has been due to cracking and melting of filters caused by excessive PM accumulation and subsequent increases in temperature in excess of tolerable levels. To prevent these problems, some means of controlling the accumulated PM mass was required. Since bus routes in large urban concentrations follow common patterns, the mass of PM accumulated over a given time period is more or less constant. Thus, the amount of PM accumulated over a given time period can be estimated easily and filter damage can be prevented.

  1. Phase Segregation in Polystyrene?Polylactide Blends

    SciTech Connect (OSTI)

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  2. New York City Transit (NYCT) Hybrid (125 Order) and CNG Transit Buses: Final Evaluation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarship supports returningNewStaff3610 Collins

  3. Alameda-Contra Costa Transit District Fuel Cell Transit Buses: Evalluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartment ofEnergyMethane

  4. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel CellMaterials

  5. SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdate | Department of Energy

  6. SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdate | Department of

  7. SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdate | Department ofReport and

  8. SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdate | Department

  9. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E CChinaC L S CLogin HelpLois

  10. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis3INTRODUCTIONEmission

  11. New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter to ScienceBecauseNew

  12. Update from the NREL Alternative Fuel Transit Bus Evaluation Program

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    1999-05-01

    The object of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty urban transit buses operating on alternative fuels and diesel fuel. Final reports from this project were produced in 1996 from data collection and evaluation of 11 transit buses from eight transit sites. With the publication of these final reports, three issues were raised that needed further investigation: (1) the natural gas engines studied were older, open-loop control engines; (2) propane was not included in the original study; and (3) liquefied natural gas (LNG) was found to be in the early stages of deployment in transit applications. In response to these three issues, the project has continued by emissions testing newer natural gas engines and adding two new data collection sites to study the newer natural gas technology and specifically to measure new technology LNG buses.

  13. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-09-01

    Second report evaluating a fuel cell electric bus (FCEB) demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. NREL published its first report on the demonstration in February 2014. This report is an update to the previous report; it covers 3 full years of revenue service data on the buses from April 2011 through March 2014 and focuses on the final experiences and lessons learned.

  14. Alternative Fuel School Buses Earn High Marks: Reprint from Alternative Fuel News, Vol. 5, No. 3

    SciTech Connect (OSTI)

    Not Available

    2002-11-01

    A two-page article on school buses that run on alternative fuels including biodiesel and compressed natural gas. Reprinted from Alternative Fuel News, published by the Clean Cities Program of DOE.

  15. Inspection of compressed natural gas cylinders on school buses

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.

  16. St. Louis Metro Biodiesel (B20) Transit Bus Evaluation: 12-Month Final Report

    SciTech Connect (OSTI)

    Barnitt, R.; McCormick, R. L.; Lammert, M.

    2008-07-01

    The St. Louis Metro Bodiesel Transit Bus Evaluation project is being conducted under a Cooperative Research and Development Agreement between NREL and the National Biodiesel Board to evaluate the extended in-use performance of buses operating on B20 fuel. The objective of this research project is to compare B20 and ultra-low sulfur diesel buses in terms of fuel economy, veicles maintenance, engine performance, component wear, and lube oil performance.

  17. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report (Report and Appendices)

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-01-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. These results are an addition to those provided in the previous three evaluation reports.

  18. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2009-08-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  19. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report-- Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  20. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-05-01

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.

  1. King County Metro Transit: Allison Hybrid Electric Transit Bus Laboratory Testing

    SciTech Connect (OSTI)

    Hayes, R. R.; Williams, A.; Ireland, J.; Walkowicz, K.

    2006-09-01

    Paper summarizes chassis dynamometer testing of two 60-foot articulated transit buses, one conventional and one hybrid, at NREL's ReFUEL Laboratory. It includes experimental setup, test procedures, and results from vehicle testing performed at the NREL ReFUEL laboratory.

  2. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report

    Broader source: Energy.gov [DOE]

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  3. Evaluation of Alternative Field Buses for Lighting ControlApplications

    SciTech Connect (OSTI)

    Koch, Ed; Rubinstein, Francis

    2005-03-21

    The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include at least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.

  4. Visual Tracking of Buses in a Parking Lot T. Castanheira, P. Silva, R. Ferreira, A. Bernardino, J. Gaspar

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Visual Tracking of Buses in a Parking Lot T. Castanheira, P. Silva, R. Ferreira, A. Bernardino, J In this paper we propose an automatic system for the visual-tracking of buses in a parking lot, by using a set of Pan-Tilt-Zoom (PTZ) cameras. It is assumed that the parking lot has specific entry points, so

  5. Lothian Buses operate an exact fare system. If you are paying the driver (single fares or day tickets), please

    E-Print Network [OSTI]

    Adult and Young Student Ridacards offer unlimited travel on most Lothian Buses for 1 week, 4 weeks ­ any distance ­ Adult £1 NIGHT BUSES £2 flat fare for all-night travel (£1 when showing your valid's Buildings Moray House/Pleasance New College Old College Pollock Halls Royal Infirmary Western General NC KB

  6. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    SciTech Connect (OSTI)

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

  7. BLENDED AND ONLINE LEARNING IN

    E-Print Network [OSTI]

    Ellis, Randy

    ) "Flipped classroom" - focus on active learning and enhanced student engagement in the classroom #12;First dissatisfied with student learning experience #12;Blended Learning Initiative Large, first-year courses student engagement improve student learning outcomes improve knowledge retention #12;Framework for Blended

  8. Decomposition method for the Multiperiod Blending Problem

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    for many applications 4 · Gasoline and crude oil blending · Raw material feed scheduling · StorageDecomposition method for the Multiperiod Blending Problem Irene Lotero, Francisco Trespalacios algorithm #12;Supply Tanks (s) Blending Tanks (b) Demand Tanks (d) Multiperiod blending problem is defined

  9. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of int

  10. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerbarnitt.pdf More Documents & Publications Recent...

  11. BAE/Orion Hybrid Electric Buses at New York City Transit: A Generational Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and Fuelsj B JBACKGROUND The

  12. New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFESpinningLtdElectric&WaterLLC Jump

  13. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDan O"HaganTalley,SurrogateWorkshop Fuel

  14. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDan O"HaganTalley,SurrogateWorkshop

  15. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDan O"HaganTalley,SurrogateWorkshopEnergy 12

  16. Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDan O"HaganTalley,SurrogateWorkshopEnergy

  17. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on asPublicationsFuelsSchool BusFuel Cell

  18. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is andFederal

  19. Method to blend separator powders

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  20. Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary of Reported6,national

  1. Intrinsically safe moisture blending system

    DOE Patents [OSTI]

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  2. Controlling the Morphology of Polymer and Fullerene Blends in Organic Photovoltaics Through Sequential Processing and Self-Assembly

    E-Print Network [OSTI]

    Aguirre, Jordan C.

    2015-01-01

    Blend Casting . . . . . . . . . . . . . . . . . . . .Blend Casting 41 Introduction . . . . . . . . . . . . . . .and tra- ditional blend casting: Nanoscale structure and

  3. On-Board Diesel & Hybrid Diesel-Electric Transit Bus PM

    E-Print Network [OSTI]

    Holmén, Britt A.

    On-Board Diesel & Hybrid Diesel-Electric Transit Bus PM Mass and Size-Resolved Number Emissions AND cost-effective ­ 2003 -- Purchase 2 hybrid diesel-electric buses ­ Emissions Testing ­ gases Particulate Mass -- filter #12;Motivation · Ultrafine (UF) particle health effects · Diesel vehicle exhaust

  4. Wireless Internet Access To Real-Time Transit Information S.D. Maclean, University of Washington, Dept. of Electrical Engineering, Box 352500, Seattle,

    E-Print Network [OSTI]

    TRB 02-3863 Wireless Internet Access To Real-Time Transit Information S.D. Maclean, University departure times for buses at user-selectable geographic locations to Internet-enabled mobile devices.e., wired) Internet connectivity is not available. Wireless access to real-time transit information

  5. Alternative Fuels Data Center: The Heat Is on in St. Louis Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is on in St. Louis Buses to

  6. The effect of block copolymer on the phase behavior of a polymer blend

    SciTech Connect (OSTI)

    Sung, L.; Jackson, C.L.; Hess, D.

    1995-12-31

    The effect of an interfacial modifier on the phase behavior of a blend has been investigated using time-resolved fight scattering and small angle neutron scattering techniques. A low molecular weight binary blend of deuterated polystyrene/polybutadiene (PSD/PB) with PSD-PB diblock copolymer as the added interfacial modifier was studied. We observed that the critical temperature of the blend decreases with increasing copolymer content and the kinetics of the phase separation (via spinodal decomposition) slows down in the presence of the copolymer. The transition from early to late stage spinodal decomposition in a near critical mixture of the binary blend was analyzed and compared to available theories. In addition, transmission electron microscopy and optical microscopy studies were used to examine the morphology of the system under various temperature quench conditions.

  7. Conflict and Criterion Setting in Recognition Memory Tim Curran and Casey DeBuse P. Andrew Leynes

    E-Print Network [OSTI]

    Curran, Tim

    Conflict and Criterion Setting in Recognition Memory Tim Curran and Casey DeBuse P. Andrew Leynes) (Curran, 2000; Curran & Cleary, 2003; Nessler, Mecklinger, & affects remembering. For example, response, Wilding, & Rugg, 1998; Curran & Friedman, 2003; Cur- old­new effects are thought to reflect the activity

  8. Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    1 Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2 Feedstock Petroleum Petroleum & Natural Gas Natural Gas Petroleum & Coal Coal Sulfur (ppm by mass) 1148 699 19 658 22 Alkanes (% vol.) 50

  9. Exciting careers blending engineering, science, and ecology

    E-Print Network [OSTI]

    Tullos, Desiree

    Exciting careers blending engineering, science, and ecology New Opportunities Making the world incorporate a broad range of biological systems as components, and emphasize mutual improvement of both human

  10. Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    study (over 140 samples) to examine effects of several variables on Cloud Point (CP): Saturated Monoglyceride (SMG) Effects on Biodiesel Blend Low-Temperature Performance...

  11. Comparison of LNG, CNG, and diesel transit bus economics. Topical report, July 1992-September 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Luscher, D.R.; Lowell, D.D.; Pera, C.J.

    1993-10-20

    The purpose of the report is to compare the expected costs of operating a transit bus fleet on liquefied natural gas (LNG), compressed natural gas (CNG), and diesel fuel. The special report is being published prior to the overall project final report in response to the current high level of interest in LNG transit buses. It focuses exclusively on the economics of LNG buses as compared with CNG and diesel buses. The reader is referred to the anticipated final report, or to a previously published 'White Paper' report (Reference 1), for information regarding LNG vehicle and refueling system technology and/or the economics of other LNG vehicles. The LNG/CNG/diesel transit bus economics comparison is based on total life-cycle costs considering all applicable capital and operating costs. The costs considered are those normally borne by the transit property, i.e., the entity facing the bus purchase decision. These costs account for the portion normally paid by the U.S. Department of Transportation (DOT) Federal Transit Administration (FTA). Transit property net costs also recognize the sale of emissions reduction credits generated by using natural gas (NG) engines which are certified to levels below standards (particularly for NOX).

  12. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

  13. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  14. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

  15. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  16. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  17. Green emitting phosphors and blends thereof

    DOE Patents [OSTI]

    Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  18. Decomposition method for the Multiperiod Blending Problem

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Decomposition method for the Multiperiod Blending Problem Francisco Trespalacios, Irene Lotero Engineering Carnegie Mellon University Pittsburgh, PA 15213 #12;2 Motivation and goals Multiperiod blending problem is a general model for many applications, and it is difficult to solve · Gasoline and crude oil

  19. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect (OSTI)

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  20. Viscoelastic properties of bidisperse homopolymer blends 

    E-Print Network [OSTI]

    Juliani

    2000-01-01

    Linear and nonlinear stress relaxation dynamics of well entangled polymer liquids were studied using a series of entangled, bidisperse 1,4-polybutadiene blends. Blend systems comprising high-(M[L]) and low-(M[S]) molecular weight components with M...

  1. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect (OSTI)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  2. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2014-03-03

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

  3. Emissions with butane/propane blends

    SciTech Connect (OSTI)

    1996-11-01

    This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

  4. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

  5. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2010-01-01

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

  6. BLENDING PROBLEM A refinery blends four petroleum components into three grades of

    E-Print Network [OSTI]

    Shier, Douglas R.

    BLENDING PROBLEM A refinery blends four petroleum components into three grades of gasoline/day $/barrel #1 5,000 $9.00 #2 2,400 7.00 #3 4,000 12.00 #4 1,500 6.00 Blending formulas and selling price 4,000 x4R + x4P + x4L 1,500 #12;blending: (1) x1R / (x1R + x2R + x3R + x4R) .40 or x1R .40(x1R

  7. Continuous blending of dry pharmaceutical powders

    E-Print Network [OSTI]

    Pernenkil, Lakshman

    2008-01-01

    Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

  8. Carnegie Mellon Multiperiod Blend Scheduling Problem

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Department of Chemical Engineering Center for Advanced Process Decision-making Carnegie Mellon University frequently in the petrochemical industry. -Large cost savings can be achieved if the correct blending

  9. Vehicle Technologies Office: Intermediate Ethanol Blends

    Broader source: Energy.gov [DOE]

    Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

  10. WI Biodiesel Blending Progream Final Report

    SciTech Connect (OSTI)

    Redmond, Maria E; Levy, Megan M

    2013-04-01

    The Wisconsin State Energy Office�¢����s (SEO) primary mission is to implement cost�¢���effective, reliable, balanced, and environmentally�¢���friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

  11. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  12. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218 58ImprovingInaInstitute01-1556 In-Use

  13. Blending World MapBlending World Map ProjectionsProjections Bernhard Jenny, Oregon State University, USA

    E-Print Network [OSTI]

    Clarke, Keith

    Blending World MapBlending World Map ProjectionsProjections Bernhard Jenny, Oregon State University via combination of two projections is well established. Some of the most popular world map projections Tripel projection). These two methods for creating new world map projections are included in the latest

  14. Using color photometry to separate transiting exoplanets from false positives

    E-Print Network [OSTI]

    B. Tingley

    2004-07-14

    The radial velocity technique is currently used to classify transiting objects. While capable of identifying grazing binary eclipses, this technique cannot reliably identify blends, a chance overlap of a faint background eclipsing binary with an ordinary foreground star. Blends generally have no observable radial velocity shifts, as the foreground star is brighter by several magnitudes and therefore dominates the spectrum, but their combined light can produce events that closely resemble those produced by transiting exoplanets. The radial velocity technique takes advantage of the mass difference between planets and stars to classify exoplanet candidates. However, the existence of blends renders this difference an unreliable discriminator. Another difference must therefore be utilized for this classification -- the physical size of the transiting body. Due to the dependence of limb darkening on color, planets and stars produce subtly different transit shapes. These differences can be relatively weak, little more than 1/10th the transit depth. However, the presence of even small color differences between the individual components of the blend increases this difference. This paper will show that this color difference is capable of discriminating between exoplanets and blends reliably, theoretically capable of classifying even terrestrial-class transits, unlike the radial velocity technique.

  15. Blending of diblock and triblock copolypeptide amphiphiles yields cell penetrating vesicles with low toxicity

    E-Print Network [OSTI]

    2015-01-01

    vesicles by blending of different component amphiphilescomponents. [9] In these studies, an important requirement for successful blending

  16. Quality Assessment of Biodiesel and Biodiesel Blends | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assessment of Biodiesel and Biodiesel Blends Quality Assessment of Biodiesel and Biodiesel Blends The results of a quality survey of B20 fuel in the United States were...

  17. Blended Shelf: Reality-based Presentation and Exploration of Library

    E-Print Network [OSTI]

    Reiterer, Harald

    Blended library; shelf browsing; digital library ACM Classification Keywords H.5.2. [InformationBlended Shelf: Reality-based Presentation and Exploration of Library Collections Abstract We location of the library. Blended Shelf offers a 3D visualization of library collections

  18. FOREST ENTOMOLOGY Blending Synthetic Pheromones of Cerambycid Beetles to Develop

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    (F.),Neoclytusmucronatus(F.),andXylotrechuscolonus(F.).Beetlesofthesespecieswere signiÞcantly attracted to synthetic blends that contained their pheromone components (isomers of 3FOREST ENTOMOLOGY Blending Synthetic Pheromones of Cerambycid Beetles to Develop Trap Lures.1603/EC11434 ABSTRACT We evaluated attraction of cerambycid beetle species to blends of known cerambycid

  19. A Novel Global Optimization Approach to the Multiperiod Blending Problem

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    ­ Overall Flows ­ Individual Components (Blending) · Flow/Inventory Bounds · Operational ConstraintsA Novel Global Optimization Approach to the Multiperiod Blending Problem Scott Kolodziej Advisor · Maximum total profit of blending operation Fs3,t Cs3 Fs2,t Cs2 Fd1,t CL d1-CU d1 Fd2,t CL d2-CU d2 Fd3,t

  20. The viscoelastic properties of linear-star blends 

    E-Print Network [OSTI]

    Lee, Jung Hun

    2000-01-01

    prediction for linear-star blend than the existing blend model. Due to the simplified scaling for constraint release, the generality of the linear-star blend model of present work is limited only for the high ML and low [Ø]S. Even though such restriction...

  1. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  2. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.

    SciTech Connect (OSTI)

    KRISHNA,C.R.

    2001-12-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

  3. Bus Rapid Transit (BRT): An Efficient and Competitive Mode of Public Transport

    E-Print Network [OSTI]

    Cervero, Robert

    2013-01-01

    and  Seattle,  diesel-­?hybrid  buses  are  operated.    Seattle  uses  diesel-­?electric   hybrid  buses,  which  s   Civis  feature  hybrid  diesel-­?electric  articulated  

  4. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  5. Exhaust emission and fuel consumption of CNG/diesel fueled city buses calculated using a sample driving cycle

    SciTech Connect (OSTI)

    Ergeneman, M.; Sorusbay, C.; Goektan, A.G. [Technical Univ. of Istanbul (Turkey). Dept. of Mechanical Engineering

    1999-04-01

    In this study the reduction of pollutant emissions from city buses converted to dual fuel operation was investigated. Exhaust emission and fuel consumption maps were obtained under laboratory conditions for an engine converted to CNG/diesel fuel operation. These values are then used in the simulation model to predict the total exhaust emission and fuel consumption on a driving cycle evaluated from actual recordings. Calculations showed a significant decrease in particulate matter (PM) emissions as expected, while the total CO emissions minor changes have been observed. For dual fuel operation NO{sub x} emissions were kept at the same level as in pure diesel operation with retarded pilot injection. Fuel cost calculations showed a decrease up to 30% with current prices of diesel fuel and CNG.

  6. Tough Blends of Polylactide and Castor Oil

    SciTech Connect (OSTI)

    Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A. (UMM)

    2012-10-10

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

  7. biogas to indian buses come home, dad biosensor lab in singapore sexy statistics world university No reason to rush homeLiU alumna Klara Tiitso enjoys her life in London | page 30

    E-Print Network [OSTI]

    Zhao, Yuxiao

    biogas to indian buses come home, dad biosensor lab in singapore sexy statistics world university an Indian Master's student whose studies at Linköping inspired him to use biogas as fuel for busses. He

  8. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  9. Process for blending coal with water immiscible liquid

    DOE Patents [OSTI]

    Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  10. Effect of Biodiesel Blends on NOx Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Using Ethanol-Diesel Blends Lean NOx Trap Formulation Effect on Performance with In-Cylinder Regeneration Strategies Diesel Injection Shear-Stress Advanced Nozzle (DISSAN)...

  11. Bus Rapid Transit (BRT): An Efficient and Competitive Mode of Public Transport

    E-Print Network [OSTI]

    Cervero, Robert

    2013-01-01

    makes  buses  for  Dalian)  and  in  India,  Tata  has  including   Guangzhou,  Dalian,  Hangzhou,  Hefei,  

  12. Purification Testing for HEU Blend Program

    SciTech Connect (OSTI)

    Thompson, M.C. [Westinghouse Savannah River Company, AIKEN, SC (United States); Pierce, R.A.

    1998-06-01

    The Savannah River Site (SRS) is working to dispose of the inventory of enriched uranium (EU) formerly used to make fuel for production reactors. The Tennessee Valley Authority (TVA) has agreed to take the material after blending the EU with either natural or depleted uranium to give a {sup 235}U concentration of 4.8 percent low-enriched uranium will be fabricated by a vendor into reactor fuel for use in TVA reactors. SRS prefers to blend the EU with existing depleted uranium (DU) solutions, however, the impurity concentrations in the DU and EU are so high that the blended material may not meet specifications agreed to with TVA. The principal non-radioactive impurities of concern are carbon, iron, phosphorus and sulfur. Neptunium and plutonium contamination levels are about 40 times greater than the desired specification. Tests of solvent extraction and fuel preparation with solutions of SRS uranium demonstrate that the UO{sub 2} prepared from these solutions will meet specifications for Fe, P and S, but may not meet the specifications for carbon. The reasons for carbon remaining in the oxide at such high levels is not fully understood, but may be overcome either by treatment of the solutions with activated carbon or heating the UO{sub 3} in air for a longer time during the calcination step of fuel preparation.Calculations of the expected removal of Np and Pu from the solutions show that the specification cannot be met with a single cycle of solvent extraction. The only way to ensure meeting the specification is dilution with natural U which contains no Np or Pu. Estimations of the decontamination from fission products and daughter products in the decay chains for the U isotopes show that the specification of 110 MEV Bq/g U can be met as long as the activities of the daughters of U- 235 and U-238 are excluded from the specification.

  13. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    SciTech Connect (OSTI)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

  14. Key Benefits in Using Ethanol-Diesel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits in Using Ethanol-Diesel Blends Key Benefits in Using Ethanol-Diesel Blends Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER...

  15. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization...

  16. Achieving High Chilled Water Delta T Without Blending Station 

    E-Print Network [OSTI]

    Wang, Z.; Wang, G.; Xu, K.; Yu, Y.; Liu, M.

    2007-01-01

    Typically a blending station is designed to ensure that its user is able to avoid low chilled water return temperature in the district cooling system. When the chilled water return temperature drops to a low limit, building return water is blended...

  17. Does blending of chlorophyll data bias temporal trend?

    E-Print Network [OSTI]

    Myers, Ransom A.

    Does blending of chlorophyll data bias temporal trend? ARISING FROM D. G. Boyce, M. R. Lewis & B of the bias component. To obtain a larger and longer data set, Boyce et al.1 pooled estimates of local, CT 5 457 D22.37 . Blending of data types can introduce error unless their expected values E(CT) and E

  18. Tribological Properties of Blends of Melamine-Formaldehyde Resin With

    E-Print Network [OSTI]

    North Texas, University of

    Tribological Properties of Blends of Melamine-Formaldehyde Resin With Low Density Polyethylene the miscibility behavior and thermal properties of LDPE þ melamine-formaldehyde resin (MFR) blends containing 1, 5 LDPE was supplied by Aldrich Chemicals. Melamine, C3H6N6 (2,4,6-triamino-1,3,5-triazine); formaldehyde

  19. CNG and Diesel Transit Bus Emissions in Review

    SciTech Connect (OSTI)

    Ayala, A. (a); Kado, N. (a,b); Okamoto, R. (a); Gebel, M. (a) Rieger, P. (a); Kobayashi, R. (b); Kuzmicky, P. (b)

    2003-08-24

    Over the past three years, the California Air Resources Board (CARB), in collaboration with the University of California and other entities, has investigated the tailpipe emissions from three different latemodel, in-use heavy-duty transit buses in five different configurations. The study has focused on the measurement of regulated emissions (NOX, HC, CO, total PM), other gaseous emissions (CO2, NO2, CH4, NMHC), a number of pollutants of toxic risk significance (aromatics, carbonyls, PAHs, elements), composition (elemental and organic carbon), and the physical characterization (size-segregated number count and mass) of the particles in the exhaust aerosol. Emission samples are also tested in a modified Ames assay. The impact of oxidation catalyst control for both diesel and compressed natural gas (CNG) buses and a passive diesel particulate filter (DPF) were evaluated over multiple driving cycles (idle, 55 mph cruise, CBD, UDDS, NYBC) using a chassis dynamometer. For brevity, only CBD results are discussed in this paper and particle sizing results are omitted. The database of results is large and some findings have been reported already at various forums including last year's DEER conference. The goal of this paper is to offer an overview of the lessons learned and attempt to draw overall conclusions and interpretations based on key findings to date.

  20. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  1. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-08-26

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H{sup +}] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  2. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations

  3. Differences in the Physical Characteristics of Diesel PM with Increasing Biofuel Blend Level

    Broader source: Energy.gov [DOE]

    Measure physical characteristics, carbon state, and surface bound oxygen of soot from biodiesel blends.

  4. A flow-induced phase inversion in immiscible polymer blends containing a liquid-crystalline polymer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2 , 3 with being the viscosity ratio of the blend components at the blending shear rate. Luciani etA flow-induced phase inversion in immiscible polymer blends containing a liquid-crystalline polymer0148-6055 00 01504-2 I. INTRODUCTION The increasing application of polymer blends for the elaboration

  5. Robust real-time optimization for the linear oil blending Stefan Janaqia

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    blending process. The blending process consists in determining the optimal mix of components so. The feedback is based on measures of the blends' and components' properties gathered by online analyzers1 Robust real-time optimization for the linear oil blending Stefan Janaqia , Jorge Aguileraa

  6. Phosphor blends for high-CRI fluorescent lamps

    DOE Patents [OSTI]

    Setlur, Anant Achyut (Niskayuna, NY); Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY); Beers, William Winder (Chesterland, OH); Toth, Katalin (Pomaz, HU); Balazs, Laszlo D. (Budapest, HU)

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  7. RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY

    SciTech Connect (OSTI)

    SHUFORD DH; STEGEN G

    2010-04-19

    Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

  8. Photonic polymer-blend structures and method for making

    DOE Patents [OSTI]

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  9. Time phased alternate blending of feed coals for liquefaction

    DOE Patents [OSTI]

    Schweigharett, Frank (Allentown, PA); Hoover, David S. (New Tripoli, PA); Garg, Diwaker (Macungie, PA)

    1985-01-01

    The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

  10. Disease resistance and performance of blended populations of creepi 

    E-Print Network [OSTI]

    Abernathy, Scott David

    1999-01-01

    Plant diseases are a major problem on creeping bentgrass greens and can significantly decrease putting quality. Blended populations comprised of two or more cultivars within the same species have been utilized to decrease disease development...

  11. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Broader source: Energy.gov (indexed) [DOE]

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Technical Report NRELTP-5600-51995 March 2013 NREL is a...

  12. Microsoft Word - Int_blends_Rpt1_Updated.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NRELTP-540-43543 ORNLTM-2008117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll...

  13. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  14. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect (OSTI)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  15. Comparing matched polymer:Fullerene solar cells made by solution-sequential processing and traditional blend casting: Nanoscale structure and device performance

    E-Print Network [OSTI]

    2014-01-01

    and Traditional Blend Casting: Nanoscale Structure andby traditional blend casting (BC), where the components aresuch networks is the blend-casting (BC) method, wherein the

  16. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  17. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  18. New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter to ScienceBecause

  19. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN)

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  20. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  1. Theoretical and experimental investigation of particle interactions in pharmaceutical powder blending

    E-Print Network [OSTI]

    Pu, Yu, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    In pharmaceutical manufacturing practices, blending of active pharmaceutical ingredient (API) with excipients is a crucial step in that homogeneity of active ingredient after blending is a key issue for the quality assurance ...

  2. Evaluation of Ethanol Blends for PHEVs using Simulation andEngine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop Evaluation of Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen and Fuel Cells...

  3. Mid-Level Ethanol Blends | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy6-09.doc Microsoft WordBlends Mid-Level Ethanol Blends

  4. Bus Rapid Transit (BRT): An Efficient and Competitive Mode of Public Transport

    E-Print Network [OSTI]

    Cervero, Robert

    2013-01-01

    cities  run  on   CNG.    Because  natural  gas  burns  Chinese  cities  also  run   CNG   buses.    LNG  is  used  

  5. Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels

    Broader source: Energy.gov [DOE]

    Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

  6. Vapour Phase Hydration of Blended Oxide Magnox Waste Glasses Neil C. Hyatt,1*

    E-Print Network [OSTI]

    Sheffield, University of

    level waste (HLW) arising from the reprocessing of spent Oxide (UO2) and Magnox nuclear fuels is blended

  7. Weaving Versus Blending: a quantitative assessment of the information carrying capacities of two alternative methods for

    E-Print Network [OSTI]

    Healey, Christopher G.

    as the number of components increases from 4 to 6. We found no significant advantages, in either color blendingWeaving Versus Blending: a quantitative assessment of the information carrying capacities of two: color blending and color weaving. We begin with a baseline experiment in which we assess participants

  8. Segmental Dynamics of Head-to-Head Polypropylene and Polyisobutylene in Their Blend and Pure Components

    E-Print Network [OSTI]

    Colby, Ralph H.

    to determine the local motion of each component in the blend through isotopic labeling. The spin in the component dynamics upon blending, but the shift becomes larger at lower temperatures. One factor in predicting the changes in component dynamics upon blending for hhPP, while it describes the temperature

  9. Feedback control and optimization for the production of commercial fuels by blending

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    propose can be used in various situations where non-reactive components are blended and linearly impactFeedback control and optimization for the production of commercial fuels by blending M. Ch`ebre, Y presents a control algorithm for blending systems. Such systems are used in refining to produce mixtures

  10. Motivating effective use of online components by students in flipped/blended learning formats

    E-Print Network [OSTI]

    Collins, Gary S.

    Motivating effective use of online components by students in flipped/blended learning formats Tom the online components of a course, particularly in use with flipped/blended course formats. What I present's my take on flipped/blended formats exclusively: The Challenge In my experience, the most challenging

  11. PLA-PHA BLENDS: MORPHOLOGY, THERMAL AND MECHANICAL T. Grard, T. Budtova

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the pure components. The physical and mechanical properties of blends can be tuned by choosing the properPLA-PHA BLENDS: MORPHOLOGY, THERMAL AND MECHANICAL PROPERTIES T. Gérard, T. Budtova Mines Paris polymers. One is poor mechanical properties which limit their practical applications. Blending of polymers

  12. Handling parameter ranking, equalities and bounds in adaptive control of blending

    E-Print Network [OSTI]

    be formulated in various applications where non- reactive components are blended and linearly impactHandling parameter ranking, equalities and bounds in adaptive control of blending systems Mériam in the production of com- mercial fuels by blending. The control problem under consideration is a multi

  13. A Novel Global Op-miza-on Approach to the Mul-period Blending Problem

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    ­ Overall Flows ­ Individual Components (Blending) · Flow/Inventory Bounds · OperaA Novel Global Op-miza-on Approach to the Mul-period Blending Problem Sco · Minimize total cost of blending opera-on Fs3,t Cs3 Fs2,t Cs2 Fd1,t CL d1-CU d1

  14. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  15. Phase Transitions

    E-Print Network [OSTI]

    Michael Creutz

    1997-08-25

    This is a set of notes on phase transitions and critical phenomena prepared to accompany my lectures for the RHIC '97 summer school, held at Brookhaven from July 6 to 16, 1997.

  16. Inconspicuous Lizards Evolved To Blend In Jeff Mitton

    E-Print Network [OSTI]

    Mitton, Jeffry B.

    on and digging in sand. It grows to a length of about six inches and it is prey to a variety of visual predators predators, such as kestrels, hunt them as well. If avoidance of predators is a matter of blending in, prey

  17. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  18. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect (OSTI)

    Labbe, D.

    2009-11-15

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  19. IBM Research @ ACM DEV 2014 Conference Enabling Blended Learning in

    E-Print Network [OSTI]

    Toronto, University of

    IBM Research @ ACM DEV 2014 Conference 1 EduPaL: Enabling Blended Learning in Resource Constrained Ramrao Wagh IBM Research India Myntra India IBM Research India IBM Research India IBM Research India University of Southern California University of Goa India #12;IBM Research @ ACM DEV 2014 Conference Problem

  20. Blending world map projections with Flex Projector Bernhard Jennya

    E-Print Network [OSTI]

    Jenny, Bernhard

    Blending world map projections with Flex Projector Bernhard Jennya * and Tom Pattersonb a College projections is well established. Some of the most popular world map projections in use today were devised method calculates the arithmetic means of two projections. These two methods for creating new world map

  1. Lyapunov-based Optimizing Control of Nonlinear Blending Process

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 Lyapunov-based Optimizing Control of Nonlinear Blending Process Tor A. Johansen£ , Daniel Sb processes consisting of linear dynamics and a static nonlinearity are considered. We propose a control law that optimizes the equilibrium point of the process and regulates the output to the corresponding equilibrium

  2. Lyapunov-based Optimizing Control of Nonlinear Blending Processes

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 Lyapunov-based Optimizing Control of Nonlinear Blending Processes Tor A. Johansen , Daniel Sb processes consisting of linear dynamics and a static nonlinearity are considered. We propose a control law that optimizes the equilibrium point of the process and regulates the output to the corresponding equilibrium

  3. U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants

    SciTech Connect (OSTI)

    Leich, D., LLNL

    1998-07-27

    The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

  4. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOE Patents [OSTI]

    Skotheim, Terje (East Patchogue, NY)

    1984-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  5. Review Of Rheology Models For Hanford Waste Blending

    SciTech Connect (OSTI)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 ?m diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 ?m in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation experience). As experience is ga

  6. Development of By-Pass Blending Station System 

    E-Print Network [OSTI]

    Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

    2003-01-01

    Temperature 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 30 40 50 60 70 80 90 100 Ambient Temeprature Ra ti o Load Ratio Power Savings Ratio W/O DP Reset Differential Pressure Ratio Power Savings With DP Reset ICEBO 2003, Development of By-pass Blending...

  7. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  8. Development of one-equation transition/turbulence models

    SciTech Connect (OSTI)

    Edwards, J.R.; Roy, C.J.; Blottner, F.G.; Hassan, H.A.

    2000-01-14

    This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity--transport equation for nonturbulent fluctuation growth based on that proposed by Warren and Hassan is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittency function based on the work of Dhawan and Narasimha. The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the grid-dependence of selected predictions is analyzed.

  9. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  10. Process simulation, integration and optimization of blending of petrodiesel with biodiesel 

    E-Print Network [OSTI]

    Wang, Ting

    2009-05-15

    of payback period (PP) for the three options????????100 5.15 Comparison of net CO2 life-cycle emissions for petroleum diesel and biodiesel blends???????...????????????.102 5.16 Net CO2 emission vs. blend price of biodiesel blend... quantities significantly rely on enhanced hydrotreating technology, which is the major method to produce ULSD at this time (EIA, 2001). 4 Conventional hydrotreating is a commercially proven refining process that inputs feedstock together with hydrogen...

  11. Determining the Impact of MSW as a Feedstock Blending Agent Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    screen additional MSW blends with other terrestrial feedstocks, specifically pulp and paper mill residuals and dedicated energy crops, that meet the 80ton cost targets -...

  12. Multi-scale analysis and simulation of powder blending in pharmaceutical manufacturing

    E-Print Network [OSTI]

    Ngai, Samuel S. H

    2005-01-01

    A Multi-Scale Analysis methodology was developed and carried out for gaining fundamental understanding of the pharmaceutical powder blending process. Through experiment, analysis and computer simulations, microscopic ...

  13. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends...

    Broader source: Energy.gov (indexed) [DOE]

    engines to improve compatibility when operated with high-octane biofuel blends The market impact of increasing the consumption of biofuels in the small engine market Mechanisms...

  14. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

  15. CNG transit fueling station handbook. Final report, October 1993-June 1997

    SciTech Connect (OSTI)

    Adams, R.R.; Pennington, M.D.

    1997-02-01

    This manual has been complied for use by a Transit Authority Engineer or an Engineering Company who is involved in the design of Compressed Natural Gas (CNG) fueling facilities. It is intended to provide a convenient and comprehensive reference document, to supplement but not replace codes and other reference documents. It is also intended to be used as a basis for the design of a broad range of CNG fueling facilities. The scope is limited to straight CNG and hence Liquefied Natural Gas (LNG) or LNG vaporization to CNG has not been addressed. Similarly, this document does not deal with the facility modifications which may be required to park, service, or fuel CNG buses indoors. Additional information on actual gas fueling is available from the Gas Research Institute.

  16. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  17. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  18. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    SciTech Connect (OSTI)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  19. Hydrogen effects on materials for CNG/H2 blends.

    SciTech Connect (OSTI)

    Farese, David (Air Products, USA); Keller, Jay O.; Somerday, Brian P.

    2010-09-01

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  20. INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2005-02-01

    Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

  1. Emissions mitigation of blended coals through systems optimization

    SciTech Connect (OSTI)

    Don Labbe [IOM Invensys Operations Management (United States)

    2009-10-15

    For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

  2. Probing Water Phases in Cement Blends using 1 Magnetic Resonance Relaxometry

    E-Print Network [OSTI]

    Sheffield, University of

    Probing Water Phases in Cement Blends using 1 H Nuclear Magnetic Resonance Relaxometry Jean)114 222 5973 Fax: +44 (0)114 222 5943 E-Mail: j.gorce@sheffield.ac.uk Extended Abstract: Cement and Concrete Science, Warwick, 16th + 17th September 2004 Introduction The nuclear industry uses blended cement

  3. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  4. Optimization of Crude-Oil Blending Operations Sylvain Mouret Ignacio E. Grossmann Pierre Pestiaux

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimization of Crude-Oil Blending Operations Sylvain Mouret Ignacio E. Grossmann Pierre Pestiaux Optimize the schedule of operations for the crude-oil prob- lem using a MINLP scheduling model Tools MINLP Sylvain Mouret, Ignacio E. Grossmann, Pierre Pestiaux Optimization of Crude-Oil Blending Operations #12

  5. Scheduling of large scale crude oil blending Felipe Diaz-Alvarado1, Francisco Trespalacios2,

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Scheduling of large scale crude oil blending Felipe D´iaz-Alvarado1, Francisco Trespalacios2, 30 (4): 614-634. D´iaz-Alvarado, Trespalacios, Grossmann Scheduling of large scale crude oil blending, P. A Novel Priority-Slot Based Continuous-Time Formulation for Crude-Oil Scheduling Problems

  6. Implications of LDPE Branching and Mw on Thermal and Mechanical Properties of PP/LDPE Blends

    E-Print Network [OSTI]

    Hussein, Ibnelwaleed A.

    polyethylene; molecular weight; polypropylene; short chain branching Introduction Polymer blending polymers with different molecular characteristics.[1­3] Even though blends of polypropylene (PP) and polyethylene (PE) are common espe- cially in waste recycling due to large volume consumption of polyolefins,[4

  7. Creativity as Pastiche: A Computational Model of Dynamic Blending and Textual Collage,

    E-Print Network [OSTI]

    Veale, Tony

    Reference to the Use of Blending in Cinematic Narratives Tony Veale, School of Computer Applications, Dublin combination within a framework of interconnected mental spaces. Through an analysis of cinematic pastiche, as exemplified by its use in cinematic pastiche, a process in which two or more narratives are blended together

  8. X-ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance

    E-Print Network [OSTI]

    X-ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance no features on the length scale of 50 nm or greater. Additionally, the performance of photovoltaic devices and the degree of nanoscale phase separation. Introduction Photovoltaic devices based on blends of donor

  9. Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations

    E-Print Network [OSTI]

    Dozier, Jeff

    Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model 2013. [1] We estimate the spatial distribution of daily melt-season snow water equivalent (SWE) over snow cover images with a spatially distributed snowmelt model and a blended method in which

  10. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-09-01

    This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

  11. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends

    SciTech Connect (OSTI)

    2013-09-17

    This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

  12. TENSILE PROPERTIES OF PLA AND PHBV BLENDS: ANOMALOUS ELONGATION AND AGING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TENSILE PROPERTIES OF PLA AND PHBV BLENDS: ANOMALOUS ELONGATION AND AGING T. Gérard, T. Noto and T-based polymers, they still have some disadvantages such as poor (fragile) mechanical properties. Blending the drawbacks of the pure components. In this work, PLA and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV

  13. Gaussian frequency blending algorithm with Matrix Inversion Tomosynthesis (MITS) and Filtered Back Projection (FBP) for better

    E-Print Network [OSTI]

    Chen, Ying "Ada"

    Gaussian frequency blending algorithm with Matrix Inversion Tomosynthesis (MITS) and Filtered Back and applied to the FBP reconstructions. A frequency weighting parameter was studied to blend the high-passed MITS with low-passed FBP frequency components. Four different reconstruction methods were investigated

  14. Blending Modi...ed Gaussian Closure and Non-Gaussian Reduced Subspace Methods for Turbulent Dynamical

    E-Print Network [OSTI]

    Majda, Andrew J.

    Blending Modi...ed Gaussian Closure and Non-Gaussian Reduced Subspace Methods for Turbulent of uncertainty quanti...cation all dynamical components (unstable modes, nonlinear energy transfers, and stable. In this paper we derive a blended framework that links inexpensive second-order UQ schemes that model the full

  15. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  16. Synergistic Effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Kensuke Masaki; Atsushi Dobashi; Kiyoshi Fukada [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2006-12-15

    To maximize the conversion of low-quality coal into good coke, we investigated the thermoplasticity of various binary blends of caking coals with slightly or noncaking coals using a dynamic viscoelastic technique with a temperature-variable rheometer. Coal blend samples were prepared by mixing two coals (1:1 by weight), which were heated from room temperature to 600 C at a rate of 3-80{sup o}C/min. At the slow rate of 3{sup o}C/min, the blends had a tan {delta} that was generally lower than the calculated value, showing that a negative interaction caused a loss of thermoplasticity. In contrast, at the rapid heating rate of 80{sup o}C/min, the tan {delta} of some blends was higher than the calculated value, indicating a positive interaction that enhanced the thermoplasticity. With rapid heating, the thermoplasticity of each coal itself increased, and their thermoplastic temperature ranges widened with rapid heating. Therefore, rapid heating was effective at converting these coal blends into good cokes. Moreover, even with slow heating, when a combination of coals (Gregory:Enshu, 1:1) showing some thermoplasticity in nearly the same temperature range was blended, a desirable synergistic effect of the blend was obtained. This suggests that blending coal with an overlapping thermoplastic temperature range is important for the synergistic effect, regardless of the heating rate. 15 refs., 9 figs., 2 tabs.

  17. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

    2008-05-15

    Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

  18. Enhanced Miscibility of Low-Molecular-Weight Polystyrene/Polyisoprene Blends in Supercritical CO2

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Enhanced Miscibility of Low-Molecular-Weight Polystyrene/Polyisoprene Blends in Supercritical CO2 solution temperature (UCST) polymer blend in the presence of supercritical carbon dioxide (scCO2 been examined as a function of temperature in scCO2 by visual inspection, small-angle neutron

  19. NIST Handbook 112 (2015) EPO No. 22 Retail Motor-Fuel Dispensers Blended Products

    E-Print Network [OSTI]

    2015-01-01

    NIST Handbook 112 (2015) EPO No. 22 ­ Retail Motor-Fuel Dispensers ­ Blended Products RMFD - Blenders (Rev 09/14) DRAFT Page 1 of 12 2015 NIST EPO No. 22 Examination Procedure Outline for Retail Motor-Fuel, and consoles. For non-blending single, dual, and multi-product dispensers, see EPO No. 21. Nonretroactive

  20. Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung-ho Ahn, Anna G. Stefanopoulou, and Mrdjan Jankovic Abstract--Ethanol is being increasingly flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up

  1. Interface modification in an immiscible rod-coil polymer blend using functionalized copolymers and polyelectrolytes 

    E-Print Network [OSTI]

    Passinault, Robbie J

    1996-01-01

    Blends of rod-like and flexible-coil polymers are attractive for synthesizing molecular composites. In this study, a blend of a rod-like polymer (Vectra B950) and a flexible polymer (polystyrene) is used to investigate the influence of polymer...

  2. The Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    none,

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the United States today and the potential impact of ethanol on gasoline prices at higher blending concentrations (10%, 15% and 20% of the total U.S. gasoline consumption).

  3. JV Task 112-Optimal Ethanol Blend-Level Investigation

    SciTech Connect (OSTI)

    Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

    2008-01-31

    Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

  4. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Broader source: Energy.gov [DOE]

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

  5. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect (OSTI)

    Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

    2011-01-01

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  6. Local and chain dynamics in miscible polymer blends: A Monte Carlo simulation study

    E-Print Network [OSTI]

    Jutta Luettmer-Strathmann; Manjeera Mantina

    2005-11-07

    Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond-fluctuation model, where differences in the interaction energies between non-bonded nearest neighbors distinguish the two components of a blend. Simulations employing only local moves and respecting a non-bond crossing condition were carried out for blends with a range of compositions, densities, and chain lengths. The blends investigated here have long-chain dynamics in the crossover region between Rouse and entangled behavior. In order to investigate the scaling of the self-diffusion coefficients, characteristic chain lengths $N_\\mathrm{c}$ are calculated from the packing length of the chains. These are combined with a local mobility $\\mu$ determined from the acceptance rate and the effective bond length to yield characteristic self-diffusion coefficients $D_\\mathrm{c}=\\mu/N_\\mathrm{c}$. We find that the data for both melts and blends collapse onto a common line in a graph of reduced diffusion coefficients $D/D_\\mathrm{c}$ as a function of reduced chain length $N/N_\\mathrm{c}$. The composition dependence of dynamic properties is investigated in detail for melts and blends with chains of length twenty at three different densities. For these blends, we calculate friction coefficients from the local mobilities and consider their composition and pressure dependence. The friction coefficients determined in this way show many of the characteristics observed in experiments on miscible blends.

  7. Insight into the Molecular Arrangement of High-Density Polyethylene Polymer Chains in Blends of Polystyrene/High-

    E-Print Network [OSTI]

    Insight into the Molecular Arrangement of High-Density Polyethylene Polymer Chains in Blends of Polystyrene/High- Density Polyethylene from Differential Scanning Calorimetry and Raman Techniques JAYANT/high-density polyethylene (PS/HDPE) blends were synthe- sized by melt blending in a single screw extruder. Co

  8. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results This...

  9. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2007-01-01

    Transit California High Speed Rail Criteria air pollutantsproposed California High Speed Rail (CAHSR). The BART andFTA 2005]. California High Speed Rail The high speed rail

  10. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect (OSTI)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T.

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  11. Conducting polymer blends: Polypyrrole and polythiophene blends with polystyrene, polycarbonate resin, poly(vinyl alcohol) and poly(vinyl methyl ketone)

    SciTech Connect (OSTI)

    Wang, H.L.

    1992-01-01

    Various aromatic compounds can be polymerized by electrochemical oxidation in solution containing a supporting electrolyte. Most studies have been devoted to polypyrrole and polythiophene. In situ doping during electrochemical polymerization yields free standing conductive polymer film. One major approach to making conducting polymer blends is electrochemical synthesis after coating the host polymer on a platinum electrode. In the electrolysis of pyrrole or thiophene monomer, using (t-Bu[sub 4]N)BF[sub 4] as supporting electrolyte, and acetonitrile as solvent, monomer can diffuse through the polymer film, to produce a polypyrrole or polythiophene blend in the film. Doping occurs along with polymerization to form a conducting polymer alloy. The strongest molecular interaction in polymers, and one that is central to phase behavior, is hydrogen bonding. This mixing at the molecular level enhances the degree of miscibility between two polymers and results in macroscopic properties indicative of single phase behavior. In this dissertation, the authors describes the syntheses of conducting polymer blends: polypyrrole and polythiophene blends with polystyrene, poly(bisphenol-A-carbonate), polyvinyl alcohol and poly(vinyl methyl ketone). The syntheses are performed both electrochemically and chemically. Characterization of these blends was carried out by Fourier Transform Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis, Scanning Electron Microscopy, and X-ray diffraction. Percolating threshold conductivities occur from 7% to 20% for different polymer blends. The low threshold conductivity is attributed to blend homogeneity enhanced by hydrogen bonding between the carbonyl group in the insulating polymer and the N-H group in polypyrrole. Thermal stability, environmental stability, mechanical properties, crystallinity and morphological structure are also discussed. The authors have also engaged in the polymerization of imidazoles.

  12. Influence of Substrate on Crystallization in Polythiophene/fullerene Blends

    SciTech Connect (OSTI)

    C He; D Germack; J Kline; D Delongchamp; D Fischer; C Snyder; M Toney; J Kushmerick; L Richter

    2011-12-31

    The nanoscale morphology of the active layer in organic, bulk heterojunction (BHJ) solar cells is crucial to device performance. Often a combination of casting conditions and post deposition thermal treatment is used to optimize the morphology. In general, the development of microscopic crystals is deleterious, as the exciton diffusion length is {approx}10 nm. We find that the microscopic crystallization behavior in polythiophene/fullerene blends is strongly influenced by the substrate on which the BHJ is cast. With a silicon oxide substrate, the crystal nucleation density is high and significant crystallization occurs at a temperature of 140 C. On more hydrophobic substrates, significantly higher temperatures are required for observable crystallization. This difference is attributed to the interfacial segregation of the PCBM, controlled by the substrate surface energy. The substrate dependence of crystallization has significant implications on the fullerene crystal growth mechanisms and practical implications for device studies.

  13. Enhanced phase segregation induced by dipolar interactions in polymer blends

    E-Print Network [OSTI]

    Rajeev Kumar; Bobby G. Sumpter; M. Muthukumar

    2014-11-03

    We present a generalized theory for studying phase separation in blends of polymers containing dipoles on their backbone. The theory is used to construct co-existence curves and to study the effects of dipolar interactions on interfacial tension for a planar interface between the coexisting phases. We show that a mismatch in monomeric dipole moments, or equivalently a mismatch in the dielectric constant of the pure components, leads to destabilization of the homogeneous phase. Corrections to the Flory-Huggins phase diagram are predicted using the theory. Furthermore, we show that the interfacial tension increases with an increase in the mismatch of the dipole moments of the components. Density profiles and interfacial tensions are constructed for diffuse and sharp polymer-polymer interfaces by extending the formalisms of Cahn-Hilliard and Helfand-Tagami-Sapse, respectively.

  14. Identification and quantification of organic chemicals in supplemental fuel blends

    SciTech Connect (OSTI)

    Salter, F.

    1996-12-31

    Continental Cement Company, Inc. (Continental) burns waste fuels to supplement coal in firing the kiln. It is to be expected that federal and state agencies want an accounting of the chemicals burned. As rules and regulations become more plentiful, a company such as Continental must demonstrate that it has made a reasonable attempt to identify and quantify many specific organic compounds. The chemicals on the SARA 313 list can change frequently. Also the number and concentrations of compounds that can disqualify a material from consideration as a supplemental fuel at Continental continues to change. A quick and reliable method of identifying and quantifying organics in waste fuel blends is therefore crucial. Using a Hewlett-Packard 5972 GC/MS system Continental has developed a method of generating values for the total weight of compounds burned. A similar procedure is used to verify that waste streams meet Continental`s acceptance criteria.

  15. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect (OSTI)

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  16. RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary

    SciTech Connect (OSTI)

    Proc, K.; Barnitt, R.; McCormick, R. L.

    2005-08-01

    A summary of the data NREL collected from a project to evaluate the in-use performance of buses from the Regional Transportation District of Denver operating on B20.

  17. Comparison of Clean Diesel Buses to CNG Buses

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements ofCOMPOSITION OF VAPORS FROMSciDACReport) |Transverse

  18. HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  19. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  20. Knock limits in spark ignited direct injected engines using gasoline/ethanol blends

    E-Print Network [OSTI]

    Kasseris, Emmanuel P

    2011-01-01

    Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

  1. Polymer blend containing a modified dense star polymer or dendrimer and a matrix polymer

    DOE Patents [OSTI]

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents in forming a polymer blend.

  2. Optimal handling of Highly Active Pharmaceutical Ingredients during milling and blending operations

    E-Print Network [OSTI]

    Setty, Prashant (Prashant Neelappanavara)

    2013-01-01

    This thesis investigates best practices for Highly Active Pharmaceutical Ingredient (HAPI) milling and blending. We utilize a qualitative analysis centering on a benchmarking study and quantitative analyses using a ...

  3. GDNF blended chitosan nerve guides: An in vivo study Minal Patel,1,2

    E-Print Network [OSTI]

    VandeVord, Pamela

    ,9 There are numerous methods to chemically process chitosan and it can be easily molded into many sizes and shapes defects. Studies by Tanaka et al.15­17 have evaluated chitosan tendon nerve guides blended with laminin

  4. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  5. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  6. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Moyer, Bruce A

    2012-12-01

    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  7. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  8. Phase transitions in insertion electrodes for lithium batteries

    SciTech Connect (OSTI)

    Thackeray, M. M.

    2000-02-02

    Phase transitions that occur during lithium insertion into layered and framework structures are discussed in the context of their application as positive and negative electrodes in lithium-ion batteries. The discussion is focused on the two-dimensional structures of graphite, LiNi{sub 1{minus}x}M{sub x}O{sub 2} (M = Co, Ti and Mg), and Li{sub 1.2}V{sub 3}O{sub 8}; examples of framework structures with a three-dimensional interstitial space for Li{sup +}-ion transport include the spinel oxides and intermetallic compounds with zinc-blende-type structures. The phase transitions are discussed in terms of their tolerance to lithium insertion and extraction and to the chemical stability of the electrodes in the cell environment.

  9. Resistance of fly ash-Portland cement blends to thermal shock

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore »of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  10. Blending of processed pitches for the production of roofing asphalts

    SciTech Connect (OSTI)

    Poirier, M.A.; Sawatzky, H.

    1987-01-01

    Asphalt is a natural constituent of crude oils and is presently produced from the distillation residues of refining feedstocks. The asphalt market is saturated at this time and it appears that in the near future refineries will upgrade bitumens/heavy oils and vacuum residues via technologies such as hydrocracking, H-Oil and LC-Fining to produce more transportation fuels. Therefore, there will be economic pressure for the utilization of the resulting processed residues as road and roofing asphalts rather than low grade fuels. In this work the use of processed residues for the production of roofing asphalts has been investigated. Results show that 28-30 wt% of processed residue can be blended with 150-200 penetration asphalt cement to produce Type I roofing asphalt. The physical properties of the roofing asphalts were examined in terms of the composition (saturates, aromatics, resins, and asphaltenes) as well as average molecular weight of the maltenes and asphaltenes determined by gel permeation chromatography. The results are compared with two roofing asphalts obtained from petroleum refineries.

  11. Hybrid Dynamic Density Functional Theory for Polymer Melts and Blends

    E-Print Network [OSTI]

    Takashi Honda; Toshihiro Kawakatsu

    2006-09-05

    We propose a high-speed and accurate hybrid dynamic density functional theory for the computer simulations of the phase separation processes of polymer melts and blends. The proposed theory is a combination of the dynamic self-consistent field (SCF) theory and a time-dependent Ginzburg-Landau type theory with the random phase approximation (GRPA). The SCF theory is known to be accurate in evaluating the free energy of the polymer systems in both weak and strong segregation regions although it has a disadvantage of the requirement of a considerable amount of computational cost. On the other hand, the GRPA theory has an advantage of much smaller amount of required computational cost than the SCF theory while its applicability is limited to the weak segregation region. To make the accuracy of the SCF theory and the high-performance of the GRPA theory compatible, we adjust the chemical potential of the GRPA theory by using the SCF theory every constant time steps in the dynamic simulations. The performance of the GRPA and the hybrid theories is tested by using several systems composed of an A/B homopolymer, an AB diblock copolymer, or an ABC triblock copolymer. Using the hybrid theory, we succeeded in reproducing the metastable complex phase-separated domain structures of an ABC triblock copolymer observed by experiments.

  12. High Performance Laminates Using Blended Urethane Resin Chemistry

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Jones, George G.; Walsh, Sean P.; Wood, Geoff M.

    2005-03-24

    Hybrid blended resin systems have the potential to provide excellent impact performance in structured laminates. Although mostly under development for sheet molding compound (SMC) applications using glass fiber with high levels of fillers, the resins have been found to be useful in liquid molding applications with other high-performance fiber systems. A research pro-gram to develop the molding capability, property data, and capability to model the composites using newly de-veloped codes and modeling techniques was initiated through the Department of Energy’s Office of Freedom-Car and Vehicle Technologies. Results have shown ex-cellent adhesion to different fiber systems as evidenced by mechanical properties, and a capability to develop very good impact results – thereby allowing thin panel structures to be developed. Comparison to predicted me-chanical properties has been achieved and mechanisms for the development of observed high energy absorption under impact loadings are being investigated. Scale ef-fects based on panel thickness, fiber type loading, and position in laminate are being investigated. DOE pro-gram sponsorship was provided by Dr. Sidney Diamond, Technical Area Development Manager for High-Strength Weight-Reduction Materials.

  13. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect (OSTI)

    García-Maté, M.; De la Torre, A.G.; León-Reina, L.; Aranda, M.A.G.; CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona ; Santacruz, I.

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  14. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  15. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  16. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect (OSTI)

    Krishna, C.R.

    2010-10-01

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

  17. Physical and chemical characteristics of an interesterified blend of butterfat and cottonseed oil with possible industrial applications 

    E-Print Network [OSTI]

    Rashidi, Nabil

    1988-01-01

    OF TABLES Table Composition of the lipid in bovine milk Page Typical fatty acid composition of butterfat and cottonseed oil Free fatty acids and acid degree values for cottonseed oil (C), butterfat (B), regular blend of butterfat and cottonseed oil... (BtC), the interesterified blend I(B+C), and the interesterified blend with BHA I(B+C)/BHA 36 Percent transmittance (532 nm) and absorbance values of five fats as a function of time . . . . . . . 39 Concentration of malonaldehyde (micromolars...

  18. COMPARISON OF EXPERIMENTAL RESULTS TO CFD MODELS FOR BLENDING IN A TANK USING DUAL OPPOSING JETS

    SciTech Connect (OSTI)

    Leishear, R.

    2011-08-07

    Research has been completed in a pilot scale, eight foot diameter tank to investigate blending, using a pump with dual opposing jets. The jets re-circulate fluids in the tank to promote blending when fluids are added to the tank. Different jet diameters and different horizontal and vertical orientations of the jets were investigated. In all, eighty five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of several miles of two inch diameter, serpentine, vertical cooling coils below the liquid surface for a full scale, 1.3 million gallon, liquid radioactive waste storage tank. Two types of tests were performed. One type of test used a tracer fluid, which was homogeneously blended into solution. Data were statistically evaluated to determine blending times for solutions of different density and viscosity, and the blending times were successfully compared to computational fluid dynamics (CFD) models. The other type of test blended solutions of different viscosity. For example, in one test a half tank of water was added to a half tank of a more viscous, concentrated salt solution. In this case, the fluid mechanics of the blending process was noted to significantly change due to stratification of fluids. CFD models for stratification were not investigated. This paper is the fourth in a series of papers resulting from this research (Leishear, et.al. [1- 4]), and this paper documents final test results, statistical analysis of the data, a comparison of experimental results to CFD models, and scale-up of the results to a full scale tank.

  19. Asynchronous-Transition HMM 

    E-Print Network [OSTI]

    Matsuda, Shigeki; Nakai, Mitsuru; Shimodaira, Hiroshi; Sagayama, Shigeki

    We propose a new class of hidden Markov model (HMM) called asynchronous-transition HMM (AT-HMM). Opposed to conventional HMMs where hidden state transition occurs simultaneously to all features, the new class of HMM allows ...

  20. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  1. Static and dynamic contributions to anomalous chain dynamics in polymer blends

    E-Print Network [OSTI]

    Marco Bernabei; Angel J. Moreno; Juan Colmenero

    2010-11-10

    By means of computer simulations, we investigate the relaxation of the Rouse modes in a simple bead-spring model for non-entangled polymer blends. Two different models are used for the fast component, namely fully-flexible and semiflexible chains. The latter are semiflexible in the meaning that static intrachain correlations are strongly non-gaussian at all length scales. The dynamic asymmetry in the blend is strongly enhanced by decreasing temperature, inducing confinement effects on the fast component. The dynamics of the Rouse modes show very different trends for the two models of the fast component. For the fully-flexible case, the relaxation times exhibit a progressive deviation from Rouse scaling on increasing the dynamic asymmetry. This anomalous effect has a dynamic origin. It is not related to particular static features of the Rouse modes, which indeed are identical to those of the fully-flexible homopolymer, and are not modified by the dynamic asymmetry in the blend. On the contrary, in the semiflexible case the relaxation times exhibit approximately the same scaling behaviour as the amplitudes of the modes. This suggests that the origin of the anomalous dynamic scaling for semiflexible chains confined in the blend is esentially of static nature. We discuss implications of these observations for the applicability of theoretical approaches to chain dynamics in polymer blends.

  2. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    SciTech Connect (OSTI)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  3. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore »hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  4. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  5. The relationship between the thermoplastic behavior of blends and their component coals

    SciTech Connect (OSTI)

    Sakurovs, R.

    1999-07-01

    The thermoplastic behaviors of a number of coking coal blends were measured using proton magnetic resonance thermal analysis (PMRTA) to determine to what extent they were affected by interactions between the component coals. Most blends showed evidence that at temperatures near their temperatures of maximum fluidity the extent to which they fused was different to that expected if the coals did not interact. Only blends of coking coals of different rank fused to a greater extent than expected in the absence of interactions. Semi-anthracite, low rank coals and charcoal reduced the extent of fusion of coking coals to values below those expected if they were acting as inert diluents. These interactions are interpreted as being mediated by transfer of volatile material between the coals on heating.

  6. Development of a One-Equation Transition/Turbulence Model

    SciTech Connect (OSTI)

    EDWARDS,JACK R.; ROY,CHRISTOPHER J.; BLOTTNER,FREDERICK G.; HASSAN,HASSAN A.

    2000-09-26

    This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity - transport equation for non-turbulent fluctuation growth based on that proposed by Warren and Hassan (Journal of Aircraft, Vol. 35, No. 5) is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittence function based on the work of Dhawan and Narasimha (Journal of Fluid Mechanics, Vol. 3, No. 4). The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the spatial accuracy of selected predictions is analyzed.

  7. Amon Millner draft short paper submitted to the Interaction Design and Children 2011 conference Modkit: Blending and Extending Approachable Platforms

    E-Print Network [OSTI]

    Modkit: Blending and Extending Approachable Platforms for Creating Computer Programs and Interactive programming environment and the Arduino platform. The demonstration will feature the current Modkit components, activities, and projects that illustrate how the toolkit blends Scratch and Arduino platforms to extend what

  8. Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Associated with High-Ethanol Blend Releases Jie Ma, Hong Luo, George E. DeVaull,§ William G. Rixey, and Pedro ABSTRACT: Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could conditions exist. Ethanol- derived methane may also increase the vapor intrusion potential of toxic fuel

  9. Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    -source simulations imply that high-ethanol blends (e.g., E85) pose a lower risk of benzene reaching a receptor via gasoline, 15 years for E10, 9 years for E50, and 3 years for E85), indicating greater natural attenuationModeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels

  10. Prediction of metallurgical coke strength from the petrographic composition of coal blends

    SciTech Connect (OSTI)

    Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

    2009-07-01

    Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

  11. Effects of blending a heavy alcohol (C20H40O with diesel in a heavy-duty compression-ignition engine

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    Effects of blending a heavy alcohol (C20H40O with diesel in a heavy-duty compression phytol (C20H40O) with diesel in 5%, 10%, and 20% by volume blends. 3-D, transient, turbulent nozzle flow and emissions experiments of the different phytol/diesel blends. Combustion event depicted by high

  12. SEP Program Transition Tables

    Broader source: Energy.gov [DOE]

    The Program Transition Tables provide information concerning the level of effort required to move from a traditional, industrial incentive program to Strategic Energy Management, ISO 50001, or SEP.

  13. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  14. Noise-induced transitions vs. noise-induced phase transitions

    E-Print Network [OSTI]

    Toral, Raúl

    Noise-induced transitions vs. noise-induced phase transitions Raul Toral IFISC (Instituto de Física the field of noise-induced phase transitions, emphasizing the main differences with the phase-induced transitions and showing that they appear in different systems. I will show that a noise-induced transition can

  15. Influence of electron beam irradiation on mechanical and thermal properties of polypropylene/polyamide blend

    SciTech Connect (OSTI)

    Nakamura, Shigeya, E-mail: shi-nakamura@hitachi-chem.co.jp [Hitachi Chemical Co., Ltd., 1150 Goshomiya, Chikusei, Ibaraki 308-8524, Japan and Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, 522-8533, Shiga (Japan); Tokumitsu, Katsuhisa [Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, 522-8533, Shiga (Japan)

    2014-05-15

    The effects of electron beam irradiation on the mechanical and thermal properties of polypropylene (PP) and polyamide6 (PA6) blends-with talc 20 wt% as filler, SEBS-g-MAH as compatibilizer, and triallyl isocyanurate as crosslinking agent-were investigated. Although the tensile and flexural moduli and strengths of the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC could be increased by the application of electron beam irradiation, the impact strength was decreased. Ddifferential scanning calorimetryer measurements showed that the melting temperatures of all PP/PA6 blends were decreased with increases in the electron beam irradiationdose. From dynamic mechanical analyzer results, a storage modulus curve in the plateau region was observed only in the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC; the storage modulus increased with increasing electron beam irradiation dose, indicating that the three-dimensional network developed gradually in the more amorphous PA6. As a result, the most significant improvement observed in heat distortion tests under high load (1.8 MPa) occurred at 200 kGy.

  16. Blended Taint Analysis Results! Static Taint+: JavaScript library + application code

    E-Print Network [OSTI]

    Ryder, Barbara G.

    (); delete v[`p']; //v.p is undefined v.p = new C(); ! Our Solution for Dynamic Object Behavior:! StateSite Modified Browser Trace Extractor Static Infrastructure Code Collector Static Taint Analysis Solution analyzed timed out Taint analysis time! References: [1] Shiyi Wei and Barbara G. Ryder. Practical blended

  17. Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel the closed-loop air-to-fuel ratio (AFR) control which maintains automatically operation around

  18. Lauric Acid/Wood Fiber Blends for Shape Stable Phase Change Material

    E-Print Network [OSTI]

    Collins, Gary S.

    Lauric Acid/Wood Fiber Blends for Shape Stable Phase Change Material Krista Stancombe, Fang Chen in preparing wood fiber (WF) composites. The goal in developing this material is to produce a shape stabilized (DSC) and polarized optical microscopy (POM). References Conclusion LA crystals LA crystals Wood Fiber

  19. The Blend Down Monitoring System Demonstration at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Benton, J.; Close, D.; Johnson, W., Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-07-25

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor {sup 235}U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF{sub 6} flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities.

  20. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOE Patents [OSTI]

    Skotheim, T.

    1984-09-28

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  1. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOE Patents [OSTI]

    Skotheim, Terje (East Patchogue, NY)

    1986-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  2. THE EFFECT OF BIAXIAL ORIENTATION PROCESSING CONDITIONS ON IMMISCIBLE POLYMER BLENDED SHEET

    E-Print Network [OSTI]

    is utilized to enhance certain properties of the material. For example, efficient gas separation membranes. Findings from this work will be applied to a future study of these blended sheet samples as gas separation. IMPB sheet specimens were simultaneously biaxially oriented in order to improve gas separation

  3. Relationship between MTBE-blended gasoline properties and warm-up driveability

    SciTech Connect (OSTI)

    Suzawa, Takumi; Yamaguchi, Kazunori; Kashiwabara, Kimito [Mitsubishi Motors Corp., Tokyo (Japan); Fujisawa, Norihiro; Matsubara, Michiro

    1995-12-31

    The relationship between MBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100 C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio ({lambda}) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated. The results indicate that the new DI worsen when heavy reformate containing large amounts of aromatics or MTBE, an oxygen-containing compound, is used for the octane improver, leaving the balance of the volatility out of consideration.

  4. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    SciTech Connect (OSTI)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-06-05

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.

  5. Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene

    E-Print Network [OSTI]

    McGehee, Michael

    Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene States *S Supporting Information ABSTRACT: We compare the solar cell performance of several polymers the efficiency of the solar cells only when they do not intercalate between the polymer side chains. When

  6. Aerodynamically Optimal Regional Aircraft Concepts: Conventional and Blended Wing-Body Designs

    E-Print Network [OSTI]

    Zingg, David W.

    prices and concern about both the exhaustion of fossil fuels and their contribution to climate change. Both the conventional and blended wing-body regional jets are optimized for a 500nmi mission at Mach 0, the need for more fuel efficient aircraft is becoming more pronounced for both economic and environmental

  7. A Thermoplastic/Thermoset Blend Exhibiting Thermal Mending and Reversible Adhesion

    E-Print Network [OSTI]

    Mather, Patrick T.

    A Thermoplastic/Thermoset Blend Exhibiting Thermal Mending and Reversible Adhesion Xiaofan Luo that the DEB phenomenon enables strong and facile adhesion of the same material to itself and to a variety separation · epoxy · self-healing · fracture · adhesion INTRODUCTION P olymeric materials, such as high

  8. TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS

    E-Print Network [OSTI]

    Daripa, Prabir

    coal or by ex- haust clean up technology. For the power plants, the simplest solution is the preventive- ity well into the 21st century. This dependency on coal calls for better technologies to reduceTURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS

  9. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  10. Developing a Multi-Agent system for a Blended Learning application

    E-Print Network [OSTI]

    Ziegler, Günter M.

    in the traditional learning. Among the technologies to use in a blended learning session we can find blogs, wikis, on, usable and sustainable multimedia technology for collaborative learning. 1.1 Introduction Actually, teaching is supported by multimedia technologies at different levels; videlicet, the technology used

  11. Local and chain dynamics in miscible polymer blends: A Monte Carlo simulation study

    E-Print Network [OSTI]

    Luettmer-Strathmann, Jutta

    44325-4001 Received 7 November 2005; accepted 1 March 2006; published online 5 May 2006 Local chain of the chains. These are combined with a local mobility determined from the acceptance rate and the effectiveLocal and chain dynamics in miscible polymer blends: A Monte Carlo simulation study Jutta Luettmer

  12. Interfacial properties of elastomer blends as studied by neutron reectivity Yimin Zhanga

    E-Print Network [OSTI]

    on the compatibility and interfacial characteristics. We also studied the effect of styrene butadiene random copolymers on the miscibility of the PB/ BIMS blends. The results showed that styrene-butadiene rubber (SBR) was not fully structure of the polymer or mixtures of polymers in each layer, e.g. butyl rubber, styrene-butadiene rubber

  13. Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here of coal and biomass fuels are presented. Different classes of co-firing methods are identified

  14. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    SciTech Connect (OSTI)

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

  15. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    SciTech Connect (OSTI)

    Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

    2003-08-01

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    and Greenhouse Gas Emissions from CNG Transit Buses EquippedOxidation Catalyst Effect on CNG Transit Bus Emissions. SAEOxidation Catalyst Effect on CNG Transit Bus Emissions. SAE

  17. Energy stories, equations and transition

    E-Print Network [OSTI]

    Ernst, Damien

    Energy stories, equations and transition Une histoire d'énergie: équations et transition% - Transition #12;ERoEI · ERoEI for « Energy Sustainable Energy April 28th, 2015 Raphael Fonteneau, University of Liège, Belgium @R_Fonteneau #12;Energy

  18. Certificate in Transit Management and

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    , and perform minor maintenance and staff responsibilities. UMass Transit has been a fare free public transit Intro to Transportation Systems FINOPMGT 341 Logistics & Transportation Functions FINOPMGT 347 Intro

  19. Energy Transition Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the Energy Transition Initiative (ETI), the U.S. Department of Energy and its partners work with government entities and other stakeholders to establish a long-term energy vision and successfully implement energy efficiency and renewable energy solutions.

  20. site_transition.cdr

    Office of Environmental Management (EM)

    OF This fact sheet explains the process for transferring a site to the U.S. Department of Energy Office of Legacy Management. Site Transition Process Upon Cleanup Completion...

  1. Application and modeling of near-infrared frequency domain photon migration for monitoring pharmaceutical powder blending operations 

    E-Print Network [OSTI]

    Pan, Tianshu

    2006-10-30

    ) Monte Carlo simulation for tracking photon trajectories within the powder bed. The simulation of photon migration in powder blend revealed that while both the isotropic scattering and absorption coefficients increased with the solid-volume fraction...

  2. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

    2009-02-01

    Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

  3. Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends

    E-Print Network [OSTI]

    Kar, Kenneth

    The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

  4. Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

    E-Print Network [OSTI]

    Dimou, Iason

    The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

  5. Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semi-Orthogonal Solvent Blends

    E-Print Network [OSTI]

    2015-01-01

    solvents for the fullerene-casting solution. By tuning thecan be used: blend casting (BC) [ 18,19 ] and sequentialchoice of the fullerene casting co-solvent yields well-

  6. Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends 

    E-Print Network [OSTI]

    Uggini, Hari

    2012-07-16

    by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously...

  7. Viscoelastic Properties and Phase Behavior of 12-tert-Butyl Ester Dendrimer/Poly(methyl methacrylate) Blends

    E-Print Network [OSTI]

    Harmon, Julie P.

    with bis- phenol A polycarbonate (PC), resulting in an in- crease in free volume with increasing dendrimer hyperbranched polyester/bisphenol A PC blends with respect to pure PC. Studies were conducted by Carr et al.24

  8. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  9. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  10. Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

    2010-06-01

    Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

  11. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    SciTech Connect (OSTI)

    Cai, Hao; Canter, Christina E.; Dunn, Jennifer B.; Tan, Eric; Biddy, Mary; Talmadge, Michael; Hartley, Damon S.; Snowden-Swan, Lesley

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  12. Biomaterials 23 (2002) 44834492 A novel porous cells scaffold made of polylactidedextran blend by

    E-Print Network [OSTI]

    Yang, Jian

    2002-01-01

    was developed by blending polylactide (PLA) with natural biodegradable dextran, and a novel sponge-like scaffold of cartilage [7,8], bone [9,10], tendon [11], skin [12,13], liver [14] and heart valve [15]. Cell scaffolds-casting and particle-leaching [19,20], phase-separation [21], emulsion freeze dry- ing [22], gas-foaming [23] and 3D

  13. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  14. Combustion characteristics of indolene-methanol blends in a CFR spark ignition engine

    SciTech Connect (OSTI)

    Patel, K.S.

    1984-01-01

    A study of the combustion characteristics of indolene, methanol and indolene-methanol blends has been completed. The investigation included theoretical and experimental parts. In the theoretical part, turbulent burning velocity, laminar burning velocity, and mass burning velocity are computed. The experimental part was completed on a CFR spark ignition engine using indolene, methanol, and indolene-methanol blends. Methanol concentration was varied from 0 to 100 vol.%. For each blend, compression ratio was varied from 5.0 to KLCR (Knock Limited Compression Ratio). The results of theoretical analysis showed that the laminar burning velocity increased as the vol.% of methanol increased. The experimental results indicated that adding methanol to indolene, MBT (Minimum advanced for Best Torque) spark advance, volumetric efficiency, brake mean effective pressure are decreased while break specific fuel consumption, brake thermal efficiency an KLCR are increased. The theoretical and experimental results showed that adding methanol to indolene, apparent flame speed, turbulent burning velocity and the ratio of turbulent to laminar burning velocity increased. Pure methanol produced the highest turbulent burning velocity. It is concluded that methanol has considerable effect on the combustion characteristics of spark ignition engine.

  15. Use of ethyl-t-butyl ether (ETBE) as a gasoline blending component

    SciTech Connect (OSTI)

    Shiblom, C.M.; Schoonveld, G.A.; Riley, R.K.; Pahl, R.H.

    1990-01-01

    The U.S. Treasury Department recently ruled that the ethanol blenders tax credit applies to ethanol used to make ETBE for blending with gasoline. As a result, ETBE may soon become a popular gasoline blending component. Like MTBE ETBE adds oxygen to the fuel while contributing to other performance properties of the gasoline. Phillips Petroleum Company has completed limited driveability and material compatibility studies on gasolines containing ETBE and has determined the effect on various performance parameters such as octane, volatility, and distillation of ETBE in gasoline. Levels of ETBE ranging from 0.0 to 23.5 volume percent (3.7 weight percent oxygen) in gasoline were included in the investigation. Use in gasoline is currently limited to only 12.7 volume percent (2.0 weight percent oxygen) by the gasoline substantially similar rule. No detrimental effects of the ETBE on metal or elastomeric parts common to gasoline delivery and fueling system were found. Also, several favorable blending properties of eTBE in gasoline are apparent as compared to either MTBE or ethanol. This paper presents details of these results.

  16. Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373

    SciTech Connect (OSTI)

    Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

  17. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  18. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  19. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  20. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

  1. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  2. Sudden gravitational transition

    SciTech Connect (OSTI)

    Caldwell, Robert R. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755 (United States); Komp, William [Physics Department, University of Louisville, 102 Natural Sciences, Louisville, Kentucky 40292 (United States); Parker, Leonard [Physics Department, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States); Vanzella, Daniel A. T. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo (IFSC-USP), Av. Trabalhador Sao-carlense, 400 Cx. Postal 369 - CEP 13560-970, Sao Carlos, Sao Paulo (Brazil)

    2006-01-15

    We investigate the properties of a cosmological scenario which undergoes a gravitational phase transition at late times. In this scenario, the Universe evolves according to general relativity in the standard, hot big bang picture until a redshift z < or approx. 1. Nonperturbative phenomena associated with a minimally-coupled scalar field catalyzes a transition, whereby an order parameter consisting of curvature quantities such as R{sup 2}, R{sub ab}R{sup ab}, R{sub abcd}R{sup abcd} acquires a constant expectation value. The ensuing cosmic acceleration appears driven by a dark-energy component with an equation-of-state w<-1. We evaluate the constraints from type 1a supernovae, the cosmic microwave background, and other cosmological observations. We find that a range of models making a sharp transition to cosmic acceleration are consistent with observations.

  3. Electroweak phase transitions

    SciTech Connect (OSTI)

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  4. Electroweak phase transitions

    SciTech Connect (OSTI)

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  5. Remote Sensing of Mobile Source Air Pollutant Emissions: Variability and Uncertainty in On-Road Emissions

    E-Print Network [OSTI]

    Frey, H. Christopher

    in the Hydrocarbon Emission Factor 65 6.0 REMOTE SENSING MEASUREMENTS AND ESTIMATED EMISSION FACTORS FOR SCHOOL BUSES-Road Emissions Estimates of Carbon Monoxide and Hydrocarbons for School and Transit Buses Report No. FHWY/NC/97 Transit Buses 34 4.0 SELECTION OF REMOTE SENSING MEASUREMENT SITES 36 4.1 Site Selection Strategies 36 4

  6. Combining quantum wavepacket ab initio molecular dynamics with QM/MM and QM/QM techniques: Implementation blending ONIOM and empirical

    E-Print Network [OSTI]

    Iyengar, Srinivasan S.

    : Implementation blending ONIOM and empirical valence bond theory Isaiah Sumner and Srinivasan S. Iyengara. All components of the methodology, namely, quantum dynamics and ONIOM molecular dynamics

  7. Variational transition state theory

    SciTech Connect (OSTI)

    Truhlar, D.G. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

  8. Transition Implementation Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-24

    This Guide was prepared to aid in the development, planning, and implementation of requirements and activities during the transition phase at Department of Energy (DOE) facilities that have been declared or are forecast to become excess to any future mission requirements.

  9. Transition temperature in QCD

    SciTech Connect (OSTI)

    Cheng, M.; Christ, N. H.; Mawhinney, R. D. [Physics Department, Columbia University, New York, New York 10027 (United States); Datta, S.; Jung, C.; Schmidt, C.; Umeda, T. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Heide, J. van der; Kaczmarek, O.; Laermann, E.; Miao, C. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Karsch, F. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Petreczky, P. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States); Petrov, K. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2006-09-01

    We present a detailed calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N{sub {tau}}=4 and 6. Calculations with improved staggered fermions have been performed for various light to strange quark mass ratios in the range, 0.05{<=}m-circumflex{sub l}/m-circumflex{sub s}{<=}0.5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the chiral (m-circumflex{sub l}{yields}0) and continuum (aT{identical_to}1/N{sub {tau}}{yields}0) limits we find for the transition temperature at the physical point T{sub c}r{sub 0}=0.457(7) where the scale is set by the Sommer-scale parameter r{sub 0} defined as the distance in the static quark potential at which the slope takes on the value (dV{sub qq}(r)/dr){sub r=r{sub 0}}=1.65/r{sub 0}{sup 2}. Using the currently best known value for r{sub 0} this translates to a transition temperature T{sub c}=192(7)(4) MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss current ambiguities in the determination of T{sub c} in physical units and also comment on the universal scaling behavior of thermodynamic quantities in the chiral limit.

  10. Concentrations and Size Distributions of Particulate Matter Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the Emission Profiles of Trucks and Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses Measurement of Real-World Emissions from Heavy-Duty Diesel...

  11. 2011 Texas Jurisdiction Energy Code Adoption Survey 

    E-Print Network [OSTI]

    2011-01-01

    Off-chip buses consume a huge fraction (20%-40%) of the system power. Hence, techniques such as increasing bus widths, transition encoding etc. have been used for power reduction on off-chip data buses. Since capacitances ...

  12. Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet

    SciTech Connect (OSTI)

    Rich, Bechtold; Thomas, John F; Huff, Shean P; Szybist, James P; West, Brian H; Theiss, Timothy J; Timbario, Tom; Goodman, Marc

    2007-08-01

    The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

  13. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2008-01-01

    Transit California High Speed Rail Criteria air pollutantsproposed California High Speed Rail (CAHSR). The BART andFTA 2005]. California High Speed Rail The high speed rail

  14. Certificate in Transit Management and

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    , and perform minor maintenance and staff responsibilities. UMass Transit has been a fare free public transit operation, and management. CTTransit CEE 310 Intro to Transportation Systems FINOPMGT 341 Logistics

  15. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect (OSTI)

    Boehm, H.; Braun-Unkhoff, M.

    2008-04-15

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased. (author)

  16. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  17. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  18. Precision photometry for planetary transits

    E-Print Network [OSTI]

    Frederic Pont; Claire Moutou

    2007-02-06

    We review the state of the art in follow-up photometry for planetary transit searches. Three topics are discussed: (1) Photometric monitoring of planets discovered by radial velocity to detect possible transits (2) Follow-up photometry of candidates from photometric transit searches to weed out eclipsing binaries and false positives (3) High-precision lightcurves of known transiting planets to increase the accuracy on the planet parameters.

  19. The Use of Triangular-Shaped PV Arrays to Better Blend into Historical Structures

    Broader source: Energy.gov [DOE]

    When considering the installation of a solar PV array on a designated historical structure, placement of each solar panel requires extra attention to aesthetic considerations. If the solar array cannot be installed behind the structure or “hidden” on a roof plane that is not visible from the public street or sidewalk, it can sometimes be installed as an architectural feature that blends into the historical structure. One way to do this is to utilize triangular-shaped PV panels that conform with the building’s roof lines.

  20. Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Nuclear Engineering Division

    2005-04-29

    Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

  1. Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study

    SciTech Connect (OSTI)

    Shoffner, Brent; Johnson, Ryan; Heimrich, Martin J.; Lochte, Michael

    2010-11-01

    The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

  2. Tests of mode coupling theory in a simple model for two-component miscible polymer blends

    E-Print Network [OSTI]

    A. J. Moreno; J. Colmenero

    2007-09-26

    We present molecular dynamics simulations on the structural relaxation of a simple bead-spring model for polymer blends. The introduction of a different monomer size induces a large time scale separation for the dynamics of the two components. Simulation results for a large set of observables probing density correlations, Rouse modes, and orientations of bond and chain end-to-end vectors, are analyzed within the framework of the Mode Coupling Theory (MCT). An unusually large value of the exponent parameter is obtained. This feature suggests the possibility of an underlying higher-order MCT scenario for dynamic arrest.

  3. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

  4. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

  5. Refrigerants in Transition 

    E-Print Network [OSTI]

    Stouppe, D. E.

    1991-01-01

    . 27-30. 7. Hayes, Floyd C., "Centrifugal\\~ater Chillers," CFCs: Today's Options Tomorrow's Solutions, ASHRAE Publication, Atlanta, GA, 1990, pp. 71-73. 8. Lorenz, Michael R., "CFCs: The Designer's Dilemma," Heating/Piping/Air Conditioning, April 1990... IN TRANSITION DAVID E. STOUPPE, P.E. Senior Engineer The Hartford Steam Boiler Inspection and Insurance Company Hartford,. Connecticut ABSTRACT The massive growth of air conditioning and refrigeration has been a direct result of the development of a...

  6. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-08-01

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

  7. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  8. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  9. Analytic equivalence of geometric transitions

    E-Print Network [OSTI]

    Michele Rossi

    2014-08-28

    In this paper \\emph{analytic equivalence} of geometric transition is defined in such a way that equivalence classes of geometric transitions turn out to be the \\emph{arrows} of the \\cy web. Then it seems natural and useful, both from the mathematical and physical point of view, look for privileged arrows' representatives, called \\emph{canonical models}, laying the foundations of an \\emph{analytic} classification of geometric transitions. At this purpose a numerical invariant, called \\emph{bi--degree}, summarizing the topological, geometric and physical changing properties of a geometric transition, is defined for a large class of geometric transitions.

  10. Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer 

    E-Print Network [OSTI]

    Gordillo Ariza, Gerardo

    2010-10-12

    W) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were...

  11. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema (OSTI)

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2010-01-08

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  12. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    SciTech Connect (OSTI)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  13. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect (OSTI)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  14. Superradiance Transition in Graphene

    E-Print Network [OSTI]

    Alexander I. Nesterov; Fermín Aceves de la Cruz; Valeriy A. Luchnikov; Gennady P. Berman

    2015-06-12

    We study theoretically and numerically the conditions required for the appearance of a superradiance transition in graphene. The electron properties of graphene are described in the single $p_z$-orbital tight-binding approximation, in which the model is reduced to the effective two-level pseudo-spin $1/2$ system. For each level we introduce the electron transfer rate of escape into a continuum. We demonstrate that, under some conditions, the superradiance experiences the maximal quantum coherent escape to the continuum.

  15. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  16. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  17. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  18. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  19. 309 Building transition plan

    SciTech Connect (OSTI)

    Graves, C.E.

    1994-08-31

    The preparation for decontamination and decommissioning (transition) of the 309 Building is projected to be completed by the end of the fiscal year (FY) 1998. The major stabilization and decontamination efforts include the Plutonium Recycle Test Reactor (PRTR), fuel storage and transfer pits, Transfer Waste (TW) tanks and the Ion Exchange Vaults. In addition to stabilizing contaminated areas, equipment, components, records, waste products, etc., will be dispositioned. All nonessential systems, i.e., heating, ventilation, and air conditioning (HVAC), electrical, monitoring, fluids, etc., will be shut down and drained/de-energized. This will allow securing of the process, laboratory, and office areas of the facility. After that, the facility will be operated at a level commensurate with its surveillance needs while awaiting D&D. The implementation costs for FY 1995 through FY 1998 for the transition activities are estimated to be $1,070K, $2,115K, $2,939K, and $4,762K, respectively. Costs include an assumed company overhead of 20% and a 30% out year contingency.

  20. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  1. Pavement-Friendly Buses and Trucks

    E-Print Network [OSTI]

    Hedrick, J. Karl; Yi, Kyongsu; Wargelin, Margaret

    1992-01-01

    i or Htovy and Dimenìi ani. Kifcrwna. IrAUh Colum- bia,~f PMAttP "rigid pa vom ani" Although the semi aetivr sus-

  2. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  3. Hydrogen-Powered Buses Brochure … 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1ActivityfromWorkshop:Powered by

  4. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect (OSTI)

    Pihl, Josh A; Toops, Todd J; Fisher, Galen; West, Brian H

    2014-01-01

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  5. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  6. Poly(e-caprolactone) scaffolds of highly controlled porosity and interconnectivity derived from co-continuous polymer blends

    E-Print Network [OSTI]

    Buschmann, Michael

    -continuous polymer blends: model bead and cell infiltration behavior Nima Ghavidel Mehr · Xian Li · Marianne B distributions with fully interconnected pores. This study focuses on the development of novel poly scaffold infiltration by 10-lm diameter poly- styrene beads intended to mimic trypsinized human bone marrow

  7. Methanol/ethanol/gasoline blend-fuels demonstration with stratified-charge-engine vehicles: Consultant report. Final report

    SciTech Connect (OSTI)

    Pefley, R.; Adelman, H.; Suga, T.

    1980-03-01

    Four 1978 Honda CVCC vehicles have been in regular use by California Energy Commission staff in Sacramento for 12 months. Three of the unmodified vehicles were fueled with alcohol/gasoline blends (5% methanol, 10% methanol, and 10% ethanol) with the fourth remaining on gasoline as a control. The operators did not know which fuels were in the vehicles. At 90-day intervals the cars were returned to the Univerity of Santa Clara for servicing and for emissions and fuel economy testing in accordance with the Federal Test Procedures. The demonstration and testing have established the following: (1) the tested blends cause no significant degradation in exhaust emissions, fuel economy, and driveability; (2) the tested blends cause significant increases in evaporative emissions; (3) analysis of periodic oil samples shows no evidence of accelerated metal wear; and (4) higher than 10% alcohols will require substantial modification to most existing California motor vehicles for acceptable emissions, performance, and fuel economy. Many aspects of using methanol and ethanol fuels, both straight and in blends, in various engine technologies are discussed.

  8. Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

  9. Spin-polarized ballistic transport in a thin superlattice of zinc blende half-metallic compounds M. C. Qian,1,

    E-Print Network [OSTI]

    Pickett, Warren

    Spin-polarized ballistic transport in a thin superlattice of zinc blende half-metallic compounds M of Physics, University of California, Davis, California 95616-8677, USA 2H Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA 3Department of Physics, Bilkent University, Ankara

  10. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

  11. Smarter Parking at Transit Stations

    E-Print Network [OSTI]

    Shaheen, Susan; Kemmerer, Charlene

    2007-01-01

    The High Cost of Free Parking (Chicago, Illinois: Americanand Amanda Eaken. Smart Parking Management Field Test: A BayTransit (BART) District Parking Demonstration—Phase One

  12. Planetary Transits of TRES-1

    E-Print Network [OSTI]

    A. Price; R. Bissinger; G. Laughlin; B. Gary; T. Vanmunster; A. Henden; D. Starkey; D. Kaiser; J. Holtzman; L. Marschall; T. Michalik; T. Wellington; P. Paakonen; Z. S. Kereszty; R. Durkee; K. Richardson; R. Leadbeater; T. Castellano

    2004-12-17

    Observations of TRES-1b transits made during the late summer and fall 2004 observing season reveal a statistically significant but low amplitude brightening event during egress.

  13. Chlorinated organic compounds evolved during the combustion of blends of refuse-derived fuels and coals

    SciTech Connect (OSTI)

    Xiaodong Yang; Napier, J.; Sisk, B.; Wei-Ping Pan; Riley, J.T.; Lloyd, W.G.

    1996-12-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR and MS systems. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GUMS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic; compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  14. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect (OSTI)

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  15. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  16. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  17. Integrating DGSs and GATPs in an Adaptative and Collaborative Blended-Learning Web-Environment

    E-Print Network [OSTI]

    Santos, Vanda; 10.4204/EPTCS.79.7

    2012-01-01

    The area of geometry with its very strong and appealing visual contents and its also strong and appealing connection between the visual content and its formal specification, is an area where computational tools can enhance, in a significant way, the learning environments. The dynamic geometry software systems (DGSs) can be used to explore the visual contents of geometry. This already mature tools allows an easy construction of geometric figures build from free objects and elementary constructions. The geometric automated theorem provers (GATPs) allows formal deductive reasoning about geometric constructions, extending the reasoning via concrete instances in a given model to formal deductive reasoning in a geometric theory. An adaptative and collaborative blended-learning environment where the DGS and GATP features could be fully explored would be, in our opinion a very rich and challenging learning environment for teachers and students. In this text we will describe the Web Geometry Laboratory a Web environme...

  18. PUBLIC AND REGULATORY ACCEPTANCE OF BLENDING OF RADIOACTIVE WASTE VS DILUTION

    SciTech Connect (OSTI)

    Goldston, W.

    2010-11-30

    On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and then dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.

  19. Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

    2007-01-01

    The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

  20. High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method

    E-Print Network [OSTI]

    M. Gillon; F. Pont; C. Moutou; F. Bouchy; F. Courbin; S. Sohy; P. Magain

    2006-06-16

    A high accuracy photometry algorithm is needed to take full advantage of the potential of the transit method for the characterization of exoplanets, especially in deep crowded fields. It has to reduce to the lowest possible level the negative influence of systematic effects on the photometric accuracy. It should also be able to cope with a high level of crowding and with large scale variations of the spatial resolution from one image to another. A recent deconvolution-based photometry algorithm fulfills all these requirements, and it also increases the resolution of astronomical images, which is an important advantage for the detection of blends and the discrimination of false positives in transit photometry. We made some changes to this algorithm in order to optimize it for transit photometry and used it to reduce NTT/SUSI2 observations of two transits of OGLE-TR-113b. This reduction has led to two very high precision transit light curves with a low level of systematic residuals, used together with former photometric and spectroscopic measurements to derive new stellar and planetary parameters in excellent agreement with previous ones, but significantly more precise.

  1. Multiobjective Optimization and Phase Transitions

    E-Print Network [OSTI]

    Seoane, Luís F

    2015-01-01

    Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.

  2. Spinfluid Phase Transitions

    E-Print Network [OSTI]

    Marcus S. Cohen

    2009-07-10

    We start with the spinfluid: a nearly-homogeneous, 8-spinor medium, with small local eddies and twists. As it expends, these seed a raft of intersecting codimension-J singularities: a spinfoam. As this expands, the energy trapped in each (4-J) brane varies as the Jth power of the scale factor. Summing on J=(0,1,2,3,4) creates a quartic dilation potential with either 1 or 2 minima: preferred length and mass scales. The spinfoam expands forever with 1 minimum, but recontracts with 2. To quantize it, we take a canonical ensemble of spinfoams, immersed in a heat bath of vacuum spinors, whose microstates vastly outnumber the matter states. It's evolution is governed by a free energy which admits phase transitions at two critical scale, separated by a triple point.Their critical droplets correspond to the varieties of leptons and hadrons.We identify the first as inflation, the second as baryogenesis; and the heat bath of vacuum spinors as dark energy.

  3. From Micelles to Randomly Connected, Bilayered Membranes in Dilute Block Copolymer Blends

    E-Print Network [OSTI]

    Agard, David

    amphiphile aggregation mechanisms,14,15,18 con- densed-matter phase transitions,12,19-21 and elementary/molecular design accompanied by an understanding of microstructural development. Diblock copolymers, composed

  4. Blend Down Monitoring System Fissile Mass Flow Monitor and its Implementation at the Siberian Chemical Enterprise, Seversk, Russia

    SciTech Connect (OSTI)

    Uckan, T

    2005-07-28

    In this paper the implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the Siberian Chemical Enterprise (SChE), Seversk, Russia, are presented. The FMFM, developed by Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS) for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower assay ({approx}4%) product low enriched uranium (PLEU) to the United States from down-blended weapon-grade HEU are meeting the nonproliferation goals of the government-to-government HEU purchase agreement signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999. The second BDMS has been operational at Electro Chemical Plant, Zelenogorsk, since March 2003. These systems are successfully providing HEU transparency data to the United States. The third BDMS was successfully installed on the HEU down-blending tee in the SChE Enrichment Plant in October 2004. The FMFM makes use of a set of thermalized {sup 252}Cf spontaneous neutron sources for modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments retained in the flow. The FMFM provides unattended nonintrusive measurements of the {sup 235}U mass flow of the UF{sub 6} gas in the blending tee legs of HEU, the LEU blend stock, and the resulting P-LEU. The FMFM also confirms that highly enriched UF{sub 6} gas identified in the HEU leg flows through the blending tee into the P-LEU leg. This report contains details of the SChE FMFM equipment characteristics as well as the technical installation requirements and the latest measurement results.

  5. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect (OSTI)

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.

  6. Photometry and transit-timing analysis for eleven transiting exoplanets

    E-Print Network [OSTI]

    De Kleer, Katherine Rebecca

    2009-01-01

    This thesis presents time-series photometry of transits of 11 different extrasolar planets. Observations were conducted with the Fred L. Whipple Observatory 1.2m telescope and the Wise Observatory im telescope, in standard ...

  7. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect (OSTI)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

  8. Mesoporous Silica Films with Long-Range Order Prepared from Strongly Segregated Block Copolymer/Homopolymer Blend Templates

    SciTech Connect (OSTI)

    Tirumala, Vijay R.; Pai, Rajaram A.; Agarwal, Sumit; Testa, Jason J.; Bhatnagar, Gaurav; Romang, Alvin H.; Chandler, Curran; Gorman, Brian P.; Jones, Ronald L.; Lin, Eric K.; Watkins, James J.

    2008-06-30

    Well-ordered mesoporous silica films were prepared by infusion and selective condensation of Si alkoxides within preorganized block copolymer/homopolymer blend templates using supercritical CO{sub 2} as the delivery medium. The morphologies of the mesoporous silica films reflect significant improvements in the strength of segregation and long-range order of template blends of poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymers with selectively associating homopolymers such as poly(acrylic acid) or poly(4-hydroxystyrene) prior as compared to templates comprised of the neat copolymer. Control over film porosity, pore ordering, and morphology of the films is achieved through simple variations in the homopolymer concentration. The films were characterized using X-ray reflectivity, small-angle X-ray scattering, and transmission electron microscopy.

  9. Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors

    SciTech Connect (OSTI)

    Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M.

    2014-11-03

    Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

  10. Power Marketing Administrations Leading the Nation's Transition...

    Energy Savers [EERE]

    Leading the Nation's Transition to a 21st Century Electric Grid Power Marketing Administrations Leading the Nation's Transition to a 21st Century Electric Grid November 19, 2012 -...

  11. Feeding the Transition Dairy Cow 

    E-Print Network [OSTI]

    Stokes, Sandra R.

    1999-09-20

    Proper nutrition management during a cow's transition period (from the last 3 weeks of gestation through the first 2 weeks of lactation), is critical to successful lactation. This publication gives details for nutrition management. Two charts list...

  12. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore »for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  13. Study of fractionation of refrigerant blends in contact with lubricants and measurement of the solubility, density, and viscosity

    SciTech Connect (OSTI)

    Cavestri, R.C.; Falconi, E.A.

    1999-07-01

    The fractionation of two refrigerant blends was studied using the gas equilibrium method. The amount of fractionation was measured by maintaining a constant composition of the refrigerant gas vapor over the lubricant, which was equal in composition to the liquid refrigerant gas blend introduced into the viscometer. Specifically, the concentration of the dissolved refrigerant gas in the lubricant ranges from 0.6% to 78% by weight in the specified temperature range of {minus}25 C to 125 C and within the highest test pressure of 500 psia (3.45 MPa). The polyolester chosen for this study was a 32 ISO VG complex branched acid pentaerythritol product. Smoothed graphical data presented were obtained from individual isothermal measurements. These individual isothermal measurement temperatures detail the composition of the equilibrium gas fractionation of R-32 and R-134a in the lubricant, mixed vapor pressure, concentration of the total mixed blend as percent by weight in the lubricant and viscosity in centipoise (cP) and centistokes (cSt). The raw data are presented in a smoothed graphical form based on a fixed vapor composition.

  14. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  15. BurbankBus' clean fuel fleet now includes a zero-emission hydrogen-fueled bus. BurbankBus, which provides transit

    E-Print Network [OSTI]

    Bus fixed-route fleet consists of 17 compressed natural gas (CNG) buses. This fleet has been running on 100% CNG for about two years. The city's trash trucks are also run on CNG, and its light- duty vehicle

  16. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  17. Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries

    SciTech Connect (OSTI)

    Chen, Dongyang; Kim, Soowhan; Sprenkle, Vincent L.; Hickner, Michael A.

    2013-06-01

    Composite membranes based on sulfonated fluorinated poly(arylene ether) (SFPAE) and poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-co-HFP)) were prepared with various contents of P(VDF-co-HFP) for vanadium redox flow battery (VRFB) applications. The compatibility and interaction of SFPAE and P(VDF-co-HFP) were characterized by atomic force microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The water uptake, mechanical properties, thermal property, proton conductivity, VO2+ permeability and cell performance of the composite membranes were investigated in detail and compared to the pristine SFPAE membrane. It was found that SFPAE had good compatibility with P(VDF-co-HFP) and the incorporation of P(VDF-co-HFP) increased the mechanical properties, thermal property, and proton selectivity of the materials effectively. An SFPAE composite membrane with 10 wt.% P(VDF-co-HFP) exhibited a 44% increase in VRFB cell lifetime as compared to a cell with a pure SFPAE membrane. Therefore, the P(VDF-co-HFP) blending approach is a facile method for producing low-cost, high-performance VRFB membranes.

  18. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  19. Correlations of Polyimides and Blended Polyimides for High Temperature Gas Separations

    SciTech Connect (OSTI)

    John R. Klaehn; Christopher J. Orme; Thomas A. Luther; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2002-03-01

    High performance polymers are of interest for high temperature gas separations, especially for the sequestration of carbon dioxide. A new family of high performance imide polymers has been identified as a successful membrane capture material. VTEC polyimides possess desired thermal properties (up to 500 °C) along with being robust and flexible even after multiple thermal cycles (up to 400 °C). Polyimides (PI) are excellent materials for high selectivity for smaller kinetic diameter gases such as H2 and CO2; however, they have low fluxes. We blended small amounts of different polymers with VTEC polyimide, which changes the fluxes. Another critical problem when working with glassy polymers is their moisture content. It has been found that water entrapped within the polymer matrix (left over from the solvent, or physisorbed) can also cause the polymer to change dramatically. Additionally presence of molecular water in the polymer’s void volume has been validated through Positron Annihilation Lifetime (PAL) spectroscopy. In this presentation, polymer characterization and gas-separation testing results will be discussed.

  20. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; et al

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20more »mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  1. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOE Patents [OSTI]

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  2. Hubble's View of Transiting Planets

    E-Print Network [OSTI]

    David Charbonneau

    2004-10-27

    The Hubble Space Telescope is uniquely able to study planets that are observed to transit their parent stars. The extremely stable platform afforded by an orbiting spacecraft, free from the contaminating effects of the Earth's atmosphere, enables HST to conduct ultra-high precision photometry and spectroscopy of known transiting extrasolar planet systems. Among HST's list of successful observations of the first such system, HD 209458, are (1) the first detection of the atmosphere of an extrasolar planet, (2) the determination that gas is escaping from the planet, and (3) a search for Earth-sized satellites and circumplanetary rings. Numerous wide-field, ground-based transit surveys are poised to uncover a gaggle of new worlds for which HST may undertake similar studies, such as the newly-discovered planet TrES-1. With regard to the future of Hubble, it must be noted that it is the only observatory in existence capable of confirming transits of Earth-like planets that may be detected by NASA's Kepler mission. Kepler could reveal Earth-like transits by the year 2010, but without a servicing mission it is very unlikely that HST would still be in operation.

  3. VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation) Details hydrogen fuel cell buses being evaluated in service at AC Transit. Presented at the APTA Bus and...

  4. Adhesion Transition of Flexible Sheets

    E-Print Network [OSTI]

    Arthur A. Evans; Eric Lauga

    2009-05-31

    Intermolecular forces are known to precipitate adhesion events between solid bodies. Inspired by a macro-scale experiment showing the hysteretic adhesion of a piece of flexible tape over a plastic substrate, we develop here a model of far-field dry adhesion between two flexible sheets interacting via a power-law potential. We show that phase transitions from unadhered to adhered states occur as dictated by a dimensionless bending parameter representing the ratio of interaction strength to bending stiffness. The order of the adhesion transitions, as well as their hysteretic nature, is shown to depend on the form of the interaction potential between the flexible sheets. When three or more sheets interact, additional geometrical considerations determine the hierarchical or sequential nature of the adhesion transitions.

  5. Comparative Habitability of Transiting Exoplanets

    E-Print Network [OSTI]

    Barnes, Rory; Evans, Nicole

    2015-01-01

    Exoplanet habitability is traditionally assessed by comparing a planet's semi-major axis to the location of its host star's "habitable zone," the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an "eccentricity-albedo degeneracy" for the habitability of transiti...

  6. Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNatural GasDeKalb CountyBuses

  7. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  8. Transit Lightcurve Signatures of Artificial Objects

    E-Print Network [OSTI]

    Luc Arnold

    2005-03-27

    The forthcoming space missions, able to detect Earth-like planets by the transit method, will a fortiori also be able to detect the transit of artificial planet-size objects. Multiple artificial objects would produce lightcurves easily distinguishable from natural transits. If only one artificial object transits, detecting its artificial nature becomes more difficult. We discuss the case of three different objects (triangle, 2-screen, louver-like 6-screen) and show that they have a transit lightcurve distinguishable from the transit of natural planets, either spherical or oblate, although an ambiguity with the transit of a ringed planet exists in some cases. We show that transits, especially in the case of multiple artificial objects, could be used for the emission of attention-getting signals, with a sky coverage comparable to the laser pulse method. The large number of expected planets (several hundreds) to be discovered by the transit method by next space missions will allow to test these ideas.

  9. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore »by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  10. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States); Bak, Seong Min [Brookhaven National Lab. (BNL), Upton, NY (United States); Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, Xiao-Qing [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering; Nam, Kyung-Wan [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering] (ORCID:0000000162786369); Zhang, Lulu [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong); Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  11. Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends

    SciTech Connect (OSTI)

    Huo, Ming-Ming Zhang, Jian-Ping E-mail: hjhzlz@iccas.ac.cn; Department of Chemistry, Renmin University of China, Beijing 100872 ; Hu, Rong Xing, Ya-Dong Liu, Yu-Chen Ai, Xi-Cheng; Hou, Jian-Hui E-mail: hjhzlz@iccas.ac.cn

    2014-02-28

    Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b{sup ?}]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ?0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P{sup •+} yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC{sub 61}BM and PBDTTT-C:PC{sub 61}BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC{sub 61}BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P{sup •+} migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC{sub 61}BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.

  12. Blend Down Monitoring System Fissile Mass Flow Monitor Implementation at the ElectroChemical Plant, Zelenogorsk, Russia

    SciTech Connect (OSTI)

    Uckan, T.

    2005-11-11

    The implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the ElectroChemical Plant (ECP), Zelenogorsk, Russia, are presented in this report. The FMFM, developed at Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS), developed for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower-assay ({approx}4%) product low enriched uranium (P-LEU) to the United States from down-blended weapons-grade HEU are meeting the nonproliferation goals of the government-to-government HEU Purchase Agreement, signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999 and is successfully providing HEU transparency data to the United States. The second BDMS was installed at ECP in February 2003. The FMFM makes use of a set of thermalized californium-252 ({sup 252}Cf) spontaneous neutron sources for a modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments. The FMFM provides unattended, nonintrusive measurements of the {sup 235}U mass flow in the HEU, LEU blend stock, and P-LEU process legs. The FMFM also provides the traceability of the HEU flow to the product process leg. This report documents the technical installation requirements and the expected operational characteristics of the ECP FMFM.

  13. Dry-out and low temperature calcination of DST/SST waste blend high temperature melter feed

    SciTech Connect (OSTI)

    Smith, H.D.; Tracey, E.M.

    1996-02-01

    The FY1994 DST/SST blend was prepared in accordance with the DST/SST blend feed specification. The laboratory preparation steps and observations were compared with an existing experience base to verify the acceptability of the feed specification for simulant make-up. The most significant test results included a variety of features. Ferrocyanide breaks down to NH{sub 3} plus formate, during the low-temperature calcining phase of the tests. Ferrocyanide displayed no redox reactivity with the nitrates and nitrites contained in the slurry in the absence of sugar. Sugar displays a redox reaction with the nitrates and nitrites in the blend similar to the redox. reaction observed in the LLW feed simulant. Boiling of a free flowing slurry occurs at temperatures below about 120{degrees}C. When about 45% of the total water loss has occurred, the feed slurry congeals and continues to lose water, shrinking and developing shrinkage cracks. Water stops coming off between 350{degrees}C and 400{degrees}C. Slurry shear strength and viscosity strongly increase as the weight percent solids increases from 20 wt% to 45 wt%. The 45 wt% solids corresponds to approximately a 40 % water loss. The principle beat sensitivity for this material is the exothermic reaction which is activated when the temperature exceeds about 250{degrees}C. The breakdown of ferrocyanide to ammonia and formate under strongly basic conditions may begin at temperatures less than 100{degrees}C, but the rate increased strongly with increasing temperature and appeared to be completed in the time of our tests. Differential thermal analysis (DTA) results on feed slurry without and with ferrocyanide showed only endothermic behavior. This is consistent with the dry out and low temperature calcine studies which did not indicate any exothermic behavior for the feed slurry with and without ferrocyanide.

  14. VALIDATION OF FIRESIDE PERFORMANCE INDICES: FOULING/CORROSION EVALUATION OF MDF PARTICLEBOARD AND BLENDS WITH WHEAT STRAW BOARD

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; Jay R. Gunderson; Donald P. McCollor

    1999-02-01

    Sauder Woodworking currently fires a large portion of all wood wastes in a boiler producing process steam. It is investigating using particleboard made from wheat straw in its manufacturing process and is concerned with the effects of the inorganics on its boiler. Wheat straw board contains higher ash contents and increased levels of potassium, creating concern over fouling characteristics in Sauder's tight boiler design. In addition, the wheat straw board contains high concentrations of chlorine, which may affect boiler tube corrosion when fired in combination with the particleboard wastes currently generated. Sauder has engaged the services of the Energy & Environmental Research Center (EERC) at the University of North Dakota to investigate the potential detrimental effects of firing blends containing wheat straw on boiler tube fouling and corrosion. Additional funding for this project was provided through the U.S. Department of Energy Jointly Sponsored Research Program (DOE JSRP) project ''Validation of Fireside Performance Indices'' to validate, improve, and expand the PCQUEST (Predictive Coal Quality Effects Screening Tool) program. The PCQUEST fuel database is constantly expanding and adding new fuels, for which the algorithms may need refinement and additional verification in order to accurately predict index values. A key focus is on performing advanced and conventional fuel analyses and adding these analyses to the PCQUEST database. Such fuels include coals of all ranks and origins, upgraded coals, petroleum coke, biomass and biomass-coal blends, and waste materials blended with coal. Since there are differences in the chemical and mineral form of the inorganic content in biomass and substantial differences in organic matrix characteristics, analysis and characterization methods developed for coal fuels may not be applicable. The project was seen to provide an excellent opportunity to test and improve the ability of PCQUEST to handle nontypical soil and biomass minerals.

  15. Microgravity Flow Regime Transition Modeling 

    E-Print Network [OSTI]

    Shephard, Adam M.

    2010-07-14

    Flow regime transitions and the modeling thereof underlie the design of microgravity two-phase systems. Through the use of the zero-g laboratory, microgravity two-phase flows can be studied. Because microgravity two-phase flows exhibit essentially...

  16. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  17. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  18. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non?Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, Keith [National Renewable Energy Laboratory (NREL); West, Brian H [ORNL; Clark, Wendy [National Renewable Energy Laboratory (NREL); Graves, Ronald L [ORNL; Orban, John [Battelle, Columbus; Przesmitzki, Steve [National Renewable Energy Laboratory (NREL); Theiss, Timothy J [ORNL

    2009-02-01

    In summer 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20--gasoline blended with 15 and 20% ethanol--on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This first report provides the results available to date from the first stages of a much larger overall test program. Results from additional projects that are currently underway or in the planning stages are not included in this first report. The purpose of this initial study was to quickly investigate the effects of adding up to 20% ethanol to gasoline on the following: (1) Regulated tailpipe emissions for 13 popular late model vehicles on a drive cycle similar to real-world driving and 28 small non-road engines (SNREs) under certification or typical in use procedures. (2) Exhaust and catalyst temperatures of the same vehicles under more severe conditions. (3) Temperature of key engine components of the same SNREs under certification or typical in-use conditions. (4) Observable operational issues with either the vehicles or SNREs during the course of testing. As discussed in the concluding section of this report, a wide range of additional studies are underway or planned to consider the effects of intermediate ethanol blends on materials, emissions, durability, and driveability of vehicles, as well as impacts on a wider range of nonautomotive engines, including marine applications, snowmobiles, and motorcycles. Section 1 (Introduction) gives background on the test program and describes collaborations with industry and agencies to date. Section 2 (Experimental Setup) provides details concerning test fuels, vehicle and SNRE selection, and test methods used to conduct the studies presented in this report. Section 3 (Results and Discussion) summarizes the vehicle and SNRE studies and presents data from testing completed to date. Section 4 (Next Steps) describes planned future activities. The appendixes provide test procedure details, vehicle and SNRE emissions standards, analysis details, and additional data and tables from vehicle and SNRE tests.

  19. Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study

    SciTech Connect (OSTI)

    Haas, Francis M.; Chaos, Marcos; Dryer, Frederick L.

    2009-12-15

    In this brief communication, we present new experimental species profile measurements for the low and intermediate temperature oxidation of ethanol under knock-prone conditions. These experiments show that ethanol exhibits no global low temperature reactivity at these conditions, although we note the heterogeneous decomposition of ethanol to ethylene and water. Similar behavior is reported for an E85 blend in n-heptane. Kinetic modeling results are presented to complement these experiments and elucidate the interaction of ethanol and primary reference fuels undergoing cooxidation. (author)

  20. Baryon Transition in Holographic QCD

    E-Print Network [OSTI]

    Si-wen Li

    2015-09-24

    We propose a mechanism of holographic baryon transition in the Sakai-Sugimoto (SS) model: baryons in this model can jump to different states under the mediated effect of gravitons (or glueballs by holography). We consider a time-dependent gravitational perturbation from M5-brane solution of D=11 supergravity and by employing the relations between 11D M-theory and IIA string theory, we get its 10 dimensional counterpart in the SS model. Such a perturbation is received by the D4-branes wrapped on the $S^{4}$ part of the 10D background, namely the baryon vertex. Technically, baryons in the SS model are described by BPST instanton ansatz and their dynamics can be analyzed using the quantum mechanical system in the instanton's moduli space. In this way, different baryonic states are marked by quantum numbers of moduli space quantum mechanics. By holographic spirit, the gravitational perturbation enters the Hamiltonian as a time-dependent perturbation and it is this time-dependent perturbative Hamiltonian produces the transition between different baryonic states. We calculate the transition probability and get the selection rule and also compute the condition for baryon transition and give the possible transition processes in the limit $\\omega\\gg\\left|\\vec{k}\\right|^{2}$. Since in 10D language, the fluctuation from 11D metric are the perturbation of 10D metric and dilaton which are the modes carried by close strings, thus from the string theory point of view, our proposition can be accounted as the baryonic D4 brane jumps to different states by emitting or absorbing close strings coming from the bulk. In the viewpoints of QCD, it could be interpreted as that baryons transform to different states by interacting with glueballs as a low energy effective theory.

  1. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  2. Investigation of critical equivalence ratio and chemical speciation in flames of ethylbenzene-ethanol blends

    SciTech Connect (OSTI)

    Therrien, Richard J.; Ergut, Ali; Levendis, Yiannis A.; Richter, Henning; Howard, Jack B.; Carlson, Joel B.

    2010-02-15

    This work investigates five different one-dimensional, laminar, atmospheric pressure, premixed ethanol/ethylbenzene flames (0%, 25%, 50%, 75% and 90% ethanol by weight) at their soot onset threshold ({phi}{sub critical}). Liquid ethanol/ethylbenzene mixtures were pre-vaporized in nitrogen, blended with an oxygen-nitrogen mixture and, upon ignition, burned in premixed one-dimensional flames at atmospheric pressure. The flames were controlled so that each was at its visual soot onset threshold, and all had similar temperature profiles (determined by thermocouples). Fixed gases, light volatile hydrocarbons, polycyclic aromatic hydrocarbons (PAH), and oxygenated aromatic hydrocarbons were directly sampled at three locations in each flame. The experimental results were compared with a detailed kinetic model, and the modeling results were used to perform a reaction flux analysis of key species. The critical equivalence ratio was observed to increase in a parabolic fashion as ethanol concentration increased in the fuel mixture. The experimental results showed increasing trends of methane, ethane, and ethylene with increasing concentrations of ethanol in the flames. Carbon monoxide was also seen to increase significantly with the increase of ethanol in the flame, which removes carbon from the PAH and soot formation pathways. The PAH and oxygenated aromatic hydrocarbon values were very similar in the 0%, 25% and 50% ethanol flames, but significantly lower in the 75% and 90% ethanol flames. These results were in general agreement with the model and were reflected by the model soot predictions. The model predicted similar soot profiles for the 0%, 25% and 50% ethanol flames, however it predicted significantly lower values in the 75% and 90% ethanol flames. The reaction flux analysis revealed benzyl to be a major contributor to single and double ring aromatics (i.e., benzene and naphthalene), which was identified in a similar role in nearly sooting or highly sooting ethylbenzene flames. The presence of this radical was significantly reduced as ethanol concentration was increased in the flames, and this effect in combination with the lower carbon to oxygen ratios and the enhanced formation of carbon monoxide, are likely what allowed higher equivalence ratios to be reached without forming soot. (author)

  3. Combustion properties of coal-char blends: NO{sub x} emission characteristics. Interim final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Khan, L.; Khan, S. [Illinois State Geological Survey, Champaign, IL (United States); Smoot, L.D.; Germane, G.J.; Eatough, C.N. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1993-12-31

    Under pulverized coal combustion conditions, NO{sub x} formed during the release of volatile matter far exceed NO{sub x} formed from combustion of the resulting char. It is believed that interactions of NO{sub x} with char is responsible for the reduced NO{sub x} formation from the combustion of char. The goal of this research is to assess the potential technical and economical benefits of co-firing coal-char blends in pulverized coal boilers to reduce NO{sub x}. The rationale for the proposed research is that the presence of char in the flame during the initial stages of combustion may provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. This project is a cooperative effort between the Illinois State Geological Survey (ISGS) and BYU/ACERC. Seven hundred and fifty pounds of three coal-char blends containing 12.5%, 25%, and 50% char and 125 pounds of a coal-activated carbon blend containing 12.5% activated carbon were prepared. The volatile matter contents of the blends ranged from 27.3 to 35.6% (dry basis). Char (16.2 wt% volatile matter) was made from an Illinois No. 6 coal (Peabody Coal Company) in a continuous feed charring oven under mild gasification conditions. Nine combustion tests will be performed with the coal and blends in a 0.5--1.0 MBtu/hr combustor located at BYU. Combustion data will be analyzed to determine the effect of blend type, stoichiometry, and flame temperature on NO{sub x} formation, ignition characteristics, flame stability, and combustion efficiency. A four month no-cost extension has been requested for the project. The results of the combustion tests will be reported in the final technical report in December 1993.

  4. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry

    SciTech Connect (OSTI)

    Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-12-01

    High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

  5. Phase Transitions in the Early Universe

    E-Print Network [OSTI]

    Wainwright, Carroll Livingston

    2013-01-01

    rapid change in the minimum caused by either the disappearance of the phase or a second- order phase transition.

  6. Transit Infrastructure Finance Through Station Location Auctions

    E-Print Network [OSTI]

    Ian Carlton

    2009-01-01

    the transit operations and capital costs for various stationwill help yield greater capital cost coverage than they

  7. Transit Infrastructure Finance Through Station Location Auctions

    E-Print Network [OSTI]

    Ian Carlton

    2009-01-01

    Numerous route and station options Strong real estate marketreal estate market Transit friendly constituents Numerous route and station options

  8. Durability testing of a diesel fuel, methyl tallowate, and ethanol blend in a Cummins N14-410 diesel engine

    SciTech Connect (OSTI)

    Ali, Y.; Hanna, M.A. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-05-01

    A Cummins N14-410 diesel engine was operated on an 80:13:7% (v/v) blend of diesel fuel: methyl tallowate: ethanol. The standard 200-h Engine Manufacturers Association (EMA) test procedure was followed to test engine durability. Engine performance was evaluated in terms of power produced at rated speed, peak torque produced at a speed of 1200 rpm, and brake specific fuel consumption at both speeds. Engine exhaust emissions analyses were performed, and the engine oil was analyzed for accumulation of heavy metals at 45 h intervals. It was observed that engine performance was satisfactory for 148 h at which time the injector in cylinder 2 failed. The injector was changed, and after an additional 11 h (159 h total) of operation the injector in cylinder 5 failed. That injector was also replaced, and the 200-h procedure was continued. The test was discontinued after 197 h when the supply of the fuel blend was exhausted. The injectors were removed and the injector in cylinder 1 was observed to be coked. This injector was sent to the Cummins Engine Co. for analysis. It was found that failure of this injector was not because of the fuel used, but because of a crack had developed across the tip due to an excessively tight overhead adjustment. Engine oil analyses performed for accumulation of wear metals did not reveal any excessive wear on the engine parts. 12 refs., 4 figs., 3 tabs.

  9. Electronic transitions of palladium dimer

    SciTech Connect (OSTI)

    Qian, Yue; Ng, Y. W.; Chen, Zhihua; Cheung, A. S.-C., E-mail: hrsccsc@hku.hk [Department of Chemistry, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2013-11-21

    The laser induced fluorescence spectrum of palladium dimer (Pd{sub 2}) in the visible region between 480 and 700 nm has been observed and analyzed. The gas-phase Pd{sub 2} molecule was produced by laser ablation of palladium metal rod. Eleven vibrational bands were observed and assigned to the [17.1] {sup 3}II{sub g} - X{sup 3}?{sub u}{sup +} transition system. The bond length (r{sub o}) and vibrational frequency (?G{sub 1/2}) of the ground X{sup 3}?{sub u}{sup +} state were determined to be 2.47(4) Å and 211.4(5) cm{sup ?1}, respectively. A molecular orbital energy level diagram was used to understand the observed ground and excited electronic states. This is the first gas-phase experimental investigation of the electronic transitions of Pd{sub 2}.

  10. Articulated transition duct in turbomachine

    DOE Patents [OSTI]

    Flanagan, James Scott; McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray

    2014-04-29

    Turbine systems are provided. A turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion and a downstream portion. The upstream portion extends from the inlet between an inlet end and an aft end. The downstream portion extends from the outlet between an outlet end and a head end. The turbine system further includes a joint coupling the aft end of the upstream portion and the head end of the downstream portion together. The joint is configured to allow movement of the upstream portion and the downstream portion relative to each other about or along at least one axis.

  11. TRB-Transit Cooperative Research Program (TCRP): Case Studies...

    Open Energy Info (EERE)

    TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: TRB-Transit Cooperative Research...

  12. Fuel Cell Transit Bus Coordination and Evaluation Plan California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation...

  13. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results. Fourth Report

    SciTech Connect (OSTI)

    Eudy, Leslie; Post, Matthew

    2015-07-02

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The FCEBs in service at AC Transit are 40-foot, low-floor buses built by Van Hool with a hybrid electric propulsion system that includes a US Hybrid fuel cell power system and EnerDel lithium-based energy storage system. The buses began revenue service in May 2010.

  14. Phase Transition Behavior: from Decision to Optimization

    E-Print Network [OSTI]

    Walsh, Toby

    Phase Transition Behavior: from Decision to Optimization John Slaney Australian National University, therefore, that insights into decision problems gained by studying phase transition behavior could be useful is a rapid increase in problem diÆculty. The random 2-Sat transition is continuous (or \\2nd order

  15. Termination Analysis with Compositional Transition Invariants

    E-Print Network [OSTI]

    Kröning, Daniel

    Termination Analysis with Compositional Transition Invariants Daniel Kroening1 , Natasha Sharygina2 termination provers rely on a safety checker to con- struct disjunctively well-founded transition invariants that uses a light-weight check based on transitivity of ranking relations to prove program termination. We

  16. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  17. Transition 

    E-Print Network [OSTI]

    Welling, Lois

    1982-01-01

    as he approached the bed. Trying to postpone the inevitable? she asked herself, He lifted Annie and settled her onto the floor pallet. As he slid into bed he said, "I am not fooled, Susan. I know you are awake." She turned her back on him in a huff...

  18. Pressure-Induced Electronic Phase Transitions Transition Metal Oxides and Rare Earth Metals

    E-Print Network [OSTI]

    Islam, M. Saif

    Pressure-Induced Electronic Phase Transitions in Transition Metal Oxides and Rare Earth Metals Metal Oxides and Rare Earth Metals by Brian Ross Maddox Electron correlation can affect profound changes transition in a transition metal monoxide. iv #12;The lanthanides (the 4f metals also known as rare-earths

  19. TEXAS TRANSPORTATION INSTITUTE THE TEXAS A&M UNIVERSITY SYSTEM

    E-Print Network [OSTI]

    school buses. Two drive cycles were developed based on the real rural and urban drive cycle data emission along with other emissions, ambient weather condition, GPS readings, and vehicle engine data cycles for three fuel blends -- Texas Low Emissions Diesel as base fuel, B20 market blend, and B20 all

  20. Self-degradable Slag/Class F Fly Ash-Blend Cements

    SciTech Connect (OSTI)

    Sugama, T.; Warren, J.; Butcher, T.; Lance Brothers; Bour, D.

    2011-03-01

    Self-degradable slag/Class F fly ash blend pozzolana cements were formulated, assuming that they might serve well as alternative temporary fracture sealers in Enhanced Geothermal System (EGS) wells operating at temperatures of {ge} 200 C. Two candidate formulas were screened based upon material criteria including an initial setting time {ge} 60 min at 85 C, compressive strength {ge} 2000 psi for a 200 C autoclaved specimen, and the extent of self-degradation of cement heated at {ge} 200 C for it was contacted with water. The first screened dry mix formula consisted of 76.5 wt% slag-19.0 wt% Class F fly ash-3.8 wt% sodium silicate as alkali activator, and 0.7 wt% carboxymethyl cellulose (CMC) as the self-degradation promoting additive, and second formula comprised of 57.3 wt% slag, 38.2 wt% Class F fly ash, 3.8 wt% sodium silicate, and 0.7 wt% CMC. After mixing with water and autoclaving it at 200 C, the aluminum-substituted 1.1 nm tobermorite crystal phase was identified as hydrothermal reaction product responsible for the development of a compressive strength of 5983 psi. The 200 C-autoclaved cement made with the latter formula had the combined phases of tobermorite as its major reaction product and amorphous geopolymer as its minor one providing a compressive strength of 5271 psi. Sodium hydroxide derived from the hydrolysis of sodium silicate activator not only initiated the pozzolanic reaction of slag and fly ash, but also played an important role in generating in-situ exothermic heat that significantly contributed to promoting self-degradation of cementitious sealers. The source of this exothermic heat was the interactions between sodium hydroxide, and gaseous CO{sub 2} and CH{sub 3}COOH by-products generated from thermal decomposition of CMC at {ge} 200 C in an aqueous medium. Thus, the magnitude of this self-degradation depended on the exothermic temperature evolved in the sealer; a higher temperature led to a sever disintegration of sealer. The exothermic temperature was controlled by the extent of thermal decomposition of CMC, demonstrating that CMC decomposed at higher temperature emitted more gaseous reactants. Hence, such large emission enhanced the evolution of in-situ exothermic heat. In contrast, the excessive formation of geopolymer phase due to more incorporation of Class F fly ash into this cementitious system affected its ability to self-degrade, reflecting that there was no self-degradation. The geopolymer was formed by hydrothermal reactions between sodium hydroxide from sodium silicate and mullite in Class F fly ash. Thus, the major reason why geopolymer-based cementitiuos sealers did not degrade after heated sealers came in contact with water was their lack of free sodium hydroxide.