Powered by Deep Web Technologies
Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Blast furnaces make way for new steel technology  

Science Conference Proceedings (OSTI)

Increasingly stringent environmental regulations, aging production units, and a competitive market are forcing iron and steelmakers to improve the environmental performance and cost efficiencies of their processes. The traditional integrated steel unit isn`t obsolete -- yet. Blast furnaces will be around for at least another 15 years. However, traditional technology is in for some changes, and stepped up rivalry from electric arc furnace minimills and ironmaking processes that use gas or coal. The paper discusses direct iron making processes, the DRI-minimill connection, the iron carbide process, and reclaiming iron from waste.

Ondrey, G.; Parkinson, G.; Moore, S.

1995-03-01T23:59:59.000Z

2

Partially Reduced Feedstocks and Blast Furnace Ironmaking ...  

Science Conference Proceedings (OSTI)

... Partially Reduced Feedstocks and Blast Furnace Ironmaking Carbon Intensity ... simple Rist-style blast furnace mass and energy balance, assuming furnace ...

3

Blast Furnace Granulated Coal Injection System Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880,...

4

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

Science Conference Proceedings (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

5

Maximum Rate of Pulverized Coal Injection into Blast Furnace with ...  

Science Conference Proceedings (OSTI)

The pulverized coal consumption efficiency is determined by means of microscopic and chemical analysis. The carbon structure of coke fines in the blast furnace ...

6

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

7

Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993  

Science Conference Proceedings (OSTI)

A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-12-31T23:59:59.000Z

8

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

9

Blast furnace granular coal injection project. Annual report, January--December 1993  

SciTech Connect

This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

1994-06-01T23:59:59.000Z

10

Strategic evaluation of investments in coal-dust fuel for blast furnaces  

SciTech Connect

The paper discusses the evaluation of venture investment projects in pulverized coal injection into blast furnaces.

S.V. Bogdanov; S.M. Kornilaev [State University of Management, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

11

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

12

Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994  

Science Conference Proceedings (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States)

1994-09-01T23:59:59.000Z

13

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

14

Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal  

SciTech Connect

This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

1997-11-01T23:59:59.000Z

15

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

16

Coke mineral transformations in the experimental blast furnace  

SciTech Connect

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

17

System for generating power with top pressure of blast furnaces  

SciTech Connect

A system for generating power with the top pressure of a plurality of blast furnaces by leading a gas from the top of the furnaces into turbines, corresponding in number to the furnaces, to convert the pressure of the gas into rotational energy and generate power by a generator coupled to the turbines. The turbines connected to the furnaces by main gas channels individually are aligned with their rotor shafts connected together into a single shaft which is connected to the generator. Preferably each pair of the adjacent turbines are arranged with their intake ends positioned in the center of the arrangement so that the gas flows toward the exhaust ends at both sides, or with their intake ends positioned at both sides to cause the gas to flow toward the exhaust ends in the center. The single shaft connecting the pair of turbines together has no intermediate bearing between these turbines.

Kihara, H.; Mizota, T.; Ohmachi, M.; Takao, K.; Toki, K.; Tomita, Y.

1983-06-14T23:59:59.000Z

18

Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-05-01T23:59:59.000Z

19

Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-06-01T23:59:59.000Z

20

The Utilization and Recovery of Energy from Blast Furnaces and Converters  

E-Print Network (OSTI)

The Bischoff Blast Furnace Top Gas Process for high pressure blast furnaces is presented as an example of a modern gas treatment process in the iron and steel industry: the work potential of the high pressure top gas is utilized in a plant comprising a gas cleaning unit for dust removal and a turbine for converting the recoverable thermal energy into mechanical and electrical energy. The adjustable annular gap scrubber for separating fine dust also serves as an element for regulating the gas pressure at the blast furnace top so that pressure control by the turbine and its control gear is no longer necessary. Moreover, in the event of a turbine outage the annular gap scrubber can be used as a low noise, pressure-throttling element. The economic use of a turbine for recovering energy from top gas depends on many parameters, such as top pressure, top gas rate, clean gas temperature, local cost of electric power, etc. A profitability analysis for a specific installation shows a remarkably short payback period. The process incorporates a new concept in blast air compression. Mechanical energy from the turbine is transferred directly to the axial flow compressor so that the prior conversion of energy via the power generating cycle is dispensed with. Coupled to the turbine is the compressor motor which, while rated to cover the full power requirement, uses about 40% less electrical power from the power supply system. Finally, as an example of the future potential of this process, a new continuous steelmaking process is presented which employs a closed top converter. The gas, held under pressure during refining, is subsequently cleaned and expanded as the blast furnace process described above. This gas is cleaned without any entrainment of air to furnish a gaseous fuel of high calorific value. Since the steelmaking process is continuous, the gas is constantly available and can be fed into the distribution system without any intermediate storage.

Hegemann, K. R.; Niess, T.; Baare, R. D.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-12-31T23:59:59.000Z

22

Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge  

SciTech Connect

Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

2009-03-15T23:59:59.000Z

23

Ladle Refining Furnaces for the Steel Industry  

Science Conference Proceedings (OSTI)

There has been a tremendous interest in the use of ladle refining furnaces in the last few years. Several units have been or are being constructed in the United States and most steel companies are seriously considering installing them. The purpose of this report is to inform the member companies of EPRI of the development and operations of ladle furnaces and to assist steel companies in determining if ladle furnaces fit their goals and which particular unit would be best for their operation. In this repo...

1990-01-31T23:59:59.000Z

24

Mathematical modelling of the flow and combustion of pulverized coal injected in ironmaking blast furnace.  

E-Print Network (OSTI)

??Pulverized coal injection (PCI) technology is widely practised in blast furnace ironmaking due to economic, operational and environmental benefits. High burnout of pulverized coal in… (more)

Shen, Yansong

2008-01-01T23:59:59.000Z

25

Production and blast-furnace smelting of boron-alloyed iron-ore pellets  

Science Conference Proceedings (OSTI)

Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

A.A. Akberdin; A.S. Kim [Abishev Chemicometallurgical Institute, Abishev (Kazakhstan)

2008-08-15T23:59:59.000Z

26

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

27

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Selected Iron and Steel Industries, 1994. Besides steel mills and blast furnaces, the primary metals industry also ...

28

Blast response comparison of multiple steel frame connections  

Science Conference Proceedings (OSTI)

When a structural steel frame is subjected to blast, the beam-to-column connections, which are responsible for load transfer between different members within the frame, play a major role in structural response. This paper presents results of a comparative ... Keywords: Blast loads, Connections, Displacement, Explosions, Finite element method, Stress

Girum S. Urgessa; Tomasz Arciszewski

2011-07-01T23:59:59.000Z

29

Using coal-dust fuel in Ukrainian and Russian blast furnaces  

SciTech Connect

Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin [Donetsk National Technical University, Donetsk (Russian Federation)

2008-02-15T23:59:59.000Z

30

Variation in coke properties within the blast-furnace shop  

SciTech Connect

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

31

SURFACE PREPARATION OF STEEL SUBSTRATES USING GRIT-BLASTING  

Science Conference Proceedings (OSTI)

The primary purpose of grit blasting for thermal spray applications is to ensure a strong mechanical bond between the substrate and the coating by the enhanced roughening of the substrate material. This study presents statistically designed experiments that were accomplished to investigate the effect of abrasives on roughness for A36/1020 steel. The experiments were conducted using a Box statistical design of experiment (SDE) approach. Three grit blasting parameters and their effect on the resultant substrate roughness were investigated. These include blast media, blast pressure, and working distance. The substrates were characterized for roughness using surface profilometry. These attributes were correlated with the changes in operating parameters. Twin-Wire Electric Arc (TWEA) coatings of aluminum and zinc/aluminum were deposited on the grit-blasted substrates. These coatings were then tested for bond strength. Bond strength studies were conducted utilizing a portable adhesion tester following ASTM standard D4541.

Donna Post Guillen; D. J. Varacalle, Jr.; D. Deason; W. Rhodaberger; E. Sampson

2005-05-01T23:59:59.000Z

32

Plasma as a Blast Furnace Supplement: An Evaluation of Thermal Plasma Energy to Heat Blast Air for Iron Productiion, CMP Report No. 89-1  

Science Conference Proceedings (OSTI)

This study evaluates the use of thermal plasma heat for blast superheating in iron blast furnace operation. The basic research for this technology was carried out in the 1970's, primarily by the Centre des Recherches Metallurgiques (CRM) in Belgium. The main impetus for development was to increase productivity and efficiency and to decrease coke consumption. This was achieved by replacing some coke fuel by alternative injectant fuels (CH4, oil, coal, etc.) and compensating for these injectants by increas...

1990-10-31T23:59:59.000Z

33

Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein

34

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

35

Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength  

SciTech Connect

Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

Stanislav S. Gornostayev; Jouko J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2006-12-15T23:59:59.000Z

36

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

37

Improving both bond strength and corrosion resistance of steel rebar in concrete by water immersion or sand blasting of rebar  

Science Conference Proceedings (OSTI)

Water immersion (2 days) and sand blasting were similarly effective for treating steel rebars for the purpose of improvement steel-concrete bond strength and corrosion resistance of steel in concrete. The increase in bond strength is due to surface roughening in the case of sand blasting and the presence of a surface layer in the case of water immersion. The increase in corrosion resistance is due to the surface uniformity rendered by either treatment.

Hou, J.; Fu, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

1997-05-01T23:59:59.000Z

38

Automatic control in the iron and steel industry  

Science Conference Proceedings (OSTI)

Basic iron and steel production processes, starting in the blast furnace and followed by steelmaking and rolling procedures, have not been altered greatly, although there have been modifying developments in individual processes, such as a basic oxygen ...

T. Isobe

1970-01-01T23:59:59.000Z

39

Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts  

SciTech Connect

The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

2012-03-01T23:59:59.000Z

40

Effect of grit blasting on the stress corrosion cracking behavior of line pipe steel  

SciTech Connect

The beneficial effect of grit blasting is demonstrated by experiments in which the threshold stress for SCC was determined for various blasting conditions. Although the introduction of compressive stresses, surface deformation and mill scale removal all contribute to the increase in SCC resistance, removal of mill scale on the surface had the most significant effect.

Koch, G.H.; Barlo, T.J.; Berry, W.E.

1984-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tube furnace  

DOE Patents (OSTI)

A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

1990-01-01T23:59:59.000Z

42

Enameling Furnaces  

Science Conference Proceedings (OSTI)

Table 13 Cycles for firing ground-coated and cover-coated sheet steel parts in a continuous furnace...Architectural panels 16-22 805 1480 2-4 Home laundry equipment 18-22 805 1480 4-5 Water heater tanks 7-16 870 1600 8-12 Range equipment 18-24 805 1480 3-5 Sanitary ware 14-18 815 1500 4-6 Signs 16-22 805 1480 3-5 (a) Temperature varies with composition of frit. (b) Time in hot zone of furnace...

43

Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry  

E-Print Network (OSTI)

The aim of this paper is to analyze the possibilities for energy efficiency improvements through utilization of measurement and automatic control; this includes both direct fuel savings and indirect savings due to product quality improvements. Focus is on energy use in steel reheating furnaces for rolling mills. The demands on the reheating process and the operational conditions that are essential for its control are described. An analysis is made of possible reductions in energy use as a result of improved control. A survey is included of furnace control systems in steel plants; such equipment has been designed and implemented in order to optimize the reheating process. Reports of achieved savings are presented, and demands on measurement and control systems for successful implementation are discussed. Economic analyses, in terms of life cycle costs and estimated savings, are made for three levels of measurement and control systems. Reductions in energy use of up to 20 percent can be expected for the type of process studied, as a result of investments in information technology; it is also concluded that such investments are cost-effective.

Martensson, A.

1992-04-01T23:59:59.000Z

44

A model for temperature prediction of melted steel in the electric arc furnace (EAF)  

Science Conference Proceedings (OSTI)

A constant aspiration to optimize electric arc steelmaking process causes an increase of the use of advanced analytical methods for the process support. The goal of the paper is to present the way to predict temperature of melted steel in the electric ...

Marcin Blachnik; Krystian M?czka; Tadeusz Wieczorek

2010-06-01T23:59:59.000Z

45

Beth Steel for pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Blast Furnace Granular Coal Injection System Demonstration Project TOPICAL REPORT NUMBER 15 NOVEMBER 1999 TOPICAL REPORT NUMBER 15 A report on a project conducted jointly under a...

46

Joint TVA EPRI Evaluation of Steel Arc Furnace Regulation Impacts and Potential Innovative Mitigation Solutions: Phase I  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA) is considering the costs and benefits of serving arc furnace loads. One potential adverse power system impact of arc furnaces is that their electric power consumption is extremely volatile and can significantly impact the short-term frequency regulation requirements of the TVA power system, increasing the regulating reserve requirements needed to meet North American Electric Reliability Council (NERC) reliability criteria. A one-month analysis of TVA regulation ...

2013-12-13T23:59:59.000Z

47

Law Vendor Coupon Co2 Blasting Tests  

SciTech Connect

The objectives identified in the test specification for the vendor CO2 blasting tests are to determine the ability of CO2 blasting to remove a measurable amount of surface material from Type 304L stainless steel and to identify the approximate blasting parameters for future testing on radioactively contaminated coupons.

May, C.G.

2003-07-25T23:59:59.000Z

48

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

Science Conference Proceedings (OSTI)

In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30T23:59:59.000Z

49

Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steel Manufacturer Proves Its "Mittal" by Doing More with Less Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy November 2, 2010 - 12:15pm Addthis ArcelorMittal, Department of Energy and elected officials gather for the groundbreaking in front of North America’s largest blast furnace. ArcelorMittal, Department of Energy and elected officials gather for the groundbreaking in front of North America's largest blast furnace. Isaac Chan The industrial sector consumes about a third of all energy used in the United States. A large portion of this energy is lost through inefficiencies. The Department of Energy under the American Recovery and Reinvestment Act is investing millions of dollars to help the United States

50

G2: Antibacterial Ceramic Fabricated by the Ti-bearing Blast ...  

Science Conference Proceedings (OSTI)

On-Site Speaker (Planned), Ang Tian. Abstract Scope, The comprehensive utilization of Ti-bearing blast furnace slag was a technological problem that was ...

51

Recycling of waste polymers in electric arc furnace steelmaking: slag/carbon and steel/carbon interactions.  

E-Print Network (OSTI)

??This project is focused on utilizing polymer/coke blends as carbon resource in EAF steelmaking process. In-depth investigations were carried out on slag/carbon and steel/carbon interactions… (more)

Kongkarat, Somyote

2011-01-01T23:59:59.000Z

52

How Godzilla Ate Pittsburgh: The Long Rise of the Japanese Iron and Steel Industry, 1900–1973  

E-Print Network (OSTI)

iron works, attempts at coke-?red blast furnace operationrst time enabled Japanese coke to fuel blast furnaces. NoroAt U7.0 per ton, the cost of coke for Yawata also compared

Bernard Elbaum

2007-01-01T23:59:59.000Z

53

Cupola Furnace Computer Process Model  

Science Conference Proceedings (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

54

Furnace assembly  

DOE Patents (OSTI)

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

55

Surface decontamination utilizing mechanical vacuum blasting methods  

SciTech Connect

As part of the Shippingport Station Decommissioning Project (SSDP) surface decontamination effort, vacuum blasting techniques were utilized to remove fixed radioactive contamination entrained in steel and concrete painted surfaces to meet on-site and off-site release limits. Removal of contaminated paint by vacuum blasting was restricted to selected areas of the project. Specifically, this technique was applied only when it was determined to be cost-effective compared to other methods of paint removal or direct disposal of the bulk material as contaminated waste. As the lower portions of the reactor plant container painted steel surface was eligible for this surface decontamination technique. A performance summary of the results obtained using vacuum blasting is included. Based on these results, it is concluded that application of vacuum blasting techniques was effective in terms of removal rate, person-hours expended, and waste generated.

McKernan, M.L.; Schulmeister, A.R.

1988-01-01T23:59:59.000Z

56

Recent Developments in Steel Processing  

Science Conference Proceedings (OSTI)

A New Technology of Shot Blasting and Pickling in S31803 Duplex Stainless Steel Plate and GR2 Titanium Plate · Analysis of Scale Deformation and Fracture in ...

57

Application of Regenerative Combustion Technology on Reheating Furnace in PISCO  

Science Conference Proceedings (OSTI)

The key features of the regenerative combustion technology were introduced and its application in the reheating furnace of Rail & Beam plant of PISCO£¨Panzhihua Iron & Steel Co.£©was discussed£®Comparedwith the traditional combustion technology£¬the ... Keywords: Regenerative Style, Combustion Technology, Reheating Furnace, Energy Conservation

Chen Yong; Pan Hong; Xue Nianfu

2011-02-01T23:59:59.000Z

58

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites.

William S. McPhee

2001-08-31T23:59:59.000Z

59

Furnaces and Energy  

Science Conference Proceedings (OSTI)

Cast Shop for Aluminum Production: Furnaces and Energy ... Computational Analysis of Thermal Process of a Regenerative Aluminum Melting Furnace: Jimin ... and the appearance of innovative and competing stirrer systems in the market.

60

Furnace Design and Operation  

Science Conference Proceedings (OSTI)

...S. Lampman, Energy-Efficient Heat-Treating Furnace Design and Operation, Heat Treating, Vol 4, ASM Handbook, ASM International,

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Anode Baking Furnace Operation  

Science Conference Proceedings (OSTI)

The course is directed toward plant managers, anode area managers, process engineers, technical managers, and baking furnace ... ENERGY MANAGEMENT.

62

Blasting agent for blasting in hot boreholes  

SciTech Connect

A blasting agent is described which is resistant to decomposition when exposed to elevated temperatures (e.g., 325 to 350 F) for 24 hr. It is composed of an inorganic oxidizing salt such as ammonium nitrate; a high-boiling liquid oxygen-containing organic fuel, e.g., dibutyl phthalate; a densifying agent such as ferrophosphorus and a coating agent such as calcium stearate. A primer assembly contains the thermally stable blasting agent in a cartridge can. The assembly has a well at one end containing a high-explosive booster attached to high-energy detonating cord, which is in initiating relationship with a blasting cap. The metal-cartridged blasting agent and primer assembly are useful for blasting in hot boreholes, which can be either wet or dry. 9 claims.

Schaefer, W.E.

1974-06-25T23:59:59.000Z

63

Energy Flow Models for the Steel Industry  

E-Print Network (OSTI)

Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated against both our energy end use and material flow models. These models can serve as the base case for simulating changes in energy utilization and waste streams for steelmaking spurred by economic or regulatory conditions or technology innovations.

Hyman, B.; Andersen, J. P.

1998-04-01T23:59:59.000Z

64

Energy saving furnace controller  

Science Conference Proceedings (OSTI)

This patent describes a forced air heating system including a furnace controlled by a household thermostat. The furnace includes a burner, burning valve, heat exchanger, plenum and fan for circulating air through the heat exchanger and plenum. An auxiliary controller comprises: relay means connectable between the household thermostat and the furnace burner valve; and timing means for controlling the duty cycle of the furnace burner valve by opening and closing the relay. The timing means includes means for timing alternating first and second intervals, the first interval at least substantially equal to the length of time the furnace delays between a cell for heat from the household thermostat and the start of the furnace fan when the furnace is started from a cool state. The second interval corresponds to a percentage of the first interval.

Johnson, H.R.; Lombardi, S.E.

1987-05-26T23:59:59.000Z

65

ThermonucleotideBLAST  

NLE Websites -- All DOE Office Websites (Extended Search)

ThermonucleotideBLAST ThermonucleotideBLAST ThermonucleotideBLAST ThermonucleotideBLAST is a software program for searching a target database of nucleic acid sequences using an assay specific query. October 10, 2013 software Given two samples of sequences, for which the user provides an input file with corresponding genetic distances (pairwise), the program performs a t-test to see whether the two mean genetic distances are significantly different. Available for thumbnail of Feynman Center (505) 665-9090 Email ThermonucleotideBLAST ThermonucleotideBLAST is a software program for searching a target database of nucleic acid sequences using an assay specific query. Licensing Status: Available for Express Licensing (?). This software is open source. To download, please visit ThermonucleotideBLAST website. For more

66

Furnaces and Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating.

67

ELECTRIC BLASTING INITIATOR  

SciTech Connect

An electric blasting initiator comprises a shell, a high explosive material within the shell, and an exploding bridge wire in contact with said explosive material. (AEC)

Johnston, L.H.

1962-06-26T23:59:59.000Z

68

Abrasive Blast Cleaning  

Science Conference Proceedings (OSTI)

...tightly adhering scale during annealing. Sand blasting is fast and economical, but must be followed by an acid pickling treatment for removal of embedded scale particles....

69

Blast Effects Suppression System  

The HydroSuppressor system was developed to protect critical facilities from the devastating effects of blast from a vehicle bomb.  HydroSuppressor ...

70

Surface mine blasting near pressurized transmission pipelines  

Science Conference Proceedings (OSTI)

The US Bureau of Mines and the State of Indiana cooperated with AMAX Coal Co. and its consultants to determine the effects of coal mine overburden blasting on nearby pipelines. Five pressurized 76-m pipeline sections were installed on the Minnehaha Mine highwall near Sullivan, IN, for testing to failure. Four 17- to 51-cm-diameter welded steel pipes and one 22-cm PVC pipe were monitored for vibration, strain, and pressure for a period of 6 months while production blasting advanced up to the test pipeline field. In contrast to previous studies of small-scale, close-in blasting for construction, these tests involved overburden blasts of up to 950 kg per delay in 31-cm blastholes. Analyses found low pipe responses, strains, and calculated stresses from even large blasts. Ground vibrations of 120 to 250 mm/s produced worst case strains that were about 25 pcts of the strains resulting from normal pipeline operations and calculated stresses of only about 10 to 18 pct of the ultimate tensile strength. No pressurization failures or permanent strains occurred even at vibration amplitudes of 600 mm/s.

Siskind, D.E.; Stagg, M.S.; Wiegand, J.E.; Schultz, D.L.

1994-12-31T23:59:59.000Z

71

Furnace Black Characterization  

E-Print Network (OSTI)

Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher #12 of Crystallographic Studies #12;005F7 Methodologies #12;005F8 Summary · For all furnace carbon black 12� Surface Unorganized Carbon Identified #12;005F11 SRCC's Model #12;005F12 Carbon Black Surface Activity

72

Surface decontamination utilizing mechanical vacuum blasting methods  

Science Conference Proceedings (OSTI)

As part of the Shippingport Decommissioning Project surface decontamination effort vacuum blasting techniques were utilized to remove fixed radioactive contamination entrained in steel and concrete painted surfaces to meet on-site and off-site release limits. Removal of contaminated paint by vacuum blasting was restricted to select areas of the project. Specifically, this technique was applied only when it was determined to be cost effective compared to other methods of paint removal or direct disposal of the bulk material as contaminated waste. As a result of pre-decontamination surveys it was determined that the lower portions of the Reactor Plant Container painted steel surface was eligible for this surface decontamination technique. 3 refs., 1 tab.

McKernan, M.L.; Schulmeister, A.R.

1988-01-01T23:59:59.000Z

73

143 Research of Iron Slag Appearance of Blast Furnace Hearth  

Science Conference Proceedings (OSTI)

005 Calcium Phosphates for Drug Carrier: Adsorption and Release Kinetics of Drugs ... 058 Properties Optimization of Refractory Mineral Resources in China.

74

Microscopic Study of Slags from a Secondary Lead Blast Furnace  

Science Conference Proceedings (OSTI)

Novel Forming Techniques in Fabrication of Powder-based Metals via Current Activated Tip-Based Sintering (CATS) · Particle Size Distribution of Natural ...

75

Modelling Pulverized Coal Injection in a Blast Furnace  

Science Conference Proceedings (OSTI)

Symposium, CFD Modeling and Simulation in Materials Processing ... These models are useful for understanding the flow-thermo-chemical behaviours and then ...

76

Development and Practice of Blast Furnace Physical Heat Index ...  

Science Conference Proceedings (OSTI)

Application of Computational Thermodynamics in Solid Oxide Fuel Cell ... Heat Index Based on the Hot Metal Silicon Content and Temperature Prediction Model

77

A CFX-based Model of Ironmaking Blast Furnace Considering ...  

Science Conference Proceedings (OSTI)

Direct Numerical Simulation of Inclusion Turbulent Deposition at Liquid ... Flow and Shrinkage Pipe Formation on Macrosegregation of Investment Cast -TiAl Alloys ... Numerical Modeling of the Interaction between a Foreign Particle an ...

78

Dry Granulation of Molten Blast Furnace Slag and Heat Recovery ...  

Science Conference Proceedings (OSTI)

Meeting the Materials Challenges to Enable Clean Coal Technologies ... Study on Drying Characteristics of Australian Brown Coal Using Superheated Steam.

79

The Study of Coal Gasification by Molten Blast Furnace Slag  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Waste Heat Recovery. Presentation Title, The Study of Coal Gasification by ...

80

Development and Practice of Blast Furnace Hearth Deadman Core ...  

Science Conference Proceedings (OSTI)

Analysis of Residence Time Distribution (RTD) of Fluid Flows in a Four Strand Delta-shaped Tundish Operating Under Isothermal and Non-isothermal ...

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mathematical Modeling of Burden Distribution in a Blast Furnace  

Science Conference Proceedings (OSTI)

Analysis of Residence Time Distribution (RTD) of Fluid Flows in a Four Strand Delta-shaped Tundish Operating Under Isothermal and Non-isothermal ...

82

Stable blasting slurry  

SciTech Connect

This invention relates to stable blasting slurry systems useful particularly with the latest blasting slurry trucks, involving the preparation of particular new fuel liquids mixed with particular oxidizer liquids and including in most emodiments solid oxidizers and solid fuels. (44 claims)

Cook, M.A.

1978-04-18T23:59:59.000Z

83

Lightweight blast shield  

DOE Patents (OSTI)

A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

Mixon, Larry C. (Madison, AL); Snyder, George W. (Huntsville, AL); Hill, Scott D. (Toney, AL); Johnson, Gregory L. (Decatur, AL); Wlodarski, J. Frank (Huntsville, AL); von Spakovsky, Alexis P. (Huntsville, AL); Emerson, John D. (Arab, AL); Cole, James M. (Huntsville, AL); Tipton, John P. (Huntsville, AL)

1991-01-01T23:59:59.000Z

84

Manhattan Project: Blast  

Office of Scientific and Technical Information (OSTI)

Blast (Animation) Blast (Animation) Yucca Flat, Nevada (March 17, 1953) Resources > Photo Gallery Blast Animation The eight images above are a sequence of photographs of a house constructed 3,500 feet from "ground zero" at the Nevada Test Site being destroyed by the Annie test shot. The only source of light was the blast itself, detonated on March 17, 1953. The final image is two-and-one-third seconds after detonation. In the second image the house is actually on fire, but in the third image the fire has already been blown out by the blast. Annie, part of the "Upshot-Knothole" test series, had a yield of 16 kilotons, roughly the same size as the Trinity, Hiroshima, and Nagasaki explosions. Two photographs of the Annie mushroom cloud are at the bottom of this page.

85

Passive blast pressure sensor  

DOE Patents (OSTI)

A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

King, Michael J.; Sanchez, Roberto J.; Moss, William C.

2013-03-19T23:59:59.000Z

86

Furnace Black Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Black Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher 005F 2 Definitions Particle Aggregate = 20nm to 100nm "Diameter" = 200nm to 1,000nm "Length" = Set of Percolated Aggregates Particle (?) Aggregate Agglomerate Constituents Size = Tech/Scientific Challenge 005F 3 Furnace Process High Temperature Refractory Feedstock Oil Air Natural Gas Reaction Zone Quench 005F 4 Specific Surface Area 005F 5 Structure 3-D Morphology Key Characteristic Summary of Crystallographic Studies 005F 7 Methodologies 005F 8 Summary * For all furnace carbon black 12Å < L C < 17Å * Crystallite L a ≈ 25Å * Amorphous Carbon * No micropores * Very few surface groups (hetero atoms) { 005F 9 Effect of Heat Treatment on Amorphous Carbon

87

Furnace Systems Technology Workshop  

Science Conference Proceedings (OSTI)

TMS Networking and Online Tools, X ... TMS Social Network and Site Tools .... furnace technology, fundamentals of fans and blowers, reduction of melt loss, refractory ... Sutton - Harbison-Walker Refractories; Jon Gillespie - Gillespie & Powers ...

88

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

89

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

90

A New Technology of Shot Blasting and Pickling in S31803 Duplex ...  

Science Conference Proceedings (OSTI)

Presentation Title, A New Technology of Shot Blasting and Pickling in S31803 Duplex Stainless Steel Plate and GR2 Titanium Plate. Author(s), Qin Wei. On-Site  ...

91

Vibrations from underground blasting  

SciTech Connect

The Bureau of Mines has investigated vibration levels produced by blasting at four underground sites to establish how such factors as type of explosive, delay blasting, charge weight, and geology affect amplitudes of ground motion. A summary of the work is presented and the results of further analysis of the data are discussed. Square root scaling was found applicable to two of the underground sites and could be applied with minor error to all the sites. Comparison of empirical propagation equations in the different rock types indicates that although the site effect is apparent, the combined data may be used as a basis for engineering estimates of vibration amplitudes from subsurface blasting in many different rock types. Recommendations for predicting and minimizing vibration amplitudes from underground blasts are given.

Snodgrass, J.J.; Siskind, D.E.

1964-01-01T23:59:59.000Z

92

Blasting charge and method  

SciTech Connect

This is a process for setting off a blasting charge employing nitrate explosions in a thick aqueous slurry. There is formed in the bore a blasting charge consisting, in part, of a thick aqueous slurry of dispersed ammonium nitrate particles as the predominant explosive material with or without a lesser amount of sodium, calcium, or other nitrate in like dispersion. In addition, one or more localized or undispersed solid bodies of booster explosive are included in the body of the slurry. Conventional means are used for detonating the booster, such as a blasting cap, an electric blasting cap, or a detonating fuse. The slurry may be formed in the bore or may be preformed and packaged for shipment, the latter being preferable.

Towle, L.W.

1966-02-22T23:59:59.000Z

93

ESF BLAST DESIGN ANALYSIS  

SciTech Connect

The purpose and objective of this design analysis are to develop controls considered necessary and sufficient to implement the requirements for the controlled drilling and blasting excavation of operations support alcoves and test support alcoves in the Exploratory Studies Facility (ESF). The conclusions reached in this analysis will flow down into a construction specification ensuring controlled drilling and blasting excavation will be performed within the bounds established here.

E.F. fitch

1995-03-13T23:59:59.000Z

94

Computer cast blast modelling  

SciTech Connect

Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. The more overburden removed by explosives, the less blasted material there is left to be transported with mechanical equipment, such as draglines and trucks. In order to optimize the percentage of rock that is cast, a higher powder factor than normal is required plus an initiation technique designed to produce a much greater degree of horizontal muck movement. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC, applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the DMC can perform a blast simulation in 0.5 hours on the SUN SPARCstation 10--41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC computer. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

Chung, S. [ICI Explosives Canada, North York, ON (Canada); McGill, M. [ICI Explosives USA, Dallas, TX (United States); Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

95

Decontamination of DWPF canisters by glass frit blasting  

SciTech Connect

High-level radioactive waste at the Savannah River Plant will be incorporated in borosilicate glass for permanent disposal. The waste glass will be encapsulated in a 304L stainless steel canister. During the filling operation the outside of the canister will become contaminated. This contamination must be reduced to an accepable level before the canister leaves the Defense Waste Processing Facility (DWPF). Tests with contaminated coupons have demonstrated that this decontamination can be accomplished by blasting the surface with glass frit. The contaminated glass frit byproduct of this operation is used as a feedstock for the waste glass process, so no secondary waste is created. Three blasting techniques, using glass frit as the blasting medium, were evaluated. Air-injected slurry blasting was the most promising and was chosen for further development. The optimum parametric values for this process were determined in tests using coupon weight loss as the output parameter. 1 reference, 13 figures, 3 tables.

Ward, C.R.; Rankin, W.N.

1984-01-01T23:59:59.000Z

96

EQUIPMENT DECONTAMINATION BY ABRASIVE BLASTING IN THE PROCESSING REFABRICATION EXPERIMENT  

SciTech Connect

The purpose of this work was to investigate abrasive blasting as a method for decontamination of radioactive Process Refabrication Experiment (PRE) in-cell equipment. Experiments were carried out, initially with nonradioactive materials, and then with low-level radioactive materials to determine the proper operating conditions and effectiveness of abrasive blasting. It was concluded that abrasive blasting with cut steel wirc should be used in PRE for decontamination ot reeovcrable non-precision materials and equipment, or for predisposal partial decontamination of non-recoverable items. Blasting with cut wire resulted in less dust production than blasting with mineral abrasives. A design study including a partial equipment mock-up was made to determine the requirements of a special piece of equipment which could perform abrasive blasting in a cell, and which would be remotely operated and maintained. The design study resuited in the establishment of a basic design for a PRE abrasive blast cabinet, and established the requirements for an air-handling system. (auth)

Savage, J.W.; Stoker, D.J.

1959-04-01T23:59:59.000Z

97

Argonne Software Licensing: Glass Furnace Model (GFM)  

The Glass Furnace Model (GFM) The Glass Furnace Model (GFM) Version 4.0, a computational fluid dynamic (CFD) glass furnace simulation code was developed at Argonne ...

98

Furnace | OpenEI  

Open Energy Info (EERE)

Furnace Furnace Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

99

Emulsified blasting agents  

SciTech Connect

This article describes an improved blasting agent which is being tailor-blended with bulk ANFO to provide more explosive energy and better water resistance when the blasting conditions call for it. The proportions of the emulsion/ANFO mix are easily changed at the blasthole site because both materials can be selectively mixed in modified bulk-explosive trucks before loading the blasting agents into the holes. Such blends are helping speed stripping at a number of surface mines and are leading to cost savings in production, ranging from 10% to 30%, depending upon application, even though the actual cost of a blend will be higher than if bulk ANFO is used alone.

Chironis, N.P.

1985-01-01T23:59:59.000Z

100

BIOLOGICAL BLAST EFFECTS  

SciTech Connect

The scope and nature of several blast hazards are delineated. Tentative criteria are set forth for threshold damage to humans. These criteria are related 10 nuclear weapons in terms of ground ranges and areas involved for one MT and ten MT surface detonations. To allow appreciation of the relative importance of blast with other effects, appropriate values are noted for ionizing and thermal radiation. Four categories of blast hazards are defined, and the character of each is described. The occurrence of combined injuries from pressure, missiles, and displacement is discussed. Experiences in the Texas City disaster of 1947 are reviewed. Selected data relate environmental conditions to gross biologic damage from overpressures, missiles, and impact loading. 86 references. (C.H.)

White, C.S.

1959-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

LTC 1073 vacuum blasting (concrete) human factors assessment -- Baseline (summary)  

SciTech Connect

The LTC 1073 Vacuum Blasting Machine uses a high capacity, direct pressure blasting system incorporating a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast head. A vacuum system removes dust and debris from the surfaces as it is blasted. After cleaning the surface, the abrasive, together with the rust or coating that was removed from the surface, is vacuumed into the machine through the suction hose. The dust separator contains angled steel collision pads, working with the force of gravity, to allow any reusable abrasive to fall back into the pressure vessel. The filters are manually back flushed to prevent clogging. After back flushing, dust is dumped from the dust chamber into the dust collection bag or drum by operation of the bellows valve. The safety and health evaluation during the testing demonstration focused on dust and noise exposure. Dust exposure was found to be minimal, but noise exposure was potentially significant. Further testing for each of these exposures is recommended because the outdoor environment where the testing demonstration took place may cause the results to be inapplicable to indoor settings. It is feasible that the dust and noise levels will be higher in an enclosed operating environment. Other safety and health issues found were ergonomics, heat stress, tripping hazards, lockout/tagout, and arm-hand vibration.

1997-07-31T23:59:59.000Z

102

Blasting Linux code  

Science Conference Proceedings (OSTI)

Computer programs can only run reliably if the underlying operating system is free of errors. In this paper we evaluate, from a practitioner's point of view, the utility of the popular software model checker Blast for revealing errors in Linux kernel ...

Jan Tobias Mühlberg; Gerald Lüttgen

2006-08-01T23:59:59.000Z

103

Tritium extraction furnace  

DOE Patents (OSTI)

This invention is comprised of apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having, negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible`s internal volume is sufficient by itself to hold and enclose the bundle`s volume after heating. The crucible can then be covered and disposed of, the sleeve, on the other hand, can be reused.

Heung, L.K.

1992-12-31T23:59:59.000Z

104

On the Decomposition of Austenite in a High-Silicon Steel during ...  

Science Conference Proceedings (OSTI)

A New Technology of Shot Blasting and Pickling in S31803 Duplex Stainless Steel Plate and GR2 Titanium Plate · Analysis of Scale Deformation and Fracture in ...

105

Modification of Microstructure of 100CrMn6 Steel by Accelerated ...  

Science Conference Proceedings (OSTI)

A New Technology of Shot Blasting and Pickling in S31803 Duplex Stainless Steel Plate and GR2 Titanium Plate · Analysis of Scale Deformation and Fracture in ...

106

CFD Analysis of Movement and Mixing in a Gas-Stirred Steel Ladle ...  

Science Conference Proceedings (OSTI)

A New Technology of Shot Blasting and Pickling in S31803 Duplex Stainless Steel Plate and GR2 Titanium Plate · Analysis of Scale Deformation and Fracture in ...

107

Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting  

SciTech Connect

A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States); Tidman, J.P.; Chung, S.H. [ICI Explosives (Canada)

1996-12-31T23:59:59.000Z

108

Blasting Vibration Forecast Base on Neural Network  

Science Conference Proceedings (OSTI)

The influence of blasting vibration to surroundings around the blasting area can not be ignored, in order to guarantee the safety of surroundings around blasting area, blasting vibration forecasting model based on neural network is established by improved ... Keywords: Blasting vibration, Neural network, Forecast

Haiwang Ye; Fang Liu; Jian Chang; Lin Feng; Yang Wang; Peng Yao; Kai Wu

2010-10-01T23:59:59.000Z

109

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

110

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

111

The Big Picture Melon Blast  

Science Conference Proceedings (OSTI)

Shows a picture of a melon blasting by high school students at the University of Missouri school of mining and nuclear engineering.

2007-12-01T23:59:59.000Z

112

Effect of Grit Blasting on Substrate Roughness and Coating Adhesion  

Science Conference Proceedings (OSTI)

Statistically designed experiments were performed to compare the surface roughnesses produced by grit blasting A36/1020 steel with different abrasives. Grit blast media, blast pressure, and working distance were varied using a Box-type statistical design of experiment (SDE) approach. The surface textures produced by four metal grits (HG16, HG18, HG25, and HG40) and three conventional grits (copper slag, coal slag, and chilled iron) were compared. Substrate roughness was measured using surface profilometry and correlated with operating parameters. The HG16 grit produced the highest surface roughness of all the grits tested. Aluminum and zinc-aluminum coatings were deposited on the grit-blasted substrates using a Twin-Wire Electric Arc (TWEA) process. Bond strength of the coatings was measured with a portable adhesion tester in accordance with ASTM standard D4541. The coatings on substrates roughened with steel grit exhibit superior bond strength to those on substrates prepared with conventional grit. For aluminum coatings sprayed onto surfaces prepared with the HG16 grit, the bond strength was most influenced by current, spray distance, and spray gun pressure (in that order). The highest bond strength for the zinc-aluminum coatings was attained on surfaces prepared using the metal grits.

Dominic Varacalle; Donna Guillen; Doug Deason; William Rhodaberger; Elliott Sampson

2006-09-01T23:59:59.000Z

113

Atmospheric particulate emissions from dry abrasive blasting using coal slag  

Science Conference Proceedings (OSTI)

Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

2006-08-15T23:59:59.000Z

114

Back yard blasting on the quiet  

SciTech Connect

Four different sequential blasting patterns for surface mining which produce successful fragmentation at significantly reduced noise levels are discussed. The advantages of electric blasting caps are considered.

Chironis, N.P.

1983-06-01T23:59:59.000Z

115

Regenerative Burners Assessment in Holding Reverberatory Furnace  

Science Conference Proceedings (OSTI)

The assessment showed that the regenerative burner furnaces are not profitable in saving energy in addition to the negative impact on the furnace life.

116

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

SciTech Connect

The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

Dr. M.A. Ebadian

2000-01-13T23:59:59.000Z

117

Vibration and noise from blasting  

SciTech Connect

Adverse environmental effects from blasting continue to be a major problem for the mining industry, the public living near mining operations, and the governmental agencies responsible for setting environmental standards. The Bureau of Mines has established a comprehensive blasting research program dealing with the many technical aspects of generation and propagation of ground vibrations and airblast, structure response and damage, and proper instrumentation.

Siskind, D.E.

1982-01-01T23:59:59.000Z

118

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

119

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

120

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

122

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

Science Conference Proceedings (OSTI)

The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and construct a pre-prototype of the nozzle, blast head with wind curtain, sensors, and dust separator and test this system to assess the performance of the new design under controlled conditions at the contractor's facility. In phase III, the Contractor shall design and construct a prototype of the High Productivity Vacuum Blasting System, based on the results of the pre-prototype design and testing performed. This unit will be a full-scale prototype and will be tested at a designated Department of Energy (DOE) facility. Based on the results, the system performance, the productivity, and the economy of the improved vacuum blasting system will be evaluated.

William S. McPhee

1999-05-31T23:59:59.000Z

123

Blasting vibrations and their effects on structures  

SciTech Connect

Results of the Bureau of Mines 10-year program to study the problem of air blast and ground vibrations generated by blasting are presented. The program included an extensive field study of ground vibrations; a consideration of air blast effects; an evaluation of instrumentation to measure vibrations; establishment of damage criteria for residential structures; determination of blasting parameters which grossly affected vibrations; empirical safe blasting limits; and the problem of human response. While values of 2.0 in/sec particle velocity and 0.5 psi air blast overpressure are recommended as safe blasting limits not to be exceeded to preclude damage to residential structures, lower limits are suggested to minimize complaints. Millisecond-delay blasting is shown to reduce vibration levels as compared to instantaneous blasting, and electric cap delay blasts offer a slight reduction in vibration levels as compared to Primacord delay blasts. Vibration levels of different blasts may be compared at common scaled distances, where scaled distance is the distance divided by the square root of the maximum charge weight per delay. Geology, rock type, and direction affect vibration level within limits. Empirically, a safe blasting limit based on a scaled distance of 50 ft/lb/sup/sup 1///sub 2// may be used without instrumentation. However, a knowledge of the particle velocity propagation characteristics of a blasting site determined from instrumented blasts at that site are recommended to insure that the safe blasting limit of 2.0 in/sec is not exceeded.

Nicholls, H.R.; Johnson, C.F.; Duvall, W.I.

1971-01-01T23:59:59.000Z

124

Surface mining and the natural environment: Blasting  

SciTech Connect

Blasting is the process commonly used to fracture the rock strata overlying a mineral seam. It is an important component of many surface mining operations. The technical guide will discuss several aspects of blasting, including a description of the methods used, the side effects associated with blasting, current laws and regulations controlling blasting operations, and the available technology for controlling the effects of blasting. The chapter is divided into two parts. Part I will provide a general overview of the topic, a discussion of potential hazardous effects and a description of blasting materials. Part II will address the development of a blasting plan and review some important inspection/monitoring considerations.

Clar, M.L.; Ward, J.M.

1980-03-01T23:59:59.000Z

125

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

126

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

127

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

128

Blasting casting to raise productivity  

SciTech Connect

Normally, surface mines employ draglines or truck and shovel systems to remove overburden. Blasting merely fragments and displaces the overburden enough to allow for easy digging. But during the past two decades, the effect of inflation and increased labor costs have encouraged unconventional methods of overburden removal. All of us are aware of the tremendous inflationary effects on costs of equipment, fuel, labor, interest, insurance, environmental compliance, etc. This has allowed the authors to take a new look at the use of explosives as an effective alternate method of overburden removal. This technique is known by several names, but basically blast casting or just casting best describes it. Other terms in vogue are explosive casting, controlled trajectory blasting, trajectory control blasting, and whatever terminology comes to mind.

Pilshaw, S.R.

1987-07-01T23:59:59.000Z

129

Portable convertible blast effects shield  

DOE Patents (OSTI)

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler, Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A (Livermore, CA)

2007-05-22T23:59:59.000Z

130

Portable convertible blast effects shield  

DOE Patents (OSTI)

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler,; Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A (Livermore, CA)

2010-10-26T23:59:59.000Z

131

Portable convertible blast effects shield  

DOE Patents (OSTI)

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler, Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A. (Livermore, CA)

2011-03-15T23:59:59.000Z

132

Abrasives for Dry Blast Cleaning  

Science Conference Proceedings (OSTI)

...The materials used in dry abrasive blast cleaning can be categorized as metallic grit, metallic shot, sand, glass, and miscellaneous. Hardness, density, size, and shape are important considerations in choosing an abrasive for a specific

133

Surface mine blasting near pressurized transmission pipelines. Report of investigations/1994  

SciTech Connect

The mining industry and regulatory agencies have requested guidance on blasting near buried transmission pipelines and safe vibration levels. The U.S. Bureau of Mines and the State of Indiana cooperated with AMAX Coal Company and its consultants to determine the effects of coal mine overburden blasting on nearby pipelines. Five pressurized 76-m pipeline sections were installed on the Minnehaha Mine highwall near Sullivan, IN for testing to failure. Four 17- to 51-cm diameter welded steel pipes and one 20-cm PVC water pipe were monitored for vibration, strain, and pressure for a period of 6 months while production blasting advanced up to the pipeline field. In contrast to previous studies of small-scale close-in blasting for construction, these tests involved overburden blasts of up to 950 kg per delay in 31-cm blast-holes. Analyses found low responses, strains, and calculated stresses from even large blasts. Ground vibrations of 120-250 mm/s produced worst case strains of about 25 pct of those resulting from pipeline operations and calculated stresses of only about 10-18 pct of the ultimate tensile strength.

Siskind, D.E.; Stagg, M.S.; Wiegand, J.E.; Schulz, D.L.

1994-12-31T23:59:59.000Z

134

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

135

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Method for Measuring the Energy Consumption of Furnaces andcalculating the energy consumption of two-stage furnaces.residential gas furnace energy consumption in the DOE test

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

136

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

137

Recycling contaminated spent blasting abrasives in Portland cement mortars using solidification/stabilization technology. Final research report  

SciTech Connect

The use of abrasive blasting to remove lead-based paint from steel bridges produces contaminated spent blasting abrasives that may be classified as hazardous by the Environmental Protection Agency. If the spent abrasives leach lead, chromium, and cadmium greater than the EPA limits, the spent abrasives are classified as hazardous and must be rendered nonhazardous prior to disposal. An alternative to disposing of spent blasting abrasives is to recycle them in an environmentally sound application. This study investigates the feasibility of recycling spent blasting abrasives in portland cement mortars using solidification/stabilization technology to produce a usable construction material. Field application guidelines for recycling spent blasting abrasives in portland cement mortars are established based upon the results of this study.

Salt, B.K.; Carrasquillo, R.L.; Loehr, R.C.; Fowler, D.W.

1995-04-01T23:59:59.000Z

138

Optimizing Model of Blasting Parameters Based on Fuzzy Neural Network  

Science Conference Proceedings (OSTI)

Because of the complexity and polytropism of rock and the complexity of blasting proceeding, it is very difficult to obtain better blasting parameters with a certain way. In order to gain perfect blasting effects expected by designers, blasting engineers ...

Haiwang Ye; Yang Wang; Jian Chang; Fang Liu; Peng Yao

2009-11-01T23:59:59.000Z

139

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

140

Measurement of airflow in residential furnaces  

E-Print Network (OSTI)

cut out of a piece of plywood that is attached to the inlet.the size of the furnace outlet cut in the plywood. ESLtaped the furnace to the plywood and strapped it in place.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Blasting, graphical interfaces and Unix  

SciTech Connect

A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters to be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.

Knudsen, S. [RE/SPEC, Inc., Albuquerque, NM (United States); Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1993-11-01T23:59:59.000Z

142

Blast Resistance Standards For Trash Receptacles  

Science Conference Proceedings (OSTI)

... 10, Standard Specification for Trash Receptacles Subjected to Blast Resistance Testing". Available at Standards/E2639.htm>.

2013-04-16T23:59:59.000Z

143

Furnace Systems Technology Workshop Brochure (PDF)  

Science Conference Proceedings (OSTI)

To register, visit the furnace systems technology ... transfer, atmospheres and purging requirements, effective control systems, and fuel efficiency, production ...

144

Explosive blasting method and means  

SciTech Connect

An explosive blasting method and apparatus are claimed for producing rock fragmentation and reducing the amplitude of seismic effects (ground vibration) in the vicinity of the blast. It utilizes an air gap method and apparatus for superheating the air surrounding the charge in a borehole. This raises the pressure therein coupled with the use of multiple detonation points along the borehole for the reduction of burn time. This reduces the quantity of explosives used along with a marked reduction of seismic shock, sound, and dust effects to the surrounding area.

Bowling, D.S.; Moore, R.N.

1983-05-10T23:59:59.000Z

145

Blast casting requires fresh assessment of methods  

SciTech Connect

The article says that because blast casting differs from conventional blasting, our ideas about explosive products, drilling, and initiating methods must change. The author discusses how to select a casting explosive and what factors are important in its selection. He also looks at how to determine the best blasthole diameter and burden blasting pattern.

Pilshaw, S.R.

1987-08-01T23:59:59.000Z

146

System for supplying blasting media to a media blasting system  

SciTech Connect

This patent describes a pressure pot system for supplying blasting media under pressure to a pressurized blasting conduit for feeding blasting media to one or more blasting guns, the system including a media storage means and a first and second pressure chambers with means for pressurizing and exhausting the first and second chambers, the media storage means being stacked above the pressure chambers with the first pressure chamber stacked above the second pressure chamber; first and second media valve means for providing communication between the storage means and the first pressure chamber and between the pressure chambers, respectively; air valve means for controlling the air pressurizing and exhausting of the first and second pressure chambers, the improvement comprising: means for opening and closing the first and second media valve means and the air valve means, the first, second and air valve means being offset from each other in both vertical and horizontal dimensions; push rods extending vertically upward from the valve means and spaced one from the other for actuating the valve means to open and close the same; an overhead cam shaft means mounted above the push rods and having a plurality of spaced cams, each of the cams being aligned and operatively associated with one of the push rods for actuating the push rods and thereby the valve means to control the opening and closing of the first and second media valve means and the air valve means; and actuating means for actuating the cam shaft means.

Van Kuiken, L.L. Jr.

1988-10-25T23:59:59.000Z

147

Fuel gas main replacement at Acme Steel's coke plant  

SciTech Connect

ACME Steel's Chicago coke plant consists of two 4-meter, 50-oven Wilputte underjet coke-oven batteries. These batteries were constructed in 1956--1957. The use of blast furnace gas was discontinued in the late 1960's. In 1977--1978, the oven walls in both batteries were reconstructed. Reconstruction of the underfire system was limited to rebuilding the coke-oven gas reversing cocks and meter in orifices. By the early 1980's, the 24-in. diameter underfire fuel gas mains of both batteries developed leaks at the Dresser expansion joints. These leaks were a result of pipe loss due to corrosion. Leaks also developed along the bottoms and sides of both mains. A method is described that permitted pushing temperatures to be maintained during replacement of underfire fuel gas mains. Each of Acme's two, 50-oven, 4-metric Wilputte coke-oven, gas-fired batteries were heated by converting 10-in. diameter decarbonizing air mains into temporary fuel gas mains. Replacement was made one battery at a time, with the temporary 10-in. mains in service for five to eight weeks.

Trevino, O. (Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant)

1994-09-01T23:59:59.000Z

148

Methods for predicting rubble motion during blasting  

SciTech Connect

Recent applications of explosives and blasting agents to rubble rock have led to requirements for more elaborate design and analysis methods. In most blasting uses, it is necessary not only to fracture the rock, but also to move the broken rubble in a predictable manner. Many in situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. In this paper, two analytical methods are presented which describe the large rubble motion during blasting. These methods provide the blast designer with a tool for evaluation and further refinement of blasting patterns and timing sequences.

Schamaun, J.T.

1984-01-01T23:59:59.000Z

149

CO2 Blast Cleaning Process  

Science Conference Proceedings (OSTI)

Carbon dioxide (CO2) (dry ice) cleaning is a process in which dry ice particles, accelerated by compressed air or nitrogen, are propelled at high velocities to impact and clean a surface. Because CO2 technology produces no secondary waste, the CO2 blast cleaning process has many applications for the cleaning of electrical equipment.

2002-02-01T23:59:59.000Z

150

Direct current, closed furnace silicon technology  

Science Conference Proceedings (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

151

Steel project fact sheet: Steel reheating for further processing  

SciTech Connect

Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

1998-04-01T23:59:59.000Z

152

Comparison of conventional and airless abrasive blasting techniques  

SciTech Connect

A comparison of conventional and airless abrasive blasting techniques used to prepare steel surfaces (e.g., North Sea oil facilities, offshore structures, e.g., storage tanks, and land-based oil terminals) for corrosion protection shows the advantages of the Autoblast automatic abrasive blasting machine over the conventional air-blasting machine. Autoblast is based on the principle of a paddle type wheel, revolving at high speed, being continuously fed with abrasive, which is propelled off the wheel onto the work surface by centrifugal force in such a manner and at such an angle that the abrasive is reclaimed, cleaned and returned to the wheel for reuse. All this is done within a totally enclosed, self-propelled, highly maneuverable vehicle. The machine also incorporates a separator to remove dust and refuse, which is passed through a dust collector to allow the machine to operate 98% free of pollution. The production rate of Autoblast machines varies from about 20 sq m/man-hour on offshore platforms with confined areas, to 80 sq m/man-hour on newly constructed storage tanks.

Tighe, J.D.

1979-01-01T23:59:59.000Z

153

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Applications Blast Furnace Granular-Coal Injection System Demonstration Project - Project Brief PDF-314KB Bethlehem Steel Corp., Burns Harbor, IN PROGRAM PUBLICATIONS...

154

NEW ALLOYS RESIST METAL DUSTING AND EXTEND EQUIPMENT LIFE  

U.S. industry will benefit from the application of Argonne’s new alloys in process equipment used in chemical, petroleum, ... blast furnaces used in steel

155

Postage Stamps: A Convergence of Metallurgy, Art, and History  

Science Conference Proceedings (OSTI)

For example, Austria in 1961 commemorated the blast furnace on the 15th anniversary of the nationalization of the steel industry (Figure 9). Henry Bessemer's ...

156

Conditions for making direct reduced iron, transition direct reduced iron and pig iron nuggets in a laboratory furnace - Temperature-time transformations  

Science Conference Proceedings (OSTI)

The pig iron nugget process is gaining in importance as an alternative to the traditional blast furnace. Throughout the process, self-reducing-fluxing dried greenballs composed of iron ore concentrate, reducing-carburizing agent (coal), flux (limestone) and binder (bentonite) are heat-treated. During the heat treatment, dried greenballs are first transformed into direct reduced iron (DRI), then to transition direct reduced iron (TDRI) and finally to pig iron nuggets. The furnace temperature and/or residence time and the corresponding levels of carburization, reduction and metallization dictate these transformations. This study involved the determination of threshold furnace temperatures and residence times for completion of all of the transformation reactions and pig iron nugget production. The experiments involved the heat treatment of self-reducing-fluxing dried greenballs at various furnace temperatures and residence times. The products of these heat treatments were identified by utilizing optical microscopy, apparent density and microhardness measurements.

Anameric, B.; Kawatra, S.K. [Michigan Technological University, Houghton, MI (United States). Dept. of Chemical Engineering

2007-02-15T23:59:59.000Z

157

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

158

Blasting arrangement for oil shale mining  

SciTech Connect

A blasting technique for use in excavation of an oil-shale deposit during the subterranean mining of it is described. Primary blasting holes are provided in a working zone, such as a heading or bench within the mine. In addition, a row of explosive-loaded secondary blasting holes is provided along a line between the working zone and a support zone adjacent to the working zone. Thus, in a benching round, secondary holes extend downward through the bench from the top thereof and in a heating round the secondary holes extend into the heading from the heading face. The secondary and primary blasting holes are detonated in a desired sequence. Preferably, the secondary blasting holes are detonated first although this sequence of operation may be reversed. The secondary blasting holes carry a lower explosive charge than the primary holes, and also are spaced closer together than the primary holes. (14 claims)

Haworth, G.R.; Zambas, P.G.

1969-09-09T23:59:59.000Z

159

Ferrosilicon smelting in a direct current furnace  

DOE Patents (OSTI)

The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

Dosaj, V.D.; May, J.B.

1992-12-29T23:59:59.000Z

160

Modeling Coal Seam Damage in Cast Blasting  

SciTech Connect

A discrete element computer program named DMC_BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece & Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions. DMC_BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Coal seam chilling refers to the shattering of a significant portion of the coal leaving unusable fines. It is also refereed to as coal damage. Chilling is caused during a blast by a combination of explosive shock energy and movement of the adjacent rock. Chilling can be minimized by leaving a buffer zone between the bottom of the blastholes and the coal seam or by changing the blast design to decrease the powder factor or by a combination of both. Blast design in coal mine cast blasting is usually a compromise between coal damage and rock fragmentation and movement (heave). In this paper the damage to coal seams from rock movement is examined using the discrete element computer code DMC_BLAST. A rock material strength option has been incorporated into DMC_BLAST by placing bonds/links between the spherical particles used to model the rock. These bonds tie the particles together but can be broken when the tensile, compressive or shear stress in the bond exceeds the defined strength. This capability has been applied to predict coal seam damage, particularly at the toe of a cast blast where drag forces exerted by movement of the overlying rock can adversely effect the top of the coal at the bench face. A simulation of coal mine cast blasting has been performed with special attention being paid to the strength of the coal and its behavior at t he bench face during movement of the overlying material.

Chung, S.H.; Preece, D.S.

1998-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy efficiency of alternative coke-free metallurgical technologies  

SciTech Connect

Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov [Ural State Technical University - Ural Polytechnic Institute, Yekaterinburg (Russian Federation)

2009-02-15T23:59:59.000Z

162

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

Furnaces Incentives Furnaces Incentives Jump to: navigation, search The following contains the list of 688 Furnaces Incentives. CSV (rows 1-500) CSV (rows 501-688) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit

163

Energy Control in Primary Aluminium Casthouse Furnaces  

Science Conference Proceedings (OSTI)

In order to effectively run a furnace with low energy consumption the burner's fuel ... Oxidation of Commercial Purity Aluminium Melts: An Experimental Study.

164

Condensing furnaces: Lessons from a utility  

SciTech Connect

for the last several years about 90% of the new natural gas furnaces installed in Wisconsin have been condensing furnaces and a number of lessons have been learned. If you avoid the common mistakes, condensing furnaces typically can deliver heating savings of 20-35 % assuming the old furnace was in the 60% AFUE range. This article describes the common mistakes and how to avoid them: outside air needed 100%; benefits of sealed combustion; follow the installation manual scrupulously; how to avoid potential problems; tips on venting.

Beers, J. [Madison Gas and Electric Company, WI (United States)

1994-11-01T23:59:59.000Z

165

Measurement of airflow in residential furnaces  

SciTech Connect

In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-24T23:59:59.000Z

166

Dataplot Commands for Furnace Case Study  

Science Conference Proceedings (OSTI)

... variable label run Run Number variable label zone Furnace Location variable label wafer Wafer Number variable label filmthic Film Thickness (ang ...

2012-03-31T23:59:59.000Z

167

High Performance Sealing for Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

Operation of an Open Type Anode Baking Furnace with a Temporary Crossover ... Wireless Communication for Secured Firing and Control Systems of Anode ...

168

Energy Efficiency Improvement in Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

One of the high energy consumption facilities in a smelter is the Anode Baking ... Hydro Aluminium's Historical Evolution of Closed Type Anode Baking Furnace ...

169

Explo 2007 Blasting: Techniques & Technology Proceedings - TMS  

Science Conference Proceedings (OSTI)

Oct 22, 2008 ... This is an explosive review. Or to be more precise this review is about the Blasting: Techniques & Technology Explo 2007 Conference.

170

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

171

Vertical two chamber reaction furnace  

DOE Patents (OSTI)

A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

Blaugher, R.D.

1999-03-16T23:59:59.000Z

172

Optimized Design of a Furnace Cooling System  

E-Print Network (OSTI)

This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling for 12 hours. Pressurized argon and process water are used to expedite cooling. The proposed modifications aim to minimize cycling by reducing cooling time; they are grouped into three fundamental mechanisms. The first is a recommendation to modify current operating procedures. This entails opening the furnace doors at higher than normal temperatures. A furnace temperature model based on current parameters is used to show the reduction in cooling time in response to opening the furnace doors at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat from the furnace envelope. Heat transfer models based on convective Nusselt correlations are used to determine the increase in heat transfer rate. The last mechanism considers a modification to the current heat exchanger. By decreasing the temperature of the water jacket and increasing heat exchanger efficiency, heat transfer from the furnace is increased and cooling time is shortened. This analysis is done using the Effectiveness-NTU method.

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

173

Thermal Imaging Control of Furnaces and Combustors  

Science Conference Proceedings (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

174

DOE/NETL-2000/1122 Blast Furnace Granulated Coal Injection System Demonstration Project:  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government

A Doe Assessment

2000-01-01T23:59:59.000Z

175

Application of Bayesian network to tendency prediction of blast furnace silicon content in hot metal  

Science Conference Proceedings (OSTI)

This paper proposes a new method for predicting the change tendency of silicon content in hot metal based on Bayesian networks. Firstly, some important factors that affect silicon content are selected out using grey relationship analysis (GRA). Secondly, ...

Wenhui Wang

2007-09-01T23:59:59.000Z

176

J59: Injection of BOF Dust into the Blast Furnace through Tuyere  

Science Conference Proceedings (OSTI)

D8: The Effect of Circulating Coal Slurry Water Hardness on Coal Preparation .... J1: Design and Manufacture of Fluidized Bed Reactor in Pilot Scale for Multiple ...

177

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

178

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

179

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

180

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Back yard blasting on the quiet  

SciTech Connect

When R and F Coal Company of Ohio ''sweeps out the corners'' of many of its old sites, it often blasts ''literally in some family's back yard.'' Sequential blasting patterns allow for such work without unduly disturbing the residents. Four basic delay patterns are detailed in this article. Sequential timers, EB caps, HDP blast boosts, and bulk ANFO are used in the sequences. Electric blasting caps can be tested by means of a galvanometer for continuity and resistance whenever possible. The flexibility of programming firing times, in the four patterns, allows operators to fine tune the blasting techniques. End or back break are reduced, fragmentation is optimized, and vibration is held to a minimum.

Chironis, N.P.

1983-06-01T23:59:59.000Z

182

Development of Next Generation Heating System for Scale Free Steel Reheating  

Science Conference Proceedings (OSTI)

The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

Dr. Arvind C. Thekdi

2011-01-27T23:59:59.000Z

183

Processing factors contributing to growth and decline in the steel industry  

E-Print Network (OSTI)

During the second half of the twentieth century, a technological shift occurred in the steel industry. A different mix of refining and melting furnaces were used, with increasing use being made of basic oxygen and electric ...

Dufalla, Michele (Michele Helene)

2007-01-01T23:59:59.000Z

184

A Cross-Platform for Tunnel Blast Design and Simulation  

Science Conference Proceedings (OSTI)

Digital Mine has become the inevitable development trend of the future mines. Blasting is a essential process during the exploration and development of practical mining engineering. The blasting always plays a direct influence on the efficiency of each ... Keywords: Digital Mine, Blasting parameters, Parameters design, Tunnel blast design, Cross-platform

Tingting Zhu; Chao Wang; Mingmin Zhang; Zhigeng Pan

2011-11-01T23:59:59.000Z

185

LTC vacuum blasting machine (concrete): Baseline report  

SciTech Connect

The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

1997-07-31T23:59:59.000Z

186

Steel Design for Blast and Fragment Protection - Programmaster.org  

Science Conference Proceedings (OSTI)

... Corrosion Inhibition for Hydrochloric Acid Pickling · Using Resistance Heating to Create Full-Scale API RP2Z CTOD Samples ...

187

Blast damage mitigation of steel structures from near- contact charges  

E-Print Network (OSTI)

then collapsed onto the plywood base at varying velocities,was placed inside a 3/4” plywood box with the interiordimensions (24” x 24”) as the plywood box that contained the

Wolfson, Janet Crumrine

2008-01-01T23:59:59.000Z

188

CO{sub 2} pellet blasting studies  

SciTech Connect

Initial tests with CO{sub 2} pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO{sub 2} pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO{sub 2} blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report.

Archibald, K.E.

1997-01-01T23:59:59.000Z

189

Multiple hearth furnace for reducing iron oxide  

SciTech Connect

A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

2012-03-13T23:59:59.000Z

190

Optical Furnace offers improved semiconductor device ...  

This means that the furnace is almost immune to the contamination from hot walls of ... NREL 94-26 US 5,897,331 High Efficiency Low Cost Thin Film ...

191

Furnaces and Boilers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency...

192

Perfluorocarbon vapor tagging of blasting cap detonators  

DOE Patents (OSTI)

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, Russell N. (Shoreham, NY); Senum, Gunnar I. (Patchogue, NY)

1981-01-01T23:59:59.000Z

193

Confined volume blasting experiments: Description and analysis  

SciTech Connect

A series of bench-scale blasting experiments was conducted to produce rubble beds for use in retorting experiments. The experiments consisted of blasting oil shale with explosives within a confined volume containing 25% void. A variety of blasting geometries was used to control the fragment size distribution and void distribution in the rubble. The series of well controlled tests provided excellent data for use in validating rock fragmentation models. Analyses of the experiments with PRONTO, a dynamic finite element computer code, and a newly developed fracturing model provided good agreement between code predictions and experimental measurements of fracture extent and fragment size. CAROM, a dynamic distinct element code developed to model rock motion during blasting, was used to model the fully fragmented tests. Calculations of the void distribution agreed well with experimentally measured values. 9 refs., 11 figs., 1 tab.

Gorham-Bergeron, E.; Kuszmaul, J.S.; Bickel, T.C.; Shirey, D.L.

1987-01-01T23:59:59.000Z

194

Perfluorocarbon vapor tagging of blasting cap detonators  

SciTech Connect

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, R.N.; Senum, G.I.

1981-03-17T23:59:59.000Z

195

Material Systems for Blast-Energy Dissipation  

SciTech Connect

Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

James Schondel; Henry S. Chu

2010-10-01T23:59:59.000Z

196

Economical solutions to blast mitigation on bridges  

E-Print Network (OSTI)

Mitigating the energy created from a blast has been a topic of utmost importance in the terrorism-feared world of today. Main targets of concern are passageways that are significant to a specific area, such as bridges. ...

DeRogatis, Austin (Austin Patrick)

2008-01-01T23:59:59.000Z

197

Effects of mine blasting on residential structures  

Science Conference Proceedings (OSTI)

Blasting is common in the coal industry to remove rock overburden so that the exposed coal can be mechanically excavated. The ground vibrations and air blast produced by blasting are often felt by residents surrounding the mines. There has been a trend for regulatory authorities, especially those concerned with the environment, to impose low limits on blast vibration levels in response to community pressure, based on human perception and response to vibration. This paper reports the findings of an extensive study on a house which was located adjacent to a coal mine. The house was monitored for over 1 year and was subjected to ground peak particle velocity (PPV) ranging from 1.5 to 222 mm/s. The house was instrumented with accelerometers to measure its dynamic response due to blasting and it was also monitored for cracks before and after each blast. Based on this study, ground motion amplifications along the height of the structure have been established. A simplified methodology presented in this paper has been used to estimate the ground PPV at which cracking is likely.

Gad, E.F.; Wilson, J.L.; Moore, A.J.; Richards, A.B. [Swinburne University of Technology, Hawthorn, Vic. (Australia). Faculty of Engineering & Industrial Science

2005-08-01T23:59:59.000Z

198

Methods for predicting rubble motion during blasting  

SciTech Connect

Recent applications of explosives and blasting agents to rubble rock have led to requirements for more elaborate design and analysis methods. Many in situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. Two analytical methods are presented which describe the large rubble motion during blasting. These methods are intended to provide the blast designer with a tool for evaluation and further refinement of blasting patterns and timing sequences. In both these methods, the rock medium is represented by a series of discrete, discontinuous regions (bodies, masses). The use of discontinuous techniques rather than the classical continuum methods, results in better approximations to the rubble motion. These regions are set in motion by pressure loads from the explosive. The motion of these regions is then calculated numerically using interaction laws between regions in contact. The basis for these models or methods is presented along with the background for selecting explosive pressure loads and rock mass material behavior. Typical examples, including both cratering and bench blasting geometries, are discussed which illustrate the use of these models to predict rubble motion. Such engineering representations appear to provide a practical method for use in predicting rubble motion and a tool for design evaluation of blasting in confined geometries.

Schamaun, J.T.

1984-03-01T23:59:59.000Z

199

Ultra Safe And Secure Blasting System  

SciTech Connect

The Ultra is a blasting system that is designed for special applications where the risk and consequences of unauthorized demolition or blasting are so great that the use of an extraordinarily safe and secure blasting system is justified. Such a blasting system would be connected and logically welded together through digital code-linking as part of the blasting system set-up and initialization process. The Ultra's security is so robust that it will defeat the people who designed and built the components in any attempt at unauthorized detonation. Anyone attempting to gain unauthorized control of the system by substituting components or tapping into communications lines will be thwarted in their inability to provide encrypted authentication. Authentication occurs through the use of codes that are generated by the system during initialization code-linking and the codes remain unknown to anyone, including the authorized operator. Once code-linked, a closed system has been created. The system requires all components connected as they were during initialization as well as a unique code entered by the operator for function and blasting.

Hart, M M

2009-07-27T23:59:59.000Z

200

Steel Cermets  

NLE Websites -- All DOE Office Websites (Extended Search)

Cermets Steel Cermets The documents below provide information about depleted uranium use in steel cermets for spent nuclear fuel. PDF Melted and Granulated Depleted Uranium Dioxide...

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electrical blasting practice at some coal mines in State of Washington  

SciTech Connect

The explosives used, blasting practice, lighting shots in gassy mines, and advantages of electrical blasting are described.

Ash, S.H.

1930-01-01T23:59:59.000Z

202

Densification of pond ash by blasting  

Science Conference Proceedings (OSTI)

Fly ash from thermal power plants is disposed, in huge quantities in ash ponds, which occupy large land areas otherwise useful for agriculture, housing, or other development. For effective rehabilitation of ash ponds, densification of the slurry deposit is essential to increase the bearing capacity and to improve its resistance to liquefaction. Extensive field trials were carried out to evaluate the effectiveness of deep blasting for densification of deposited fly ash. Ninety explosions comprising 15 single blasts, with varying depths and quantities of charges, and 3 group blasts, each having 25 charges placed at various spacings, were carried out. The compaction achieved in terms of an increase in relative density was evaluated from surface settlement measurements. Extensive field monitoring was undertaken through pore-water pressure measurements, vibration measurements, penetration tests, and block vibration tests. For the average charge of 2--4 g of explosive per cubic meter of untreated deposit, the average relative density was found to improve from 50% to 56--58%. Analysis of the test results indicates that deep blasting may be an effective technique for modest compaction of loose fly ash deposits. The field testing program presented in this paper provides valuable information that can be used for planning blast densification of fly ash deposits.

Gandhi, S.R.; Dey, A.K.; Selvam, S. [Indian Inst. of Tech., Madras (India)

1999-10-01T23:59:59.000Z

203

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

204

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified to recover this heat and convert it to power. The system will then reduce the amount of purchased power by approximately 25% without any additional use of fuel. The cost of this power is virtually unchanged over the life of the project because of the use of capital to displace fuel consumed from the purchased power source.

O'Brien, T.

2008-01-01T23:59:59.000Z

205

Control of energy use in a furnace  

Science Conference Proceedings (OSTI)

This patent describes, in a residential furnace of the type which is responsive to a thermostat and has an electronic ignitor, and a circulating air blower that May be operated on a continuous basis, an improved process of controlling the thermostat, electrical ignitor and blower in an ignition sequence of the furnace. It comprises: upon receiving a call for heat from a thermostat, checking to determine if the circulating air blower is on; if the blower is on, turning it off; and only after the blower is turned off, turning on the ignitor to initiate the combustion process.

Ballard, G.W.; Dempsey, D.J.

1990-01-02T23:59:59.000Z

206

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network (OSTI)

Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several aspects of the technology employed have been patented in the U.S. and elsewhere. This paper discusses the use of process heat and gas turbine exhaust for air preheat to provide plant fuel savings of about 8% over and above a modern, fuel efficient alternative furnace without air preheat.

Kenney, W. F.

1983-01-01T23:59:59.000Z

207

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

208

Segmented ceramic liner for induction furnaces  

DOE Patents (OSTI)

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

209

Damage to residential structures from surface mine blasting  

SciTech Connect

The Bureau of Mines has studied the problem of cracking in residential structure walls from vibrations produced by blasting in surface mines. Direct observations were made of blasting damage consisting primarily of cosmetic cracking.

Siskind, D.E.

1980-01-01T23:59:59.000Z

210

Blast overpressure relief using air vacated buffer medium  

E-Print Network (OSTI)

Blast waves generated by intense explosions cause damage to structures and human injury. In this thesis, a strategy is investigated for relief of blast overpressure resulting from explosions in air. The strategy is based ...

Avasarala, Srikanti Rupa

2009-01-01T23:59:59.000Z

211

Use of probabilistic methods in evaluating blast performance of structures  

E-Print Network (OSTI)

The social and political climate of the modern world has lead to increased concern over the ability of engineered structures to resist blast events which may be incurred during terrorist attacks. While blast resistance ...

Gillis, Andrew Nicholas

2011-01-01T23:59:59.000Z

212

Blasting practices and explosives accidents in Utah coal mines  

SciTech Connect

Practices in use in Utah are commended and accidents incident to blasting are reviewed with suggestions as to future avoidance.

Parker, D.J.

1935-01-01T23:59:59.000Z

213

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

214

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Ducts Total Electricity Consumption (kWh/year) ity ni x FrDucts Total Electricity Consumption (kWh/year) nt a ni x Fryear. Furnace blowers account for about 80% of the total furnace electricity consumption

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

215

Grate Furnace Combustion: A Submodel for the Solid Fuel Layer  

Science Conference Proceedings (OSTI)

The reduction of NOx-formation in biomass fired grate furnaces requires the development of numerical models. To represent the variety in scales and physical processes playing a role in the conversion, newly developed ... Keywords: Grate furnace, biomass, reverse combustion

H. A. Kuijk; R. J. Bastiaans; J. A. Oijen; L. P. Goey

2007-05-01T23:59:59.000Z

216

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network (OSTI)

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond, S.M. (Raymond A.) Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

217

Method of blasting a subterranean deposit  

SciTech Connect

A blasting method is described for mining of a subterranean oil-shale deposit. A raise is driven upward into a designated block of a subterranean oil-shale deposit from the roof of an undercutting cavity. A number of blasting holes are driven horizontally into the block from the raise in a fan-shaped pattern at each of a number of vertically spaced levels and are at least partially loaded with explosives. The charges are detonated sequentially in an upward progression to effect fragmentation and expansion of the overlaying block into the undercutting cavity. (11 claims)

Janssen, A.T.

1975-11-04T23:59:59.000Z

218

Proceedings of the twelfth conference on explosives and blasting techniques  

SciTech Connect

This book presents the papers given at a conference on the use of explosive fracturing to construct underground energy facilities. Topics considered at the conference included the Atomic Energy of Canada Limited's underground research laboratory, drilling and blasting techniques for canals, pipeline trenches, blasting costs, underground coal mining, presplitting of granite, energy consumption, and overburden blasting vibrations.

Konya, C.J.

1986-01-01T23:59:59.000Z

219

Furnace Efficiency – Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Furnace Efficiency – Energy and Throughput. Sponsorship, The Minerals ...

220

The information furnace: consolidated home control  

Science Conference Proceedings (OSTI)

?The Information Furnace is a basement-installed PC-type device that integrates existing consumer home-control, infotainment, security and communication technologies to transparently provide accessible and value-added services. A modern home contains ... Keywords: Automation, Consumer electronics, Home-control, Multi-modal interfaces

Diomidis D. Spinellis

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Field Demonstration of the Thermostone III Electric Thermal Storage Furnace  

Science Conference Proceedings (OSTI)

Heat storage furnaces use low-cost, off-peak electricity to satisfy all of a customer's heating needs. This field demonstration showed that prototype heat storage furnaces maintained comfort under diverse climate conditions, usage patterns, and lengths of off-peak periods. In addition, these furnaces effectively shifted the load to off-peak hours.

1992-04-01T23:59:59.000Z

222

Single pass streaming BLAST on FPGAs  

Science Conference Proceedings (OSTI)

Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary ... Keywords: Bioinformatics, Computational accelerators, Configurable computing, High performance computing

Martin C. Herbordt; Josh Model; Bharat Sukhwani; Yongfeng Gu; Tom VanCourt

2007-11-01T23:59:59.000Z

223

Distributed BLAST in a grid computing context  

Science Conference Proceedings (OSTI)

The Basic Local Alignment Search Tool (BLAST) is one of the best known sequence comparison programs available in bioinformatics. It is used to compare query sequences to a set of target sequences, with the intention of finding similar sequences in the ...

Micha M. Bayer; Richard Sinnott

2005-09-01T23:59:59.000Z

224

Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury  

SciTech Connect

In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cm from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies that the headform locally experiences a nearly planar blast wave. Also, the positive phase durations and blast impulses are much larger than those of (1). Consequently, the blast model used in (1) is spatially and temporally very different from a military blast. It would be useful to repeat the calculations using military blast parameters. Finally, (1) overlooks a significant part of (5). On page 1 and on page 3, (1) states that (5) did not consider helmet pads. But pages pages 3 and 4 of (5) present simulations of blast wave propagation across an ACH helmeted head form with and without pads. (5) states that when the pads are present, the 'underwash' of air under the helmet is blocked when compared to the case without. (1) reaches this same conclusion, but reports it as a new result rather than a confirmation of that already found in (5).

Moss, W C; King, M J; Blackman, E G

2011-01-21T23:59:59.000Z

225

Factors in selecting and applying commercial explosives and blasting agents  

SciTech Connect

In this report, commercial blasting compounds are classified according to their nitroglycerin (or equivalent explosive oil) and ammonium nitrate content as dynamites, gelatins, blasting agents, military explosives, and blasting accessories. The ingredients and more significant properties of each explosive are tabulated and briefly discussed. Properties discussed are weight strength, cartridge strength, detonation velocity, density, detonation pressure, water resistance, and fume class. The weakness of the strength rating system and the importance of detonation pressure, density, and detonation velocity in rating explosives are discussed. The terms blasting agent and slurry, which are often misused, are defined. Trends indicate that blasting agents (that is, blasting mixtures with none of the ingredients singly classified as an explosive), particularly high-density slurry blasting agents, will dominate the explosives field in the future. (22 refs.)

Dick, R.A.

1968-01-01T23:59:59.000Z

226

LTC American`s, Inc. vacuum blasting machine: Baseline report  

Science Conference Proceedings (OSTI)

The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing focused on two main areas of exposure: dust and noise.

NONE

1997-07-31T23:59:59.000Z

227

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

scrap steel, pig iron, or direct reduced iron (DRI) using anthe production of direct reduced iron (DRI). DRI is producedDirect current Direct reduced iron Electric arc furnace

Worrell, Ernst

2011-01-01T23:59:59.000Z

228

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

Science Conference Proceedings (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

229

LTC vacuum blasting machine (metal): Baseline report; Summary  

SciTech Connect

The LTC coating removal system consists of several hand tools such as a Roto Peen scaler and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The PTC-6 is a vacuum system designed to be used with surface decontamination equipment. Dust and debris are captured by a high efficiency particulate filter (HEPA) vacuum system that deposits the waste directly into an on-board 23-gallon waste drum. The PTC-6 utilizes compressed air delivered from a source via an air hose connected to the air inlet to drive the hand held power tools. The control panel regulated the air pressure delivered to the tool. A separate compressed air flow powers the vacuum generator. The vacuum hoses connect the power tools to the dust chamber, returning paint chips and dust from the surface. A third compressed air flow is used to clean filters by pulsing air through a pipe with slots. The blasts of air shake dust and debris from the filter fabric.

1997-07-31T23:59:59.000Z

230

Microsoft Word - Blast Energy.112706.DOC  

NLE Websites -- All DOE Office Websites (Extended Search)

partnership successfully tests new, less expensive drilling technology partnership successfully tests new, less expensive drilling technology Casper, Wyo. - Nov. 28, 2006 - The Rocky Mountain Oilfield Testing Center (RMOTC) and its partner Blast Energy Services Inc. have successfully tested an innovative new oil and gas drilling technology that when commercialized should facilitate lower production costs and increased access to reserves. "It's our mission to partner with industry to help bring new ideas to the marketplace that can ensure clean, reliable and affordable supplies of oil and natural gas for American consumers," said Clarke Turner, RMOTC director. The new technology is expected to provide oil and gas producers with an alternative to existing well stimulation services at a lower cost, while having the ability to access previously uneconomical reserves. Blast's

231

A Phased Array Approach to Rock Blasting  

SciTech Connect

A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

Leslie Gertsch; Jason Baird

2006-07-01T23:59:59.000Z

232

Correcting the burden formula for heave blasting  

SciTech Connect

A fundamental error in the derivation of a heave blasting burden formula was found and then corrected. The original derivation used the impulse-momentum principle, with a 0.3m thick radius of rock mass being acted on by an explosive impulse. However, the rock weight was not converted to mass by dividing the gravitational constant. This mistake can be verified by checking the units in the formula, which resolve into m 1/2-sec instead of meters.

Thompson, S.D.

1985-03-01T23:59:59.000Z

233

Centrifugal shot blasting. Innovative technology summary report  

SciTech Connect

At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

1999-07-01T23:59:59.000Z

234

Explosive parcel containment and blast mitigation container  

DOE Patents (OSTI)

The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

Sparks, Michael H. (Frederick County, MD)

2001-06-12T23:59:59.000Z

235

Seismic Monitoring Of Blasting Activity In Russia  

E-Print Network (OSTI)

Two significant mining regions in Russia lie near Novosibirsk and at the Kursk Magnetic Anomaly. A small percentage of events from these areas trigger the International Monitoring System (IMS). We have studied IMS recordings of events from these areas with the main goal of better understanding how these blasts are detonated and how these events will be most effectively monitored using IMS data. We have collected ground-truth information on the mining blasts and crustal structure in the area to facilitate modeling of the events. We have focused on sifting out from further consideration routine mining events and identifying detonation anomalies. We define master traces to represent tight clusters of mining events and to be used to identify anomalous events. We have examined recordings of events from eight significant event clusters in the 500-km-long Kuzbass/Abakan mining trend near Novosibirsk. The recordings were made by the IMS station ZAL. We see significant variations in the P onset and early coda between different events in clusters. We have found strong evidence of a detonation anomaly in just one of the events (out of 178 examined). Differences in the onset wave trains are attributed largely to differences in the firing patterns. Time independent spectral modulations have been observed in seismic signals produced by delay-fired mining events in mining regions throughout the world. The Novosibirsk trend is no exception to this rule. Delay-fired events in many mining regions, such as Kuzbass/Abakan, are also commonly associated with enhanced long-period (2- to 8-s) surface waves. The mine blasts in Russian mining regions appear, seismically, to resemble large blasts recorded in other regions (such as Wyoming). Techniques found to be effective in Wyoming, reviewed by...

Michael Hedlin University; Michael A. H. Hedlin

2002-01-01T23:59:59.000Z

236

The Blast Energy Efficiency of GRBs  

E-Print Network (OSTI)

Using data mostly assembled by previous authors, we consider the linear correlation between the apparent radiative efficiency $\\epsilon_{\\gamma}$ (defined as the ratio of isotropic equivalent radiative output to inferred isotropic equivalent kinetic energy of the blast) and $E_{peak}^{\\alpha}$ where $1.4efficiency is $\\sim 7$. We also find preliminary evidence (with a small sample) for a separate class of weak GRB afterglows.

David Eichler Daniel Jontof-Hutter

2005-03-24T23:59:59.000Z

237

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

238

Thermal reclamation of spent blasting abrasive  

Science Conference Proceedings (OSTI)

Abrasive blasting media is used to remove anticorrosive and antifoulant coatings from the hulls and tanks of US Navy ships. The total production of paint-contaminated spent abrasives from the eight US. Navy shipyards ranges from 75,000 to 100,000 tons per year. Most of this spent abrasive is disposed in landfills. Organic paint binders and heavy metals are present in the spent abrasives in concentrations sufficient to classify them as hazardous wastes in some states. In an effort to avoid the rising costs an long-term environmental liability associated with landfilling this waste, the US Navy has investigated various methods of reclaiming spent abrasives for reuse in hull- and tank-blasting operations. This paper discusses the results of a research and development project conducted under the Navy's Hazardous Waste Minimization Program to test a fluidized-bed sloped-grid (FBSG) reclaimer to determine if it could be used to recycle spent abrasive. Thirty tons of abrasive were processed and a product meeting military specifications for new abrasives was reclaimed. Blasting performance was also comparable to new abrasives. 3 refs., 1 fig., 2 tabs.

Bryan, B.G. (Institute of Gas Technology, Chicago, IL (USA)); Thomas, W.; Adema, C. (David Taylor Research Center, Annapolis, MD (USA))

1990-01-01T23:59:59.000Z

239

Fluid dynamics of partially radiative blast waves  

E-Print Network (OSTI)

We derive a self similar solution for the propagation of an extreme relativistic (or Newtonian) radiative spherical blast wave into a surrounding cold medium. The solution is obtained under the assumption that the radiation process is fast, it takes place only in the vicinity of the shock and that it radiates away a fixed fraction of the energy generated by the shock. In the Newtonian regime these solutions generalize the Sedov-Taylor adiabatic solution and the pressure-driven fully radiative solution. In the extreme relativistic case these solutions generalize the Blandford-McKee adiabatic solution. They provide a new fully radiative extreme relativistic solution which is different from the Blandford-McKee fully radiative relativistic solution. This new solution develops a hot interior which causes it to cool faster than previous estimates. We find that the energy of the blast wave behaves as a power law of the location of the shock. The power law index depends on the fraction of the energy emitted by the shock. We obtain an analytic solution for the interior of the blast wave. These new solutions might be applicable to the study of GRB afterglow or SNRs.

Ehud Cohen; Tsvi Piran; Re'em Sari

1998-03-22T23:59:59.000Z

240

Dosage-response relationships for community annoyance with blasting  

SciTech Connect

This paper summarizes a study of community response to blasting at two coal mines and a quarry. Over 1000 people were interviewed to determine the prevalence (that is, both intensity and extensity) of annoyance associated with long term exposure to ground vibration and airblast at distances from about 500 to 4000 meters from blasting sites. The sites were chosen, among other reasons, for their lack of unusual geologic conditions, and for the historical continuity and range of blasting activity (frequencies of blasting of two or three shots per week or less, and maximum charge weights per delay ranging from about 100 to 10,000 pounds). A major goal of this study was to attempt to infer dosage-response relationships between long term exposure to blasting and the proportion of the community highly annoyed by the blasting.

Fidell, S.; Horonjeff, R.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

242

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

243

Precision blasting in shadow of on-line plant  

SciTech Connect

Despite significant restrictions imposed on the how, where, when, and the blast forces involved, a precisely controlled blasting project has permitted the successful excavation of over 77,000 cu yd of rock for the total job, including an excavation hole about 160-170 ft in diameter and 40-50 ft deep. The excavation was required for the preparation of foundations for a nuclear unit currently being built in the shadow of two existing operating nuclear plants. Blasting procedures are described.

Barlow, G.R. Jr.

1979-02-01T23:59:59.000Z

244

Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)  

SciTech Connect

Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

Dr. Gordon A. Irons

2004-03-31T23:59:59.000Z

245

Assessment of selected furnace technologies for RWMC waste  

SciTech Connect

This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

Batdorf, J.; Gillins, R. [Science Applications International Corp., Idaho Falls, ID (United States); Anderson, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-03-01T23:59:59.000Z

246

AISI/DOE Technology Roadmap Program: Behavior of Phosphorus in DRI/HBI During Electric Furnace Steelmaking  

SciTech Connect

Many common scrap substitutes such as direct reduced iron pellets (DRI), hot briquetted iron (HBI), iron carbide, etc., contain significantly higher levels of phosphorus steelmaking for the production of higher quality steels, control of phosphorus levels in the metal will become a concern. This study has developed a more complete understanding of the behavior of phosphorus in DRI during EAF steelmaking, through a thorough investigation of the kinetics and thermodynamics of phosphorus transfer in the EAF based upon laboratory and plant experiments and trials. Laboratory experiments have shown that phosphorus mass transfer between oxide and metallic phases within commercial direct reduced iron pellets occurs rapidly upon melting according to the local equilibrium for these phases. Laboratory kinetic experiments indicate that under certain conditions, phosphorus mass transfer between slag and metal is influenced by dynamic phenomena, which affect the mass transfer coefficient for the reaction and/or the slag metal interfacial area. Plant trials were conducted to directly evaluate the conditions of mass transfer in the electric furnace and to determine the effects of different scrap substitute materials upon the slag chemistry, the behavior of phosphorus in the steel, and upon furnace yield. The data from these trials were also used to develop empirical models for the slag chemistry and furnace temperature as functions of time during a single heat. The laboratory and plant data were used to develop a numerical process model to describe phosphorus transfer in the EAF

Richard J. Frueham; Christopher P. Manning cmanning@bu.edu

2001-10-05T23:59:59.000Z

247

Hazards of black blasting powder in underground coal mining  

SciTech Connect

To help reduce explosion hazards in coal mines using dangerous black blasting powder, this circular outlines precautions designed to increase the safety factor in using this explosive.

Harrington, D.; Warncke, R.G.

1949-01-01T23:59:59.000Z

248

Application of directional blasting in mining and civil engineering, 1986  

SciTech Connect

The author describes the mechanism of breaking mineral rocks through blasting and offers recommendations on the application of directional blasting in mining and civil engineering. He also introduces criteria for cost-effectiveness of transporting rock mass from stope to pile by means of energy of explosion. And, the book presents ballistic tables to be used in constructing the trajectory of movement of a rock fragment during blasting operations while taking into account the topography of the land. In this edition, the author presents a more detailed theoretical treatment on the mechanism of fragmentation of a monolithic or fissured rock mass through blasting.

Chernigovskii, A.A.

1986-01-01T23:59:59.000Z

249

Characterizing Blast and Impact of Long Carbon Fiber Reinforced Concrete.  

E-Print Network (OSTI)

??The primary objective of the study was to investigate the blast and impact resistance of carbon fiber reinforced concrete. The impact resistance was assessed through… (more)

Musselman, Eric

2007-01-01T23:59:59.000Z

250

AFA Steels  

NLE Websites -- All DOE Office Websites (Extended Search)

AFA Steels Home AFA Steels Home Contacts Goal Advanced Research Material Projects Related Links CF8C-Plus Steels MSTD Corrosion Science & Technology Group Oak Ridge National Laboratory ORNL Fossil Energy Program ORNL Industrial Technologies Program U.S. Department of Energy Office of Fossil Energy Advanced Research Materials Program Office of Energy Efficiency and Renewable Energy Industrial Technologies Program Distributed Energy Program Comments AFA: Alumina-Forming Austenitic Stainless Steels AFA stainless steels boast an increased upper-temperature oxidation, or corrosion, limit that is 100 to 400 degrees Fahrenheit higher than that of conventional stainless steels. These new alloys deliver this superior oxidation resistance with high-temperature strengths approaching that of

251

BPM Motors in Residential Gas Furnaces: What are the Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity...

252

Recovering Zinc and Lead from Electric Arc Furnace Dust  

Science Conference Proceedings (OSTI)

Aug 1, 2000 ... Non-member price: 25.00. TMS Student Member price: 10.00. Product In Stock. Description Increasing amounts of electric arc furnace dust ...

253

Induction Furnace Quench & Temper of Oil Field Tubular Goods  

Science Conference Proceedings (OSTI)

Because of the unique operating features of an induction furnace, each pipe is individually heat treated, producing more uniform properties than possible with ...

254

140th Annual Meeting & Exhibition Furnace Efficiency – Energy and ...  

Science Conference Proceedings (OSTI)

140th Annual Meeting & Exhibition. February 27 to March 3, 2011. San Diego Convention Center • San Diego, California USA. Furnace Efficiency – Energy and  ...

255

Effect Of Batch Charging Equipment On Glass Furnace Efficiency  

Science Conference Proceedings (OSTI)

This paper investigates the effects of batch pattern in the melt space caused by charging equipment on the energy efficiency of the furnace focusing on the ...

256

The Limitations of CFD Modeling for Furnace Atmosphere ... - TMS  

Science Conference Proceedings (OSTI)

Feb 1, 2002 ... The Limitations of CFD Modeling for Furnace Atmosphere Troubleshooting by P.F. Stratton, N. Saxena and M. Huggahalli ...

257

Energy Efficient Operation of Secondary Aluminum Melting Furnaces  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Energy Efficient Operation of Secondary Aluminum Melting Furnaces by P.E. King, J.J. Hatem, and B.M. Golchert ...

258

The Comparison between Vertical Shaft Furnace and Rotary Kiln for ...  

Science Conference Proceedings (OSTI)

Therefore, calcination of coke used for aluminum reduction by vertical shaft furnace is more competitive based on the existing quality of the green petroleum  ...

259

Improved Furnace Efficiency through the Use of Refractory Materials  

Science Conference Proceedings (OSTI)

... refractory users, and academic institutions, to improve energy efficiency of U.S. industry through increased furnace efficiency brought about by the employment ...

260

Furnace Efficiency – Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

Since throughput and energy efficiency are very closely tied together, this symposium looks to optimize furnace operations in both areas. Specific methods to ...

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

DOE Green Energy (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

262

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

263

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

264

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Air-Handler Efficiency. ASHRAE Transactions, V. 110, Pt.1,Air Heating System Performance. ASHRAE Transactions, V. 104,Furnace Air Handlers Save? , ASHRAE Transactions, V. 110,

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

265

NREL’s Optical Furnace Technology Sparks Solar Industry Interest  

NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Credit: Ray David, NREL

266

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

267

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

cooling operation or standby, which account for a largethe cooling season, and standby. Furnace electricity use isElectricity Use during Standby PE standby Burner Operating

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

268

Development of Reverberatory Furnace Using in Copper Scrape ...  

Science Conference Proceedings (OSTI)

... Furnace Using in Copper Scrape Smelting by Reformed Natural Gas ... Oxidation Kinetics of Fe-Cr and Fe-V liquid Alloys under Controlled Oxygen Pressures.

269

Alloys for Ethylene Production Furnaces - Energy Innovation Portal  

Ethylene production is one of the most energy intensive processes in the chemical industry, due to the decoking necessary to maintain ethylene furnace ...

270

Control of carbon balance in a silicon smelting furnace  

DOE Patents (OSTI)

The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

1992-12-29T23:59:59.000Z

271

Damping Ditch Effect Analysis of Blasting Vibration Based on Wavelet Transform  

Science Conference Proceedings (OSTI)

This paper researched the propagation laws of blasting seismic wave under the action of damping ditch, with the help of blasting vibration test and wavelet transform method. Blasting seismic wave is short-time non-stationary random signal. According ...

Zhiyang Chen; Xiang Fang; Weiping Zhang; Mingshou Zhong

2009-12-01T23:59:59.000Z

272

Post combustion trials at Dofasco's KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco's 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-01-01T23:59:59.000Z

273

Comparison of Furnace Flue Gas Temperature Monitors  

Science Conference Proceedings (OSTI)

This report summarizes the results of a temperature monitor comparison study performed at Ameren Sioux Station, in Missouri. The study compared the accuracy and ease of use of two radiation-based monitors, an Infra-View and SpectraTemp, and a newer tunable-diode laser (TDL) absorption-based device, the LTS-100. The instruments, installed in the upper furnace and allowed to run continuously for approximately 8 weeks, monitored and recorded exit gas temperatures during normal boiler operation and one brief...

2006-09-22T23:59:59.000Z

274

Superior Steel  

Office of Legacy Management (LM)

which contains Mississippian to Pennsylvanian (Carboniferous) Formations exhibiting coal resources. Superior Steel likely is underlain by the Conemaugh andor the Monogahela...

275

Steels I  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... During service, Reactor Pressure Vessel (RPV) steels harden as a result of the ... Research supported by ORNL's Shared Research Equipment ...

276

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents (OSTI)

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

277

Proceedings of the eighteenth annual conference on explosives and blasting technique  

Science Conference Proceedings (OSTI)

This edition of the Proceedings of the Annual Conference on Explosives and Blasting Techniques is the eighteenth in a series published by the International Society of Explosives Engineers. The papers cover a wide variety of explosives and blasting techniques, including: rock mechanics, rock drilling, perimeter control, handling and documenting blasting complaints, blast vibration frequencies, blasting techniques for surface and underground coal mines, explosives for permafrost blasting, lightning detection, use of slow motion video to analyze blasts, tunneling, and close-in blasting control. Papers have been processed individually for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

278

Protecting blasting operations from possible lawsuits  

SciTech Connect

Any blasting violations, whether detected by an inspector, or undetected and therefore unwritten, will likely come back to haunt you if there is a lawsuit stemming from an alleged personal injury or property damage. These violations can be used by a plaintiff's attorney to show that the operation was not conducted according to law and not in a professional manner. This could effect the amount of punitive damages awarded on top of the actual loss award. This article describes the operations.

Ludwiczak, J.T.

1987-05-01T23:59:59.000Z

279

Blasting Vibration Signals Based on Hilbert Transformation of the Application  

Science Conference Proceedings (OSTI)

This paper is based on empirical mode decomposition (EMD )of Hilbert-Huang transform (Hilbert-Huang Transformation, HHT) method shall be applied to the blasting vibration signal, first introduced the Hilbert-Huang transform theory and algorithms, then ... Keywords: Blast, Hilbert-Huang transform, seismic wave, frequency spectrogram

Xueping Ren; Dongsheng Hao

2012-04-01T23:59:59.000Z

280

Blast-induced ground vibration prediction using support vector machine  

Science Conference Proceedings (OSTI)

Ground vibrations induced by blasting are one of the fundamental problems in the mining industry and may cause severe damage to structures and plants nearby. Therefore, a vibration control study plays an important role in the minimization of environmental ... Keywords: Blast vibration, Coefficient of determination, Conventional vibration predictor equations, Mean absolute error, Support vector machine

Manoj Khandelwal

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

17-storey building fold blasting demolition and safety technology  

Science Conference Proceedings (OSTI)

This paper describes the successful experience of the directional blasting demolition of 17- storey frame shear wall structure building, and it analyzes and elucidates the blasting program determination, the pre-demolition and treatment, the burst altitude ... Keywords: Floors,Delay,Vibrations,Safety,Concrete,Damping

Xu Shunxiang, Chen Dezhi

2013-01-01T23:59:59.000Z

282

Size Effect of Element in Structural Blasting Demolition  

Science Conference Proceedings (OSTI)

Performed the size effect of the unit in numerical simulation of blasting demoLition. Considered three elemental sizes, which were 10, 20 and 40 cm. Adopt 40 cm element, the structure was damaged more seriously. This resulted in the bigger error in predicting ... Keywords: blasting demoLition, finite element, numerical simulation, size effect

Guo-liang Yang; Lin-lin Jiang; Yu-long Che

2011-08-01T23:59:59.000Z

283

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents (OSTI)

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

284

Coupled rock motion and gas flow modeling in blasting  

SciTech Connect

The spherical element computer code DMC (Distinct Motion Code) used to model rock motion resulting from blasting has been enhanced to allow routine computer simulations of bench blasting. The enhancements required for bench blast simulation include: (1) modifying the gas flow portion of DMC, (2) adding a new explosive gas equation of state capability, (3) modifying the porosity calculation, and (4) accounting for blastwell spacing parallel to the face. A parametric study performed with DMC shows logical variation of the face velocity as burden, spacing, blastwell diameter and explosive type are varied. These additions represent a significant advance in the capability of DMC which will not only aid in understanding the physics involved in blasting but will also become a blast design tool. 8 refs., 7 figs., 1 tab.

Preece, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Knudsen, S.D. (RE/SPEC, Inc., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

285

Surface mine blasting - make it work for you  

SciTech Connect

Understanding the mechanics of blasting and its relationship to the mining operation as a whole underlie the most successful blasting programs. The apparent burden and spacing measured from the drill pattern may not necessarily be the effective burden and spacing during the blast. The detonation sequence of the holes can cause these measurements to change. The true spacing-to-burden relationship, shot timing, and explosive used will all affect overburden movement and breakage. Opinions vary regarding the proper selection of these variables for specific purposes. Cast blasting has received a renewed interest in the past few years, especially in surface coal mines. Improved fragmentation is often an extra benefit of casting. The principles of cast blasting may be used to open a key along the new highwall, improve productivity of truck operati, ons, and help directional spoil movement in special applications. 6 references4 figures

Massey, B.A.

1985-12-09T23:59:59.000Z

286

Furnace Standards Enforcement Policy Statement | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement On January 11, 2013, the Department of Justice, on behalf of DOE, and the American Public Gas Association (APGA) filed a joint motion asking the court to enter an agreement to settle APGA's challenge to DOE's June 27, 2011 Direct Final Rule. The settlement agreement would, among other things, vacate the energy conservation standards applicable to non-weatherized gas furnaces established in the DFR. In an exercise of its enforcement discretion, DOE will, during the pendency of the litigation, act in a manner consistent with the terms of the settlement agreement with regard to the enforcement of the standards. Furnace Standards Enforcement Policy Statement - April 5, 2013

287

Simple Maintenance Saves Costly Furnace Repair/Replacement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement January 6, 2010 - 8:26am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the controls to provide optimum water and air temperature settings for both efficiency and comfort Having a technician perform a combustion-efficiency test Checking the combustion chamber for cracks. Testing for carbon monoxide

288

ENERGY STAR Qualified Gas Furnaces | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

289

Method of operating a centrifugal plasma arc furnace  

DOE Patents (OSTI)

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

290

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

291

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . . . . . . . . W W 8,370 1,949 153,499 3.0 3312 Blast Furnaces and Steel Mills . . . . . . . . . . . . . . . . . . . . . . . W W 6,235 1,297 44,417 4.5 3313...

292

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . . . . . W W W 1,772 216 86 371 4.8 3312 Blast Furnaces and Steel Mills . . . . . . . . . . . W W W W 96 43 255 5.8 3313 Electrometalurgical Products...

293

Impact of Drill and Blast Excavation on Repository Performance Confirmation  

Science Conference Proceedings (OSTI)

There has been considerable work accomplished internationally examining the effects of drill and blast excavation on rock masses surrounding emplacement openings of proposed nuclear waste repositories. However, there has been limited discussion tying the previous work to performance confirmation models such as those proposed for Yucca Mountain, Nevada. This paper addresses a possible approach to joining the available information on drill and blast excavation and performance confirmation. The method for coupling rock damage data from drill and blast models to performance assessment models for fracture flow requires a correlation representing the functional relationship between the peak particle velocity (PPV) vibration levels and the potential properties that govern water flow rates in the host rock. Fracture aperture and frequency are the rock properties which may be most influenced by drill and blast induced vibration. If it can be shown (using an appropriate blasting model simulation) that the effect of blasting is far removed from the waste package in an emplacement drift, then disturbance to the host rock induced in the process of drill and blast excavation may be reasonably ignored in performance assessment calculations. This paper proposes that the CANMET (Canada Center for Mineral and Energy Technology) Criterion, based on properties that determine rock strength, may be used to define a minimum PPV. This PPV can be used to delineate the extent of blast induced damage. Initial applications have demonstrated that blasting models can successfully be coupled with this criterion to predict blast damage surrounding underground openings. The Exploratory Studies Facility at Yucca Mountain has used a blasting model to generate meaningful estimates of near-field vibration levels and damage envelopes correlating to data collected from pre-existing studies conducted. Further work is underway to expand this application over a statistical distribution of geologic parameters, encompassing all the rock types that will be encountered for the proposed repository site at Yucca Mountain. This paper suggests that, based on predicted and verified vibration levels from blasting a distance equal to four standard deviations is unlikely to affect properties that govern water flow in the host rock. The authors propose this predicted distance and verification of vibration levels may be applied to the excavation of repository subsurface openings that may be most efficiently excavated by drill and blast methods with a reasonable assurance of safety.

R. Keller; N. Francis; J. Houseworth; N. Kramer

2000-08-21T23:59:59.000Z

294

Proceedings of the twenty-second annual conference on explosives and blasting technique. Volume 1  

Science Conference Proceedings (OSTI)

These proceedings contain 30 papers presented at the conference. Topics relate to productivity blasting in surface mining, dragline effectiveness, evaluation of production blasts, environmental effects of blast induced immissions, accidental explosions in blasting operations, explosive safety, tunnel excavation, and the use of video technology for shot analysis. Most papers have been processed separately for inclusion on the data base.

NONE

1996-12-01T23:59:59.000Z

295

Proceedings of the twenty-first annual conference on explosives and blasting technique. Volume 2  

SciTech Connect

These proceedings contain 28 papers presented at the conference. Topics relate to drilling for explosive fracturing, pre-blast surveys, blasting regulations, underground and surface mining, tunneling, efficiency and optimization of explosive fracturing, blasting accidents, blast damage control, environmental control, and the use of explosive fracturing in remedial action. Many papers were processed separately for inclusion on the data base.

1995-12-31T23:59:59.000Z

296

Proceedings of the seventeenth annual conference on explosives and blasting technique. Volume 2  

SciTech Connect

Papers from this conference dealt with the following topics: surface and underground mine blasting, ground vibrations and blast effects, design for explosive fracturing of rock, sequential timing for blasting control, design for production optimization, use of blasting for abandoned mine reclamation, chemical explosives, lightning warning systems, magazine security, fire safety, and drilling equipment. Papers have been indexed separately for inclusion on the data base.

1991-01-01T23:59:59.000Z

297

Analysis of seismic waves generated by surface blasting at Indiana coal mines  

E-Print Network (OSTI)

Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent blasting) and coal mines (surface blasting) to gain new understanding of seismic wave propagation, ground

Polly, David

298

Using Geographic Information System for Simulation and Decision Making in Blasting  

Science Conference Proceedings (OSTI)

Building demolition is an important subject for urban construction and development. Blasting simulation is very helpful for safe scientific blasting. It will provide a novel method to decision making for blasting combined with Geographic information ... Keywords: GIS, Three-dimensional modeling, blasting simulation, decision making

Jiejun Huang; Weiping Xu; Xu Zhao; Jie Chen; Fawang Ye

2008-12-01T23:59:59.000Z

299

LTC vacuum blasting maching (concrete): Baseline report: Greenbook (Chapter)  

SciTech Connect

The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjuction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

1997-07-31T23:59:59.000Z

300

Finite element analysis of the Arquin-designed CMU wall under a dynamic (blast) load.  

Science Conference Proceedings (OSTI)

The Arquin Corporation designed a CMU (concrete masonry unit) wall construction and reinforcement technique that includes steel wire and polymer spacers that is intended to facilitate a faster and stronger wall construction. Since the construction method for an Arquin-designed wall is different from current wall construction practices, finite element computer analyses were performed to estimate the ability of the wall to withstand a hypothetical dynamic load, similar to that of a blast from a nearby explosion. The response of the Arquin wall was compared to the response of an idealized standard masonry wall exposed to the same dynamic load. Results from the simulations show that the Arquin wall deformed less than the idealized standard wall under such loading conditions. As part of a different effort, Sandia National Laboratories also looked at the relative static response of the Arquin wall, results that are summarized in a separate SAND Report.

Lopez, Carlos; Petti, Jason P.

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermal reclamation of used blast grit  

Science Conference Proceedings (OSTI)

Four reclaimer feasibility tests were conducted with used blast grit from the Long Beach Naval Shipyard. The results of these tests revealed that the organic material component of the used grit was fully oxidized to carbon dioxide and water. Some of the metallic oxides of copper, zinc, titanium, and lead from the used grit were largely elutriated into a cyclonic collector. The calcined (reclaimable) fraction from this test work amounted to approximately 95% of the used grit charged. The major oxide and organic component analyses conducted revealed no significant general chemical difference between the virgin and reclaimed grit. Based on these results, a commercial plant can be designed to provide a reusable grit yield in excess of 80% within the general size specifications. 2 refs., 4 figs., 9 tabs.

Sandstrom, W.A.; Patel, J.G.

1988-08-24T23:59:59.000Z

302

Overfilling of cavern blamed for LPG blasts  

Science Conference Proceedings (OSTI)

Three explosions and a fire Apr. 7 at an LPG salt dome storage cavern near Brenham, Tex., were triggered when the cavern was overfilled, the Texas Railroad Commission (TRC) has reported. This paper reports that a TRC investigation found that LPG escaped to the surface at the Brenham site through brine injection tubing after excessive fill from an LPG line forced the cavern's water level below the brine tubing's bottom. At the surface, LPG was released into a brine storage pit where it turned into a dense, explosive vapor. At 7:08 a.m., the vapor was ignited by an unknown source. The resulting blast killed three persons and injured 19 and brought operations at the site to a halt.

Not Available

1992-07-06T23:59:59.000Z

303

Blast rips Texas LPG storage site  

SciTech Connect

This paper reports that Seminole Pipeline Co. at presstime last week had planned to reopen its 775 mile liquefied petroleum gas pipeline in South Texas by Apr. 12 after a huge explosion devastated the area around a Seminole LPG storage salt dome near Brenham, Tex., forcing the pipeline shutdown. A large fire was still burning at the storage site at presstime last week. The blast - shortly after 7 a.m. Apr. 7 - occurred at a pipeline connecting the main Seminole line with the storage facility and caused shock waves felt 130 miles away. A 5 year old boy who lived in a trailer near Seminole's LPG storage dome was killed, and 20 persons were injured.

1992-04-13T23:59:59.000Z

304

Blasting detonators incorporating semiconductor bridge technology  

SciTech Connect

The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.

Bickes, R.W. Jr.

1994-05-01T23:59:59.000Z

305

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

306

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Furnaces Gas Furnaces Covered Product Category: Residential Gas Furnaces October 7, 2013 - 10:39am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

307

Legendary West Virginia Senior Citizen Stays Warm With New Furnace |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace April 1, 2010 - 7:16pm Addthis Joshua DeLung For the last 56 years, Beulah Sisk has lived in the same house in Princeton, W.Va. Beulah, who worked for 25 years at Lloyd's Pastry Shop, is well known in Princeton. People still see her on the streets today and recognize her as an icon in the community. After a wind storm damaged Beulah's home last year, it came as no surprise when a senior center employee, concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I tried to have it repaired, but it still

308

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

309

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

310

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

311

EOI, Electric Tube Conversion Furnaces | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tube ... EOI, Electric Tube Conversion Furnaces B&W Y-12, LLC (hereafter known as "Y-12"; for additional company information, see the website), acting under its Prime Contract No....

312

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

DOE and 2006 ASHRAE Test Procedures Furnace Controls Household Heating Requirementsprocedure (DOE 2004; Habart 2005) Heating Requirements areIn the DOE test procedure, the heating requirements of the

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

313

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

314

Furnace characterization for horizontal shipping container thermal testing  

SciTech Connect

In order to perform regulatory thermal tests required by 10 CFR 71.73(c)(3) on the newly designed Horizontal Shipping Container (HSC), it was necessary to find a company involved in the business of heat treating who was willing to allow their furnace to be used for these tests. Of the companies responding to a request for interest, Lindberg Heat Treating Company`s Solon, Ohio, facility was found to be the best available vendor for this activity. Their furnace was instrumented and characterized such that these tests could be performed in a manner that would conform to the specifications contained in 10 CFR 71. It was found that Lindberg`s furnace was usable for this task, and recommendations concerning the use of this furnace for the above stated purpose are made herein.

Feldman, M.R.

1994-05-01T23:59:59.000Z

315

Effect of Batch Initial Velocity on the Glass Furnace Efficiency  

Science Conference Proceedings (OSTI)

There is a direct coloration between the batch distribution techniques and the furnace ... A Review: Solar Thermal Reactors for Materials Production ... Cellulose Acetate Membranes for CO2 Separation from Water-gas-shift Reaction Products.

316

Optical processing furnace with quartz muffle and diffuser ...  

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz ...

317

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

318

Process for foaming aqueous protein-containing blasting agents  

SciTech Connect

A process is provided for foaming blasting agents which cosists of (1) passing a thickened protein-containing water-bearing blasting agent through a number of orifices at a pressure of about 40 to 160, preferably 125 to 140 psi into a suction chamber in order to form a number of streams of thickened explosive and create a vacuum in the area where the blasting agent exists; (2) simultaneously incorporating gas into the thickened explosive in the suction chamber so as to cause an intimate admixture of the gas with the thickened explosive; and (3) thereafter reducing the velocity of the thickened explosive by subsequently passing it through an enlarged opening, and recovering the resulting foamed, thickened blasting agent. (6 claims)

Adams, P.E.; Fearnow, P.W.

1972-07-18T23:59:59.000Z

319

Application of computer blast modeling to oil shale mining  

SciTech Connect

In recent years there has been considerable interest in the development of computer models to describe rock fragmentation by blasting. The interest for this work has come primarily for application to large scale coal or mineral surface mines. However, the basic models developed for these applications are equally applicable for examining typical underground oil shale operations. Models that can predict blasting results starting from first principles can impact room and pillar mining in a number of ways including optimizing round design, control of particle size, evaluation of new explosives, minimizing pillar damage, and developing blasting schemes that can be used in conjunction with continuous miners. In this study, the authors explore how these codes can be used to model the blasting geometry encountered in room and pillar mining operations.

Hommert, P.J.; Preece, D.S.; Thorne, B.J. (Sandia National Labs., Albuquerque, NM (USA))

1989-01-01T23:59:59.000Z

320

Empirical and scientific application of explosives and blasting agents  

SciTech Connect

A new system for comparing modern blasting agents and evaluating their performance in large-scale, massive rock blasting, such as the taconites of the Mesabi Range of Minnesota, has been devised. This paper briefly describes various explosives and blasting agents and makes some rather interesting comparisons based on their physical chemistry. The actual performance in rock is evaluated, based on the theory that rock fragmentation is more dependent on the physical characteristics of the rock mass and shot geometry than on explosive type. The energy absorption capacity of a rock, its physical properties, determines the relative effect of the applied explosive or blasting agent. And the method of force relief based primarily on shot geometry (multiple rows and holes) and elastic and physical properties of the rock determines how the rock mass will fragment. The relative affect of the applied explosive is dependent on its total energy, gas-volume and type, temperature, and reaction time.

Klima, F.J.

1966-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Experiments on multiple short-delay blasting of coal  

SciTech Connect

Investigation was made to determine conditions under which short-delay multiple blasting could be used in coal mines without causing ignition of gas, coal dust, or mixtures of gas and dust. Additional aims were to determine effects of blasting on mine roof; to find quantity and breakage of coal produced by multiple blasting; to measure amount of float dust formed during shooting; and to study relative time requirement in different blasting procedures. Various recommendations that should help greatly to reduce incidence of misfires are presented. Paper presented at Seventh International Conference of Directors of Safety in Mines Research at the Safety in Mines Research Establishment, Ministry of Fuel and Power, Buxton, England, July 7-12, 1952.

Nagy, J.; Hartmann, I.; Christofel, F.P.; Seiler, E.C.

1952-01-01T23:59:59.000Z

322

Development of production drill bits and blast rounds  

SciTech Connect

In recent years there has been considerable interest in the development of computer models to describe rock fragmentation by blasting. The interest for this work has come primarily for application to large scale coal or mineral surface mines. However, the basic models developed for these applications are equally applicable for examining typical underground oil shale operations. Models that can predict blasting results starting from first principles can impact room and pillar mining in a number of ways including optimizing round design, control of particle size, evaluation of new explosives, minimizing pillar damage, and developing blasting schemes that can be used in conjunction with continuous miners. In this study, the authors explore how these codes can be used to model the blasting geometry encountered in room and pillar mining operations.

Baloo, G.L. (Energy Mining Div., UNOCAL Corp., Parachute, CO (US))

1989-01-01T23:59:59.000Z

323

Analysis of blast mitigation strategies exploiting fluid-structure interaction  

E-Print Network (OSTI)

Blast attacks have become the most pervasive threat in both civil and military contexts. However, there is currently a limited understanding of the mechanisms of loading, damage and failure of structures, and injury to ...

Kambouchev, Nayden Dimitrov, 1980-

2007-01-01T23:59:59.000Z

324

EnergyPlus: The Merger of BLAST and DOE-2  

NLE Websites -- All DOE Office Websites (Extended Search)

building energy simulation programs, DOE-2 and Building Loads Analysis and System Thermodynamics (BLAST). Development of both software tools began in the 1970s, when the U.S....

325

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

SciTech Connect

Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

Lekov, Alex; Franco, Victor; Lutz, James

2006-05-12T23:59:59.000Z

326

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

327

Engineering model for predicting rubble motion during blasting  

SciTech Connect

Recent applications of explosives and blasting agents to rubble rock have led to requirements for more elaborate design and analysis methods. In most blasting uses, it is necessary not only to fracture the rock, but also to move the broken rubble in a predictable manner. Many in-situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. In this paper, an engineering model is presented which describes the large rubble motion during blasting. This model is intended to provide the blast designer with a tool for evaluation and further refinement of blasting patterns and timing sequences. In this model the rock medium is represented by a discrete series of circular regions of fractured material. These regions are set in motion by pressure loads from the explosive. The motion of the regions is calculated using a step-wise, explicit, numerical time integration method. Interaction of adjacent regions is based on inelastic impact of spherical bodies. The derivation of this model is presented along with the background for selecting loading pressure based on explosive behavior. Three typical examples, including both cratering and bench geometries, are discussed which illustrate the use of this model to predict rubble motion. This engineering representation appears to provide a practical model for use in predicting rubble motion and a tool for design evaluation of blasting in confined geometries. 15 figures.

Schamaun, J.T.

1982-12-01T23:59:59.000Z

328

Engineering model for predicting rubble motion during blasting  

SciTech Connect

Recent applications of explosives and blasting agents to rubble rock have led to requirements for more elaborate design and analysis methods. In most blasting uses, it is necessary not only to fracture the rock, but also to move the broken rubble in a predictable manner. Many in situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. In this paper, an engineering model is presented which describes the large rubble motion during blasting. This model is intended to provide the blast designer with a tool for evaluation and further refinement of blasting patterns and timing sequences. In this model the rock medium is represented by a discrete series of circular regions of fractured material. These regions are set in motion by pressure loads from the explosive. The motion of the regions is calculated using a step-wise, explicit, numerical time integration method. Interaction of adjacent regions is based on inelastic impact of spherical bodies. The derivation of this model is presented along with the background for selecting loading pressure based on explosive behavior. Three typical examples, including both cratering and bench geometries, are discussed which illustrate the use of this model to predict rubble motion. This engineering representation appears to provide a practical model for use in predicting rubble motion and a tool for design evaluation of blasting in confined geometries. 15 figures, 1 table.

Schamaun, J.T.

1983-01-01T23:59:59.000Z

329

A Comparison of Iron and Steel Production Energy Intensity in China and the  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparison of Iron and Steel Production Energy Intensity in China and the A Comparison of Iron and Steel Production Energy Intensity in China and the U.S Title A Comparison of Iron and Steel Production Energy Intensity in China and the U.S Publication Type Conference Proceedings Year of Publication 2011 Authors Price, Lynn K., Ali Hasanbeigi, Nathaniel T. Aden, Zhang Chunxia, Li Xiuping, and Shangguan Fangqin Conference Name ACEEE Industrial Summer Study Date Published 07/2011 Publisher American Council for an Energy-Efficient Economy Conference Location New York Keywords china, energy intensity, iron and steel, Low Emission & Efficient Industry, united states Abstract The goal of this study was to develop a methodology for making an accurate comparison of the energy intensity of steel production in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and industry structure. In addition to the base case analysis, six scenarios were developed to assess the effect of different factors such as the share of electric arc furnace (EAF) steel production, conversion factors for the embodied energy of imported and exported intermediary and auxiliary products, and the differences in net calorific values of the fuels. The results of the analysis show that for the whole iron and steel production process, the final energy intensity in 2006 was equal to 14.90 GJ/tonne crude steel in the U.S. and 23.11 GJ/tonne crude steel in China in the base scenario. In another scenario that assumed the Chinese share of electric arc furnace production in 2006 (i.e. 10.5%) in the U.S., the energy intensity of steel production in the U.S. increased by 54% to 22.96GJ/tonne crude steel. Thus, when comparing the energy intensity of the U.S and Chinese steel industry,the structure of the industry should be taken into account.

330

Furnace Blower Electricity: National and Regional Savings Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Blower Electricity: National and Regional Savings Potential Furnace Blower Electricity: National and Regional Savings Potential Title Furnace Blower Electricity: National and Regional Savings Potential Publication Type Report LBNL Report Number LBNL-417E Year of Publication 2008 Authors Franco, Victor H., James D. Lutz, Alexander B. Lekov, and Lixing Gu Document Number LBNL-417E Pagination 14 Date Published August 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80% of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressureused in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, whilewarm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

331

Analysis of Abrasive Blasting of DOP-26 Iridium Alloy  

SciTech Connect

The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

Ohriner, Evan Keith [ORNL; Zhang, Wei [ORNL; Ulrich, George B [ORNL

2012-01-01T23:59:59.000Z

332

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

333

Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.  

SciTech Connect

The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

2006-09-06T23:59:59.000Z

334

Selection and development of air-injected frit slurry blasting for decontamination of DWPF canisters  

Science Conference Proceedings (OSTI)

Canisters of waste glass produced in the Defense Waste Processing Facility at the Savannah River Plant will be decontaminated by air-injected frit slurry blasting. The byproduct of this operation, contaminated frit slurry, will be used as part of the feed stock for the glass-making process. Therefore, no secondary waste will be created. Scouting tests of four different frit blasting techniques were conducted by the Savannah River Laboratory. The techniques investigated were dry blasting, direct pump slurry blasting, air-aspirated slurry blasting, and air-injected slurry blasting. The air-injected slurry blasting technique was chosen for development, based on results of these scouting tests. A detailed development program was undertaken to optimize the air-injected frit slurry blasting process. 3 references, 28 figures.

Ward, C.R.

1984-09-01T23:59:59.000Z

335

Blasting practices as they affect the roof of coal mines in Ohio, Pennsylvania, and West Virginia  

SciTech Connect

Coal beds and roof in the various States are described, State blasting regulations are noted, and methods of protecting roof and advantages gained by improved blasting practices are considered.

Geyer, J.N.

1933-01-01T23:59:59.000Z

336

Design of a composite combat helmet liner for prevention of blast-induced traumatic brain injury  

E-Print Network (OSTI)

Air blast-induced traumatic brain injuries (TBIs) represent a significant percentage of military personnel injuries observed in Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF). Prevalence of blast-induced ...

Vechart, Andrew (Andrew Peter)

2011-01-01T23:59:59.000Z

337

Furnace Blower Electricity: National and Regional Savings Potential  

Science Conference Proceedings (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

338

Metallurgical Evaluation of Grit Blasted Versus Non-Grit Blasted Iridium Alloy Clad Vent Set Cup Surfaces  

SciTech Connect

Metallurgical evaluations were conducted to determine what, if any, grain size differences exist between grit blasted and non-grit blasted DOP-26 iridium alloy cup surfaces and if grit blasting imparts sufficient compressive cold work to induce abnormal grain growth during subsequent temperature exposures. Metallographic measurements indicated that grit blasting cold worked the outside cup surface to a depth of approximately 19 {micro}m. Subsequent processing through the air burn-off (635 C/4h) and vacuum outgassing (1250 C/1h) operations was found to uniformly recrystallize the cold worked surface to produce grains with an average diameter of approximately 8.5 {micro}m (American Society for Testing and Materials (ASTM) grain size number 11). Follow-on heat treatments at 1375 C, 1500 C, and 1900 C for durations ranging from 1 min to 70 h yielded uniform grain sizes and no abnormal grain growth from grit blasting. Abnormal grain growth was noted at the 1500 C and 1900 C heat treatments in areas of cold work from excessive clamping during sample preparation.

Ulrich, George B [ORNL; Longmire, Hu Foster [ORNL

2010-02-01T23:59:59.000Z

339

Role of computer simulation in oil shale blasting  

SciTech Connect

Sophisticated computer codes were developed to simulate the processes that occur in blasting in oil shale. Three ways these codes are used in conjunction with field results are described. First, there is a code verification stage, where the code is improved through detailed comparisons. Next, there is a stage where critical phenomena in the blasting process are identified by studying areas where there are significant differences between calculations and field results. Finally, as the code is verified and the critical phenomena are explored, the code is used as a design tool. These stages are illustrated with experience from use of the new Los Alamos SHALE code and other codes. Current understanding of blasting in oil shale is reviewed, with an emphasis on areas where simulations and experimental approaches are pushed to their limits. A recommendation is made that computer simulation be done in close coordination with an active experimental program.

Adams, T.F.; Keller, C.F.

1984-01-01T23:59:59.000Z

340

The role of computer simulation in oil shale blasting  

SciTech Connect

Sophisticated computer codes have been developed to simulate the processes that occur in blasting in oil shale. The authors describe the three ways these codes are used in conjunction with field results. First, there is a code verification stage, where the code is improved through detailed comparisons. Next, there is a stage where critical phenomena in the blasting process are identified by studying areas where there are significant differences between calculations and field results. Finally, as the code is verified and the critical phenomena are explored, the code is used as a design tool. These stages are illustrated with experience from use of the new Los Alamos SHALE code and other codes. Current understanding of blasting in oil shale is reviewed, with an emphasis on areas where simulations and experimental approaches are pushed to their limits. It is concluded that computer simulation be done in close coordination with an active experimental program.

Adams, T.F.; Keller, C.F.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Surface preparation via grit-blasting for thermal spraying  

Science Conference Proceedings (OSTI)

The major reason for grit blasting for thermal spray applications is to ensure a strong mechanical bond between the substrate and the coating by the enhanced roughening of the substrate material. This study presents five statistically designed experiments that were accomplished to investigate the grit blasting process. The experiments were conducted using a Box statistical design of experiment (SDE) approach. A substantial range of grit blasting parameters and their effect on the resultant substrate roughness were investigated, including grit type, pressure, working distance, and exposure time. The substrates were characterized for surface characteristics using image analysis. These attributes are correlated with the changes in operating parameters. Optimized process parameters for the two machines used in this study as predicted by the SDE analysis are presented.

Varacalle, D.J. Jr.; Lundberg, L.B.; Hartley, R.S. [and others

1995-11-01T23:59:59.000Z

342

Optimum Power and Rate Allocation for Coded V-BLAST  

E-Print Network (OSTI)

An analytical framework for minimizing the outage probability of a coded spatial multiplexing system while keeping the rate close to the capacity is developed. Based on this framework, specific strategies of optimum power and rate allocation for the coded V-BLAST architecture are obtained and its performance is analyzed. A fractional waterfilling algorithm, which is shown to optimize both the capacity and the outage probability of the coded V-BLAST, is proposed. Compact, closed-form expressions for the optimum allocation of the average power are given. The uniform allocation of average power is shown to be near optimum at moderate to high SNR for the coded V-BLAST with the average rate allocation (when per-stream rates are set to match the per-stream capacity). The results reported also apply to multiuser detection and channel equalization relying on successive interference cancelation.

Kostina, Victoria

2009-01-01T23:59:59.000Z

343

Modeling and Simulating Blast Effects on Electric Substations  

Science Conference Proceedings (OSTI)

A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

Lyle G. Roybal; Robert F. Jeffers; Kent E. McGillivary; Tony D. Paul; Ryan Jacobson

2009-05-01T23:59:59.000Z

344

Optical processing furnace with quartz muffle and diffuser plate  

SciTech Connect

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

345

Synergy of seismic, acoustic, and video signals in blast analysis  

SciTech Connect

The range of mining applications from hard rock quarrying to coal exposure to mineral recovery leads to a great variety of blasting practices. A common characteristic of many of the sources is that they are detonated at or near the earth`s surface and thus can be recorded by camera or video. Although the primary interest is in the seismic waveforms that these blasts generate, the visual observations of the blasts provide important constraints that can be applied to the physical interpretation of the seismic source function. In particular, high speed images can provide information on detonation times of individuals charges, the timing and amount of mass movement during the blasting process and, in some instances, evidence of wave propagation away from the source. All of these characteristics can be valuable in interpreting the equivalent seismic source function for a set of mine explosions and quantifying the relative importance of the different processes. This paper documents work done at the Los Alamos National Laboratory and Southern Methodist University to take standard Hi-8 video of mine blasts, recover digital images from them, and combine them with ground motion records for interpretation. The steps in the data acquisition, processing, display, and interpretation are outlined. The authors conclude that the combination of video with seismic and acoustic signals can be a powerful diagnostic tool for the study of blasting techniques and seismology. A low cost system for generating similar diagnostics using consumer-grade video camera and direct-to-disk video hardware is proposed. Application is to verification of the Comprehensive Test Ban Treaty.

Anderson, D.P. [Southern Methodist Univ., Dallas, TX (United States); Stump, B.W. [Los Alamos National Lab., NM (United States); Weigand, J. [Vibronics Inc. (United States)

1997-09-01T23:59:59.000Z

346

Optimizing cast blasting efficiency using ANFO with liners  

Science Conference Proceedings (OSTI)

As part of a five research project funded by the National Science Foundation, Peabody Energy studied three experimental cast blasts conducted at the North Antelope Rochelle mine site on July 24,28 and 31 2005. The initial purpose of this research project was to determine the influence that blast initiation sequence have on: NOx production; Face Displacement; Highwall damage; Explosive performance; Vibration emissions; Displacement; Surface swell; and Cast benefit. Two new discoveries on velocity of detonation (VoD) and pressure of detonation (PoD) were made as a result of this research project. Furthermore, a relationship between surface swell velocity and face velocity was also noted. 7 figs., 3 tabs.

Madsen, A.

2007-01-15T23:59:59.000Z

347

(Discussion of plastic media blasting): Foreign trip report, 1988  

SciTech Connect

The visit to MBB was to see and discuss the plastic media blasting equipment developed and manufactured as a cooperative effort by Schlick and MBB. The Germans emphasized a systematic approach and complete control over most parameters. The goal is to achieve conditions which do not cause damage to the aircraft. To arrive at the goal the air pressure that delivers the air to entrain the media, the flow rate of media, and the media itself are carefully and accurately controlled. Distance of nozzle and angle of blasting were systematically investigated. The wet (freon) cleanup system under development at Schlick was not discussed.

Gat, U.

1988-07-21T23:59:59.000Z

348

Proceedings of the twelfth annual symposium on explosives and blasting research  

SciTech Connect

These proceedings contain 22 papers presented at the conference. Topics relate to blast vibration assessment, slope stability, rock fragmentation, positioning of mining equipment, blasting legislation and regulations, and blast hole tests. Most papers have been processed separately for inclusion on the data base.

1996-12-01T23:59:59.000Z

349

A method for determining the parameters of blast load on the enclosing medium and surrounding objects  

Science Conference Proceedings (OSTI)

A model for computing the impact of blast energy irradiated into the three-dimensional space of the enclosing medium is suggested, which makes it possible to predict the parameters of the action of an arbitrary blast source on an arbitrarily located watched object. As a consequence, it becomes possible to optimize safe conditions of the building process under virtually any conditions of blasting.

Shuifer, M. I. ['SPII Gidrospetsproekt' Company (Russian Federation)

2006-01-15T23:59:59.000Z

350

Controlled blasting and its implications for the NNWSI project exploratory shaft  

SciTech Connect

This report reviews controlled blasting techniques for shaft sinking. Presplitting and smooth blasting are the techniques of principal interest. Smooth blasting is preferred for the Nevada Nuclear Waste Storage Investigations exploratory shaft. Shaft damage can be monitored visually or by peak velocity measurements and refractive techniques. Damage into the rock should be limited to 3 ft. 40 refs., 22 figs., 7 tabs.

Van Eeckhout, E.M.

1987-09-01T23:59:59.000Z

351

Proceedings of the tenth annual symposium on explosives and blasting research  

Science Conference Proceedings (OSTI)

These proceedings contain 26 papers presented at the conference. Topics relate to blast vibration analysis and modeling, malfunctioning explosives, detonators, rock fragmentation, structural response of buildings to blasting, computer modeling, blast design, and measurement of rock properties. Most of the papers have been processed separately for inclusion on the data base.

NONE

1994-12-31T23:59:59.000Z

352

Vibration Reduction Technology for Directional Blasting Demolition of 210m Chimney in Complex Environment  

Science Conference Proceedings (OSTI)

This paper describes the successful experience of the directional control blasting demolition of 210m reinforced concrete chimney, and elucidates the determination of the project scheme, parameter design, electronic digital detonator detonating network ... Keywords: reinforced concrete chimney, directional blasting, electronic digital detonator, blasting vibration, vibration reduction technology

Shunxiang Xu, Dezhi Chen

2013-01-01T23:59:59.000Z

353

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Eligibility Multi-Family Residential...

354

NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

Not Available

2011-08-01T23:59:59.000Z

355

DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

Cygan, David

2006-12-28T23:59:59.000Z

356

Carbon Steels  

Science Conference Proceedings (OSTI)

Table 1   Corrosion rates of carbon steel at various locations...Vancouver Island, BC, Canada Rural marine 13 0.5 Detroit, MI Industrial 14.5 0.57 Fort Amidor Pier, CZ Marine 14.5 0.57 Morenci, MI Urban 19.5 0.77 Potter County, PA Rural 20 0.8 Waterbury, CT Industrial 22.8 0.89 State College, PA Rural 23 0.9 Montreal, QC, Canada Urban 23 0.9 Durham, NH Rural 28 1.1...

357

Tool Steels  

Science Conference Proceedings (OSTI)

Table 6   Examples of ion implantation in metalforming and cutting applications...tool steel Machining 4140 N 80 3� life Taps HSS Tapping 4140 N 80 3� life HSS Tapping 4130 N 80 5� life HSS Tapping 4140 N 50 10� life M35 Tapping � N 2 200 4� life M7 Tapping � N 100 2� life Cutting blade M2 Cutting 1050 N 100 2� life M2 Cutting SAE 950 N 100 4� life Dies D2 Forming 321 SS N 80...

358

The data furnace: heating up with cloud computing  

Science Conference Proceedings (OSTI)

In this paper, we argue that servers can be sent to homes and office buildings and used as a primary heat source. We call this approach the Data Furnace or DF. Data Furances have three advantages over traditional data centers: 1) a smaller carbon footprint ...

Jie Liu; Michel Goraczko; Sean James; Christian Belady; Jiakang Lu; Kamin Whitehouse

2011-06-01T23:59:59.000Z

359

Electrode immersion depth determination and control in electroslag remelting furnace  

DOE Patents (OSTI)

An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

Melgaard, David K. (Albuquerque, NM); Beaman, Joseph J. (Austin, TX); Shelmidine, Gregory J. (Tijeras, NM)

2007-02-20T23:59:59.000Z

360

The effects of improved residential furnace filtration on airborne particles  

SciTech Connect

Forced air furnaces with distributed ducting systems have always had an air filter, but traditionally the filter quality was only adequate to protect the furnace fan and heat exchanger from debris. In the past several years, there has been an increasing number of more effective particulate filters that are being marketed to reduce airborne particulate or dust. These include upgraded panel filters, passive electrostatic, active electrostatic, and HEPA or near-HEPA variants. Consumers are bewildered by the lack of standardized and comprehensible performance results and need better advice on whether it would be useful for them to upgrade their current furnace filter. In order to help them make these decisions, the whole range of available furnace filters were tested in six occupied houses. The filter efficiency was determined by particulate measurement in the ducting system before and after the filter. Indoor particulates were measured in a bedroom and living room, and outdoor levels were monitored simultaneously. Testing encompassed several weeks in each house, and the results are available in the whole range of particle sizes. The project also looked at the air-cleaning effectiveness of a stand-alone air cleaner and at the ozone production of electrostatic precipitators installed in 20 houses. Test results will be helpful in specifying suitable filtration for houses.

Fugler, D.; Bowser, D.; Kwan, W.

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lot sizing and furnace scheduling in small foundries  

Science Conference Proceedings (OSTI)

A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size ... Keywords: Lot sizing and scheduling, Meta-heuristics, Mixed integer programming

Silvio A. de Araujo; Marcos N. Arenales; Alistair R. Clark

2008-03-01T23:59:59.000Z

362

Assessment, development, and testing of glass for blast environments.  

SciTech Connect

Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragments of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.

Glass, Sarah Jill

2003-06-01T23:59:59.000Z

363

Better than blasting for blackwells. [Tractor-mounted ripper  

SciTech Connect

On opencasting, quarrying and rock removal generally, a tractor-mounted ripper is usually felt to be safer and quieter than drilling and blasting with high explosive. Helped by Newram Plant Limited, C.A. Blackwell (Contracts) Limited are seeing if this really is so and if ripping also has any economic and performance advantages.

1979-10-01T23:59:59.000Z

364

Modeling rock fracturing in bench-blasting problems  

SciTech Connect

A computational model of rock blasting is being developed to examine the blasting problems associated with in situ oil shale processing. This model, however, will also be useful as a design tool for the traditional problems in rock blasting. The model includes fundamental treatment of both shock-wave propagation and the accumulation of brittle fracture in the rock. As a result, the model accurately predicts the degree and extent of fracturing as functions of design parameters. The model has proven useful for making parametric studies and for evaluation of alternate blast designs. This paper demonstrates the use of the numerical model to simulate the fracturing induced by the detonation of a vertical explosive column near a bench. The fracturing induced by three different explosives indicate that (in the chosen geometry) the most efficient breakage is done by a column of ammonium nitrate and fuel oil mixture (ANFO) used with a toe charge of aluminized ANFO. There was too much unfractured rock left when ANFO was used alone; aluminized ANFO used for the entire explosive column caused excessive fracturing. A final case involves ANFO used alone to fracture a different rock type. This case points out that in a different rock type, the ANFO will not leave excessive unfractured rock.

Kuszmaul, J.S.

1987-01-01T23:59:59.000Z

365

Cushioned blasting. II. Preliminary studies of gallery testing  

SciTech Connect

Results of investigation of various means employed to reduce intensity of energy from explosions in boreholes are reported. Results seem to establish that gallery testing can contribute significantly to estimates of practical effects in cushioned blasting on ignition hazards in coal mines.

Testing, G.; Denues, A.R.T.

1943-01-01T23:59:59.000Z

366

Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan  

SciTech Connect

This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

Carlson, Thomas J.; Johnson, Gary E.

2010-01-29T23:59:59.000Z

367

Ultimate in building energy analysis: DOE-2 and BLAST  

SciTech Connect

Many building energy analysis tools, ranging from the simplest to the most sophisticated, are applicable to the design of large commercial buildings. This paper focuses on two of the sophisticated, detailed, and most powerful of these tools: the DOE-2 and BLAST computer programs. DOE-2 and BLAST are generally classed as high-level, computer-dynamic methods that are based on hour-by-hour computation. These tools are placed in the context of building energy analysis, and the motivation for their development is traced. The characteristics of DOE-2 and BLAST are discussed, with emphasis on their solar simulation features, and their capabilities are contrasted and related. Three case studies, illustrating typical applications of the programs to the retrofit of existing buildings and the design of new buildings, are presented: a passive solar retrofit of an office building, the use of DOE-2 as a predesign analysis tool, and the use of BLAST in a research and development application. Future directions in research and development needs for high-level building energy analysis tools and the progress being made toward increased use of these tools are discussed.

Hunn, B.D.

1981-01-01T23:59:59.000Z

368

RESPONSE OF UNCRACKED DRYWALL JOINTS AND PANELS TO BLAST VIBRATION  

E-Print Network (OSTI)

in Indiana, the other near a limestone quarry in Florida ­ to blast- induced ground motion and air of possible crack extension Autonomous Crack Measurement (ACM) is based on measurement of micrometer changes mechanics foundation for the ACM approach. Just as splitting wood requires the "V" from the wedge

369

Numerical Simulation of Blasting Demolition of 16-Storied Structure  

Science Conference Proceedings (OSTI)

The separate element and common node model is setup to simulate reinforced concrete material at first, which could take fully account of the intensity difference of concrete and rebar. And then a 16-storied frame structure is build with this kind of ... Keywords: blasting demoLition, separate element, common node, unidirectional folding collapse, numerical simulation

Guo-liang Yang; Lin-lin Jiang; Chuan Huo

2011-08-01T23:59:59.000Z

370

Visualization and Numerical Analysis of Stress Waves in Blasting Process  

Science Conference Proceedings (OSTI)

Visualization studies were performed both experimentally and theoretically to observe stress wave propagation in a material and its interaction with the free surface of the material in a blasting process. PMMA (polymethyl-methacrylate) plates were used ... Keywords: Explosives, Shadowgraphy, Smoothed particle hydrodynamics, Stress waves

S. Matsumoto; Y. Nakamura; S. Itoh

2003-08-01T23:59:59.000Z

371

Having a BLAST: a bioinformatics project in CS2  

Science Conference Proceedings (OSTI)

DNA analysis is a subject that is in the news almost every day, whether it be a new advance in medical research, a criminal trial, or some other application. BLAST (Basic Local Alignment Search Tool) is an important tool used by biologists worldwide ... Keywords: CS2, bioinformatics, object-oriented design, programming project

Pamela Cutter

2007-03-01T23:59:59.000Z

372

Research on the Role of Control Hole in Deep-hole Pre-splitting Blasting in Outburst Coal Seams  

Science Conference Proceedings (OSTI)

Mechanical analysis model of blasting and controlling holes was set up combined with a gas outburst mine deep hole pre split blasting test, and the necessity of setting control hole in deep hole pre splitting blasting was analyzed. The theoretical calculation ... Keywords: outburst coal seams, deep-hole pre-splitting blasting, control hole, hole spacing

Gong Min; Liu You-ping

2012-05-01T23:59:59.000Z

373

Simulation of blasting induced rock motion using spherical element models  

SciTech Connect

Control of the rock motion associated with blasting can have significant economic benefits. For example, surface coal mining can be made more efficient if the overburden material can be cast further with explosives, leaving less work for mechanical equipment. The final muck pile shape in very type of surface and underground blasting is controlled by the blasting induced motion of the rock. A theoretically sound method of predicting rock motion will be beneficial to understanding the blasting process. Discrete element methods have been used for some time to predict rock motion resulting from blasting. What all of these approaches had in common was the use of polygonal elements with corners and sides as well as aspect ratio. Reasonably good results were obtained but treatment of the interactions of the corners and sides of elements was a computationally intensive process that made long simulations with many elements expensive to perform. The use of spherical elements showed increased efficiency but lacked the mechanisms for treating the bulking of the rock mass. The computer program developed was converted from an explicit code to an event-driven code and some bulking mechanisms were added that allowed spherical elements to exert a torque on other spherical elements with which contact was made. The architecture of this program and its event-driven nature made it difficult to vectorize for efficient execution on vector processing machines. A new code called DMC (Distinct Motion Code) has been developed this past year. DMC was designed and written especially to take advantage of super computer vector processing capabilities. This paper will discuss the use of DMC to perform accurate rock motion calculations with very reasonable computation times. 9 refs., 7 figs., 3 tabs.

Taylor, L.M.; Preece, D.S. (Hibbitt, Karlsson and Sorensen, Providence, RI (USA); Sandia National Labs., Albuquerque, NM (USA))

1989-01-01T23:59:59.000Z

374

LTC vacuum blasting machine (metal): Baseline report  

SciTech Connect

The LTC coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC coating removal system consisted of several hand tools, a Roto Peen scaler, and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These hand tools are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. The dust exposure was minimal but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

1997-07-31T23:59:59.000Z

375

Batch Preheat for glass and related furnace processing operations  

SciTech Connect

The objectives that our development work addressed are: (1) Establish through lab tests a salt eutectic with a melting point of about 250 F and a working range of 250 to 1800 F. (2) Establish the most economical material of construction for the screened salt eutectics identified in the first objective. (3) Establish the material of construction for the salt heater liner. Objectives 2 and 3 were determined through corrosion tests using selected metallurgical samples. Successful completion of the above-stated goals will be incorporated in a heat recovery design that can be used in high temperature processes and furnaces, typical of which is the glass melting process. The process design incorporates the following unit operations: a vertical batch heater (whereby the batch flows down through tubes in a shell and tube exchanger; a molten salt eutectic is circulated on the shell side); a molten salt heater utilizing furnace flue gas in a radiation type heater (molten salt is circulated in the annular space between the inner and outer shells of the vertical heater, and flue gas passes from the furnace exhaust through the inner shell of the heater); a cantilever type molten salt circulating pump; and a jacketed mixer/conveyor to drive off moisture from the batch prior to feeding the batch to the vertical batch heater. Historically, radiation heaters, when applied to glass or fiberglass furnace recuperation, have experienced failures due to uneven heat flux rates, which increases internal stresses and spot overheating conditions. Low heat transfer coefficients result in requirements for large heat transfer surface areas in gas to gas or gas to air exchangers. Fouling is another factor that results in lower unit availability and reduced performance. These factors are accommodated in this process by the incorporation of several design features. The salt heater will be a vertical double wall radiation design, similar to radiation air heaters used in high temperature heat recovery. The unit utilizes an inner shell that the furnace exhaust gas passes through: this provides essentially a self-cleaning surface. Utilization of radiation air heaters in fiberglass furnaces has demonstrated that the inner shell provides a surface from which molten ash can drain down. The molten salt eutectic will be pumped through the annulus between this inner wall and the outer wall of the unit. The annular space tempering via the molten salt will promote more uniform expansion for the unit, and thereby promote more uniform heat flux rates. Heat transfer would be via radiation mainly, with a minor convective contributor.

Energy & Environmental Resources, Inc

2002-08-12T23:59:59.000Z

376

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

Science Conference Proceedings (OSTI)

Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

2011-06-15T23:59:59.000Z

377

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents (OSTI)

An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

Sopori, B.L.

1996-11-19T23:59:59.000Z

378

Detailed model for practical pulverized coal furnaces and gasifiers  

Science Conference Proceedings (OSTI)

This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

Smith, P.J.; Smoot, L.D.

1989-08-01T23:59:59.000Z

379

Azimuthal variation of radiation of seismic energy from cast blasts  

SciTech Connect

As part of a series of seismic experiments designed to improve the understanding of the impact of mining blasts on verifying a Comprehensive Test Ban Treaty, a sixteen station network of three-component seismic sensors were deployed around a large cast shot in the Black Thunder Mine. The seismic stations were placed, where possible, at a range of 2.5 kilometers with a constant inter-station spacing of 22.5 degrees. All of the data were recorded with the seismometers oriented such that the radial component pointed to the middle point of the approximately 2 kilometer long shot. High quality data were recorded at each station. Data were scaled to a range of 2.5 kilometers and the sum of the absolute value of the vertical, radial, and transverse channels computed. These observations were used to construct radiation patterns of the seismic energy propagating from the cast shot. It is obvious that cast shots do not radiate seismic energy isotropically. Most of the vertical motion occurs behind the highwall while radial and transverse components of motion are enhanced in directions parallel to the highwall. These findings have implications for local (0.1 to 15 kilometer range) and possibly for regional (100 to 2,000 kilometer range) seismic observations of cast blasting. Locally, it could be argued that peak particle velocities could be scaled not only by range but also by azimuthal direction from the shot. This result implies that long term planning of pit orientation relative to sensitive structures could mitigate problems with vibration levels from future blasting operations. Regionally, the local radiation pattern may be important in determining the magnitude of large scale cast blasts. Improving the transparency of mining operations to international seismic monitoring systems may be possible with similar considerations.

Pearson, D.C.; Stump, B.W. [Los Alamos National Lab., NM (United States); Martin, R.L. [Thunder Basin Coal Co., Wright, WY (United States)

1996-12-31T23:59:59.000Z

380

Blasting aids in the reconstruction of a hydroelectric plant  

SciTech Connect

The replacement of failed impeller chambers in a hydroelectric plant is described in this article. The emphasis of the article is on the use of a blast-generating unit (BGU) for crushing reinforced concrete. The BGU feeds kerosene and nitrogen tetroxide from separate tanks to form a jet of liquid explosive mixture. The BGU performed safely and efficiently, and has been recommended for use at other hydroelectric plants. 1 ref., 1 fig., 1 tab.

Benderskii, L.F.; Evlikov, A.A.; Stupel`, R.O. [and others

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

IMAGING HIGH SPEED PARTICLES IN EXPLOSIVE DRIVEN BLAST WAVES  

Science Conference Proceedings (OSTI)

This research describes a new application of a commercially available particle image velocimetry (PIV) instrument adapted for imaging particles in a blast wave. Powder was dispersed through the PIV light sheet using a right circular cylindrical charge containing aluminum powder filled in the annular space between the explosive core and exterior paper tube wall of the charge. Images acquired from each shot showed particle agglomeration and unique structures with the smaller particle diameters having developed structured appearances.

Jenkins, C. M. [Dept. of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Air Force Research Laboratory, Munitions Directorate, Eglin AFB FL 32542 (United States); Horie, Y. [Air Force Research Laboratory, Munitions Directorate, Eglin AFB FL 32542 (United States); Ripley, R. C.; Wu, C.-Y. [Martec Limited, Suite 400-1888 Brunswick Street, Halifax, NS, B3J3J8 (Canada)

2009-12-28T23:59:59.000Z

382

Dust explosion hazards due to blasting of oil shale  

SciTech Connect

The conditions favoring secondary explosions of dust or gas accompanying the blasting of oil shale are the subject of continuing investigation by the Bureau of Mines. In the present study, oil shale dust was dispersed in a gallery and ignited by various blasting agents blown out of a cannon according to a standard testing procedure. Parallel tests were conducted in the Bureau's Experimental Mine to test propagation as well as ignition of oil shale dust. In both gallery and mine, the minimum explosion limits were determined as a function of dust loading, weight and type of blasting agent, and amount of added methane. The results of these experiments are compared with previous measurements using methane-air explosions as an initiation source. In view of recent mine dust sampling data, the main explosion hazard in nongassy oil shale mines is likely to be limited to the region of the face. But in gassy mines, dust-gas explosions could be expected to propagate considerable distances.

Richmond, J.K.; Beitel, F.P.

1984-04-01T23:59:59.000Z

383

Inclusions and Clean Steels  

Science Conference Proceedings (OSTI)

Behavior of MgO?Al2O3 Based Inclusions in High-Pressure Boiler Steel during Refining Process · Control of Inclusions in Bottom Filled Steel Ingots · Control of ...

384

Airblast and ground vibration generation and propagation from contour mine blasting. Report of investigations/1984  

SciTech Connect

The Bureau of Mines studied airblast and ground vibrations produced by surface coal mine blasting in Appalachia to determine the topographic or other region-specific effects on generation and propagation. Arrays of seismographs were used to measure blast effects in both rolling-terrain and steep-slope contour coal mining areas. Comparisons were then made with previous blasting data from studies of midwest coal mines located in flat areas.

Stachura, V.J.; Siskind, D.E.; Kopp, J.W.

1984-01-01T23:59:59.000Z

385

Austenitic Stainless Steel Handbook  

Science Conference Proceedings (OSTI)

The Austenitic Stainless Steel Handbook is part of an ongoing series of metallurgical reports. It is devoted to iron-based alloys that are considered to be stainless steel but that will remain essentially austenitic at room temperatures and below (the definition of austenitic stainless steel). Because of its attractive cost, wide availability, and ease of fabrication and weldability, austenitic stainless steel is one of the most commonly used materials in the electric power generating, chemical processin...

2008-02-28T23:59:59.000Z

386

Seamless Steel Tubular Products  

Science Conference Proceedings (OSTI)

...). The tank also contained the search units.Fig. 6 Seamless and welded austenitic stainless steel tubular products were

387

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

BPM Motors in Residential Gas Furnaces: What are the Savings? BPM Motors in Residential Gas Furnaces: What are the Savings? James Lutz, Victor Franco, Alex Lekov, and Gabrielle Wong-Parodi Lawrence Berkeley National Laboratory, Berkeley, California ABSTRACT Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized

388

Proceedings of the thirty-first annual conference on explosives and blasting technique  

SciTech Connect

Papers discussed various aspects of blasting and explosive techniques used in the mining and construction industry, and elsewhere. Four papers have been abstracted separately.

2005-07-01T23:59:59.000Z

389

Experiments on short-delay blasting in the experimental coal mine  

SciTech Connect

Results of experiments on short-delay multiple blasting conducted under actual mining conditions in Bureau of Mines Experimental coal mine, Bruceton, Pa., are summarized.

Hartmann, I.; Lewis, B.

1954-01-01T23:59:59.000Z

390

The design and retrofit of buildings for resistance to blast-induced progressive collapse.  

E-Print Network (OSTI)

??In recent years, concern has risen drastically regarding the suitability of structural design for blast resistance. Historic events have proven that buildings that are designed… (more)

Abbott Galvão Sobreira Lopes, Isabel

2009-01-01T23:59:59.000Z

391

Comminuting irradiated ferritic steel  

DOE Patents (OSTI)

Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

1985-01-01T23:59:59.000Z

392

Versatile and Rapid Plasma Heating Device for Steel and Aluminum  

DOE Green Energy (OSTI)

The main objective of the research was to enhance steel and aluminum manufacturing with the development of a new plasma RPD device. During the project (1) plasma devices were manufactured (2) testing for the two metals were carried out and (3) market development strategies were explored. Bayzi Corporation has invented a Rapid Plasma Device (RPD) which produces plasma, comprising of a mixture of ionized gas and free electrons. The ions, when they hit a conducting surface, deposit heat in addition to the convective heat. Two generic models called the RPD-Al and RPD-S have been developed for the aluminum market and the steel market. Aluminum melting rates increased to as high as 12.7 g/s compared to 3 g/s of the current industrial practice. The RPD melting furnace operated at higher energy efficiency of 65% unlike most industrial processes operating in the range of 13 to 50%. The RPD aluminum melting furnace produced environment friendly cleaner melts with less than 1% dross. Dross is the residue in the furnace after the melt is poured out. Cast ingots were extremely clean and shining. Current practices produce dross in the range of 3 to 12%. The RPD furnace uses very low power ~0.2 kWh/Lb to melt aluminum. RPDs operate in one atmosphere using ambient air to produce plasma while the conventional systems use expensive gases like argon, or helium in air-tight chambers. RPDs are easy to operate and do not need intensive capital investment. Narrow beam, as well as wide area plasma have been developed for different applications. An RPD was developed for thermal treatments of steels. Two different applications have been pursued. Industrial air hardening steel knife edges were subjected to plasma beam hardening. Hardness, as measured, indicated uniform distribution without any distortion. The biggest advantage with this method is that the whole part need not be heated in a furnace which will lead to oxidation and distortion. No conventional process will offer localized hardening. The RPD has a great potential for heat treating surgical knives and tools. Unavailability of the full amount of the DOE award prevented further development of this exciting technology. Significant progress was made during the 5th quarter, specially the invention of the wider-area plasma and the resultant benefits in terms of rapid melting of aluminum and thermal treatments of larger size steel parts. Coating of nickel base superalloys was demonstrated (an additional task over that proposed). Directed low cost surface enhancement of steel and the directed clean low dross energy efficient melting of aluminum are industrial needs that require new technologies. These are large volume markets which can benefit from energy savings. Estimated energy savings are very large, in the order of 1015 J/year when the equipment is universally used. Compact and directed heating technology/product market in these two sectors could potentially reach over $1B in sales. The results of the research, presented at the DOE annual Review meeting on Aluminum held at the Oak Ridge National Laboratory during the 4-5 October 2005, were very well received by the delegates and panel reviewers. Insufficient DOE funds to fully fund the project at the end of the 5th quarter necessitated some key tasks being only partially completed.

Reddy, G.S.

2006-03-14T23:59:59.000Z

393

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

394

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

395

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

MECS Terminology MECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ B Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers. Breeze: The fine screenings from crushed coke. Usually breeze will pass

396

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

397

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

Science Conference Proceedings (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

398

Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

Not Available

2006-02-01T23:59:59.000Z

399

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

400

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

402

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

403

A 3D Mathematical Model of a Horizontal Anode Baking Furnace as ...  

Science Conference Proceedings (OSTI)

... phenomena occurring in the furnace and was validated using plant data. ... of the Composite Parts by Arranging Ply Lay-up for Even Resin Distribution and ...

404

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

405

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

406

Post combustion trials at Dofasco`s KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco`s 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-12-31T23:59:59.000Z

407

Cause not found for Texas LPG site blast  

SciTech Connect

This paper reports that National Transportation Safety Board investigators completed the first phase of tests at Seminole Pipeline Co.'s liquid petroleum gas storage dome near Brenham, Tex., without finding the cause of an explosion there Apr. 7. But in a week of investigation, NTSB determined that a release of brine and product occurred at the 350,000 bbl LPG storage dome, about 45 miles northwest of Houston, just before the blast. The explosion sent shock waves felt as far as 130 miles away. Three persons have died from injuries suffered in the accident. Another 18 were injured.

1992-04-20T23:59:59.000Z

408

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents (OSTI)

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

409

Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration  

SciTech Connect

The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

1995-08-01T23:59:59.000Z

410

Performance oriented packaging report for M6 electric blasting cap. Final report  

SciTech Connect

This POP report is for the M6 Electric Blasting Cap which is packaged 180/ Mil-B-2427 wood box. This report describes the results of testing conducted. Performance Oriented Packaging, POP, M6 Electric Blasting Cap, Mil-B-2427 wood box.

Sniezek, F.M.

1992-11-02T23:59:59.000Z

411

Planar micro-direct methanol fuel cell prototyped by rapid powder blasting  

Science Conference Proceedings (OSTI)

We present a planar micro-direct methanol fuel cell (@m-DMFC) fabricated by rapid prototyping-powder blasting technology. Using an elastomeric mask, we pattern two parallel microfluidic channels in glass. The anode and cathode of the fuel cell are formed ... Keywords: Direct methanol fuel cell, Microchannel, Nafion, Powder blasting

M. Shen; S. Walter; L. Dovat; M. A. M. Gijs

2011-08-01T23:59:59.000Z

412

Performance oriented packaging report for fuse, blasting, time, M700. Final report  

Science Conference Proceedings (OSTI)

This POP report is for the Fuse, Blasting, Time, M700 which is packaged 4000 feet/ Mil-B-2427 wood box. This report describes the results of testing conducted on a similar packaging which is used as an analogy for this item....Performance oriented packaging, POP, Fuse, Blasting, Time, M700, Mil-B-2427 Wood box.

Sniezek, F.M.

1992-11-02T23:59:59.000Z

413

Performance oriented packaging report for M7 non-electric blasting cap. Final report  

Science Conference Proceedings (OSTI)

This POP report is for the M7 Non-Electric Blasting Cap which is packaged 480/Mil-B-2427 wood box. This report describes the results of testing conducted. Performance Oriented Packaging, POP, M7 Non-Electric Blasting Cap, Mil-B-2427 Wood box.

Sniezek, F.M.

1992-11-02T23:59:59.000Z

414

Special precautions for multiple short-delay blasting in coal mines  

SciTech Connect

Special precautions for multiple short-delay blasting of coal in underground mines are presented in this circular to guide safety engineers, shot firers, and coal-mine inspectors. These new safety recommendations are suggested in addition to those normally followed in blasting, as outlined in the Federal Mine Safety Codes for bituminous-coal, lignite, and anthracite mines.

Nagy, J.; Hartmann, I.; Van Dolah, R.W.

1959-01-01T23:59:59.000Z

415

Performance oriented packaging report for ignitor, time blasting fuse, weatherproof: M60. Final report  

Science Conference Proceedings (OSTI)

This POP report is for the Time Blasting Fuse, Weatherproof: M60 which is packaged 300/ Mil-B-2427 wood box. This report describes the results of testing conducted.... Performance oriented packaging, POP, Time blasting fuse, Weatherproof: M60 Mil-B-2427 wood box.

Sniezek, F.

1992-11-02T23:59:59.000Z

416

Expansion of high pressure gas into air - A more realistic blast wave model  

Science Conference Proceedings (OSTI)

In this paper, we consider a more realistic model of a spherical blast wave of moderate strength. An arbitrary number of terms for the series solution in each of the regions behind the main shock-the expansion region, the nearly uniform region outside ... Keywords: Blast wave, Compressible flow, Explosion, Gas dynamics, Shock wave

Ejanul Haque; Philip Broadbridge; P. L. Sachdev

2009-12-01T23:59:59.000Z

417

An efficient numerical method for the onset of blast waves generated by spherical detonation  

Science Conference Proceedings (OSTI)

Blast wave, generated by a high detonating spherical charge, is modeled using the Euler equations. The problem is split into two parts. The first part makes use of the isotropy to solve the problem in spherical radial coordinate. Overpressure distribution ... Keywords: Cartesian methods, blast wave, remapping techniques

Adel M. Benselama; Mame J. P. William-Louis; François Monnoyer

2008-11-01T23:59:59.000Z

418

Computer simulation of underground blast response of pile in saturated soil  

Science Conference Proceedings (OSTI)

This paper treats the blast response of a pile foundation in saturated sand using explicit nonlinear finite element analysis, considering complex material behavior of soil and soil-pile interaction. Blast wave propagation in the soil is studied and the ... Keywords: Numerical simulation, Pile foundation, Saturated soil, Underground explosion

L. B. Jayasinghe; D. P. Thambiratnam; N. Perera; J. H. A. R. Jayasooriya

2013-04-01T23:59:59.000Z

419

An application of regression model for evaluation of blast vibration in an opencast coal mine: a case analysis  

Science Conference Proceedings (OSTI)

Different models of vibration studies are examined. A case analysis to determine the parameters governing the prediction of blast vibration in an opencast coal mine is described. A regression model was developed to evaluate peak particle velocity (PPV) of the blast. The results are applicable to forecasting ground vibration before blasting and to the design of various parameters in controlled blasting. 16 refs., 1 fig., 1 tab.

Brahma, K.C.; Pal, B.K.; Das, C. [CMPDI, Bhubaneswar (India)

2005-07-01T23:59:59.000Z

420

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Spatial variation of coke quality in the non-recovery beehive coke ovens.  

E-Print Network (OSTI)

??More than 50% of hot metal production worldwide takes place in blast furnaces. Coke is the most expensive raw material in the blast furnace. It… (more)

Segers, Magrieta

2006-01-01T23:59:59.000Z

422

BLAST BIOLOGY--A STUDY OF THE PRIMARY AND TERTIARY EFFECTS OF BLAST IN OPEN UNDERGROUND PROTECTIVE SHELTERS  

SciTech Connect

Dogs, pigs, rabbits, guinea pigs, and mice were exposed to nuclear detonatiors in two open underground pantitioned shelters. The shelters were of similar constructions and each was exposed to separate detonations. Each inner chamber filled through its own orifice; thus four separate pressure enviromments were obtained. An aerodynamic mound was placed over the escape hatch of each structure to determine its effect on the pressurecurve shape inside the chamber. In one test a sieve plate bolted across the top of the mound was evaluated. Wind protective baffles of solid plate and of heavy wire screen were installed in the shelters to compare primary and tertiary blast effects on dogs. The shelters also contained static and dynamic pressure gages, radiation detectors, telemetering devices, and, in one test, air-temperature measuring instruments, dustcollecting trays, and eight pigs for the biological assessment of thermal effects. One dog was severely injured from tertiary blast effects associated with a maximal dynamic pressure (Q) of 10.5 psi, and one was undamaged with a maximal Q of 2 psi. Primary blast effects resulting from peak overpressures of 30.3, 25.5, 9.5. and 4.1 psi were minimal. The mortality was 19 per cent of the mice exposed to a peak pressure of 30.3 psi and 5 and 3 per cent of the guinea pigs and mice exposed to a peak pressure of 25.5 psi. Many of the rabbits, guinea pigs, and mice sustained slight lung hemorrhages at maximum pressures of 25.5 and 30.3 psi. Eardrum perforation data for all species, except mice, were recorded. Following shot 2, thermal effects were noted. Animals of the groups saved for observation have died from ionizing-radiation effects. (auth)

Ricmond, D.R.; Taborelli, R.V.; Bowen, I.G.; Chiffelle, T.L.; Hirsch, F.G.; Longwell, B.B.; Riley, J.G.; White, C.S.; Sherping, F.; Goldizen, V.C.; Ward, J.D.; Wetherbe, M.B.; Clare, V.R.; Kuhn, M.L.; Sanchez, R.T.

1959-02-01T23:59:59.000Z

423

A two-mesh coupled gas flow-solid interaction model for 2D blast analysis in fractured media  

Science Conference Proceedings (OSTI)

A 2D coupled two-mesh interaction model for blast gas flow through fractured and fragmented solid media is presented. It is mainly designed to solve blast problems where a complicated set of wide difficult phenomena are involved: shock waves, progressive ... Keywords: Blast, Combined finite/discrete element method, Cracking, Explosion, Fragmentation, Gas-solid interaction

S. Mohammadi; A. Pooladi

2012-03-01T23:59:59.000Z

424

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

425

Self-powered automatic secondary air controllers for woodstoves and small furnaces  

DOE Patents (OSTI)

This invention relates to the regulation of combustion in woodstoves, small furnaces and the like, so as to produce efficient combustion, while maximizing the possible heat output and minimizing air pollution. More specifically, the invention relates to controllers for automatically regulating and the supply of secondary combustion air to woodstoves, small furnaces or the like. 9 figs.

Siemer, D.D.

1989-03-15T23:59:59.000Z

426

Plan for the Startup of HA-21I Furnace Operations at the Plutonium Finishing Plant (PFP)  

Science Conference Proceedings (OSTI)

Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given. The Startup Plan provides a phased approach that bridges the activities between the completion of the Activity Based Startup Review authorizing the use of the three additional furnaces and the unrestricted operation of the five thermal stabilization muffle furnaces. The four phases are: (1) the initiation of five furnace operations using three empty (simulated full) boat charges from HA-211 and two full charges from HC-21C; (2) three furnace operations (one full charge from HA-211 and two full charges from HC-21C); (3) four furnace operations (two full charges from HA-211 and two full charges from HC-21C); and (4) integrated five furnace operations and unrestricted operations. Phase 1 of the Plan will be considered as the cold runs. This Plan also provides management oversight and administrative controls that are to be implemented until unrestricted operations are authorized. It also provides a formal review process for ensuring that all preparations needed for full five furnace operations are completed and formally reviewed prior to proceeding to the increased activity levels associated with five furnace operations. Specific objectives include: (1) To ensure that activities are conducted in a safe manner. (2) To provide supplemental technical and managerial support to Thermal Stabilization activities during the initial use of the HA-211 Furnaces until the commencement of full five furnace, unrestricted operations. (3) Ensure that operations can be conducted in a manner that meets PFP and DOE expectations associated with the principles of integrated safety management. (4) To ensure that all interfacing activities needed to meet Thermal Stabilization mission objectives are completed.

WILLIS, H.T.

2000-02-17T23:59:59.000Z

427

Drilling and blasting techniques and costs for strip mines in Appalachia  

SciTech Connect

On-site investigations of blasting techniques were conducted at twenty surface coal mining operations in the steep slopes of Appalachia. The mine sites represented a range of mountain mining methods and annual coal production levels; all sites used similar techniques and equipment for the removal of fragmented waste rock. Hole loading characteristics and constraints limiting blast designs were observed at each mine site. This report summarizes technical blasting data and geological conditions which require special design considerations. Three mine sites were selected for future research in fragmentation efficiency. Detailed economic data on drilling and blasting were gathered from the three research sites and are reported herein. A great deal of fragmentation difficulties stem from tough, unpredictable geology with specific bedding characteristics and local zones of defined structural weaknesses such as jointing and vertical seams. Exceptionally hard bedrock, existing as a caprock or as the basal layer above the coal seam, persists as the cause of oversize rock breakage or, in the latter case, damage to the coal unless special precautions are taken. Federal blasting regulations strictly control the amount of explosives used as well as throw of the fragmented rock. This requires that blasting modifications be employed. The nature and extent of blast modifications were observed to be related to terrain and demographic conditions around the mine site. Drilling and blasting costs reported for the three mine sites averaged $0.21 per cubic yard of material blasted. Drilling costs varied widely, as drilling time was indicative of geologies and often, drilling costs remained the greatest percentage of total blasting and drilling costs.

Aimone, C.T.

1980-06-01T23:59:59.000Z

428

Development of a thermal reclamation system for spent blasting abrasive  

SciTech Connect

Abrasive blasting is the most economical method for paint removal from large surface areas such as the hulls and tanks of oceangoing vessels. Tens of thousands of tons of spent abrasive are generated annually by blasting operations in private and US Navy shipyards. Some of this material is classified as hazardous waste, and nearly all of it is currently being either stockpiled or disposed in landfills. The rapid decline in available landfill space and corresponding rise in landfill tipping fees pose a severe problem for shipyard operators throughout the US. This paper discusses the results of a research and development program initiated by the Institute of Gas Technology and supported by the US Navy to develop and test a fluidized-bed thermal reclamation system for spent abrasive waste minimization. Bench- and pilot-scale reclaimer tests and reclaimed abrasive performance tests are described along with the current status of a program to build and test a 5-ton/hour prototype reclaimer at a US Navy shipyard.

Bryan, B.B.; Mensinger, M.C.; Rehmat, A.G.

1991-01-01T23:59:59.000Z

429

Large mining blasts from the Kursk Mining Region, Russia  

SciTech Connect

Monitoring the Comprehensive Nuclear Test Ban Treaty (CTBT) by seismic means will require identification of seismic sources at magnitude levels where industrial explosions (primarily, mining blasts) may comprise a significant fraction of the total number of events recorded, and may for some countries dominate the seismicity. Thus, data on blasting practice have both political significance for the negotiation of treaties involving seismic monitoring of nuclear tests, and operational applications in terms of establishing monitoring and inspection needs on a mine-by-mine basis. While it is generally accepted that mining explosions contribute to seismicity at lower seismic magnitudes (less than about magnitude 3.5), the rate of mining seismicity as a function of seismic magnitude is unknown for most countries outside the U.S. This results in a large uncertainty when estimating the task of discriminating nuclear explosions from chemical explosions and earthquakes, by seismic means, under a comprehensive nuclear test ban. This uncertainty directly affects estimates of seismic network enhancements required to achieve treaty verification requirements at magnitudes less than about 3.5. 24 refs., 64 figs., 11 tabs.

Leith, W. Adushkin, V.; Spivak, A.

1997-01-01T23:59:59.000Z

430

Simulation of rock blasting with the SHALE code  

SciTech Connect

The SHALE code and its special features for simulating rock blasting are described. SHALE first simulates the detonation of the explosive and then follows the effect of the resulting shocks and stress waves on the surrounding rock. A general description is given for SHALE as a finite-difference stress-wave-propagation code, followed by a brief discussion of numerical methods, and a section on the treatment of the explosive. The constitutive model in SHALE is the BCM (Bedded Crack Model), which describes the response of the rock, including fracture. The use of SHALE is illustrated in a discussion of the basic phenomenology of crater blasting, as seen in simulations of field experiments in oil shale. Predicted peak surface velocities are found to agree with field measurements. Comparisons between predicted fracture and observed craters give insight into the relative roles played by shock waves and the high-pressure-explosive product gases. The two-dimensional version of SHALE is being documented and will be available for use by other investigators. A three-dimensional version is planned.

Adams, T.F.; Demuth, R.B.; Margolin, L.G.; Nichols, B.D.

1983-01-01T23:59:59.000Z

431

What Steps Do You Take to Maintain Your Furnace? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps Do You Take to Maintain Your Furnace? Steps Do You Take to Maintain Your Furnace? What Steps Do You Take to Maintain Your Furnace? January 7, 2010 - 7:30am Addthis This week, Chris told you about his plans to maintain his furnace to keep it running efficiently. Proper maintenance is key to ensuring your heating and cooling systems are in working order. No one wants to wake up on the coldest day of the year to find that they have no heat! What steps do you take to maintain your furnace? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Brrrrr. It's Cold In There! Saving Energy and Money Starts at Home 31,000 Homes Weatherized in June

432

Adaptation to space applications of a 2000 c furnace with oxidizing atmosphere  

SciTech Connect

The possibility of using a low weight low power consumption furnace with oxidizing atmosphere at 2000 C for space applications is discussed. The main heating element is made of zirconium oxide with a platinum preheating system. The structure and stabilization of zirconium oxide are detailed together with its application to the space situation. The static and dynamic regimes are discussed with regard to measurement of the resistivity as a function of temperature and dynamic model. The temperature distribution in the furnace and in a main heating element were studied in relation to thermal insulation and weight budget. A model is proposed for optimal control and thermostat using analog simulation. The final concept requires 350 W for an isothermal furnace of 20 mm diameter weighing 3 kg. The cases of temperature gradient furnaces and of universal furnaces are reviewed. (GRA)

1975-01-01T23:59:59.000Z

433

BPM Motors in Residential Gas Furnaces: What are theSavings?  

Science Conference Proceedings (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

434

Final report on the project entitled: Highly Preheated Combustion Air System with/without Oxygen Enrichment for Metal Processing Furnaces  

SciTech Connect

This work develops and demonstrates a laboratory-scale high temperature natural gas furnace that can operate with/without oxygen enrichment to significantly improve energy efficiency and reduce emissions. The laboratory-scale is 5ft in diameter & 8ft tall. This furnace was constructed and tested. This report demonstrates the efficiency and pollutant prevention capabilities of this test furnace. The project also developed optical detection technology to control the furnace output.

Arvind Atreya

2007-02-16T23:59:59.000Z

435

Transformation Hardening of Steel  

Science Conference Proceedings (OSTI)

...relations for induction hardening and tempering Electrical and magnetic properties of steels Selection of induction frequency and power The effect of prior microstructure...

436

Types of Steel  

Science Conference Proceedings (OSTI)

Table 10   ASTM specifications for structural quality steel plate...bolted, or welded construction of bridges, buildings,

437

Ferrous Alloys: Steel  

Science Conference Proceedings (OSTI)

Aug 6, 2013 ... Microstructure and Properties of Low Manganese API X70 Pipeline Steel ... the mean residual relative length change (MRRLC) is 0.13×10-5.

438

Specifications for Steels  

Science Conference Proceedings (OSTI)

Table 28   ASTM specifications that incorporate AISI-SAE designations...A 29 Carbon and alloy steel bars, hot rolled and cold

439

Sheet Steels II  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... The Effect of Carbon Content on the Microstructure and Mechanical Properties of a Fe-22Mn TWIP Steel: Eileen Yang1; Hatem Zurob1; Joseph ...

440

Steel Process Technology  

Science Conference Proceedings (OSTI)

Oct 29, 2009 ... As the axel loads have been continuously increasing with time, so has the desire for premium rail steels with better wear, rolling contact fatigue ...

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Laser Welding of Steel  

NLE Websites -- All DOE Office Websites (Extended Search)

welding is particularly suited to the high-production rate requirements in the automobile industry. Some automotive exhaust components use 409 stainless steel and are currently arc...

442

Nonoriented Silicon Steels  

Science Conference Proceedings (OSTI)

Table 2 Silicon contents, mass densities, and applications of electrical steel sheet and strip...generally used in distribution transformers. Energy savings improve with

443

An Assessment of Ore Waste and Dilution Resulting From Buffer/Choke Blasting in Surface Gold Mines  

SciTech Connect

A discrete element computer program named DMC{underscore}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece {ampersand} Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions (2-D). DMC{underscore}BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Buffer Choke blasting is commonly used in surface gold mines to break the rock and dilate it sufficiently for ease of digging, with the assumption of insignificant horizontal movement. The blast designs usually call for relatively shallow holes benches ({lt} 11 m) with small blastholes (approx. 165 mm), small burdens and spacings ({lt}5 m), often with 50% or more of the hole stemmed. Control of blast-induced horizontal movement is desired because the ore is assayed in place from the blasthole drill cuttings and digging polygons of ore and waste are laid out before the blast. Horizontal movement at the ore waste boundary can result in dilution of the ore or loss of ore with the waste. The discrete element computer program DMC{underscore}BLAST has been employed to study spatial variation of horizontal rock motion during buffer choke blasting. Patterns of rock motion can be recognized from the discrete element simulations that would be difficult or impossible to recognize in the field (Preece, Tidman and Chung, 1997). Techniques have been developed to calculate ore waste and dilution from the horizontal movement predicted by DMC{underscore}BLAST. Four DMC{underscore}BLAST simulations of buffer blasting have been performed. The blasts are identical except that the burden and spacing are systematically varied which also changes the powder factor. Predictions of ore waste or dilution are made for each burden in the blast, assuming no horizontal movement, to illustrate the spatial variation observed.

Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States); Chung, S.H.; Tidman, J.P. [ICI Explosives (Canada)

1997-12-31T23:59:59.000Z

444

Sandjet- A New Alternative for Cleaning Furnace Tubes  

E-Print Network (OSTI)

Energy management in modern refineries is becoming more difficult as the real cost of in-house and purchased fuel escalates and the quality of feed stocks decreases. Furnace tube maintenance has been made more complex by the presence of not only coke but extensive inorganic deposits while the demands of efficient fuel utilization require superior results from decoking procedures. Union Carbide Industrial Services Co., (UCISCO), is continuing the development of its proprietary 'SANDJET' system that removes coke as well as other inorganic deposits efficiently and rapidly. The procedure features computerized job planning and control in order to assure accurate estimates of cost and the proper selection of cleaning parameters and materials. Energy saving benefits of the process have recently become obvious and case studies summarizing these results are discussed. A description of the newly developed job controls and a brief summary of recent experiences in the field will be described in this paper.

Pollock, C. B.

1981-01-01T23:59:59.000Z

445

High-bandwidth continuous-flow arc furnace  

DOE Patents (OSTI)

A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

Hardt, D.E.; Lee, S.G.

1996-08-06T23:59:59.000Z

446

Exergy-based analysis and efficiency evaluation for an aluminum melting furnace in a die-casting plant  

Science Conference Proceedings (OSTI)

The efficiency of a natural gas-fired aluminum melting furnace in a die-casting plant is examined using energy and exergy methods, to improve understanding of the burner system in the furnace and so that potential improvements can be identified. Such ... Keywords: aluminum, die-casting, efficiency, energy, exergy, melting furnace

Marc A. Rosen; Dennis L. Lee

2009-02-01T23:59:59.000Z

447

Pack Cementation Aluminizing of Steels  

Science Conference Proceedings (OSTI)

Table 3   Partial list of commercial applications of pack cementation aluminizing...Carbon and stainless steels Steam power and cogeneration Waterwall tubes 2 % Cr-1% Mo steel Fluidized bed combustor tubes 2 % Cr-1% Mo steel Waste heat boiler tubes Carbon steel Economizer and air preheater tubes 2 % Cr-1% Mo steel Superheater tubes 2 % Cr-1% Mo steel Aerospace (a) Turbine blades...

448

Final Scientific Report - "Novel Steels for High Temperature Carburizing"  

Science Conference Proceedings (OSTI)

This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

2012-07-27T23:59:59.000Z

449

Bubble merger model for the nonlinear Rayleigh-Taylor instability driven by a strong blast wave  

Science Conference Proceedings (OSTI)

A bubble merger model is presented for the nonlinear evolution of the Rayleigh-Taylor instability driven by a strong blast wave. Single bubble motion is determined by an extension of previous buoyancy-drag models extended to the blast wave driven case, and a simple bubble merger law in the spirit of the Sharp-Wheeler model allows for the generation of larger scales. The blast wave driven case differs in several respects from the classical case of incompressible fluids in a uniform gravitational field. Because of material decompression in the rarefaction behind the blast front, the asymptotic bubble velocity and the merger time depend on time as well as the transverse scale and the drive. For planar blast waves, this precludes the emergence of a self-similar regime independent of the initial conditions. With higher-dimensional blast waves, divergence restores the properties necessary for the establishment of the self-similar state, but its establishment requires a very high initial characteristic mode number and a high Mach number for the incident blast wave.

Miles, A R

2004-03-18T23:59:59.000Z

450

Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks  

SciTech Connect

The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO{sub 2} pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams.

Kessinger, G.F.

1993-10-01T23:59:59.000Z

451

Operation Redwing. Project 3. 1. Effect of length of positive phase of blast on drag-type and semidrag-time industrial buildings  

SciTech Connect

The primary objective of the project was to obtain information regarding the effect of the length of the positive phase of blast on the response of drag and semidrag structures. A total of six steel-frame buildings were tested during this operation. The structure of each type nearest ground zero was located such that if the yield of the weapon was near the lower limit of its predicted range, it would probably undergo considerable inelastic deformation. Conversely, those structures farthest from ground zero were located such that if the yield of the nuclear device was near the upper limit of its predicted range, they would be substantially deformed, but would not collapse. The third building of each type was located at an intermediate point between these two extremes. Instrumentation was provided to obtain records of the transient structural deflections, strains, and accelerations, as well as of overpressure and dynamic pressure versus time at the sites of the various test structures.

Sinnamon, G.K.; Haltiwanger, J.D.; Newmark, N.M.

1985-09-01T23:59:59.000Z

452

DOE Joint Genome Institute: Breaking down cellulose without blasting  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2011 4, 2011 Breaking down cellulose without blasting lignin: "Dry rot" genome offers lessons for biofuel pretreatment WALNUT CREEK, Calif.-Feared by realtors and homeowners alike, dry rot due to the fungus Serpula lacrymans causes millions of dollars worth of damage to homes and buildings around the world. This brown rot fungus' capacity to break down the cellulose in wood led to its selection for sequencing by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) in 2007, with the goal of identifying the enzymes involved in the degradation process and using the information to improve cellulosic biofuels production. Photo: A variant of Serpula lacrymans causes dry rot. (Dave Brown via Flickr/Creative Commons Attribution 2.0) As reported online July 14 in Science Express, an international team of

453

Experiments on multiple short-delay blasting of coal (in two parts)  

SciTech Connect

In 1949 a study was undertaken in Bureau of Mines Experimental coal mine near Pittsburgh, Pa., to investigate conditions under which simultaneous multiple and short-delay multiple blasting of coal may be used without danger of igniting gas or coal dust in coal mines and to study the vibrations of the mine roof during such blasting. Results of blasting and roof-vibration tests are given. Paper presented at Sixth International Conference of Directors of Safety in Mines Research at the laboratories of the Charbonnages de France, Verneuil (Oise) France, July 24-29, 1950.

Hartmann, I.; Nagy, J.; Howarth, H.C.

1952-01-01T23:59:59.000Z

454

Proceedings of the second international symposium on rock fragmentation by blasting  

SciTech Connect

This is the second international meeting of researchers in rock fragmentation by blasting. The symposium continues the information exchange initiated at the previous conference and to determine relevant directions for future research on fracture and fragmentation of rock.

Fourney, W.L.; Dick, R.D. (Maryland Univ., College Park, MD (USA))

1987-01-01T23:59:59.000Z

455

Shock airwaves in short-delayed blasting for open pit mining  

SciTech Connect

The authors discuss the choice of the optimum delay interval in terms of seismic and shock airwaves (SAW) intensity reduction during short-delayed blasting (SDB) of surface and hole blasts depending on the position of the charges relative to the objects being protected, such as the direction of detonation from charge to charge, etc. It was observed that during a short delayed blasting with a delay interval between groups of 50 m/sec, a complete separation of SAW pulses is produced by individual charges. Calculations also show that when blasting along a linear string of charges, the delay interval at which SAW pulses are fully separated depends on the direction at which detonation propogates.

Ganopol' skii, M.I.; Smolii, N.I.

1986-09-01T23:59:59.000Z

456

The design and retrofit of buildings for resistance to blast-induced progressive collapse  

E-Print Network (OSTI)

In recent years, concern has risen drastically regarding the suitability of structural design for blast resistance. Historic events have proven that buildings that are designed in compliance with conventional building codes ...

Abbott Galvão Sobreira Lopes, Isabel

2009-01-01T23:59:59.000Z

457

Comparison between CPBPV, ESC/Java, CBMC, Blast, EUREKA and Why for Bounded Program Verification  

E-Print Network (OSTI)

This report describes experimental results for a set of benchmarks on program verification. It compares the capabilities of CPBVP "Constraint Programming framework for Bounded Program Verification" [4] with the following frameworks: ESC/Java, CBMC, Blast, EUREKA and Why.

Collavizza, Hélène; Van Hentenryck, Pascal

2008-01-01T23:59:59.000Z

458

Manual for the prediction of blast and fragment loadings on structures  

Science Conference Proceedings (OSTI)

The purpose of this manual is to provide Architect-Engineer (AE) firms guidance for the prediction of air blast, ground shock and fragment loadings on structures as a result of accidental explosions in or near these structures. Information in this manual is the result of an extensive literature survey and data gathering effort, supplemented by some original analytical studies on various aspects of blast phenomena. Many prediction equations and graphs are presented, accompanied by numerous example problems illustrating their use. The manual is complementary to existing structural design manuals and is intended to reflect the current state-of-the-art in prediction of blast and fragment loads for accidental explosions of high explosives at the Pantex Plant. In some instances, particularly for explosions within blast-resistant structures of complex geometry, rational estimation of these loads is beyond the current state-of-the-art.

Not Available

1980-11-01T23:59:59.000Z

459

Fluid-filled helmet liner concept for protection against blast-induced traumatic brain injury  

E-Print Network (OSTI)

Due to changes in modem warfare threats, as well as advances in body armor, soldier survivability in combat has increased, but blast-induced Traumatic Brain Injury (TBI) has become a prevalent injury in the battlefield. ...

Yost, Allison L. (Allison Lynne)

2012-01-01T23:59:59.000Z

460

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

462

Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life  

SciTech Connect

Natural gas furnaces are rated for efficiency using the U.S. Department of Energy (DOE) annual fuel utilization efficiency (AFUE) test standard under controlled laboratory test conditions. In the home, these furnaces are then installed under conditions that can vary significantly from the standard, require adjustment by the installing contractor to adapt to field conditions, may or may not be inspected over their useful lifetimes, and can operate with little maintenance over a 30-year period or longer. At issue is whether the installation practices, field conditions, and wear over the life of the furnace reduce the efficiency significantly from the rated efficiency. In this project, nine furnaces, with 15-24 years of field service, were removed from Iowa homes and tested in the lab under four conditions to determine the effects of installation practices, field operating conditions, and age on efficiency.

Brand, L.; Yee, S.; Baker, J.

2013-08-01T23:59:59.000Z

463

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

464

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

is standard in HVAC design and fan selection books 6 . Theof modulating design options. The cooling fan curve passesfan curve and the duct system curve. We calculated the furnace fuel consumption for each design

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

465

Infrared Imaging of Temperature Distribution in a High Temperature X-Ray Diffraction Furnace  

Science Conference Proceedings (OSTI)

High Temperature X-ray Diffraction (HTXRD) is a very powerful tool for studies of reaction kinetics, phase transformations, and lattice thermal expansion of advanced materials. Accurate temperature measurement is a critical part of the technique. Traditionally, thermocouples, thermistors, and optical pyrometers have been used for temperature control and measurement and temperature could only be measured at a single point. Infrared imaging was utilized in this study to characterize the thermal gradients resulting from various sample and furnace configurations in a commercial strip heater furnace. Furnace configurations include a metallic strip heater, with and without a secondary surround heater, or a surround heater alone. Sample configurations include low and high thermal conductivity powders and solids. The IR imaging results have been used to calibrate sample temperatures in the HTXRD furnace.

Payzant, E.A.; Wang, H.

1999-04-05T23:59:59.000Z

466

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

of separate costs for natural gas or oil, and electricity.receives oil-fired boilers INPUTS First Cost Inputs The flowfurnaces, and oil-fired furnaces, we scaled the cost for

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

467

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We...

468

Microsoft Word - ACEEE_06_ModulatingFurnaces_Paper236_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the...

469

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

470

Proceedings of the eighth annual symposium on explosives and blasting research  

Science Conference Proceedings (OSTI)

This edition of the proceedings of the annual symposium on Explosives and Blasting Research held concurrent with the 18th Annual Conference on Explosives and Blasting Technique is the eighth in a series published by the International Society of Explosives Engineers. A variety of laboratory and field research is presented on explosives, mining, detonators, and shock waves. Seventeen papers are selected for the energy data base.

Not Available

1993-01-01T23:59:59.000Z

471

Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})  

SciTech Connect

The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled.

Resnick, A.M.

1995-12-01T23:59:59.000Z

472

Literature survey of blast and fire effects of nuclear weapons on urban areas  

SciTech Connect

The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.

Reitter, T.A.; McCallen, D.B.; Kang, S.W.

1982-06-01T23:59:59.000Z

473

Development of a bench-scale metal distillation furnace  

SciTech Connect

Design of an inductively heated bench-scale distillation furnace (retort) capable of processing actinides is described. The apparatus consists of a vacuum/inert gas bell jar, a bell-jar lift, a nonwater-cooled induction coil, the induction tank circuit, and a series of components designed to contain the metal melts and vapors. The apparatus is located within a nitrogen glovebox and is designed to process plutonium-containing feeds. The electrical parameters of the induction coil and tank circuit necessary for design were determined by two different methods; one is based solely on calculated impedance values, and the other used high-frequency impedance measurements on a mock-up of the induction coil/susceptor arrangement. During the design state, the two methods of determining electrical parameters gave similar results. With the as-built system, the impedance meter did detect some efficiency loss to the metal bell jar and coil support that the calculational method did not predict. These losses were not significant enough to cause operating problems, and thus, both methods were shown to be adequate for the intended purpose. Zinc and magnesium were distilled, and uranium was melted in a successful series of shake-down runs.

Vest, M.A.; Lewandowski, E.F.; Pierce, R.D.; Smith, J.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

1997-12-01T23:59:59.000Z

474

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

475

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

476

Detailed model for practical pulverized coal furnaces and gasifiers  

SciTech Connect

The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

Philips, S.D.; Smoot, L.D.

1989-08-01T23:59:59.000Z

477

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

478

Low frequency long duration blast vibrations and their effect on residential structures  

Science Conference Proceedings (OSTI)

A study was conducted at a coal mine in India which produces 10 million tonne of coal and 27 million cubic meter of overburden per annum. Detonation of 100 tonnes of explosives in a blasting round is a common practice of the mine. These large sized blasts often led to complaints from the nearby inhabitants regarding ground vibrations and their affects on their houses. Eighteen dragline blasts were conducted and their impacts on nearby structures were investigated. Extended seismic arrays were used to identify the vibration characteristics within a few tens of meters of the blasts and also as modified by the media at distances over 5 km. 10 to 12 seismographs were deployed in an array to gather the time histories of vibrations. A signature blast was conducted to know the fundamental frequency of the particular transmitting media between the blast face and the structures. The faster decay of high frequency components was observed. It was also observed that at distances of 5 km, the persistence of vibrations in the structures was substantially increased by more than 10 seconds. The proximity of the frequency of the ground vibration to the structure's fundamental frequencies produced the resonance in the structures. On the basis of the fundamental frequency of the structures, the delay interval was optimized, which resulted in lower amplitude and reduced persistence of vibration in the structures. 9 refs., 10 figs., 2 tabs.

Roy, M.P.; Sirveiya, A.K.; Singh, P.K. [Central Mining Research Institute, Dhanbad (India). Blasting Dept.

2005-07-01T23:59:59.000Z

479

EA-1745: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact EA-1745: Finding of No Significant Impact Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc., Indiana Harbor Steel Mill, East Chicago, Indiana Based on the analyses in the environmental assessment, DOE determined that its proposed action - awarding a federal grant to ArcelorMittal USA, Inc. to facilitate construction and operation of a boiler system that would convert blast furnace waste gas into electricity - would result in no significant adverse impacts. Finding of No Significant Impact for the Blast Furnace Gas Flare Capture Project at the Arcelormittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana More Documents & Publications EA-1745: Final Environmental Assessment Project_Descriptions_ITP_ARRA_Awards.xls

480

Blasting for abandoned-mine land reclamation (closure of individual subsidence features and erratic, undocumented underground coal-mine workings). Final report  

SciTech Connect

The study has examined the feasibility of blasting for mitigating various abandoned mine land features on AML sites. The investigation included extensive field trial blasts at sites in North Dakota and Montana. A blasting technique was used that was based on spherical cratering concepts. At the Beulah, North Dakota site thirteen individual vertical openings (sinkholes) were blasted with the intent to fill the voids. The blasts were designed to displace material laterally into the void. Good success was had in filling the sinkholes. At the White site in Montana erratic underground rooms with no available documentation were collapsed. An adit leading into the mine was also blasted. Both individual room blasting and area pattern blasting were studied. A total of eight blasts were fired on the one acre area. Exploration requirements and costs were found to be extensive.

Workman, J.L.; Thompson, J.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace steel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7 8 9 1