Powered by Deep Web Technologies
Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermodynamics of TiO{sub x} in blast furnace-type slags  

SciTech Connect (OSTI)

Equilibrium studies between CaO-SiO{sub 2}-10 pct MgO-Al{sub 2}O{sub 3}-TiO{sub 1.5}-TiO{sub 2} slags, carbon-saturated iron, and a carbon monoxide atmosphere were performed at 1773 K to determine the activities of TiO{sub 1.5} and TiO{sub 2} in the slag. These thermodynamic parameters are required to predict the formation of titanium carbonitride in the blast furnace. In order to calculate the activity of titanium oxide, the activity coefficient of titanium in carbon-saturated iron-carbon-titanium alloys was determined by measuring the solubility of titanium in carbon-saturated iron in equilibrium with titanium carbide. The solubility and the activity coefficient of titanium obtained were 1.3 pct and 0.023 relative to 1 wt pct titanium in liquid iron or 0.0013 relative to pure solid titanium at 1773 K, respectively. Over the concentration range studied, the effect of the TiO{sub x} content on its activity coefficient is small. In the slag system studied containing 35 to 50 pct CaO, 25 to 45 pct SiO{sub 2}, 7 to 22 pct Al{sub 2}O{sub 3}, and 10 pct MgO, the activity coefficients of TiO{sub 1.5} and TiO{sub 2} relative to pure solid standard states range from 2.3 to 8.8 and from 0.1 to 0.3, respectively. Using thermodynamic data obtained, the prediction of the formation of titanium carbonitride was made. Assuming hypothetical TiO{sub 2}, i.e., total titanium in the slag expressed as TiO{sub 2}, and using the values of the activity coefficients of TiO{sub 1.5} and TiO{sub 2} determined, the equilibrium distribution of titanium between blast furnace-type slags and carbon-saturated iron was computed. The value of [pct Ti]/(pct TiO{sub 2}) ranges from 0.1 to 0.2.

Morizane, Y.; Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

1999-02-01T23:59:59.000Z

2

Investigation of the activity level and radiological impacts of naturally occurring radionuclides in blast furnace slag  

Science Journals Connector (OSTI)

......material such as iron ore, coal and limestone in steel production...road construction can bring economic and environmental advantages...properties of concrete incorporating coal bottom ash and granulated blast...fly ashes produced in Turkish coal-burning thermal power plants......

F. A. Ugur; S. Turhan; H. Sahan; M. Sahan; E. Gören; F. Gezer; Z. Yegingil

2013-03-01T23:59:59.000Z

3

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

4

Existing and prospective blast-furnace conditions  

SciTech Connect (OSTI)

Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk [Ukrainian Academy of Sciences, Dnepropetrovsk (Ukraine). Institute of Ferrous Metallurgy

2009-07-15T23:59:59.000Z

5

Processing automotive shredder fluff for a blast furnace injection  

E-Print Network [OSTI]

1 Processing automotive shredder fluff for a blast furnace injection S. GUIGNOT* , M. GAMET, N. *Corresponding author: s.guignot@brgm.fr, (+33)238643485 Abstract Automotive shredder fluff is a byproduct. Keywords: automotive shredder residues, fluff, iron recovery, process, blast furnace hal-01017129

Boyer, Edmond

6

Development of coke properties during the descent in the blast furnace.  

E-Print Network [OSTI]

??The efficiency in use of reducing agents in blast furnace (BF) ironmaking has been significantly improved over the years. At most blast furnaces, auxiliary fuels… (more)

Maria Lundgren

2013-01-01T23:59:59.000Z

7

Strategic evaluation of investments in coal-dust fuel for blast furnaces  

SciTech Connect (OSTI)

The paper discusses the evaluation of venture investment projects in pulverized coal injection into blast furnaces.

S.V. Bogdanov; S.M. Kornilaev [State University of Management, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

8

Energy expenditures and carbon-dioxide emissions at blast furnaces  

Science Journals Connector (OSTI)

Thermodynamic analysis of the reduction of iron and the material balances of carbon shows that the CO2 levels in the blast-furnace gas may be maintained by lowering the carbon consumption in the direct reduction ...

G. V. Korshikov; V. N. Titov; V. G. Mikhailov

2013-07-01T23:59:59.000Z

9

Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.  

DOE Patents [OSTI]

The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

Aune, Jan Arthur (Enebakk, NO); Brinch, Jon Christian (Oslo, NO); Johansen, Kai (Kristiansand, NO)

2005-12-27T23:59:59.000Z

10

Coke mineral transformations in the experimental blast furnace  

SciTech Connect (OSTI)

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

11

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect (OSTI)

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

12

E-Print Network 3.0 - ash slag silica Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering ; Materials Science 91 By-Products Utilization Summary: pozzolans include coal fly ash, blast furnace slag, silica fume, and other combustion ashes. When...

13

Properties and mechanism on flexural fatigue of polypropylene fiber reinforced concrete containing slag  

Science Journals Connector (OSTI)

Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS). Four polypropylene fibers’ volume fractions and five ...

Huili Zhang ???; Kanliang Tian

2011-06-01T23:59:59.000Z

14

Selection of Coal Gasification Parameters for Injection of Gasification Products Into a Blast Furnace  

Science Journals Connector (OSTI)

An analytical study was performed on the influence of blast parameters on the course of the processes in the volume of a blast furnace and smelting rates by injection of low-grade coal gasification products. It w...

I. G. Tovarovsky; A. E. Merkulov

2014-01-01T23:59:59.000Z

15

Characterization of Coke Properties at Tuyere Level of an Operating Blast Furnace.  

E-Print Network [OSTI]

??Coke performance in an operating blast furnace is often empirically related to popular bench-scale tests, which are performed at relative much lower temperatures. Due to… (more)

Ye, Zhuozhu

2014-01-01T23:59:59.000Z

16

Mathematical modelling of the flow and combustion of pulverized coal injected in ironmaking blast furnace.  

E-Print Network [OSTI]

??Pulverized coal injection (PCI) technology is widely practised in blast furnace ironmaking due to economic, operational and environmental benefits. High burnout of pulverized coal in… (more)

Shen, Yansong

2008-01-01T23:59:59.000Z

17

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

SciTech Connect (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

18

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect (OSTI)

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

19

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect (OSTI)

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

20

Model of Phosphorus Precipitation and Crystal Formation in Electric Arc Furnace Steel Slag Filters  

Science Journals Connector (OSTI)

Model of Phosphorus Precipitation and Crystal Formation in Electric Arc Furnace Steel Slag Filters ... Phosphorus is generally the limiting nutrient in freshwater systems and its discharge from wastewaters favors eutrophication. ... (1) Stricter regulations for phosphorus discharges to smaller treatment plants creates a need for the development of new and extensive (requiring minimal operation) treatment technologies. ...

Dominique Claveau-Mallet; Scott Wallace; Yves Comeau

2011-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Blast-furnace smelting with the injection of natural gas and coke-oven gas  

Science Journals Connector (OSTI)

A multizone mathematical model developed at Nekrasov Institute of Ferrous Metallurgy reveals the internal relations between the processes in a blast furnace. Using this model, the smelting processes and parameter...

I. G. Tovarovskii; A. E. Merkulov

2011-06-01T23:59:59.000Z

22

Coal-oil mixture combustion program: injection into a blast furnace  

SciTech Connect (OSTI)

A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.

1982-04-30T23:59:59.000Z

23

The Utilization and Recovery of Energy from Blast Furnaces and Converters  

E-Print Network [OSTI]

THE UTILIZATION AND RECOVERY OF ENERGY FROM BLAST FURNACES AND CONVERTERS Dr.-Ing. Rolf-D. Baare, Ober-Ing. Karl-Rudolf Hegemann and Ing. (grad.) Theodor Niess Gottfried Bischoff GmbH &Co. KG Essen, W. Germany ABSTRACT The Bischoff Blast...

Hegemann, K. R.; Niess, T.; Baare, R. D.

1979-01-01T23:59:59.000Z

24

An Integrated Model of Coal/Coke Combustion in a Blast Furnace  

Science Journals Connector (OSTI)

A three?dimensional integrated mathematical model of the combustion of pulverized coal and coke is developed. The model is applied to the region of lance?blowpipe?tuyere?raceway?coke bed to simulate the operation of pulverized coal injection in an ironmaking blast furnace. The model integrates two parts: pulverized coal combustion model in the blowpipe?tuyere?raceway?coke bed and the coke combustion model in the coke bed. The model is validated against the measurements in terms of coal burnout and gas composition respectively. The comprehensive in?furnace phenomena are simulated in the raceway and coke bed in terms of flow temperature gas composition and coal burning characteristics. In addition underlying mechanisms for the in?furnace phenomena are analyzed. The model provides a cost?effective tool for understanding and optimizing the in?furnace flow?thermo?chemical characteristics of the PCI process in full?scale blast furnaces.

Y. S. Shen; B. Y. Guo; A. B. Yu; P. Austin; P. Zulli

2010-01-01T23:59:59.000Z

25

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

26

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect (OSTI)

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

27

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

28

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Broader source: Energy.gov (indexed) [DOE]

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

29

Using coal-dust fuel in Ukrainian and Russian blast furnaces  

SciTech Connect (OSTI)

Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin [Donetsk National Technical University, Donetsk (Russian Federation)

2008-02-15T23:59:59.000Z

30

Variation in coke properties within the blast-furnace shop  

SciTech Connect (OSTI)

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

31

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect (OSTI)

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15T23:59:59.000Z

32

AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace  

SciTech Connect (OSTI)

Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

Michael F. Riley

2002-10-21T23:59:59.000Z

33

Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-09-01T23:59:59.000Z

34

Production and blast-furnace smelting of boron-alloyed iron-ore pellets  

SciTech Connect (OSTI)

Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

A.A. Akberdin; A.S. Kim [Abishev Chemicometallurgical Institute, Abishev (Kazakhstan)

2008-08-15T23:59:59.000Z

35

Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace  

SciTech Connect (OSTI)

Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

Dr. Chenn Zhou

2008-10-15T23:59:59.000Z

36

Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue  

SciTech Connect (OSTI)

On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

1995-12-01T23:59:59.000Z

37

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect (OSTI)

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

38

Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein

39

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect (OSTI)

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

40

Slag-washing water of blast furnace power station with supercritical organic Rankine cycle  

Science Journals Connector (OSTI)

Organic Rankine cycle (ORC) power plant operating with supercritical ... of a supercritical power plant. Two typical organic fluids with sufficiently low critical parameters were ... study the efficiency of the s...

Song Xiao ??; Shu-ying Wu ???; Dong-sheng Zheng ???

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect (OSTI)

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

42

Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength  

SciTech Connect (OSTI)

Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

Stanislav S. Gornostayev; Jouko J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2006-12-15T23:59:59.000Z

43

The role of alumina on performance of alkali-activated slag paste exposed to 50 °C  

SciTech Connect (OSTI)

The strength and microstructural evolution of two alkali-activated slags, with distinct alumina content, exposed to 50 °C have been investigated. These two slags are ground-granulated blast furnace slag (containing 13% (wt.) alumina) and phosphorous slag (containing 3% (wt.) alumina). They were hydrated in the presence of a combination of sodium hydroxide and sodium silicate solution at different ratios. The microstructure of the resultant slag pastes was assessed by X-ray diffraction, differential thermogravimetric analysis, and scanning electron microscopy. The results obtained from these techniques reveal the presence of hexagonal hydrates: CAH{sub 10} and C{sub 4}AH{sub 13} in all alkali-activated ground-granulated blast-furnace slag pastes (AAGBS). These hydrates are not observed in pastes formed by alkali-activated ground phosphorous slag (AAGPS). Upon exposure to 50 °C, the aforementioned hydration products of AAGBS pastes convert to C{sub 3}AH{sub 6}, leading to a rapid deterioration in the strength of the paste. In contrast, no strength loss was detected in AAGPS pastes following exposure to 50 °C. -- Highlights: •Strength of alkali-activated slag (AAS) pastes after exposure to 50 °C is studied. •AAS pastes with high alumina content lose strength after the exposure. •C{sub 4}AH{sub 13} and CAH{sub 10} form in these AAS pastes. •Conversion of these calcium alumina hydrates is associated with the strength loss. •AAS pastes with low alumina content maintain its strength after the exposure.

Jambunathan, N. [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia)] [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sanjayan, J.G. [Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria (Australia)] [Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria (Australia); Pan, Z., E-mail: zhu.pan@monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia); Li, G. [School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009 (Australia)] [School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009 (Australia); Liu, Y. [School of Geosciences and Info-Physics, Central South University, Changsha 410083 (China)] [School of Geosciences and Info-Physics, Central South University, Changsha 410083 (China); Korayem, A.H.; Duan, W.H.; Collins, F. [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia)] [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia)

2013-12-15T23:59:59.000Z

44

Paired Straight Hearth Furnace  

Broader source: Energy.gov [DOE]

A coal based dri and molten metal process for long range replacement of blast furnaces and coke ovens

45

TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates  

SciTech Connect (OSTI)

Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

Veena Sahajwalla; Sushil Gupta

2005-04-15T23:59:59.000Z

46

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network [OSTI]

like blast furnace slag, fly ash, coal gangue, limestone,Blast Furnace Slag Fly ash Cinder Coal gangue Lime- stone

Worrell, Ernst

2008-01-01T23:59:59.000Z

47

slag landfill  

Science Journals Connector (OSTI)

slag landfill [Context: the impacts of Cu 2+ emissions from the slag landfill to the groundwater were assessed to be...] ? Schlackendeponie f ...

2014-08-01T23:59:59.000Z

48

Establish the multi-source data fusion model of the shape of blast furnace burden surface based on co-universal kriging estimation method  

Science Journals Connector (OSTI)

This paper presents a multi-source data fusion model method which could improve the blast furnace (BF) burden surface model accuracy. First, the three sections of straight line are used to describe the cross section of BF burden surface, and apply the motion law of the furnace burden to constrain the specific parameters of the three sections of straight line. Secondly, a multi-source data fusion method based on co-universal kriging estimation method is proposed. The temperature and height data are combined to build the unbiased estimation for the burden surface shape. Finally, an example of surface shape model using our proposed method in a 2500 m³ BF of a steel plant is discussed. The application shows that, contrasted with the traditional model, the model accuracy has arisen by 8%, and the resolution of surface shape has arisen by 0.32. The novel method can provide necessary guidance for energy saving and emission reduction in operation of the BF.

Liangliang Miao; Xianzhong Chen; Shilong Zhao; Zhenlong Bai

2014-01-01T23:59:59.000Z

49

Constant voltage electro-slag remelting control  

DOE Patents [OSTI]

A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

Schlienger, M.E.

1996-10-22T23:59:59.000Z

50

BF slag resistance of ?-Si3Al3O3N5 material derived from Al salt cake  

Science Journals Connector (OSTI)

Abstract In the process of recycling of salt cake from secondary aluminium smelting, it was shown that a significant value addition can be made as ?-Si3Al3O3N5 could be successfully synthesized from the rest product after water-leaching by silicothermal reduction method. In order to evaluate its refractory application, the corrosion behavior in blast furnace slag was investigated under static condition at 1400–1480 °C in the present work. The results show that the ?-Si3Al3O3N5 material has good slag resistance. The apparent activation energy obtained for corrosion process is ?388.7 kJ/mol, revealing a more complicated dissolution mechanism. The corrosion process is started with the dissolution of intergranular phase including the iron silicides and glassy phases in the specimens, which is aided by the softening at high temperature and the continuous attack from slag, then followed by the dissolution of ?-Si3Al3O3N5 grains in the slag.

Peng Li; Mei Zhang; Zhenbo Wang; Seshadri Seetharaman

2014-01-01T23:59:59.000Z

51

Verification of Steelmaking Slags Iron Content Final Technical Progress Report  

SciTech Connect (OSTI)

The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and can be utilized for acid mine drainage treatment. Economic analysis from this research demonstrates that the results are favorable. The strong demand and the increase of price of the DRI and pig iron in recent years are particularly beneficial to the economics. The favorable economics has brought commercial interests. ICAN Global has obtained license agreement on the technology from Michigan Tech. This right was later transferred to the Westwood Land, Inc. A demonstration pilot plant is under construction to evaluate the technology. Steel industry will benefit from the new supply of the iron units once the commercial plants are constructed. Environmental benefits to the public and the steel industry will be tremendous. Not only the old piles of the slag will be removed, but also the federal responsible abandoned mines from the old mining activities can be remediated with the favorable product generated from the process. Cost can be reduced and there will be no lime required, which can avoid the release of carbon dioxide from lime production process.

J.Y. Hwang

2006-10-04T23:59:59.000Z

52

Method of operating a centrifugal plasma arc furnace  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

53

Method of operating a centrifugal plasma arc furnace  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

1998-01-01T23:59:59.000Z

54

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

55

Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag  

SciTech Connect (OSTI)

The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

Von L. Richards; Kent Peaslee; Jeffrey Smith

2008-02-06T23:59:59.000Z

56

cautious pipeline trench blasting  

Science Journals Connector (OSTI)

cautious pipeline trench blasting, pipeline trench blasting (with)in built-up areas...n in bebauten Gebieten

2014-08-01T23:59:59.000Z

57

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents [OSTI]

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

58

Tube furnace  

DOE Patents [OSTI]

A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

Foster, Kenneth G. (Livermore, CA); Frohwein, Eugene J. (San Ramon, CA); Taylor, Robert W. (Livermore, CA); Bowen, David W. (Livermore, CA)

1991-01-01T23:59:59.000Z

59

Furnace assembly  

DOE Patents [OSTI]

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

60

Slag-Refractory Interaction in Slagging Coal Gasifiers  

SciTech Connect (OSTI)

The combustion chamber of slagging coal gasifiers is lined with refractories to protect the stainless steel shell of the gasifier from elevated temperatures and corrosive attack of the coal slag. Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that slag penetration and subsequent spalling of refractory are the cause of significantly shorter service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of three slags representative of a wide variety of coals in the United States into chromia-alumina and two high-chromia refractories. Variables tested were refractory-slag combinations and two partial pressures of O2. Slag penetration depths were measured from spliced images of each refractory. Samples heated to 1470°C for 2 hrs had maximum penetration depths ranging from 1.99±0.15 mm to at least 21.6 mm. Aurex 95P, a high-chromia refractory containing 3.3% phosphorous pentoxide (P2O5), showed the least slag penetration of all refractories tested. P2O5 likely reacts with the slags to increase their viscosity and restrict molten slag penetration. Experimental data on the slag-refractory interaction will be incorporated into mathematical model that will be used to 1) identify critical conditions at which refractory corrosion sharply increases, and 2) predict the service life of a gasifier refractory.

Matyas, Josef; Sundaram, S. K.; Hicks, Brent J.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

2008-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Slag Penetration into Refractory Lining of Slagging Coal Gasifier  

SciTech Connect (OSTI)

The impurities in coal are converted into molten slag typically containing SiO2, FeO, CaO, and Al2O3 when coal feedstock is burned in slagging gasifiers. The slag flows down the gasifier sidewalls, dissolves, and penetrates and reacts with the refractory lining that protects the stainless steel shell of the gasifier from elevated temperatures (1300–1600°C). Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements because of low resistance to spalling. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that the spalling is affected by the depth of slag penetration that is in turn affected by the wettability and interconnected porosity of the refractory as well as the slag viscosity. Laboratory tests were conducted to measure the viscosity of slags (Wyoming Powder River Basin [PRB], Pocahontas #3, and Pittsburgh #8), their contact angle on refractories (chromia-alumina [Aurex 75SR] and high-chromia [Serv 95 and Aurex 95P]), and the apparent porosity of selected refractories. In addition, the depth of slag penetration as a function of time and temperature was determined for various refractory-slag combinations. The results of laboratory tests were used to develop a refractory material that has high resistance to penetration by molten slag and thus has a potential to have a substantially longer service life than the materials currently being used.

Matyas, Josef; Sundaram, S. K.; Rodriguez, Carmen P.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

2008-10-25T23:59:59.000Z

62

Studies on bubble films of molten slags  

Science Journals Connector (OSTI)

...Al2O3 slags can increase the stability of bubble films. For instance, the...increase in the lifetime/stability of the slag bubble films. important criterion when determining the stability of slag foams. For instance...

1998-01-01T23:59:59.000Z

63

Furnaces | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Furnaces Incentives Retrieved from "http:en.openei.orgwindex.php?titleFurnaces&oldid267167" Category: Articles with outstanding TODO tasks...

64

December News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

December News Blast December News Blast December News Blast december2013newsblast.pdf More Documents & Publications November 2013 News Blast April 2014 Monthly News Blast January...

65

October 2013 News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 2013 News Blast October 2013 News Blast October 2013 News Blast october2013newsblast.pdf More Documents & Publications September 2013 News Blast BETO Monthly News Blast,...

66

Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag  

SciTech Connect (OSTI)

The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping

2013-02-07T23:59:59.000Z

67

An Empirical Viscosity Model for Coal Slags  

SciTech Connect (OSTI)

Slags of low viscosity readily penetrate the refractory lining in slagging gasifiers, causing rapid and severe corrosion called spalling. In addition, a low-viscosity slag that flows down the gasifier wall forms a relatively thin layer of slag on the refractory surface, allowing the corrosive gases in the gasifier to participate in the chemical reactions between the refractory and the slag. In contrast, a slag viscosity of <25 Pa•s at 1400°C is necessary to minimize the possibility of plugging the slag tap. There is a need to predict and optimize slag viscosity so slagging gasifiers can operate continuously at temperatures ranging from 1300 to 1650°C. The approach adopted in this work was to statistically design and prepare simulated slags, measure the viscosity as a function of temperature, and develop a model to predict slag viscosity based on slag composition and temperature. Statistical design software was used to select compositions from a candidate set of all possible vertices that will optimally represent the composition space for 10 main components. A total of 21 slag compositions were generated, including 5 actual coal slag compositions. The Arrhenius equation was applied to measured viscosity versus temperature data of tested slags, and the Arrhenius coefficients (A and B in ln(vis) = A + B/T) were expressed as linear functions of the slag composition. The viscosity model was validated using 1) data splitting approach, and 2) viscosity/temperature data of selected slag compositions from the literature that were formulated and melted at Pacific Northwest National Laboratory. The capability of the model to predict the viscosity of coal slags was compared with the model developed by Browning et al. because this model can predict the viscosity of slags from coal ash better than the most commonly used empirical models found in the literature.

Matyas, Josef; Cooley, Scott K.; Sundaram, S. K.; Rodriguez, Carmen P.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

2008-10-25T23:59:59.000Z

68

Glassy slags for minimum additive waste stabilization. Interim progress report, May 1993--February 1994  

SciTech Connect (OSTI)

Glassy slag waste forms are being developed to complement glass waste forms in implementing Minimum Additive Waste Stabilization (MAWS) for supporting DOE`s environmental restoration efforts. The glassy slag waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. The MAWS approach was adopted by blending multiple waste streams to achieve up to 100% waste loadings. The crystalline phases, such as spinels, are very durable and contain hazardous and radioactive elements in their lattice structures. These crystalline phases may account for up to 80% of the total volume of slags having over 80% metal loading. The structural bond strength model was used to quantify the correlation between glassy slag composition and chemical durability so that optimized slag compositions were obtained with limited crucible melting and testing. Slag compositions developed through crucible melts were also successfully generated in a pilot-scale Retech plasma centrifugal furnace at Ukiah, California. Utilization of glassy slag waste forms allows the MAWS approach to be applied to a much wider range of waste streams than glass waste forms. The initial work at ANL has indicated that glassy slags are good final waste forms because of (1) their high chemical durability; (2) their ability to incorporate large amounts of metal oxides; (3) their ability to incorporate waste streams having low contents of flux components; (4) their less stringent requirements on processing parameters, compared to glass waste forms; and (5) their low requirements for purchased additives, which means greater waste volume reduction and treatment cost savings.

Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Gong, M.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.] [Argonne National Lab., IL (United States). Chemical Technology Div.

1994-05-01T23:59:59.000Z

69

Corrosion performance of ceramic materials in slagging environments  

SciTech Connect (OSTI)

Conceptual designs of advanced combustion systems that use coal as feedstock require high-temperature furnaces and heat transfer surfaces that can operate at temperatures much higher than in current coal-fired power plants. Combination of elevated temperatures and hostile combustion environments requires advanced ceramics. Objectives of this program are to evaluate the (a) chemistry of gaseous and condensed products arising during coal combustion, (b) corrosion behavior of candidate materials in air, slag, and salt environments, and (c)residual mechanical properties of the materials after corrosion. Temperatures in the range of 1000-1400 C for ceramics and 600-1000 C for metallic alloys are emphasized. Coal/ash chemistries developed on the basis of thermodynamic/kinetic calculations, together with slags from actual combustors, are used. Materials being evaluated include monolithic Si carbides from several sources: Si nitride, Si carbide in alumina composites, Si carbide fibers in a Si carbide-matrix composite, and some advanced Ni-base alloys. This paper presents results from an ongoing program on corrosion performance of candidate ceramic materials exposed to air, salt, and slag environments and their effect on flexural strength and energy absorbed during fracture of these materials. 10 figs, 4 tabs, 8 refs.

Natesan, K.

1996-10-01T23:59:59.000Z

70

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1999-01-01T23:59:59.000Z

71

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1998-01-01T23:59:59.000Z

72

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

Gerdemann, S.J.; White, J.C.

1998-08-04T23:59:59.000Z

73

ThermonucleotideBLAST  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ThermonucleotideBLAST ThermonucleotideBLAST ThermonucleotideBLAST ThermonucleotideBLAST is a software program for searching a target database of nucleic acid sequences using an assay specific query. October 10, 2013 software Given two samples of sequences, for which the user provides an input file with corresponding genetic distances (pairwise), the program performs a t-test to see whether the two mean genetic distances are significantly different. Available for thumbnail of Feynman Center (505) 665-9090 Email ThermonucleotideBLAST ThermonucleotideBLAST is a software program for searching a target database of nucleic acid sequences using an assay specific query. Licensing Status: Available for Express Licensing (?). This software is open source. To download, please visit ThermonucleotideBLAST website. For more

74

November 2013 News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

November 2013 News Blast November 2013 News Blast November 2013 News Blast november2013newsblast.pdf More Documents & Publications BETO Monthly News Blast, August 2013r January...

75

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

76

A Brief Review of Viscosity Models for Slag in Coal Gasification  

SciTech Connect (OSTI)

Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

Massoudi, Mehrdad; Wang, Ping

2011-11-01T23:59:59.000Z

77

Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multimedia Corner Monthly News Blast July 2013 Secretaries Moniz and Vilsack Speaking at Biomass 2013 Secretary of Energy Ernest Moniz and Secretary of Agriculture Tom Vilsack...

78

Laboratory Induction Furnaces  

Science Journals Connector (OSTI)

... supplied at 10,000 volts by a suitable transformer. It is controlled either by a contactor or by push buttons on the furnace table.

1930-07-19T23:59:59.000Z

79

Lightweight blast shield  

DOE Patents [OSTI]

A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

Mixon, Larry C. (Madison, AL); Snyder, George W. (Huntsville, AL); Hill, Scott D. (Toney, AL); Johnson, Gregory L. (Decatur, AL); Wlodarski, J. Frank (Huntsville, AL); von Spakovsky, Alexis P. (Huntsville, AL); Emerson, John D. (Arab, AL); Cole, James M. (Huntsville, AL); Tipton, John P. (Huntsville, AL)

1991-01-01T23:59:59.000Z

80

February 2014 News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 News Blast February 2014 News Blast February 2014 News Blast february2014newsblast.pdf More Documents & Publications March 2014 Monthly News Blast April 2014 Monthly News Blast...

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Manhattan Project: Blast  

Office of Scientific and Technical Information (OSTI)

Blast (Animation) Blast (Animation) Yucca Flat, Nevada (March 17, 1953) Resources > Photo Gallery Blast Animation The eight images above are a sequence of photographs of a house constructed 3,500 feet from "ground zero" at the Nevada Test Site being destroyed by the Annie test shot. The only source of light was the blast itself, detonated on March 17, 1953. The final image is two-and-one-third seconds after detonation. In the second image the house is actually on fire, but in the third image the fire has already been blown out by the blast. Annie, part of the "Upshot-Knothole" test series, had a yield of 16 kilotons, roughly the same size as the Trinity, Hiroshima, and Nagasaki explosions. Two photographs of the Annie mushroom cloud are at the bottom of this page.

82

Processing Automotive Shredder Fluff for a Blast Furnace Injection  

Science Journals Connector (OSTI)

Automotive shredder fluff is a by-product vacuumed during ... ELV) hulks, and further refined in post-shredder lines of treatment (PST). To date...

S. Guignot; M. Gamet; N. Menad

2013-12-01T23:59:59.000Z

83

Optimizing Blast Furnace Operation to Increase Efficiency and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

process in the U.S. A major advance in BF ironmaking has been the use of pulverized coal which partially replaces metallurgi- cal coke. This results in substantial improvement...

84

Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect (OSTI)

This research was aimed at testing and developing the expansion potential of solid residues (slag) from gasification of Illinois coals to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing perlite or vermiculite ores and have unit weights in the 5--12 lb/ ft{sup 3} range. These materials sell for approximately $200/ton ($1.00/ft{sup 3}) and have numerous applications. The incentive for this effort was based on previous experimental results in which lightweight aggregates (LWA) with unit weights of 25--55 lb/ft{sup 3} were produced from Illinois slag using a direct-fired furnace. In this program, bench-scale expansion tests conducted with two Illinois coal slags resulted in product unit weights of 12 and 18.5 lb/ ft{sup 3}, thus confirming the feasibility of producing ULWA from Illinois slags. During initial pilot vertical shaft furnace test runs, two Illinois slags were expanded to generate products with unit weights of 12.5--26.5 and 20--52 lb/ ft{sup 3}. Further attempts to lower the product unit weights resulted in fusion of the slag. This problem could be overcome by methods including surface treatment of the slag, blending the slag with other materials, or utilization of indirect firing methods. To lower the product unit weights, an indirect-fired horizontal shaft furnace was used and products with unit weights of 12.4--52.0 lb/ft{sup 3} were generated, thus indicating that this method can be used to produce a wide range of expanded products. A large batch of expanded slag was produced using an 18-in. diameter x 12-ft long indirect-fired pilot furnace. A sample from this batch was characterized. Specimens of insulating concrete made from expanded slag had a unit weight 43.3 lb/ft{sup 3} and thermal conductivity of 1.34 Btu-in./h/ft{sup 2}/{degrees}F. This compares well with a value of 1. 2 Btu-in./h/ft{sup 2}/{degrees}F for insulating concrete of a similar weight made from perlite, as per ASTM C 332-82.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

1993-12-31T23:59:59.000Z

85

Advanced steel reheat furnace  

SciTech Connect (OSTI)

Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1997-10-01T23:59:59.000Z

86

Crystallization of Synthetic Coal?Petcoke Slag Mixtures Simulating Those Encountered in Entrained Bed Slagging Gasifiers  

Science Journals Connector (OSTI)

Crystallization of Synthetic Coal?Petcoke Slag Mixtures Simulating Those Encountered in Entrained Bed Slagging Gasifiers† ... Commercial entrained bed slagging gasifiers use a carbon feedstock of coal, petcoke, or combinations of them to produce CO and H2. ... A hot-stage confocal scanning laser microscope (CSLM) was used to analyze the kinetic behavior of slag crystallization for a range of synthetic coal?petcoke mixtures. ...

Jinichiro Nakano; Seetharaman Sridhar; Tyler Moss; James Bennett; Kyei-Sing Kwong

2009-04-07T23:59:59.000Z

87

Induction slag reduction process for making titanium  

DOE Patents [OSTI]

Continuous process for preparing titanium comprising fluorinating titanium ore, and reducing the formed alkaline earth fluotitanate with an alkaline earth metal in an induction slag reactor.

Traut, Davis E. (Corvallis, OR)

1991-01-01T23:59:59.000Z

88

Trends in furnace control  

SciTech Connect (OSTI)

This paper relates Italimpianti's experiences over the past few years in the area of control of reheat furnaces for the steel industry. The focus is on the level 1 area; specifically on the use of PLC-based systems to perform both combustion control and mechanical/hydraulic control. Some topics to be discussed are: overview of reheat furnace control system requirements; PLC only control vs separate PLC and DCS systems; PLC hardware requirements; man machine interface (MMI) requirements; purge, light-on and safety logic; implementation of more sophisticated level 1 control algorithms; furnace temperature optimization: look up tables vs full thermal modeling; and recent trends including integrated PLC/DCS system.

McDonald, T.J.; Keefe, M.D. (Italimpianti of America, Inc., Coraopolis, PA (United States). Instrumentation and Controls Dept.)

1993-07-01T23:59:59.000Z

89

Semicoke production and quality at Chinese vertical SJ furnaces  

SciTech Connect (OSTI)

In Russia there has been little interest on the thermal processing of non-sintering coal. However it may be used to obtain many special types of coke and semicoke that are necessary for processes other than blast furnace smelting and employing small metallurgical coke fractions that do not meet the relevant quality requirements. China has recently made great progress in developing the thermal processing of coal (mainly energy coal) to obtain a highly effective product, semicoke, primarily used in metallurgy and adsorption process. The article considers the operation of a Chinese semicoking plant equipped with vertical SJ furnaces. The plant is in the Shenmu district of Shanxi province (Inner Mongolia). The enterprise includes two furnaces of total output of about 100,000 t/yr of semicoke.

V.M. Strakhov; I.V. Surovtseva; A.V. D'yachenko; V.M. Men'shenin [Kuznetsk Center, Eastern Coal-Chemistry Institute (Russian Federation)

2007-05-15T23:59:59.000Z

90

High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473e673 K  

E-Print Network [OSTI]

. Iron reduction is achieved witha reducing gas (generally,a gas mixture ofH2 and CO produced by coal reserved. http://dx.doi.org/10.1016/j.ijhydene.2013.03.163 #12;agent such as coke, in a blast furnace

Montes-Hernandez, German

91

Furnace Black Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Furnace Black Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher 005F 2 Definitions Particle Aggregate = 20nm to 100nm "Diameter" = 200nm to 1,000nm "Length" = Set of Percolated Aggregates Particle (?) Aggregate Agglomerate Constituents Size = Tech/Scientific Challenge 005F 3 Furnace Process High Temperature Refractory Feedstock Oil Air Natural Gas Reaction Zone Quench 005F 4 Specific Surface Area 005F 5 Structure 3-D Morphology Key Characteristic Summary of Crystallographic Studies 005F 7 Methodologies 005F 8 Summary * For all furnace carbon black 12Å < L C < 17Å * Crystallite L a ≈ 25Å * Amorphous Carbon * No micropores * Very few surface groups (hetero atoms) { 005F 9 Effect of Heat Treatment on Amorphous Carbon

92

Paired Straight Hearth Furnace  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PSH will use two linear tunnel hearth furnaces that share a common translating pallet train and which are aligned in parallel and run in opposite directions. Pellets are loaded...

93

A Furnace Temperature Regulator  

Science Journals Connector (OSTI)

Synopsis.—By making the heating coil of an electric furnace one arm of a wheatstone bridge, and combining this with a galvanometer regulator, thus keeping constant the resistance of the coil, we can, regardless of variations in the current supply, and with no attention, maintain constant the temperature of furnaces not too directly influenced by the temperature of the room, or where the surrounding air is kept constant. The power available in this regulator is relatively very great indeed; nothing has to be inserted within the furnace cavity, and the lag is practically nothing; the regulator is often almost at its best under conditions most unfavorable to other regulators. It has held a small furnace constant to 0.1° for hours at temperatures from 500° to 1400°.

Walter P. White and Leason H. Adams.

1919-07-01T23:59:59.000Z

94

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

95

Slag-Refractory Interaction in Coal Gasifiers  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has taken an integrated approach to address major technical issues in conversion of coal into clean-burning liquid fuel. The approach includes: 1) modeling of gasifier and slag flow, 2) experimental characterization of slag viscoelastic behavior as a function of temperature for representative slags and refractory-slag interactions, and 3) interplay of the modeling and experimental measurements to identify critical conditions beyond which refractory corrosion tends to increase sharply. Basic heat and mass balances were considered in the gasifier and flow models. Two new refractory spalling models were developed. An experimental design that encompassed the broad range of slag chemistries that were of interest to coal gasification was developed and implemented. Selected gasifier refractories were tested in a simulated gasifier environment in our laboratory to identify refractory degradation mechanisms. Preliminary results of the effort are summarized.

Sundaram, S. K.; Johnson, Kenneth I.; Williford, Ralph E.; Pilli, Siva Prasad; Matyas, Josef; Fluegel, Alexander; Cooley, Scott K.; Crum, Jarrod V.; Edmondson, Autumn B.

2007-10-13T23:59:59.000Z

96

April 2013 Monthly News Blast  

Broader source: Energy.gov [DOE]

The monthly news blast for April 2013 highlights the Project Peer Review, upcoming events, BETO blog posts, and more.

97

Crystallization of Coal Ash Slags at High Temperatures and Effects on the Viscosity  

Science Journals Connector (OSTI)

The coal samples were ashed in a muffle furnace at 815 °C, according to the Chinese Standard GB/T1574-2007. ... Shenfu and Beisu coals are enriched in glass modifying oxides (CaO + Fe2O3 + MgO > 30%), while the contents of Al2O3 in Baodian coal ash is higher than 30%; therefore, they exhibit the crystalline slag behavior. ... compn. of coals and coal ashes from a wide variety of deposits (41) were studied by a melting test, x-ray diffractometry, light microscopy, differential-thermal, thermogravimetric and chem. ...

Haiping Yuan; Qinfeng Liang; Xin Gong

2012-04-16T23:59:59.000Z

98

Furnace | OpenEI  

Open Energy Info (EERE)

Furnace Furnace Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

99

Improved graphite furnace atomizer  

DOE Patents [OSTI]

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

100

Graphite electrode DC arc furnace. Innovative technology summary report  

SciTech Connect (OSTI)

The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

NONE

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Residential Condensing Gas Furnaces | Department of Energy  

Office of Environmental Management (EM)

Gas Furnaces Residential Condensing Gas Furnaces Standardized Templates for Reporting Test Results residentialcondensinggasfurnacev1.0.xlsx More Documents & Publications...

102

Engineered refractories for slagging gasifiers  

SciTech Connect (OSTI)

The widespread commercial adaptation of slagging gasifier technology to produce power, liquid fuels, and/or chemicals from coal and other fossil-based feedstocks and from biomass, will depend in large measure on the technology's ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved structural materials with longer service life in this application. Current generation refractory materials used to line the gasifier vessel, and contain the gasification reaction, may last no more than three months in commercial applications. The downtime required for tear-out and replacement of these critical materials results in gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of improved refractory materials engineered specifically for longer service life in this application, and present results from recent field trials in commercial systems.

Powell, Cynthia A.; Kwong, Kyei-sing; Bennett, James P.; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

103

Improving thermocouple service life in slagging gasifiers  

SciTech Connect (OSTI)

The measurement of temperature within slagging gasifiers for long periods of time is difficult/impossible because of sensor failure or blockage of inputs used to monitor gasifier temperature. One of the most common means of temperature measurement in a gasifier is physically, through the use of thermocouples in a gasifier sidewall. These units can fail during startup, standby, or during the first 40-90 days of gasifier service. Failure can be caused by a number of issues; including thermocouple design, construction, placement in the gasifier, gasifier operation, and molten slag attack of the materials used in a thermocouple assembly. Lack of temperature control in a gasifier can lead to improper preheating, slag buildup on gasifier sidewalls, slag attack of gasifier refractories used to line a gasifier, or changes in desired gas output from a gasifier. A general outline of thermocouple failure issues and attempts by the Albany Research Center to improve the service life of thermocouples will be discussed.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

104

Molten Slag Flow and Phase Transformation Behaviors in a Slagging Entrained-Flow Coal Gasifier  

Science Journals Connector (OSTI)

Molten Slag Flow and Phase Transformation Behaviors in a Slagging Entrained-Flow Coal Gasifier ... (14) The radiative heat-transfer equation for an absorbing, emitting, and scattering medium at position r in the direction s is where a and ?s represent the absorption and scattering coefficient, respectively. ...

Jianjun Ni; Zhijie Zhou; Guangsuo Yu; Qinfeng Liang; Fuchen Wang

2010-10-20T23:59:59.000Z

105

Viscosity measurements and empirical predictions for coal slags  

SciTech Connect (OSTI)

Slag viscosity in slagging coal gasifier is an important factor affecting the gasification regime and operating cost. Most of the empirical viscosity models of coal slags that are available in the literature are applicable to only limited ranges of temperature and composition. To develop a reliable slag viscosity model, additional data are needed. Slag viscosity was measured under air or reducing atmosphere (calculated pO2~1.2?10-12 atm at 1400°C) at temperatures in the range of 1150-1550°C on 63 statistically designed slags, including 5 actual coal slag compositions and 4 validation slag compositions. The Arrhenius equation, with Arrhenius coefficients A = constant and B expressed as linear function of mass fractions of nine major components was used to fit the viscosity/temperature data. This Arrhenius relationship represents the viscosity–temperature relationship of tested slags reasonably well, = 0.981 (reducing atmosphere) and = 0.974 (air atmosphere). The validation of the model with four randomly selected slags (two from the SciGlass database and two from experimental design) indicated an accurately measured viscosity-temperature data and a fairly good predictive performance of slag viscosity models over designed compositions. The capability of the developed model to predict the viscosity of coal slags under reducing atmosphere was found to be a superior to a number of the most commonly used empirical models in the literature that are based on simplified oxide melts and British or Australian coal ash slags.

Matyas, Josef; Sundaram, S. K.; Rodriguez, Carmen P.; Heredia-Langner, Alejandro; Arrigoni, Benjamin M.

2009-10-25T23:59:59.000Z

106

Monthly News Blast: January 2013  

Broader source: Energy.gov [DOE]

In the January 2013 Monthly News Blast, read about two new funding opportunities, the latest MYPP update, upcoming events, and more.

107

Monthly News Blast: February 2013  

Broader source: Energy.gov [DOE]

In the February 2013 Monthly News Blast, read about recent blog posts, the monthly staff spotlight video, upcoming events, and more.

108

Non-carbon induction furnace  

DOE Patents [OSTI]

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

109

The improvement of slagging gasifier refractories  

SciTech Connect (OSTI)

Refractories play a vital role in slagging gasifier on-line availability and profitability for the next clean power generation system. A recent survey of gasifier users by USDOE indicated that a longer service life of refractories is the highest need among gasifier operators. Currently, Cr2O3 based refractories, the best of commercially available materials for use in slagging gasifiers, last between 3 and 24 months. Researchers at Albany Research Center (ARC) have identified structural spalling, caused by slag penetration, as one of the major failure mechanisms of Cr2O3 refractories through postmortem analysis. New Cr2O3 refractories with phosphate additives have been developed by ARC to decrease slag penetration and thus structural spalling. Laboratory physical property tests indicated that ARC developed refractories are superior to other commercial bricks. One of the ARC developed phosphate containing refractories has been installed in a slagging gasifier. Preliminary results of the performance of this refractory in the gasifier will be reported along with research to develop non-chromia refractories.

Kwong, K.-S.; Bennett, J.P.; Powell, C.A.; Krabbe, R.A.

2006-03-01T23:59:59.000Z

110

Fixation and partitioning of heavy metals in slag after incineration of sewage sludge  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer The contents and partitioning of HMs in slag of sludge incineration were examined. Black-Right-Pointing-Pointer The fixation rate decreases with residential time and finally keeps a constant. Black-Right-Pointing-Pointer Water mass fraction of 55% is optimal for the sediment for Ni, Mn, Zn, Cu and Cr. Black-Right-Pointing-Pointer Water mass fraction of 75% is optimal for the sediment for Pb. Black-Right-Pointing-Pointer We found higher temperature versus lower non-residual fraction except that of Pb. - Abstract: Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100 Degree-Sign C, furnace residence time 0-60 min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100 Degree-Sign C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100 Degree-Sign C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20 min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag.

Chen Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100082 (China); Yan Bo, E-mail: yanbo2007@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

2012-05-15T23:59:59.000Z

111

ENHANCEMENT OF STRUCTURAL FOAM MATERIALS BY INCORPORATION OF GASIFIER SLAG  

SciTech Connect (OSTI)

As advanced gasification technology is increasingly adopted as an energy source, disposal of the resulting slag will become a problem. We have shown that gasifier slag can be incorporated into foamed glass, which is currently being manufactured as an abrasive and as an insulating material. The slag we add to foamed glass does not simply act as filler, but improves the mechanical properties of the product. Incorporation of gasifier slag can make foamed glass stronger and more abrasion resistant.

Olin Perry Norton; Ronald A. Palmer; W. Gene Ramsey

2006-03-15T23:59:59.000Z

112

Reduce Air Infiltration in Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet describes how to save process heating energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

113

Sandia National Laboratories: Solar Furnace  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility * NSTTF * Parabolic Dish * Renewable Energy * SAND 2011-4654W * solar * Solar Energy * Solar Furnace * solar power * Solar Research Comments are closed. Renewable...

114

Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. [Quarterly] technical report, March 1--May 31, 1993  

SciTech Connect (OSTI)

This research is aimed at testing and developing the expansion potential of gasification solid residues (slag) to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing of perlite or vermiculite ores and have unit weights in the range of 5--15 lb/ ft3. These materials are sold for approximately $200/ton (or $1.00/ft3) and have numerous applications including loose fill insulation, insulating concrete, precast products, filtration media, and agricultural applications. In a previous project, Praxis Engineers demonstrated that lightweight aggregates (LWA) with unit weights of 25--55 lb/ ft3 can be produced from Illinois coal slags and used as substitutes for conventional LWAs. In this program, tests are being undertaken in a pilot-scale vertical shaft furnace to identify operating conditions for the expansion of Illinois slags such that the product can be substituted for ULWA. Upon completion of testing, a large batch of expanded slag will be produced for evaluation in various applications, both in this phase and in subsequent Phase II testing. During the initial pilot plant runs using two Illinois slags, expanded products with unit weights of 12.5--26.5 and 20--52 lb/ ft3, respectively, were produced. Efforts are under way to generate products with lower unit weights.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

1993-09-01T23:59:59.000Z

115

Slag processing system for direct coal-fired gas turbines  

DOE Patents [OSTI]

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

116

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

117

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

118

Portable convertible blast effects shield  

DOE Patents [OSTI]

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler,; Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A (Livermore, CA)

2010-10-26T23:59:59.000Z

119

Portable convertible blast effects shield  

DOE Patents [OSTI]

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler, Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A. (Livermore, CA)

2011-03-15T23:59:59.000Z

120

Monthly News Blast: March 2013  

Broader source: Energy.gov [DOE]

In the March 2013 Monthly News Blast, read about two upcoming webinars, two recently announced BETO events, recent blog posts, the monthly staff spotlight video, upcoming events, and more.

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

May 2013 Monthly News Blast  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office's May 2013 Monthly News Blast highlights the upcoming Biomass 2013 conference, a webinar on ionic liquids, the new Multi-Year Program Plan, and more.

122

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

123

June 2014 Monthly News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 Monthly News Blast June 2014 Monthly News Blast June 2014 Monthly News Blast from the Bioenergy Technologies Office. june2014newsblast.pdf More Documents & Publications July...

124

April 2014 Monthly News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 2014 Monthly News Blast April 2014 Monthly News Blast April 2014 Monthly News Blast from the Bioenergy Technologies Office. april2014newsblast.pdf More Documents &...

125

September 2014 Monthly News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

September 2014 Monthly News Blast September 2014 Monthly News Blast September 2014 Monthly News Blast from the Bioenergy Technologies Office. september2014newsblast.pdf More...

126

July 2014 Monthly News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2014 Monthly News Blast July 2014 Monthly News Blast July 2014 Monthly News Blast from the Bioenergy Technologies Office. july2014newsblast.pdf More Documents & Publications...

127

Biomass Program Monthly News Blast, October 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast, October 2012 Biomass Program Monthly News Blast, October 2012 Copy of the Biomass Program Monthly News Blast from October 2012. october2012newsblast.pdf More Documents &...

128

February 2012 Biomass Program News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 2012 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012newsblast.pdf More Documents &...

129

Biomass Program December Monthly News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December Monthly News Blast Biomass Program December Monthly News Blast The December News Blast from the Biomass Program's monthly newsletter contains important past and upcoming...

130

Biomass Program September 2012 News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

September 2012 News Blast Biomass Program September 2012 News Blast September 2012 Biomass Program monthly news blast. september2012newsblast.pdf More Documents & Publications...

131

April 2012 Biomass Program News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 2012 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities,...

132

August 2014 Monthly News Blast | Department of Energy  

Office of Environmental Management (EM)

News Blast August 2014 Monthly News Blast August 2014 Monthly News Blast from the Bioenergy Technologies Office. august2014newsblast.pdf More Documents & Publications June...

133

Steam Cracker Furnace Energy Improvements  

E-Print Network [OSTI]

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

134

Quantifying the Thermal Behavior of Slags (TRP 9903)  

SciTech Connect (OSTI)

Successful operation of a continuous caster is based upon control of heat transfer in the mold. The mold slag is a key component in the success of continuous casting; however, the phenomena that occur in the gap between the shell and the mold are largely unknown as until recently there have been no techniques that allowed visualization and quantification of the solidification behavior of liquid slags. This has lead to slag design being an empirical science or art. Recently a new experimental technique, called Double Hot Thermocouple Technique (DHTT), was developed at Carnegie Mellon University that allowed the solidification behavior of a slag to be observed and quantified under conditions that simulate the thermal conditions that occur in steelmaking environments. This technique allows ladle, tundish and mold slags to be characterized under extreme conditions including those found between the mold wall and the growing shell of a continuous caster. Thus, a program is initiated, under this grant, to quantify and describe the phenomena that occur during the solidification of a slag in a steel mill environment. This will allow slag design to become an engineering science rather than an empirical exercise. The project deliverables were as follows: (1) The further development of a tool that will have broad use in the quantification of slag melting and solidification behavior; and (2) The development of a set of meaningful design criteria for slag application in steel mill environments. The project was broken down into a number of objectives: (a) Develop a systematic understanding of the effect of cooling rate on slag solidification; (b) Develop a systematic understanding on the effect of slag chemistry changes on slag solidification behavior; (c) Develop a method to characterize slag melting; (d) Develop an understanding of the role of the environment on slag solidification and melting; (e) Develop the ability to understand slag solidification under the conditions that occur in a continuous caster; (f) Develop an ability to predict the solidification behavior of slags; and (g) Develop the criteria for optimization of slags in steelmaking environments where they are under thermal gradients.

Alan W. Cramb

2003-05-30T23:59:59.000Z

135

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

like blast furnace slag, fly ash, coal gangue, limestone,In ordinary VSKs, high-ash anthracite coal and raw materialsAsh Limestone Gypsum Other (please specify) Other (please specify) Total Yearly Energy Consumption (ton) Coal

Price, Lynn

2010-01-01T23:59:59.000Z

136

Productivity benefits of industrial energy efficiency measures  

E-Print Network [OSTI]

the blast furnace means less coke is needed, so maintenancecontrol Foamy slag practices Coke making Oxy-fuel burners/Variable speed drive on coke oven gas compressors Coke dry

Worrell, Ernst

2011-01-01T23:59:59.000Z

137

Fossil fuel furnace reactor  

DOE Patents [OSTI]

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

138

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

139

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

140

PENETRATION OF COAL SLAGS INTO HIGH-CHROMIA REFRACTORIES  

SciTech Connect (OSTI)

Slagging coal gasifiers are used for the production of electricity and synthetic gases, as well as chemicals. High temperatures in the reaction chamber, typically between 1250ºC and 1600ºC, high pressure, generally greater than 400 psi, and corrosive slag place severe demands on the refractory materials. Slag produced during the combustion of coal flows over the refractory surface and penetrates the porous material. Slag penetration is typically followed by spalling of a brick that significantly decreases the service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of slags into high-chromia refractories as a function of time and temperature for various refractory-slag combinations.

Longanbach, Sara C.; Matyas, Josef; Sundaram, S. K.

2009-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

TRW advanced slagging coal combustor utility demonstration  

SciTech Connect (OSTI)

The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

Not Available

1990-01-01T23:59:59.000Z

142

Ethanol production from kelp slag hydrolysates using genetically engineered Escherichia coli KO11  

Science Journals Connector (OSTI)

Kelp slag refers to industrial waste produced during sodium alginate extraction from kelp. The chemical components of kelp slag were analyzed in this study. The kelp slag contained large amounts of cellulose (25....

Tianyi Jin; Haoxi Wang; Jing Wang; Haijin Mou

2014-10-01T23:59:59.000Z

143

Improved Refractory Materials for Slagging Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fac Fac ts Materials Science contact Bryan Morreale Focus Area Leader (Acting) Materials Science Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15326 412-386-5929 bryan.morreale@netl.doe.gov Partner Harbison-Walker Refractories Company Improved Refractory Materials for Slagging Gasification Systems Advances in technology are often directly linked to materials development. For

144

Monthly News Blast: July 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News Blast: July 2013 Monthly News Blast: July 2013 July 2013 Monthly News Blast july2013newsblast.pdf More Documents & Publications Monthly News Blast: March 2013 BETO Monthly...

145

Pulverized coal firing of aluminum melting furnaces. Second annual technical progress report, July 1979-June 1980  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has proceeded through design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E; Stewart, D L

1980-08-01T23:59:59.000Z

146

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

147

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

148

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

149

Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of...  

Energy Savers [EERE]

Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule More Documents & Publications Focus Series: Philadelphia Energyworks: In...

150

BETO Monthly News Blast, June 2013  

Broader source: Energy.gov [DOE]

The June 2013 monthly news blast covers Biomass 2013, the Program Management Review, upcoming industry events, and more.

151

Cement advanced furnace and process  

SciTech Connect (OSTI)

This patent describes a suspension shaft furnace for producing discrete cement clinkers from discrete pellets of cement-forming batch materials which are gravity-migrated therethrough. It comprises a vertical furnace housing enclosing a top pellet-feeding and preheating zone comprising an elongate vertical shaft section opening into an intermediate fluidized bed section comprising fuel inlet conduits, an air-permeable clinker-impermeable support; a lower clinker-cooling section beneath the fluidized bed section; clinker-discharge means communicating between the fluidized bed section and the cooling section and air inlet means.

Litka, A.F.; Cohen, S.M.

1992-06-02T23:59:59.000Z

152

Interactions of Refractory Materials with Molten Gasifier Slags  

SciTech Connect (OSTI)

The current study focuses on the analysis of sessile-drop interfacial reactions between two synthetic slags (based on average ash chemistries of coal and petcoke feedstock) and two refractory materials (90 wt% Cr{sub 2}O{sub 3}–10 wt% Al{sub 2}O{sub 3} and 100 wt% Al{sub 2}O{sub 3}), using a Confocal Scanning Laser Microscope (CSLM). Ground slag samples (less than 325 mesh) were placed at specific microstructure locations on refractory substrates and heated to 1500 °C in an atmosphere of CO/CO{sub 2} gas mixture (volume ratio = 1.8), using a gold-image heating chamber. Cross-sections of the slag/refractory interface indicated unique slag penetration into preferred areas of the refractory and grain dissolution into the slag which promoted spalling of the refractory. Initially, the slag attacked both grain boundaries and fine microstructure areas, freeing alumina grains into the slag. The formation of VO{sub x}-based crystalline material in the petcoke slag was found to alter the liquid composition. Chemical spalling of Cr-containing crystal layer also facilitated degradation of the refractory.

Nakano, Jimichiro; Sridhar, Seetharaman; Kwong, Kye-Sing; Bennett, James; Moss, Tyler

2011-04-01T23:59:59.000Z

153

Interactions of refractory materials with molten gasifier slags  

Science Journals Connector (OSTI)

The current study focuses on the analysis of sessile-drop interfacial reactions between two synthetic slags (based on average ash chemistries of coal and petcoke feedstock) and two refractory materials (90 wt% Cr2O3–10 wt% Al2O3 and 100 wt% Al2O3), using a Confocal Scanning Laser Microscope (CSLM). Ground slag samples (less than 325 mesh) were placed at specific microstructure locations on refractory substrates and heated to 1500 °C in an atmosphere of CO/CO2 gas mixture (volume ratio = 1.8), using a gold-image heating chamber. Cross-sections of the slag/refractory interface indicated unique slag penetration into preferred areas of the refractory and grain dissolution into the slag which promoted spalling of the refractory. Initially, the slag attacked both grain boundaries and fine microstructure areas, freeing alumina grains into the slag. The formation of VOx-based crystalline material in the petcoke slag was found to alter the liquid composition. Chemical spalling of Cr-containing crystal layer also facilitated degradation of the refractory.

Jinichiro Nakano; Seetharaman Sridhar; James Bennett; Kyei-Sing Kwong; Tyler Moss

2011-01-01T23:59:59.000Z

154

Interactions of Refractory Materials with Molten Gasifier Slags  

SciTech Connect (OSTI)

The current study focuses on the analysis of sessile-drop interfacial reactions between two synthetic slags (based on average ash chemistries of coal and petcoke feedstock) and two refractory materials (90 wt% Cr{sub 2}O{sub 3}–10 wt% Al{sub 2}O{sub 3} and 100 wt% Al{sub 2}O{sub 3}), using a Confocal Scanning Laser Microscope (CSLM). Ground slag samples (less than 325 mesh) were placed at specific microstructure locations on refractory substrates and heated to 1500 °C in an atmosphere of CO/CO{sub 2} gas mixture (volume ratio = 1.8), using a gold-image heating chamber. Cross-sections of the slag/refractory interface indicated unique slag penetration into preferred areas of the refractory and grain dissolution into the slag which promoted spalling of the refractory. Initially, the slag attacked both grain boundaries and fine microstructure areas, freeing alumina grains into the slag. The formation of VO{sub x}-based crystalline material in the petcoke slag was found to alter the liquid composition. Chemical spalling of Cr-containing crystal layer also facilitated degradation of the refractory.

Nakano, Jinichiro; Sridhar, Seetharaman; Bennett, James; Kwong, Kyei-Sing; Moss, Tyler

2011-01-01T23:59:59.000Z

155

Modeling of Time Varying Slag Flow in Coal Gasifiers  

SciTech Connect (OSTI)

There is considerable interest within government agencies and the energy industries across the globe to further advance the clean and economical conversion of coal into liquid fuels to reduce our dependency on imported oil. To date, advances in these areas have been largely based on experimental work. Although there are some detailed systems level performance models, little work has been done on numerical modeling of the component level processes. If accurate models are developed, then significant R&D time might be saved, new insights into the process might be gained, and some good predictions of process or performance can be made. One such area is the characterization of slag deposition and flow on the gasifier walls. Understanding slag rheology and slag-refractory interactions is critical to design and operation of gasifiers with extended refractory lifetimes and also to better control of operating parameters so that the overall gasifier performance with extended service life can be optimized. In the present work, the literature on slag flow modeling was reviewed and a model similar to Seggiani’s was developed to simulate the time varying slag accumulation and flow on the walls of a Prenflo coal gasifier. This model was further extended and modified to simulate a refractory wall gasifier including heat transfer through the refractory wall with flowing slag in contact with the refractory. The model was used to simulate temperature dependent slag flow using rheology data from our experimental slag testing program. These modeling results as well as experimental validation are presented.

Pilli, Siva Prasad; Johnson, Kenneth I.; Williford, Ralph E.; Sundaram, S. K.; Korolev, Vladimir N.; Crum, Jarrod V.

2008-08-30T23:59:59.000Z

156

Effect of Combustion Air Preheat on a Forged Furnace Productivity  

E-Print Network [OSTI]

to determine are the effects of combustion air preheat on four additional furnace operating characteristics. These characteristics are: (1) fuel utilization of a furnace operating cycle; (2) time to heat the furnace load; (3) scale production; and (4) furnace...

Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

1984-01-01T23:59:59.000Z

157

Furnaces and Boilers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

158

Furnace and Boiler Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including...

159

Breakthrough Furnace Can Cut Solar Industry Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S....

160

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect (OSTI)

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications.

None

1999-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

SciTech Connect (OSTI)

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for, various applications. The project goals are to be accomplished in two phases Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications.

Unknown

2000-04-24T23:59:59.000Z

162

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

163

Crystallization of synthetic coal-petcoke slag mixtures simulating those encountered in entrained bed slagging gasifiers  

SciTech Connect (OSTI)

Commercial entrained bed slagging gasifiers use a carbon feedstock of coal, petcoke, or combinations of them to produce CO and H{sub 2}. These carbon sources contain mineral impurities that liquefy during gasification and flow down the gasification sidewall, interacting with the refractory linear and solidifying in the cooler zones of the gasifier. Proper slag flow is critical to good gasifier operation. A hot-stage confocal scanning laser microscope (CSLM) was used to analyze the kinetic behavior of slag crystallization for a range of synthetic coal-petcoke mixtures. On the basis of the observed precipitation during cool down studies in the 1200-1700{sup o}C temperature range, a time-temperature-transformation (TTT) diagram was created. The crystallization studies were conducted with a CO/CO{sub 2} (=1.8) corresponding to a gasification PO{sub 2} of approximately 10-8 atm at 1500{sup o}C. Ash chemistries were chosen such that they correspond to coal-petcoke feedstock mixtures with coal ash amounts of 0, 10, 30, 50, 70, and 100% (by weight), with the balance being petcoke ash. The TTT diagram exhibited two crystallization areas, one above and one below 1350{sup o}C. At the nose of the higher temperature curves, karelianite (V{sub 2}O{sub 3}) crystallization occurred and was fastest for a 30% coal-petcoke ash mixture. The second nose was located below 1350{sup o}C and had spinel-type phases that formed at 1200{sup o}C, in which preferred atomic occupation at the octahedral and tetrahedral sites varied depending upon the ash composition. At 1200{sup o}C, an Al-rich spinel formed for 100% coal slag and a Fe-rich spinel formed in petcoke-enriched slags. The addition of petcoke ash to coal ash promoted crystallization in the slag, with additional crystalline phases, such as V-rich spinel, forming at the lower temperatures. These phases were not predicted using commercially available databases. 30 refs., 18 figs.

Jinichiro Nakano; Seetharaman Sridhar; Tyler Moss; James Bennett; Kyei-Sing Kwong [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2009-09-15T23:59:59.000Z

164

An Empirical Method for the Prediction of Coal Ash Slag Viscosity  

Science Journals Connector (OSTI)

An Empirical Method for the Prediction of Coal Ash Slag Viscosity ... Samples were prepared by ashing coals to completion at 815 °C; then a slag was generated under nitrogen at >1650 °C with the appropriate amount of reagent grade calcium carbonate (CaCO3) as flux added. ... (5)?Watt, J. D.; Fereday, F. The Flow Properties of Slags Formed from the Ashes of British Coals:? Part 1. Viscosity of Homogeneous Liquid Slags in Relation to Slag Composition. ...

G. J. Browning; G. W. Bryant; H. J. Hurst; J. A. Lucas; T. F. Wall

2003-04-16T23:59:59.000Z

165

Report blasts Patent Office automation  

Science Journals Connector (OSTI)

Report blasts Patent Office automation ... The Department of Commerce is moving quickly to implement a report highly critical of the Patent & Trademark Office's efforts to fully automate its patent search and retrieval operations. ... An Industry Review Panel found that the current automated patent system is over-designed and as a result needs a redundant communications network and redundant storage of all patent images at high resolution. ...

JANICE LONG

1988-05-30T23:59:59.000Z

166

Engineered refractoriers for slagging coal gasifiers  

SciTech Connect (OSTI)

The widespread commercial adaptation of slagging gasifier technology to produce power, fuel, and/or chemicals from coal will depend in large measure on the technology's ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved structural materials with longer service life in this application. Current generation refractory materials used to line the gasifier vessel, and contain the gasification reaction, often last no more than three to 18 months in commercial applications. The downtime required for tear-out and replacement of these critical materials results in gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of improved refractory materials engineered specifically for longer service life in this application, with emphasis on the design of new refractories that contain little or no chrome.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

167

Slagging Gasifier Refractories: A New Pathway to Longer Refractory Life  

Science Journals Connector (OSTI)

Solid fuel slagging gasification to convert coal or petroleum coke feedstocks into syngas has rapidly evolved over the last 25 years. The gasifier is a high temperature, high pressure reaction...

Mark Schnake

2013-01-01T23:59:59.000Z

168

Resistance of corundum refractories to basic electric steel slags  

Science Journals Connector (OSTI)

Upon reaction with slag corundum specimens exhibit a substitution of corundum by calcium hexa and di-aluminates. This process occurs most intensely in the bond part of the refractory and over the periphery of ...

D. S. Rutman; M. N. Kaibicheva; Yu. S. Toropov; G. N. Suvorov…

169

BETO Monthly News Blast, August 2013r | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

BETO Monthly News Blast, August 2013r BETO Monthly News Blast, August 2013r Copy of the BETO Monthly News Blast from August 2013 august2013newsblast.pdf More Documents &...

170

May 2014 Monthly News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 Monthly News Blast May 2014 Monthly News Blast May 2014 Monthly News Blast from the Bioenergy Technologies Office. may2014newsblast.pdf More Documents & Publications April 2014...

171

Biomass Program Monthly News Blast January 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast January 2012 Biomass Program Monthly News Blast January 2012 This is a copy of the Biomass Program's monthly news blast from January 2012. january2012newsblast.pdf More...

172

Biomass Program Monthly News Blast - May 2012 | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 2012 Biomass Program Monthly News Blast - May 2012 Biomass Program monthly news blast from May 2012 may2012newsblast.pdf More Documents & Publications June 2012 News Blast:...

173

Furnace and Boiler Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

174

Crystal growth furnace with trap doors  

DOE Patents [OSTI]

An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

1982-06-15T23:59:59.000Z

175

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

Furnaces Incentives Furnaces Incentives Jump to: navigation, search The following contains the list of 688 Furnaces Incentives. CSV (rows 1-500) CSV (rows 501-688) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit

176

Furnace Litigation Settled | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy conservation standards for residential furnaces, central air conditioners, and heat pumps, including regional standards for different product types in indicated States....

177

Covered Product Category: Residential Gas Furnaces | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

select products that feature sealed combustion. Condensing furnaces should not use indoor air, which frequently contains contaminants from common household products, for...

178

March 2014 Monthly News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2014 Monthly News Blast March 2014 Monthly News Blast BETO Gets Innovative with New Interactive Tool march2014newsblast.pdf More Documents & Publications April 2014 Monthly...

179

Biomass Program Monthly News Blast: May | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents & Publications Biomass Program Monthly...

180

August 2012 Biomass Program Monthly News Blast | Department of...  

Broader source: Energy.gov (indexed) [DOE]

August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Biomass Program News Blast: September | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News Blast: September Biomass Program News Blast: September News and updates from the Biomass Program in September 2011. septembernewsblast.pdf More Documents & Publications...

182

July 2012 Biomass Program Monthly News Blast | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program Monthly News Blast July 2012 monthly newsletter from the Department of Energy's Biomass Program....

183

Biomass Program Monthly News Blast: November | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Monthly News Blast: November Biomass Program Monthly News Blast: November News and Updates from the Biomass Program in November 2011. novembernewsblast.pdf More Documents &...

184

Biomass Program Monthly News Blast: August | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

185

Highly concentrated foam formulation for blast mitigation  

DOE Patents [OSTI]

A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

Tucker, Mark D. (Albuquerque, NM); Gao, Huizhen (Albuquerque, NM)

2010-12-14T23:59:59.000Z

186

Green Destiny + mpiBLAST = Bioinfomatics  

E-Print Network [OSTI]

Green Destiny + mpiBLAST = Bioinfomatics Wu-chun Feng feng@lanl.gov For more on Green Destiny, go-6651 #12;Green Destiny + mpiBLAST = Bioinfomagic Wu-chun Feng feng@lanl.gov For more on Green Destiny, go The Components of "Bioinfomagic" · Green Destiny ­ A 240-node supercomputer in a "telephone booth" · Footprint: 6

Feng, Wu-chun

187

SEM evaluation of advanced refractory failures in slagging gasifiers  

SciTech Connect (OSTI)

The SEM is an invaluable tool in the evaluation of advanced refractories and their failure. A reaction vessel?s refractory liner, at minimum, must protect the reaction vessel from elevated temperatures, corrosive slag and thermal cycling. To understand the failure mechanisms ARC staff had first to determine how an advanced chrome rich refractory was attacked by various components that make up a slag. Refractory cups were made from the refractory of interest and various compounds that can be found in a slag such as CaO, SiO2, Fe2O3, NaCl were placed into the test cups and fired for 24 hours at the required temperature with the desired atmosphere. The cups are prepared for examination by embedding in epoxy and cross sectioning. SEM examination revealed how various slag compositions attacked and penetrated the refractory. The slag could corrode, free refractory grains or react with the refractory and from a new compound. It was found that the only way to measure slag component penetration was with multiple elemental X-ray maps. SiO2 penetrated deeply and in many instances moved through the cup. The knowledge of slag refractory interactions gather during cup testing was applied to actual spent refractory from reaction vessels. Obtaining samples from the reaction vessel itself proved difficult due to time constraints imposed in relining. Samples were selected based on spent brick shape, color or location in the heap of spent refractory. Sample preparation affected the results dry, water or oil coolant during cutting may dissolve reaction products. The complex reactions between the slag and refractory made for very interesting and time consuming evaluation. Elemental X-ray maps at low and high magnification combined with point analysis aided in locating regions of interest. Crystals were found growing in voids and appear to be from vapor deposition. Other crystal structures are from the slag refractory interaction. Knowledge gathered from this and other supporting research resulted in a new patented refractory composition that resists slag penetration.

Collins, W.Keith; Dahlin, Cheryl L.; Bennett, James P.; Kwong, Kyei-Sing; Rawers, James C.

2005-08-01T23:59:59.000Z

188

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect (OSTI)

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. Primary funding for the project is provided by DOE's Federal Energy Technology Center (FETC) at Morgantown, with significant cost sharing by Electric Power Research Institute (EPRI) and Illinois Clean Coal Institute (ICCI).

None

1999-12-30T23:59:59.000Z

189

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect (OSTI)

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

190

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

191

E-Print Network 3.0 - air cooled slagging Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to fouling from slag and fly ash deposition. Slagging... of steam. In creased boiler size is associated with increased air flow, fuel, and ash transport rates which... of fuel...

192

Optical cavity furnace for semiconductor wafer processing  

DOE Patents [OSTI]

An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

Sopori, Bhushan L.

2014-08-05T23:59:59.000Z

193

Corrosion resistant refractory ceramics for slagging gasifier environment  

SciTech Connect (OSTI)

Integrated gasification combined cycle power systems are the most efficient and economical power generation systems with a relatively low environmental impact. The gasification process requires the optimal design of gasifiers with extremely corrosion resistant refractory lining. The majority of the refractory materials tested for gasifier lining applications cannot resist the action of slagging corrosive environment combined with high operation temperatures as high as 1600?C and possible thermal shocks and thermal expansion mismatch between the lining and the slag. Silicon carbide-based ceramics and some zirconia- and zircon-based ceramics manufactured by Ceramic Protection Corporation (CPC) have been tested in a simulated coal-fired slagging gasifier environment at a temperature of 1500?C. Crucible ceramic samples have been examined after exposure to the slag at high temperature. Microstructure studies of the ceramic zone contacted with the slag have been carried out. The highest performance, i.e. the absence of corrosion damage and thermal cracking after testing, was observed for silicon carbide-based ceramics ABSC formed by silicon carbide grains with an optimized particle size distribution bonded by the aluminosilicate crystalline-glassy matrix. Dense zirconia and alumina-zirconia and slightly porous zircon ceramics demonstrated comparatively lower performance due to their lower corrosion resistance and greater thermal cracking. ABSC ceramics can be manufactured as thick-walled large components and may be considered as a promising material for gasifier refractory applications. Similar ceramics, but with finer grain sizes, may also be recommended for thermocouple protection.

Medvedovski, E. (Ceramic Protection Corp., Calgary, Alberta, Canada); Chinn, Richard E.

2004-01-01T23:59:59.000Z

194

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect (OSTI)

Praxis is working on a DOE/METC funded project to demonstrate the technical and economic feasibility of making lightweight and ultra- lightweight aggregates from slags left as solid by-products from the coal gasification process. These aggregates are produced by controlled heating of the slags to temperatures ranging between 1600 and 1900{degrees}F. Over 10 tons of expanded slag lightweight aggregates (SLA) were produced using a direct-fired rotary kiln and a fluidized bed calciner with unit weights varying between 20 and 50 lb/ft{sup 3}. The slag-based aggregates are being evaluated at the laboratory scale as substitutes for conventional lightweight aggregates in making lightweight structural concrete, roof tiles, blocks, insulating concrete, and a number of other applications. Based on the laboratory data, large-scale testing will be performed and the durability of the finished products evaluated. Conventional lightweight aggregates made from pyroprocessing expansible shales or clays are produced for $30/ton. The net production costs of SLA are in the range of $22 to $24/ton for large systems (44 t/d) and $26-$30/ton for small systems (220 t/d). Thus, the technology provides a good opportunity for economic use of gasification slags.

NONE

1996-07-08T23:59:59.000Z

195

Building Technologies Office: Residential Furnaces and Boilers Framework  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

196

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

197

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

198

LTC vacuum blasting machine (concrete): Baseline report  

SciTech Connect (OSTI)

The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

NONE

1997-07-31T23:59:59.000Z

199

Alkali attack on a mullite refractory in the Grand Forks Energy Technology Center slagging gasifier  

Science Journals Connector (OSTI)

A mullite refractory lining in the Grand Forks Energy Technology Center slagging gasifier cracked and spoiled after intermittent exposure to...

C. R. Kennedy

1981-06-01T23:59:59.000Z

200

Environmental assessment of a BOF steel slag used in road construction: The ECLAIR research program  

E-Print Network [OSTI]

1 Environmental assessment of a BOF steel slag used in road construction: The ECLAIR research and to the lack of environmental regulations. This study aimed at investigating the potential release and impact of pollutants, especially Cr and V that are present in rather high concentrations in slag, from a BOF slag used

Boyer, Edmond

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EFFECT of GROUND COPPER SLAG on the STRENGTH, and TOUGHNESS of CEMENTITIOUS MIXTURES  

E-Print Network [OSTI]

1 EFFECT of GROUND COPPER SLAG on the STRENGTH, and TOUGHNESS of CEMENTITIOUS MIXTURES A.M. Ariño1 , and B. Mobasher2 Abstract The effect of ground copper slag (GCS) on the strength and fracture of cement-based materials is studied. Up to 15% by mass of ground copper slag was used as a portland cement replacement

Mobasher, Barzin

202

Furnace Blower Performance Improvements- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Top Innovation profile describes Building America research into improving efficiency of furnace fan blowers.

203

Sustainable Electric Arc Furnace Steel Production: GREENEAF  

Science Journals Connector (OSTI)

Generally speaking, in the electric furnace, coal (and consequently char) can be used as injected powder or charged into the basket. The syngas can be used for EAF burners.

Loris Bianco; Giulia Baracchini…

2013-01-01T23:59:59.000Z

204

Furnace Blower Performance Improvements - Building America Top...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in preparation for cold weather, they may be unaware of how furnace blowers can impact HVAC efficiency. In fact, studies show that the most common blowers have efficiencies of...

205

Energy Assessment Protocol for Glass Furnaces  

E-Print Network [OSTI]

The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

2005-01-01T23:59:59.000Z

206

DOE Furnace Rule Ex Parte Communication  

Broader source: Energy.gov [DOE]

Philadelphia Gas Works (POW), the largest municipally-owned  gas utility in the United States, is concerned about the impact that a new furnace efficiency rule could have on POW, its customers, the...

207

B To Identify Slag-Affected Sediment in Southern  

E-Print Network [OSTI]

and boron isotopes could be used to identify and delineate slag-affected bed sediment in Lake Michigan for the protection of water and ecosystem resources in the Great Lakes motivated this study to determine if strontium collected offshore from three Lake Michigan cities (+11.7 to 12.7o/oo). Contoured isotope data indicated

208

Testing and analysis of structural steel columns subjected to blast loads  

E-Print Network [OSTI]

with four blast generators distributed over the height ofwith four blast generators distributed over the height of

Stewart, Lauren K.

2010-01-01T23:59:59.000Z

209

Blast overpressure relief using air vacated buffer medium  

E-Print Network [OSTI]

Blast waves generated by intense explosions cause damage to structures and human injury. In this thesis, a strategy is investigated for relief of blast overpressure resulting from explosions in air. The strategy is based ...

Avasarala, Srikanti Rupa

2009-01-01T23:59:59.000Z

210

Combat-related blast injuries : injury types and outcomes  

E-Print Network [OSTI]

blast and PTSD diagnosis as covariates. The interaction of PTSD and injury severity was initially assessed prior to model

Eskridge, Susan Lindsay

2011-01-01T23:59:59.000Z

211

Blast-induced phenotypic switching in cerebral vasospasm  

E-Print Network [OSTI]

of the cerebrovasculature is a common manifestation of blast-induced traumatic brain injury (bTBI) reported among combat is not required for vasospasm in bTBI, which suggests that the unique mechanics of blast injury could potentiate. These results suggest that an acute, blast-like injury is sufficient to induce a hypercontraction

Parker, Kevin Kit

212

Blast injuries to the lung: epidemiology and management  

Science Journals Connector (OSTI)

...Medicine, College of Medical and Dental Sciences, University of Birmingham...blast injuries|blast lung|radiology of blast lung injury|conventional...context, clinical symptoms and radiology. Symptoms may include respiratory...patients (67%) for whom role 3 radiology was available and given that...

2011-01-01T23:59:59.000Z

213

Air Leakage of Furnaces and Air Handlers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

214

Cogeneration from glass furnace waste heat recovery  

SciTech Connect (OSTI)

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

215

Slag processing system for direct coal-fired gas turbines  

DOE Patents [OSTI]

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

216

Simulation of petcoke gasification in slagging moving bed reactors  

Science Journals Connector (OSTI)

A mathematical model for simulation of moving bed petcoke gasifiers was developed. The model introduces a new feed characterization method, gas-phase resistance and volatilization models. The model is validated using reported data for a slagging gasifier. Effect of feed oxygen-to-coke and steam-to-coke ratios and feed coke rates on gasification performance was examined. Slagging zone moving bed gasifier operation with very high petcoke fluxes of over 4000 kg/m2/h was possible with high petcoke conversion. Peak gas temperatures exceeded 1500 °C. Fluxes higher than 5000 kg/m2/h are limited by an approach to fluidization of small particles in the combustion zone. The moving bed gasifier performance was found superior to performance of an entrained flow gasifier (EFG) with respect to energy efficiency and oxygen consumption.

Soumitro Nagpal; T.K. Sarkar; P.K. Sen

2005-01-01T23:59:59.000Z

217

Low-Chrome/Chrome Free Refractories for Slagging Gasifiers  

SciTech Connect (OSTI)

Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575º C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE’s Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace.

Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V., Jr.

2007-01-01T23:59:59.000Z

218

Segmented ceramic liner for induction furnaces  

DOE Patents [OSTI]

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

219

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect (OSTI)

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

220

Development of improved performance refractory liner materials for slagging gasifiers  

SciTech Connect (OSTI)

Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geological sequestration of carbon dioxide by hydrous carbonate formation in steelmaking slag .  

E-Print Network [OSTI]

??"The formation of carbonate solids from the alkaline earth oxide phases in steelmaking slag was investigated in dry and aqueous conditions as a vehicle for… (more)

Rawlins, C. Hank, 1968-

2008-01-01T23:59:59.000Z

222

Physical and computational studies of slag behavior in an entrained flow gasifier.  

E-Print Network [OSTI]

??This work details an investigation of how to modify slag flow so as to maintain a clear line of sight across the reaction section of… (more)

Pummill, Randy

2012-01-01T23:59:59.000Z

223

E-Print Network 3.0 - alkali-activated slag pastes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Vitrification produces inert slag that can be used as a construction material. Gasification produces a fuel gas... of the waste to produce a metal alloy and an environmentally...

224

Development and Validation of a 3-Dimensional CFB Furnace Model  

Science Journals Connector (OSTI)

At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, ... Analyses of field-test results in industrial-scal...

Arl Vepsäläinen; Karl Myöhänen…

2010-01-01T23:59:59.000Z

225

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

of two-stage furnaces with BPM motors provides electricityof two-stage furnaces with BPM motors provides electricityPSC) and brushless permanent magnet (BPM) 1 . PSC motors are

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

226

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network [OSTI]

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond (Raymond A.)

2011-01-01T23:59:59.000Z

227

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...  

Office of Environmental Management (EM)

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The...

228

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Solar Energy Center ABSTRACT Currently, total electricity consumption of furnacesFurnace Blower Electricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

229

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

230

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) has published a final rule regarding test procedures for residential furnace fans.

231

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network [OSTI]

designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

O'Brien, T.

2008-01-01T23:59:59.000Z

232

Covered Product Category: Residential Gas Furnaces  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

233

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September--November 1995  

SciTech Connect (OSTI)

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. Slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln. The potential exists for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed. The project scope consists of collecting a 20-ton sample of slag (primary slag), processing it for char removal, and subjecting it to pyroprocessing to produce expanded slag aggregates of various size gradations and unit weights, ranging from 12 to 50 lb/ft{sup 3}. A second smaller slag sample will be used for confirmatory testing. The expanded slag aggregates will then be tested for their suitability in manufacturing precast concrete products (e.g., masonry blocks and roof tiles) and insulating concrete, first at the laboratory scale and subsequently in commercial manufacturing plants. These products will be evaluated using ASTM and industry test methods. Technical data generated during production and testing of the products will be used to assess the overall technical viability of expanded slag production. In addition, a market assessment will be made based on an evaluation of both the expanded slag aggregates and the final products, and market prices for these products will be established in order to assess the economic viability of these utilization technologies.

NONE

1995-12-01T23:59:59.000Z

234

Improvement of the Coal Ash Slagging Tendency by Coal Washing and Additive Blending with Mullite Generation  

Science Journals Connector (OSTI)

Four typical coals and two pretreatment methods were investigated to prevent slagging by facilitating mullite formation in coal ash at a high temperature. ... Both security and economy in power plant can be improved substantially as long as ash deposition and slagging tendency alleviated. ... Pilot-projects about coal washing and coal blending economic benefit are looking forward to put into practice. ...

Zhenyu Huang; Yan Li; Dan Lu; Zhijun Zhou; Zhihua Wang; Junhu Zhou; Kefa Cen

2013-03-11T23:59:59.000Z

235

Microsoft Word - Blast Energy.112706.DOC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

partnership successfully tests new, less expensive drilling technology partnership successfully tests new, less expensive drilling technology Casper, Wyo. - Nov. 28, 2006 - The Rocky Mountain Oilfield Testing Center (RMOTC) and its partner Blast Energy Services Inc. have successfully tested an innovative new oil and gas drilling technology that when commercialized should facilitate lower production costs and increased access to reserves. "It's our mission to partner with industry to help bring new ideas to the marketplace that can ensure clean, reliable and affordable supplies of oil and natural gas for American consumers," said Clarke Turner, RMOTC director. The new technology is expected to provide oil and gas producers with an alternative to existing well stimulation services at a lower cost, while having the ability to access previously uneconomical reserves. Blast's

236

A Phased Array Approach to Rock Blasting  

SciTech Connect (OSTI)

A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

Leslie Gertsch; Jason Baird

2006-07-01T23:59:59.000Z

237

Utilization of lightweight materials made from coal gasification slags. Quarterly report, December 1, 1995--February 28, 1996  

SciTech Connect (OSTI)

The project scope consists of collecting a 20-ton sample of slag (primary slag), processing it for chart removal, and subjecting it to pyroprocessing to produce expanded slag aggregates of various size gradations and unit weights, ranging from 12 to 50 lb/fg{sup 3}. A second smaller slag sample will be used for confirmatory testing. The expanded slag aggregates will then be tested for their suitability in manufacturing precast concrete products (e.g., masonry blocks and roof tiles) and insulating concrete, first at the laboratory scale and subsequently in commercial manufacturing plants. These products will be evaluated using ASTM and industry test methods. Technical data generated during production and testing of the products will be used to assess the overall technical viability of expanded slag production. In addition, a market assessment will be made based on an evaluation of both the expanded slag aggregates and the final products, and market prices for these products will be established in order to assess the economic viability of these utilization technologies. Relevant cost data for physical and pyroprocessing of slag to produce expanded slag aggregates will be gathered for comparison with (1) the management and disposal costs for slag or similar wastes and (2) production costs for conventional materials which the slag aggregates would replace. This will form the basis for an overall economic evaluation of expanded slag utilization technologies.

NONE

1996-12-31T23:59:59.000Z

238

Centrifugal shot blasting. Innovative technology summary report  

SciTech Connect (OSTI)

At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

Not Available

1999-07-01T23:59:59.000Z

239

Lattice Boltzmann modelling of refractory-slag interaction  

Science Journals Connector (OSTI)

A model to simulate the dissolution of multi-phase solid structures of arbitrary shape in multi-component fluids is developed. The dissolution reaction is supposed to be congruent and diffusion-controlled. The model uses a multi-component Lattice Boltzmann scheme in combination with a volume-tracking scheme for the moving interfaces. Equilibrium concentrations are imposed on the interfaces using an off-grid boundary condition. The resulting diffusion flux determines the dissolution rate. The model is applied to the dissolution of a laminar multi-phase solid in a diffusion boundary layer, and to a simplified three-component refractory-slag system.

S. Arnout; F. Verhaeghe; B. Blanpain; P. Wollants

2007-01-01T23:59:59.000Z

240

Effects of Measurement Materials and Oxygen Partial Pressure on the Viscosity of synthetic Eastern and Western United States Coal Slags  

SciTech Connect (OSTI)

The viscosity of the molten ash (slag) resulting from the mineral constituents in carbon feedstock used in slagging gasifiers is critical for controlling the gasification process. The viscosity of two synthetic slags with compositions resembling the mineral impurities in average eastern and western coal feedstock was examined at temperatures from 1300–1500 °C using a rotating bob viscometer. A few combinations of atmospheres and experimental materials were investigated with respect to one another to determine slag viscosity. A CO/CO{sub 2} atmosphere (CO/CO{sub 2} = 1.8, corresponding to a P{sub O{sub 2}} = 10–8 atm) is required to sustain ferrous ions in FeO-containing slags, an environment that is oxidizing to most metals. Iron oxide in the slag prevents usage of Fe parts. In unpurified Ar, the Fe metal surface oxidizes. Using purified argon prevents iron measurement components from oxidation; however, the metallic surfaces act as nucleation sites for the reduction of the Fe oxide in the slag into metallic Fe. Dissolution of ceramic materials into the slag, including Al{sub 2}O{sub 3} and ZrO{sub 2}, occurs in both atmospheres. Therefore, evaluating slag properties in the laboratory is challenging. The measured viscosities of two synthetic slags in this study diverged depending upon material selection. This difference is likely attributable to container/spindle-slag interactions. Viscosity measurements of the eastern coal slag using all ceramic parts agreed best with FactSage prediction above 1350 °C, with an average activation energy of 271.2 kJ. For western coal slag, the dissolution of container/spindle materials was substantial during the measurement, with precipitation of crystalline phase noted. The experimental viscosity data of the western coal slag agreed best with Kalmanovitch prediction above 1350 °C. The activation energy changed dramatically for both data sets of western coal slag, likely indicating the Newtonian-to-non-Newtonian transition.

Zhu, Jingxi; Tetsuya, Kenneth; Mu, Haoyuan; Bennett, James P.; Sridhar, Seetharaman

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Optimized Utility Systems and Furnace Integration  

E-Print Network [OSTI]

OPTIMIZED UTILITY SYSTEMS AND FURNACE INTEGRATION A. S. McMullan and H. D. Spriggs, Linnhoff March, Inc., Leesburg, Va. ABSTRACT Conventional process design philosophy usually results in utility systems being designed after process design... defines the Process/Utility interface. Clearly, changing the process design can result in different utility demands and possibly in different utility system designs. This paper presents a procedure, using Pinch Technology, for the simultaneous design...

McMullan, A. S.; Spriggs, H. D.

242

Biomass Program Monthly News Blast: October | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October Biomass Program Monthly News Blast: October News and updates from the Biomass Program in October 2011. octobernewsblast.pdf More Documents & Publications Biomass Program...

243

Biomass Program Monthly News Blast: July | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July Biomass Program Monthly News Blast: July News and updates from the Biomass Program in July 2011. julynewsblast.pdf More Documents & Publications Biomass Program Monthly News...

244

Biomass Program Monthly News Blast - March 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2012 Biomass Program Monthly News Blast - March 2012 Monthly updates from the Biomass Program in March 2012. march2012newsblast.pdf More Documents & Publications Biomass...

245

Biomass Program Monthly News Blast: June | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June Biomass Program Monthly News Blast: June News and updates from the Biomass Program in June 2011. junenewsblast.pdf More Documents & Publications Biomass Program Monthly News...

246

Traumatic Brain Injury Protection: Blast Pressure Sensors in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Find More Like This Return to Search Traumatic Brain Injury Protection: Blast Pressure Sensors in Helmets Lawrence Livermore National Laboratory Contact LLNL About This Technology...

247

Remark on the energy content of a blast wave  

Science Journals Connector (OSTI)

In this note a comment is made on the total energy content of a blast wave in a stellar...et al. (1951).

G. Deb Ray

248

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

249

Modeling Slag Penetration and Refractory Degradation Using the Finite Element Method  

SciTech Connect (OSTI)

Refractory degradation due to slag penetration can significantly reduce the service life of gasifier refractory linings. This paper describes a modeling approach that was developed to predict refractory spalling as a function of operating temperature, coal feedstock and refractory type. The model simulates the coupled thermal, diffusion, and mechanical interactions of coal slag with refractory ceramics. The heat transfer and slag diffusion solutions are directly coupled through a temperature-dependent effective diffusivity for slag penetration. The effective diffusivity is defined from slag penetration tests conducted in our laboratories on specific coal slag and refractory combinations. Chemically-induced swelling of the refractory and the build-up of mechanical stresses are functions of the slag penetration. The model results are compared with analytical spalling models and validated by experimental data in order to develop an efficient refractory degradation model for implementation in a systems level gasifier model. The ultimate goal of our research is to provide a tool that will help optimize gasifier performance by balancing conversion efficiency with refractory life.

Johnson, Kenneth I.; Williford, Ralph E.; Matyas, Josef; Pilli, Siva Prasad; Sundaram, S. K.; Korolev, Vladimir N.

2008-09-01T23:59:59.000Z

250

Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes  

SciTech Connect (OSTI)

A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3 days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.

Yio, M.H.N., E-mail: marcus.yio11@imperial.ac.uk; Phelan, J.C.; Wong, H.S.; Buenfeld, N.R.

2014-02-15T23:59:59.000Z

251

Gas-Fired Boilers and Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

252

Gas-Fired Boilers and Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

253

Biologic response to complex blast waves  

SciTech Connect (OSTI)

Small, bare charges were detonated inside an M59 armored personnel carrier (APC) in an attempt to simulate the complex blast waves generated by the jets from shaped-charge warheads penetrating into armored vehicles. Anesthetized sheep were placed inside the APC at 92- and 122-cm ranges from 57- or 113-g pentolite charges. Pressure-time was measured by pressure transducers either mounted on the animals or free standing at comparable ranges on the opposite side of the vehicle. In general, the waveforms were characterized by an initial shock wave of less than 1-msec duration followed by repeated reflections of decreasing magnitude. No deaths nor lung hemorrhages were observed, but all the animals sustained severe ear injury. Animals subjected to peak overpressures of 1.2 to 2.3 bar from the 113-g explosions also received slight non-auditory blast injuries to the upper respiratory and gastrointestinal tracts; those exposed to peak overpressures of just under 1 bar from the 57-g charges did not. The non-auditory blast injuries inside the APC were more severe than those sustained by sheep at comparable distances from 113-g charges in the open. The results suggested that the biological consequences of a complex wave of the type encountered in this study can be equated approximately to a Friedlander wave with a peak overpressure equal to that of the complex wave and with a total impulse equal to the impulse over the first 2 to 3 msec of the complex wave. 9 refs., 7 figs., 1 tab.

Richmond, D.R.; Yelverton, J.T.; Fletcher, E.R.; Phillips, Y.Y.

1985-01-01T23:59:59.000Z

254

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

ASHRAE test procedure for several furnace efficiency levels (80%, 81%, 90%,ASHRAE Test Procedure 80% AFUE (Two-stage, BPM) 81% AFUE (Two-stage, BPM) 90%

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

255

Nitrogen oxide emissions from a kraft recovery furnace  

SciTech Connect (OSTI)

Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation.

Prouty, A.L.; Stuart, R.C. (James River Corp., Camas, WA (United States)); Caron, A.L. (NCASI West Coast Regional Office, Corvallis, OR (United States))

1993-01-01T23:59:59.000Z

256

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

257

Implementation of an Organic Rankine cycle on a Stepping furnace.  

E-Print Network [OSTI]

?? In this master thesis an implementation of an Organic Rankine Cycle (ORC) on a stepping furnace in a steel mill is modeled and proposed.… (more)

Pižorn, Žiga

2014-01-01T23:59:59.000Z

258

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect (OSTI)

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

259

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents [OSTI]

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

260

Improved refractories for slagging gasifiers in IGCC power systems  

SciTech Connect (OSTI)

Most gasifiers are operated for refining, chemical production, and power generation. They are also considered a possible future source of H2 for future power systems under consideration. A gasifier fulfills these roles by acting as a containment vessel to react carbon-containing raw materials with oxygen and water using fluidized-bed, moving-bed, or entrained-flow systems to produce CO and H2, along with other gaseous by-products including CO2, CH4, SOx, HS, and/or NOx. The gasification process provides the opportunity to produce energy more efficiently and with less environmental impact than more conventional combustion processes. Because of these advantages, gasification is viewed as one of the key processes in the U.S. Department of Energy?s vision of an advanced power system for the 21st Century. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both enhanced reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous, trouble-free gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center (ARC) is to develop improved refractory liner materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction. Current generation refractory liners in slagging gasifiers are typically replaced every 3 to 18 months at costs ranging up to $1,000,000 or more, depending upon the size of the gasification vessel. Compounding materials and installation costs are the lost-opportunity costs for the time that the gasifier is off-line for refractory repair/exchange. The goal of this project is to develop new refractory materials or to extend the service life of refractory liner materials currently used to at least 3 years. Post-mortem analyses of refractory brick removed from slagging commercial gasifiers and of laboratory produced refractory materials has indicated that slag corrosion and structural spalling are the primary causes of refractory failure. Historically, refractory materials with chrome oxide content as high as 90 pct have been found necessary to achieve the best refractory service life. To meet project goals, an improved high chrome oxide refractory material containing phosphate additions was developed at ARC, produced commercially, and is undergoing gasifier plant trials. Early laboratory tests on the high chrome oxide material suggested that phosphate additions could double the service life of currently available high chromium oxide refractories, translating into a potential savings of millions of dollars in annual gasifier operating costs, as well a significant increase in gasifier on-line availability. The ARC is also researching the potential of no-chrome/low-chrome oxide refractory materials for use in gasifiers. Some of the driving forces for no-chrome/low-chrome oxide refractories include the high cost and manufacturing difficulties of chrome oxide refractories and the fact that they have not met the performance requirements of commercial gasifiers. Development of no/low chrome oxide refractories is taking place through an examination of historical research, through the evaluation of thermodynamics, and through the evaluation of phase diagram information. This work has been followed by cup tests in the laboratory to evaluate slag/refractory interactions. Preliminary results of plant trials and the results of ARC efforts to develop no-chrome/low chrome refractory materials will be presented.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Chinn, Richard E.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Interactions of vanadium-rich slags with crucible materials during viscosity measurements  

Science Journals Connector (OSTI)

Petroleum coke (petcoke) ash can contain high concentrations of vanadium ... Vanadium oxide is a major impurity in the petcoke slags which is not found in coal ... gasification of coal–petroleum coke blended feed...

Alexander Y. Ilyushechkin; Marc A. Duchesne; San S. Hla…

2013-02-01T23:59:59.000Z

262

Compatibility of water-cooled refractories with a basic coal-ash slag at 1500 °C  

Science Journals Connector (OSTI)

The compatibility of 11 watercooled refractories with a basic coalash slag at 1500 °C has been investigated. The highest corrosion resistance was demonstrated by a fusedcast chromespinel refractory (80pct Cr2O3)....

C. R. Kennedy

1980-09-01T23:59:59.000Z

263

NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR  

SciTech Connect (OSTI)

Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char.

Dr. Bert Zauderer

1999-03-15T23:59:59.000Z

264

Use of phosphates to reduce slag penetration in Cr2O3-based refractories  

DOE Patents [OSTI]

A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

2004-11-09T23:59:59.000Z

265

The Use Of Phosphates To Reduce Slag Penetration In Cr203-Based Refractories  

DOE Patents [OSTI]

A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

Kwong, Kyei-Sing (Albany, OR); Dogan, Cynthia P. (Albany, OR); Bennett, James P. (Albany, OR); Chinn, Richard E. (Albany, OR); Petty, Arthur V. (Albany, OR)

2004-11-09T23:59:59.000Z

266

Radioactivity in the indoor building environment in Serbia  

Science Journals Connector (OSTI)

......7-180 7-240 24-850 Tiles 30-200 20-200 160-1410 Phosphogypsum 4-700 19-360 25-120 Blast furnace slag stone and cement...Serbia, within the projects Nuclear Methods Investigations of Rare Processes and Cosmic No.171002, Biosensing Technologies......

Natasa Todorovic; Istvan Bikit; Miroslav Veskovic; Miodrag Krmar; Dusan Mrda; Sofija Forkapic; Jan Hansman; Jovana Nikolov; Kristina Bikit

2014-01-01T23:59:59.000Z

267

J. PHYS. IV FRANCE 7 (1997) Colloque C2, SupplBment au Journal d e Physique III d'avril 1997  

E-Print Network [OSTI]

that significant reduction takes place in the presence of the cement additives blast furnace slag (BFS) and Na2SJ. PHYS. IV FRANCE 7 (1997) Colloque C2, SupplBment au Journal d e Physique III d'avril 1997 forms, where it is desirable to stabilizethe highly soluble form of Tc(VII),TcOg, by in situ reduction

Boyer, Edmond

268

Corrosion behavior of SiC under simulated slagging gasifier conditions  

SciTech Connect (OSTI)

Ceramic materials under scrutiny as candidates for structural components in severe environments include silicon carbide, silicon nitride, and alumina-based (corundum, mullite, spinel) materials. Interest is maintained in these materials because of their low densities, high strengths, retained strength at high temperatures, thermal shock resistance, and resistance to oxidation and corrosive attack. Although some work has been reported on the effects of oxidation and exposure to oxidizing combustion environments on the behavior of ceramic materials, many questions remain - in particular, concerning their behavior in the low-oxygen partial pressure (reducing) environments encountered in coal gasification. The anticipated active oxidation behavior in a low oxygen potential, non-slagging environment was not observed for the two silicon carbide materials under simulated slagging gasifier conditions. The oxidation reaction apparently was influence by the relatively high steam partial pressure. Specimens coated with acidic or basic slag compositions prior to exposure exhibited significant weight losses that were more substantial in the case of the basic slag-coated specimens. The viscosity of the fused slag at the reaction temperature is believed to have significant influence over the extent of reaction. Formation of a protective oxide scale is prevented, and reduction of iron oxide in the slag to metallic iron was followed by penetration of iron into subsurface pores in the underlying silicon carbide, forming iron-rich pockets.

Easler, T.E.; Poeppel, R.B.

1985-10-01T23:59:59.000Z

269

Utilization of Illinois slags for the production of ultra-lightweight aggregates  

SciTech Connect (OSTI)

The objective of this program is to demonstrate that solid residues (slag) from the gasification of Illinois coals can be utilized to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are made by pyroprocessing perlite ores and have unit weights in the range of 3--15 lb/ft[sup 3]. In a previous project, Praxis Engineers demonstrated at the pilot scale that lightweight aggregates with unit weights of 40--55 lb/ ft[sup 3] can be produced from Illinois coal slags, which is suitable for making lightweight cement concrete and precast blocks. These tests also indicated that a product with a unit weight of less than 25 lb/ft[sup 3] could be produced from slag. This project is aimed at testing the potential for producing ULWA from Illinois coal slags. Target applications include loose fill insulation, insulating concrete, lightweight precast products such as concrete blocks and rooftiles, and filtration media. Laboratory- and pilot-scale testing is being conducted in Phase I to identify operating conditions for the expansion of Illinois slags to produce ULWA. Following this, a large batch of expanded slag will be produced, for evaluation in various applications in Phase II.

Choudhry, V. (Praxis Engineers, Inc., Milpitas, CA (United States)); Zimmerle, T. (Silbrico Corporation (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

1993-01-01T23:59:59.000Z

270

Simple Maintenance Saves Costly Furnace Repair/Replacement | Department of  

Broader source: Energy.gov (indexed) [DOE]

Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement January 6, 2010 - 8:26am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the controls to provide optimum water and air temperature settings for both efficiency and comfort Having a technician perform a combustion-efficiency test Checking the combustion chamber for cracks. Testing for carbon monoxide

271

ENERGY STAR Qualified Gas Furnaces | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

272

Furnace Standards Enforcement Policy Statement | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement On January 11, 2013, the Department of Justice, on behalf of DOE, and the American Public Gas Association (APGA) filed a joint motion asking the court to enter an agreement to settle APGA's challenge to DOE's June 27, 2011 Direct Final Rule. The settlement agreement would, among other things, vacate the energy conservation standards applicable to non-weatherized gas furnaces established in the DFR. In an exercise of its enforcement discretion, DOE will, during the pendency of the litigation, act in a manner consistent with the terms of the settlement agreement with regard to the enforcement of the standards. Furnace Standards Enforcement Policy Statement - April 5, 2013

273

E-Print Network 3.0 - arc furnace dust Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Renewable Energy 2 The Effec' of Furnace Design and Operation on Air Pollution Summary: chemical constituents in furnace gases arc very malodorous, or toxic, when...

274

The Blast Energy Efficiency of GRBs  

E-Print Network [OSTI]

Using data mostly assembled by previous authors, we consider the linear correlation between the apparent radiative efficiency $\\epsilon_{\\gamma}$ (defined as the ratio of isotropic equivalent radiative output to inferred isotropic equivalent kinetic energy of the blast) and $E_{peak}^{\\alpha}$ where $1.4<\\alpha<2$, for 17 of 22 GRBs (Lloyd-Ronning and Zhang, 2004). We note in a quantitative manner that this is consistent with the hypothesis that $\\epsilon_{\\gamma}$ and $E_{peak}$ are influenced by viewing angle. We suggest a more general theoretically derived expression for this correlation that could be tested with a richer data set. If the reduction in both $\\epsilon_{\\gamma}$ and $E_{peak}$ is due to viewing angle effects, then the actual radiative efficiency is $\\sim 7$. We also find preliminary evidence (with a small sample) for a separate class of weak GRB afterglows.

David Eichler Daniel Jontof-Hutter

2005-03-24T23:59:59.000Z

275

Blast mitigation capabilities of aqueous foam.  

SciTech Connect (OSTI)

A series of tests involving detonation of high explosive blanketed by aqueous foam (conducted from 1982 to 1984) are described in primarily terms of recorded peak pressure, positive phase specific impulse, and time of arrival. The investigation showed that optimal blast mitigation occurs for foams with an expansion ratio of about 60:1. Simple analyses representing the foam as a shocked single phase mixture are presented and shown inadequate. The experimental data demonstrate that foam slows down and broadens the propagated pressure disturbance relative to a shock in air. Shaped charges and flyer plates were evaluated for operation in foam and appreciable degradation was observed for the flyer plates due to drag created by the foam.

Hartman, William Franklin; Larsen, Marvin Elwood; Boughton, Bruce A.

2006-02-01T23:59:59.000Z

276

LTC vacuum blasting maching (concrete): Baseline report: Greenbook (Chapter)  

SciTech Connect (OSTI)

The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjuction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

NONE

1997-07-31T23:59:59.000Z

277

Rat injury model under controlled field-relevant primary blast conditions: Acute response to a wide  

E-Print Network [OSTI]

1 1 Rat injury model under controlled field-relevant primary blast conditions: Acute response.edu Keywords: Traumatic Brain Injury, Primary Blast, Mortality, Cellular Membrane Permeability, Lung Injury the risk of sustaining blast induced injury by military personnel and civilians. The blast injury

Farritor, Shane

278

LEACHING OF SLAG FROM STEEL RECYCLING: RADIONUCLIDES AND STABLE ELEMENTS. DATA REPORT, JAN.15, 1997, REVISED SEPT.9, 1997  

SciTech Connect (OSTI)

Of primary importance to this study are releases of radionuclides from slags. However, releases of other constituents also provide valuable information on releases of elements that may be toxic (e.g. Cr) or that may be used as analogs for radionuclides (e.g. K for Cs). In addition, leaching of bulk constituents from the slag gives information on weathering rates of the bulk material that can be used to estimate releases of non-leachable elements. Consequently, we have examined leaching of: radionuclides from those sloags that contain them; bulk elemental constituents of the slags; anionic constituents; trace elements, through spot checks of concentrations in leachates. Analysis by ICP of elemental constituents in leachates from radioactive samples was limited to those leachate samples that contained no detectable radionuclides, to avoid contamination of the ICP. In this data report we present leaching results for five slags that were produced by recycling steel. Two of the slags were generated at facilities that treat radioactively contaminated scrap, consequently the slag contains radionuclides. The slag from the other three was not contaminated. Because of this, we were able to examine the chemical composition of the slag and of the leachate generated during tests of these slags. For these materials we believe that leach rates of the stable elements can be used as analogs for radionuclides if the same steel processing method were used for radioactive material.

FUHRMANN,M.SCHOONEN,M.

2003-07-31T23:59:59.000Z

279

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect (OSTI)

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

280

Characterising the acceleration phase of blast wave formation  

SciTech Connect (OSTI)

Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

Fox, T. E., E-mail: tef503@york.ac.uk; Pasley, J. [York Plasma Institute, University of York, York YO10 5DD (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Kablammo: an interactive, web-based BLAST results visualizer  

Science Journals Connector (OSTI)

......brief-report Applications Note Kablammo: an interactive, web-based BLAST results visualizer Jeff A. Wintersinger 1 * James...Associate Editor: Dr. John Hancock Motivation: Kablammo is a web-based application that produces interactive, vector-based......

Jeff A. Wintersinger; James D. Wasmuth

2014-12-01T23:59:59.000Z

282

Analysis of blast mitigation strategies exploiting fluid-structure interaction  

E-Print Network [OSTI]

Blast attacks have become the most pervasive threat in both civil and military contexts. However, there is currently a limited understanding of the mechanisms of loading, damage and failure of structures, and injury to ...

Kambouchev, Nayden Dimitrov, 1980-

2007-01-01T23:59:59.000Z

283

New laser technology helps reduce coal-slagging headaches  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) is starting to light the way for power plant operators who want to reduce coal ash deposition in their boilers. The method was developed by Lehigh University's Energy Research Centre and the Energy Research Co. The LIBS system analyzes the chemical properties of coal using a pulsating laser with two frequencies, one infrared and one visible light. The laser vaporizes a sample, resulting in a distinct elemental signature. From these data, a newly developed software package containing artificial neural network (ANN) models estimates ash fusion temperature and predicts coal slagging potential. LIBS is the size of a table top, safe to use and provides instantaneous data without interrupting the process. The performance of the LIBS system was verified in lab experiments and then the system was set up at Dominion's Brayton Point Power Station, a 1,150-MW coal-fired power plant in Somerset, MA. The project demonstrated the merit of the LIBS system that produces coal elemental analysis and estimated fusion temperatures. Further development is needed to equip a LIBS system with an automatic online coal-sampling attachment and to achieve higher accuracy and repeatability. The researchers have been awarded a second DOE grant to fund development of a commercial prototype of the LIBS system. 2 figs., 2 photos.

Neville, A.

2009-02-15T23:59:59.000Z

284

Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. This report briefly introduces the IGCC process, the gasification process, and the main types and operating conditions of entrained flow gasifiers used in IGCC plants. This report also discusses the effects of coal ash and slag properties on slag flow and its qualities required for the entrained flow gasifier. Finally this report will identify the key operating conditions affecting slag flow behaviors, including temperature, oxygen/coal ratio, and flux agents.

Wang,Ping; Massoudi, Mehrdad

2011-01-01T23:59:59.000Z

285

LTC 1073 vacuum blasting (concrete) human factors assessment -- Baseline (summary)  

SciTech Connect (OSTI)

The LTC 1073 Vacuum Blasting Machine uses a high capacity, direct pressure blasting system incorporating a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast head. A vacuum system removes dust and debris from the surfaces as it is blasted. After cleaning the surface, the abrasive, together with the rust or coating that was removed from the surface, is vacuumed into the machine through the suction hose. The dust separator contains angled steel collision pads, working with the force of gravity, to allow any reusable abrasive to fall back into the pressure vessel. The filters are manually back flushed to prevent clogging. After back flushing, dust is dumped from the dust chamber into the dust collection bag or drum by operation of the bellows valve. The safety and health evaluation during the testing demonstration focused on dust and noise exposure. Dust exposure was found to be minimal, but noise exposure was potentially significant. Further testing for each of these exposures is recommended because the outdoor environment where the testing demonstration took place may cause the results to be inapplicable to indoor settings. It is feasible that the dust and noise levels will be higher in an enclosed operating environment. Other safety and health issues found were ergonomics, heat stress, tripping hazards, lockout/tagout, and arm-hand vibration.

NONE

1997-07-31T23:59:59.000Z

286

An Application of the Electric Resistance Furnace to the Determination of Oxygen in Iron and Steel.  

Science Journals Connector (OSTI)

An Application of the Electric Resistance Furnace to the Determination of Oxygen in Iron and Steel. ...

R. H. McMillen

1913-01-01T23:59:59.000Z

287

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Furnaces Gas Furnaces Covered Product Category: Residential Gas Furnaces October 7, 2013 - 10:39am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

288

Legendary West Virginia Senior Citizen Stays Warm With New Furnace |  

Broader source: Energy.gov (indexed) [DOE]

Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace April 1, 2010 - 7:16pm Addthis Joshua DeLung For the last 56 years, Beulah Sisk has lived in the same house in Princeton, W.Va. Beulah, who worked for 25 years at Lloyd's Pastry Shop, is well known in Princeton. People still see her on the streets today and recognize her as an icon in the community. After a wind storm damaged Beulah's home last year, it came as no surprise when a senior center employee, concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I tried to have it repaired, but it still

289

Oil-Fired Boilers and Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

290

Oil-Fired Boilers and Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

291

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Broader source: Energy.gov (indexed) [DOE]

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

292

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Broader source: Energy.gov (indexed) [DOE]

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

293

American Gas Association (AGA) for DOE Furnace Product Class  

Broader source: Energy.gov [DOE]

Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA),...

294

Mathematical Modeling of Pottery Production in Different Industrial Furnaces  

Science Journals Connector (OSTI)

The traditional process for pottery production was analyzed in this work by developing a fundamental mathematical model that simulates the operation of rustic pottery furnaces as employed by natives of village...

Marco Aurelio Ramírez Argáez…

2008-10-01T23:59:59.000Z

295

Voltage flicker prediction for two simultaneously operated ac arc furnaces  

SciTech Connect (OSTI)

An EMTP-based arc furnace model was developed for evaluation of flicker concerns associated with supplying a large integrated steel mill as they go from one to two furnace operation and as system changes are implemented that will affect the short circuit capacity at the 230 kV power supply substation. The model includes a dynamic arc representation which is designed to be characteristic of the initial portions of the melt cycle when the arc characteristics are the most variable (worst flicker conditions). The flicker calculations are verified using previous measurements with one furnace operation. Flicker simulations were then performed to evaluate a variety of different possible system strengths with both one and two furnaces in operation. The primary flicker measure used for this study is the unweighted rms value of the fluctuation envelope, expressed as a percentage of the rms line-to-ground voltage magnitude.

Tang, L. [ABB Power T and D Co., Inc., Raleigh, NC (United States)] [ABB Power T and D Co., Inc., Raleigh, NC (United States); Kolluri, S. [Entergy Services, New Orleans, LA (United States)] [Entergy Services, New Orleans, LA (United States); McGranaghan, M.F. [Electrotek Concepts, Inc., Knoxville, TN (United States)] [Electrotek Concepts, Inc., Knoxville, TN (United States)

1997-04-01T23:59:59.000Z

296

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach...  

Energy Savers [EERE]

source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit, but supplemental heat is provided by a combined DHW and...

297

Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA  

E-Print Network [OSTI]

) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

Paris-Sud XI, Université de

298

Paired Straight Hearth Furnace-Transformational Ironmaking Process  

Broader source: Energy.gov (indexed) [DOE]

based on the Paired Straight Hearth Furnace (PSH) for iron ore reduction y PSH is a coal and natural gas coke-free process most suitable for American fine concentrates y PSH...

299

Image-Based Filtering and Control of Tubular Furnaces  

Science Journals Connector (OSTI)

In this paper, an image based advanced control strategies for controling combustion processes and temperature regimes of two flows tubular furnaces in petroluem refinery has been developed as a new approach and design principles have been targeted. In ...

A. G. Abilov; O. Tuzunalp; Z. Telatar

2003-06-01T23:59:59.000Z

300

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...  

Office of Environmental Management (EM)

by at least 3 billion metric tons in total by 2030, equal to more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air...

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Use of refractory coatings on linings of electric resistance furnaces  

Science Journals Connector (OSTI)

Results of experimental and theoretical studies of the reduction of power consumption in furnaces with a lining covered by IVAKS-2 and IVA-2 intensifying refractory coatings are presented. The heating curves o...

A. V. Aksenov; V. A. Belyakov

1997-09-01T23:59:59.000Z

302

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect (OSTI)

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

303

Thermocouple protection systems for longer service life in slagging gasifier environments  

SciTech Connect (OSTI)

To ensure reliable and efficient operation, gasifier operators would like to be able to continuously monitor system temperature. In many slagging gasifiers, temperature measurement is accomplished by several thermocouples embedded at various locations in the gasifier wall. Unfortunately, these thermocouple devices are very susceptible to early failure, either as the result of mechanical stresses or exposure to the harsh slagging environment, making long-term continuous temperature monitoring difficult. At the Albany Research Center, we are developing strategies to improve the ceramic protection assembly that is used to shield the thermocouple wires from direct exposure to the gasifier atmosphere. In this talk we will describe this multi-component ceramic protection system and present test results, which indicate that, the protection system should provide longer device service life in slagging gasifier environments.

Kwong, Kyei-Sing; Chinn, Richard E.; Iverson, Larissa A.; Bennett, James P.; Dogan, Cynthia P.

2003-01-01T23:59:59.000Z

304

LWA demonstration applications using Illinois coal gasification slag: Phase II. Technical report, 1 March--31 May 1994  

SciTech Connect (OSTI)

The major objective of this project is to demonstrate the suitability of using ultra-lightweight aggregates (ULWA) produced by thermal expansion of solid residues (slag) generated during the gasification of Illinois coals as substitutes for conventional aggregates, which are typically produced by pyroprocessing of perlite ores. To meet this objective, expanded slag aggregates produced from an Illinois coal slag feed in Phase I will be subjected to characterization and applications-oriented testing. Target applications include the following: aggregates in precast products (blocks and rooftiles); construction aggregates (loose fill insulation and insulating concrete); and other applications as identified from evaluation of expanded slag properties. The production of value-added products from slag is aimed at eliminating a solid waste and possibly enhancing the overall economics of the gasification process, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1994-09-01T23:59:59.000Z

305

Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996  

SciTech Connect (OSTI)

The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

Zauderer, B.

1996-11-01T23:59:59.000Z

306

Modelling of High-Chromia Refractory Spalling in Slagging Coal Gasifiers  

SciTech Connect (OSTI)

The economic viability of converting coal into clean burning liquid fuels in slagging coal gasifiers is compromised by the limited service lifetime of hot-face refractories. One of the most severe refractory degradation mechanisms is spalling, which can occur by either volume expansion phenomena (compressive stresses) or by volume shrinkage phenomena (tensile stresses). A volume shrinkage model is benchmarked to high-chromia refractory material properties and performance under gasifier operating conditions. The model is found to be appropriate for first order estimates of gasifier refractory lifetime when the apparent diffusivity of volatized Cr in the refractory includes the effects of slag-filled pores and cracks.

Williford, Rick E.; Johnson, Kenneth I.; Sundaram, S. K.

2008-10-31T23:59:59.000Z

307

Fireside carburization of stainless steel furnace tubes  

SciTech Connect (OSTI)

Most heavy Venezuelan crudes are recognized for having a high total acid number (TAN) that is usually associated with a high tendency to produce naphthenic acid corrosion. To resist this type of corrosion in vacuum heaters, 9Cr-1Mo steel and stainless steels containing molybdenum are usually recommended. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service, and just one year after undergoing the last turnaround inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 C (1250 F). Metallographic and Scanning Electron Microscopic (SEM) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023 O/O).Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur due to asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures.

Mirabal, E.; Molina, C. [PDVSA-Refineria Isla, Curayao (Netherlands); Mayorga, A.; Hau, J.L. [PDVSA-Intevep, Caracas (Venezuela)

1999-11-01T23:59:59.000Z

308

Modeling and Simulating Blast Effects on Electric Substations  

SciTech Connect (OSTI)

A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

Lyle G. Roybal; Robert F. Jeffers; Kent E. McGillivary; Tony D. Paul; Ryan Jacobson

2009-05-01T23:59:59.000Z

309

Furnace Blower Electricity: National and Regional Savings Potential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Furnace Blower Electricity: National and Regional Savings Potential Furnace Blower Electricity: National and Regional Savings Potential Title Furnace Blower Electricity: National and Regional Savings Potential Publication Type Report LBNL Report Number LBNL-417E Year of Publication 2008 Authors Franco, Victor H., James D. Lutz, Alexander B. Lekov, and Lixing Gu Document Number LBNL-417E Pagination 14 Date Published August 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80% of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressureused in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, whilewarm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

310

In Silico Investigation of Intracranial Blast Mitigation with Relevance to Military Traumatic Brain Injury  

E-Print Network [OSTI]

Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal ...

Nyein, Michelle K.

311

The BLAST 250 ?m-selected galaxy population in GOODS-South  

Science Journals Connector (OSTI)

......provided by the Balloon-borne Large Aperture Submillimetre Telescope (BLAST). BLAST is a 1.8-m diameter stratospheric balloon telescope that operates at an altitude of approximately 35 km, above most of the atmospheric water vapour which......

J. S. Dunlop; P. A. R. Ade; J. J. Bock; E. L. Chapin; M. Cirasuolo; K. E. K. Coppin; M. J. Devlin; M. Griffin; T. R. Greve; J. O. Gundersen; M. Halpern; P. C. Hargrave; D. H. Hughes; R. J. Ivison; J. Klein; A. Kovacs; G. Marsden; P. Mauskopf; C. B. Netterfield; L. Olmi; E. Pascale; G. Patanchon; M. Rex; D. Scott; C. Semisch; I. Smail; T. A. Targett; N. Thomas; M. D. P. Truch; C. Tucker; G. S. Tucker; M. P. Viero; F. Walter; J. L. Wardlow; A. Weiss; D. V. Wiebe

2010-11-11T23:59:59.000Z

312

A new compact fixed-point blackbody furnace  

SciTech Connect (OSTI)

More and more NMIs are realizing their primary scale themselves with fixed-point blackbodies as their reference standard. However, commercially available fixed-point blackbody furnaces of sufficient quality are not always easy to obtain. CHINO Corp. and NMIJ, AIST jointly developed a new compact fixed-point blackbody furnace. The new furnace has such features as 1) improved temperature uniformity when compared to previous products, enabling better plateau quality, 2) adoption of the hybrid fixed-point cell structure with internal insulation to improve robustness and thereby to extend lifetime, 3) easily ejectable and replaceable heater unit and fixed-point cell design, leading to reduced maintenance cost, 4) interchangeability among multiple fixed points from In to Cu points. The replaceable cell feature facilitates long term maintenance of the scale through management of a group of fixed-point cells of the same type. The compact furnace is easily transportable and therefore can also function as a traveling standard for disseminating the radiation temperature scale, and for maintaining the scale at the secondary level and industrial calibration laboratories. It is expected that the furnace will play a key role of the traveling standard in the anticipated APMP supplementary comparison of the radiation thermometry scale.

Hiraka, K.; Oikawa, H.; Shimizu, T.; Kadoya, S.; Kobayashi, T. [CHINO CORPORATION, Itabashi, Tokyo (Japan)] [CHINO CORPORATION, Itabashi, Tokyo (Japan); Yamada, Y.; Ishii, J. [National Metrology Institute of Japan, AIST, Tsukuba, Ibaraki (Japan)] [National Metrology Institute of Japan, AIST, Tsukuba, Ibaraki (Japan)

2013-09-11T23:59:59.000Z

313

An assessment of coal-ash slagging propensity using an entrained flow reactor  

SciTech Connect (OSTI)

This paper describes the design and operation of an entrained flow reactor to assess the slagging propensity of a coal-ash. Temperatures and residence times have been chosen to closely simulate those experienced by pulverized fuel (pf) particles in a full-size utility boiler. Ash deposits have been collected on ceramic coupons at 1500 C and 1200 C and on an air-cooled metal probe at 830 C. Ten UK coals and one US coal were selected to give a wide range of coal-ash compositions, a range similar to that found at many power stations. Deposits ranged from dense, highly fused material collected at 1500 C, to lightly sintered ash-particles collected at 830 C. A visual inspection of the deposits allowed a provisional ranking of the slagging propensity to be made. A computer-controlled scanning electron microscope (CCSEM) technique has been developed to provide a quantitative characterization of each microstructure, thus providing the basis for a more rigorous assessment of the slagging propensity. The technique described provides the basis for a reliable assessment of coal-ash slagging propensity to be made from a few kgs of coal. It removes many of the uncertainties associated with conventional indices and the previous subjectively based laboratory techniques.

Hutchings, I.S.; Williamson, J. [Imperial Coll., London (United Kingdom). Dept. of Materials; West, S.S. [ETSU, Harwell (United Kingdom)

1996-12-31T23:59:59.000Z

314

Nontraditional carbon reducing agents in smelting FMn78B ferromanganese and valuable manganese slag  

SciTech Connect (OSTI)

The smelting of FeMn78B ferromanganese (0.7% P) by a flux-free method, with the production of valuable slag (36-38% Mn), is considered in the case where some of the coke nuts are replaced by anthracite and sometimes by long-flame coal.

P.A. Kravchenko; O.N. Sezonenko; O.L. Bespalov; S.N. Kornienko; S.D. Belikov; M.I. Gasik [OAO Zaporozhskii Zavod Ferrosplavov, Zaporozh'e (Ukraine)

2008-09-15T23:59:59.000Z

315

Formation Mechanism of Slag during Fluid-bed Gasification of Lignite  

Science Journals Connector (OSTI)

Lignite is abundant and makes up approximately 40% of coal reserves in the world. ... Alkalies in lignites (principally Na) were volatilized and reacted with either SO2, to form sulfates, or with clay minerals (principally kaolinite) to form aluminosilicate slag droplets. ...

Fenghai Li; Jiejie Huang; Yitian Fang; Yang Wang

2010-12-30T23:59:59.000Z

316

Continuum modeling of a neuronal cell under blast loading Antoine Jrusalem a,  

E-Print Network [OSTI]

2012 Keywords: Continuum model Neuron Blast Cell damage Traumatic brain injury a b s t r a cContinuum modeling of a neuronal cell under blast loading Antoine Jérusalem a, , Ming Dao b by proposing a continuum model of a neuronal cell submitted to blast loading. In this approach, the cytoplasm

Suresh, Subra

317

The influence of heterogeneous meninges on the brain mechanics under primary blast loading  

E-Print Network [OSTI]

/interphase C. Finite element analysis Blast wave a b s t r a c t In the modeling of brain mechanics subjected mismatch. Ã? 2012 Elsevier Ltd. All rights reserved. 1. Introduction Blast-related traumatic brain injury, 88% of those injuries were caused by expo- sure to blasts resulting from improvised explosive devices

Farritor, Shane

318

Measurement and analysis of near-field blast vibration and damage  

Science Journals Connector (OSTI)

Blast vibration and its attenuation within the rock mass immediately adjacent to a blast hole (2–15 m) were monitored for a blast hole diameter of 100 mm and a 2.4 m column of an emulsion explosive charge. Pea...

R. L. Yang; P. Rocque; P. Katsabanis; W. F. Bawden

1994-09-01T23:59:59.000Z

319

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

320

Furnace Blower Electricity: National and Regional Savings Potential  

SciTech Connect (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

322

Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan  

SciTech Connect (OSTI)

This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

Carlson, Thomas J.; Johnson, Gary E.

2010-01-29T23:59:59.000Z

323

STANDARD OF CARE FOR BLASTING Timothy D. Stark1  

E-Print Network [OSTI]

STANDARD OF CARE FOR BLASTING NEGLIGENCE By Timothy D. Stark1 ABSTRACT: Blasters are usually but should be liable only if their conduct is proven to be negligent. This change in legal standard be related to the level of care exercised by the blaster. It is anticipated that a negligence standard

324

Time series of a CME blasting out from the Sun  

E-Print Network [OSTI]

#12;Time series of a CME blasting out from the Sun Composite image of the Sun in UV light with the naked eye, the Sun seems static, placid, constant. From the ground, the only notice- able variations in the Sun are its location (where will it rise and set today?) and its color (will clouds cover

Christian, Eric

325

The Balloon-borne Large Aperture Submillimeter Telescope: BLAST  

Science Journals Connector (OSTI)

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 ?m. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30 -->'' at 250 ?m. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of ~30 -->''; postflight pointing reconstruction to 5 -->'' rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hr flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hr, circumpolar flight from McMurdo Station, Antarctica, in 2006 December.

E. Pascale; P. A. R. Ade; J. J. Bock; E. L. Chapin; J. Chung; M. J. Devlin; S Dicker; M. Griffin; J. O. Gundersen; M. Halpern; P. C. Hargrave; D. H. Hughes; J. Klein; C. J. MacTavish; G. Marsden; P. G. Martin; T. G. Martin; P. Mauskopf; C. B. Netterfield; L. Olmi; G. Patanchon; M. Rex; D. Scott; C. Semisch; N. Thomas; M. D. P. Truch; C. Tucker; G. S. Tucker; M. P. Viero; D. V. Wiebe

2008-01-01T23:59:59.000Z

326

Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents  

Broader source: Energy.gov [DOE]

This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

327

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network [OSTI]

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

328

DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards  

Broader source: Energy.gov [DOE]

The Department of Energy has published a notice of proposed rulemaking regarding energy conservation standards for residential furnace fans.

329

Mechanisms of pyrite oxidation to non-slagging species. Quartery report, October 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

This paper presents results of investigations on the transformation of iron pyrite to non-slagging species during staged combustion of pulverized coal. Work focuses on the oxidation of iron pyrite to magnetite.

Akan-Etuk, A.E.J.; Mitchell, R.E.

1996-03-01T23:59:59.000Z

330

Utilizing New Binder Materials for Green Building has Zero Waste by Recycling Slag and Sewage Sludge Ash  

E-Print Network [OSTI]

binding material to save energy and to produce new innovative zero materials waste . The current research aims to investigate new binder materials as alternative of Portland cement. Alkali activated slag (AAS) blended with sewage sludge ash (SSA...

Zeedan, S. R.

2010-01-01T23:59:59.000Z

331

Electrochemical mass transfer modeling of a complex two phase heat transfer problem: Case of a prototype slagging gasifier  

Science Journals Connector (OSTI)

The local and averaged forced-convective heat transfer coefficients were estimated from measured local and averaged mass transfer coefficients in a model slagging-gasifier hearth pool using the Chilton-Colburn an...

A. A. Wragg; N. P. Simpson; M. A. Patrick…

2008-04-01T23:59:59.000Z

332

High temperature furnaces for small and large angle neutron scattering of disordered materials  

E-Print Network [OSTI]

725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

Boyer, Edmond

333

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 1, 1996--November 30, 1996  

SciTech Connect (OSTI)

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

NONE

1997-04-01T23:59:59.000Z

334

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

Sopori, Bhushan L. (Denver, CO)

1996-01-01T23:59:59.000Z

335

Experimenting with concentrated sunlight using the DLR solar furnace  

SciTech Connect (OSTI)

The high flux solar furnace that is operated by the Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR) at Cologne was inaugurated in June 1994 and we are now able to look back onto one year of successful operation. The solar furnace project was founded by the government of the State Northrhine Westfalia within the Study Group AG Solar. The optical design is a two-stage off-axis configuration which uses a flat 52 m{sup 2} heliostat and a concentrator composed of 147 spherical mirror facets. The heliostat redirects the solar light onto the concentrator which focuses the beam out of the optical axis of the system into the laboratory building. At high insolation levels (>800W/m{sup 2}) it is possible to collect a total power of 20 kW with peak flux densities of 4 MW/m{sup 2}. Sixteen different experiment campaigns were carried out during this first year of operation. The main research fields for these experiments were material science, component development and solar chemistry. The furnace also has its own research program leading to develop sophisticated measurement techniques like remote infrared temperature sensing and flux mapping. Another future goal to be realized within the next five years is the improvement of the performance of the furnace itself. 6 refs., 9 figs., 1 tab.

Neumann, A.; Groer, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt Linder Hoehe, Koeln (Germany)] [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt Linder Hoehe, Koeln (Germany)

1996-10-01T23:59:59.000Z

336

Utilization of Illinois slags for the production of ultra-lightweight aggregates. Technical report, December 1, 1992--February 28, 1993  

SciTech Connect (OSTI)

The objective of this program is to demonstrate that solid residues (slag) from the gasification of Illinois coals can be utilized to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are made by pyroprocessing perlite ores and have unit weights in the range of 3--15 lb/ft{sup 3}. In a previous project, Praxis Engineers demonstrated at the pilot scale that lightweight aggregates with unit weights of 40--55 lb/ ft{sup 3} can be produced from Illinois coal slags, which is suitable for making lightweight cement concrete and precast blocks. These tests also indicated that a product with a unit weight of less than 25 lb/ft{sup 3} could be produced from slag. This project is aimed at testing the potential for producing ULWA from Illinois coal slags. Target applications include loose fill insulation, insulating concrete, lightweight precast products such as concrete blocks and rooftiles, and filtration media. Laboratory- and pilot-scale testing is being conducted in Phase I to identify operating conditions for the expansion of Illinois slags to produce ULWA. Following this, a large batch of expanded slag will be produced, for evaluation in various applications in Phase II.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corporation (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

1993-05-01T23:59:59.000Z

337

Analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers  

SciTech Connect (OSTI)

High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575oC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier’s refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier’s on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

Bennett, J.P.; Kwong, K.-S.; Powell, C.A.; Thomas, H.; Krabbe, R.A.

2006-03-01T23:59:59.000Z

338

An analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers  

SciTech Connect (OSTI)

High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575DGC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier's refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier's on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

2006-01-01T23:59:59.000Z

339

An update on field test results for an engineered refractory for slagging gasifiers  

SciTech Connect (OSTI)

The widespread commercial adaptation of slagging gasifier technology to produce power, fuel, and/or chemicals from coal will depend in large measure on the technology’s ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved performance structural materials with longer service life in this application. Current generation refractory materials used to line the air-cooled, slagging gasifier vessel, and contain the gasification reaction, often last no more than three to 18 months in commercial applications. The downtime required for tear-out and replacement of these critical materials contributes to gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of an improved refractory material engineered by the NETL for longer service life in this application, and provide an update on recent field test results.

Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

2006-05-01T23:59:59.000Z

340

Investigation of coal char-slag transition during oxidation: effect of temperature and residual carbon  

SciTech Connect (OSTI)

The transition of coal char to molten slag at high conversion was studied for a bituminous coal using a laminar entrained-flow reactor under oxidizing conditions. Post-oxidized char particles were analyzed by various techniques including loss-on-ignition, gas adsorption analysis, and scanning electron microscopy to determine carbon content, internal surface area and pore size distribution, and char morphology, respectively. These analyses provide information concerning the effect of temperature and residual carbon on the transition from porous char to molten slag. Results showed that, at temperatures above the ash flow temperature, the transition from porous char to molten slag occurred at about 90% conversion for the coal used in this study. No transition occurred at temperatures below the ash flow temperature. This finding explains previous observations that there is a coal-dependent critical carbon conversion at which the ash stickiness increases dramatically. This result also indicates that surface area can be used as a criterion for determining the critical conversion of the transition. In addition, it was found that the randomly overlapping pore model cannot be directly applied to predict the surface area evolution of char particles during the transition without considering the reopening of closed micropores during the initial reaction and the ash fusion effect. 33 refs., 9 figs., 2 tabs.

Suhui Li; Kevin J. Whitty [University of Utah, Salt Lake City, UT (United States). Institute for Clean and Secure Energy

2009-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Simulation of the Reflected Blast Wave froma C-4 Charge  

SciTech Connect (OSTI)

The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.

Howard, W M; Kuhl, A L; Tringe, J W

2011-08-01T23:59:59.000Z

342

Utilization of computational fluid dynamics technique in low NOx burner/furnace retrofits  

SciTech Connect (OSTI)

A computational fluid dynamics (CFD) technique has been utilized to provide design guidance for retrofitting low NOx combustion systems and incorporating associated furnace modifications into existing utility boilers. The CFD program utilized is FW-FIRES (Fossil fuel, Water-walled Furnace Integrated Reaction and Emission Simulation) which simulates furnace combustion, heat transfer and pollutant formation based on fundamental principals of mass, momentum and energy conservations. The program models the gas flow field as a three-dimensional turbulent reacting continuum and the particle flow as a series of discrete particle trajectories through the gas continuum. Chemical reaction, heat transfer, and pollutant formation mechanisms are incorporated in the program. FW-FIRES furnace simulation of low NOx combustion system retrofits has been performed for various furnace configurations including front wall-fired, front and real wall-fired, and tangentially-fired furnaces, to determine the effects of burner/furnace modifications on the NOx emission, furnace exit gas temperature, furnace heat absorption, unburned carbon, and furnace wall corrosion. For front wall-fired, and front and real wall-fired furnaces, the NOx emission requirement is met by the use of Foster Wheeler lox NOx burners and overfire air (OFA) staging. Studies of burner and OFA quantify and spacing are conducted to limit NOx emission and unburned carbon to acceptable levels. A major concern in once-through supercritical units with OFA is furnace wall corrosion which is caused by high furnace wall metal temperature and corrosive hydrogen sulfide (H{sub 2}S) created in a reducing atmosphere from part of coal sulfur. The FW-FIRES code is used to minimize this corrosion potential by selecting the proper location and quantity of boundary air. A simulation of tangentially-fired unit, which has been retrofitted with low NOx burners, is used to study the effect of the burner tilt on the furnace exit gas temperature. This paper details the basis and results of several CFD analyses conducted for potential retrofit programs.

Cho, S.M.; Seltzer, A.H.; Ma, J.; Steitz, T.H.; Grusha, J.; Cole, R.W.

1999-07-01T23:59:59.000Z

343

Exergy transfer analysis of an aluminum holding furnace  

Science Journals Connector (OSTI)

Abstract This study presents the unsteady exergy transfer analysis of an aluminum holding furnace with new heating resistance scheme. This holding system consists of four multilayer refractory walls and one resistance heating system which is responsible of maintaining the appropriate aluminum temperature and composition for further casting. The purpose of this analysis is to understand and identify heat losses and irreversibilities of the holding process of an aluminum furnace by means of the First and Second Law of Thermodynamics. In this study, bi-dimensional temperature and exergy fields during heat and exergy transfer processes are presented. The exergy balance is completely computed for this system, obtaining: exergy transfer, exergy variation rate, and destroyed exergy rate.

Luis Acevedo; Sergio Usón; Javier Uche

2015-01-01T23:59:59.000Z

344

Low NOx nozzle tip for a pulverized solid fuel furnace  

DOE Patents [OSTI]

A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

2014-04-22T23:59:59.000Z

345

Airblast and ground vibration generation and propagation from contour mine blasting. Report of investigations/1984  

SciTech Connect (OSTI)

The Bureau of Mines studied airblast and ground vibrations produced by surface coal mine blasting in Appalachia to determine the topographic or other region-specific effects on generation and propagation. Arrays of seismographs were used to measure blast effects in both rolling-terrain and steep-slope contour coal mining areas. Comparisons were then made with previous blasting data from studies of midwest coal mines located in flat areas.

Stachura, V.J.; Siskind, D.E.; Kopp, J.W.

1984-01-01T23:59:59.000Z

346

Investigation of Primary Blast Injury and Protection using Sagittal and Transverse Finite Element Head Models.  

E-Print Network [OSTI]

??The prevalence of blast related mild traumatic brain injury (mTBI) in recent military conflicts, attributed in part to an increased exposure to improvised explosive devices… (more)

Singh, Dilaver

2015-01-01T23:59:59.000Z

347

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

Gary M. Blythe

2001-11-06T23:59:59.000Z

348

Time and Temperature Test Results for PFP Thermal Stabilization Furnaces  

SciTech Connect (OSTI)

The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain in effect, although deeper powder beds (up to 2 inches) also yielded temperatures of greater than 950 C for longer than 2 hours.

COMPTON, J.A.

2000-08-09T23:59:59.000Z

349

Characterization of the Products of the Clay Mineral Thermal Reactions during Pulverization Coal Combustion in Order to Study the Coal Slagging Propensity  

Science Journals Connector (OSTI)

Slagging is well-known as one problem threatening safe, economic operation of coal-fired boilers. ... (1-4) Today, more and more power plants use new coals or coal blends because of the low availability of the original design fuels, which has increased the demand for predictions of coal slagging characteristics. ...

Sida Tian; Yuqun Zhuo; Changhe Chen

2011-09-12T23:59:59.000Z

350

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPM Motors in Residential Gas Furnaces: What are the Savings? BPM Motors in Residential Gas Furnaces: What are the Savings? James Lutz, Victor Franco, Alex Lekov, and Gabrielle Wong-Parodi Lawrence Berkeley National Laboratory, Berkeley, California ABSTRACT Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized

351

Blasting of the Twin Creek`s highwall failure  

SciTech Connect (OSTI)

On December 26, 1994, at 1:00 a.m., the Twin Creeks Mine experienced a major highwall failure involving over 2.5 million tons. The long chain of events that led up to this failure actually started in late August when a truck driver first noticed the cracks in the highwall. Soon after, an intense survey prism monitoring program was initiated. An electronic, continuous monitor linked to Dispatch was soon in place which monitored the crack that was most likely to fail into the active pit area first. It wasn`t until early December when the graphs started showing greater increases in movement. On December 22, the acceleration curves skied-out. The 600 ft. highwall finally collapsed about three days later and left material spread 800 ft. across the bottom of the pit. Not knowing if the large overhangs above the slide would soon give away sending more material into the pit or if the numerous tension cracks on the surface would result in yet another major failure, it was only after restoring the rigid monitoring program and observing no movement that the company decided to drill and blast the overhanging material. The purpose of the blast wasn`t to cast the material into the pit, but to kick-out the toe so that the weight of material above would fall upon itself. After two months of preparation and almost three weeks of drilling and loading, the shot occurred on March 21, 1995. Approximately one million tons were successfully blasted that day, and presently they have completed mining the slough material itself and reestablished benches from the top.

Gray, C.J.; Bachmann, J.A. [Santa Fe Pacific Gold Corp., Winnemucca, NV (United States). Twin Creeks Mine

1996-12-01T23:59:59.000Z

352

LWA demonstration applications using Illinois coal gasification slag. Phase 2, [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect (OSTI)

The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) , from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. During this reporting period, major accomplishments were the selection of mix designs and test methods for preparation of specimens of expanded slag for testing in precast applications (Task 3) and construction aggregate applications (Task 4). In addition, characterization data (Task 1) were,analyzed, and evaluation of the expanded slag products as substitutes for conventional ULWAs (Task 2) was completed. Potential applications that were identified are: (1) Loose fill insulation; Insulating concrete (roof, floor, and walls); Precast products (blocks and rooftiles). Experimental work during the project is focused on these applications.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1994-06-01T23:59:59.000Z

353

Field Trial Results of an Improved Refractory Material for Slagging Gasifiers  

SciTech Connect (OSTI)

Gasifiers are used commercially to react a carbon feedstock with water and oxygen under reducing conditions; producing chemicals used as feedstock for other processes, fuel for power plants, and/or steam used in other processes. A gasifier acts as a high temperature, high pressure reaction chamber, typically operating between 1250-1575°C, and with pressures between 300-1000 psi. Ash that originates from mineral impurities in the carbon feedstock becomes a by-product of gasification. In a slagging gasifier it melts, forming a liquid which flows down the gasifier sidewall; penetrating and wearing away the refractory liner by corrosive dissolution, abrasive wear, or by other processes such as spalling. The refractory liner must withstand the severe service environment, protecting the steel shell against corrosive gases, temperature, and material wear. Users have identified refractory service life as the most important limitation to sustained on-line availability of gasifiers, limiting gasifier acceptance and use by industry. The National Energy Technology Laboratory in Albany, OR, has developed and patented (US Patent # 6,815,386) a phosphate containing high chrome oxide refractory for use in slagging gasifiers. In cooperation with ANH Refractories Company, this refractory material has been commercially produced and is undergoing field tests in commercial gasifiers. An analysis of data from these field tests indicates that the phosphate containing refractory results in an improved service life over other refractory materials currently used as gasifier liners. Results from the post-mortem analysis of the field trial in relation to the failure mechanisms in a slagging gasifier will be presented.

Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Petty, A.V., Jr.; Thomas, H.; Prior, H.D. (ANH Refractories, West Mifflin, PA); Schnake, M. (Harbison Walker, Fulton, MO)

2006-09-01T23:59:59.000Z

354

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

355

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

356

Char–Wall Interaction and Properties of Slag Waste in Entrained-Flow Gasification of Coal  

Science Journals Connector (OSTI)

The poor degree of carbon burnoff, which characterizes slag fines, might be the consequence of a combination of factors: (a) selective accumulation of the less reactive carbon particles (e.g., residual petcoke) in the dense-dispersed phase, once the more reactive ones have been gasified; (b) loss of gasification reactivity of carbon because of the severe heat treatment (thermal annealing) experienced by char particles over their lifetime in the gasifier;(18, 19) and (c) occurrence of char agglomeration phenomena during bulk-to-wall transfer and in the near-wall region, possibly promoted by the molten or semi-molten status of char particles. ...

Fabio Montagnaro; Paola Brachi; Piero Salatino

2011-07-25T23:59:59.000Z

357

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network [OSTI]

of the above premise. The application of vortex stabilized high intensity burners for reformer furnaces in the petrochemical industry is then reviewed and emphasized....

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

358

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

359

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network [OSTI]

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

360

E-Print Network 3.0 - automatic wood furnaces Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bagasse. 3. The total cost of the boiler island including stoker, furnace, boiler, economizer... , feeders and bins for handling bark and wood, while experience in dealing with...

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

362

E-Print Network 3.0 - arc plasma furnace Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PLASMA PHYSICS AND ENGINEERING Summary: replace costly traditional technologies as incineration and conventional plasma arc furnaces, and provide... ASSOCIATED LABORATORY ON...

363

E-Print Network 3.0 - arc furnace steelmaking Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the furnace cavity. This special ... Source: Oak Ridge National Laboratory Fossil Energy Program; Pint, Bruce A. - Materials Science & Technology Division, Oak Ridge...

364

E-Print Network 3.0 - air furnace design Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IN MUNICIPAL INCINERATOR Summary: cal to good furnace performance and to mainten ance of air pollution control. Early in 1967 the writer... of the grate roughly equivalent to...

365

Small Glass-Melting Furnaces for Clear, Tinted, and Specialized Glass  

Science Journals Connector (OSTI)

Data on the design and application areas of small-sized glass-melting furnaces for melting various-purpose glasses are supplied.

A. A. Dymov; V. A. Fedorova

2000-07-01T23:59:59.000Z

366

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect (OSTI)

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

367

E-Print Network 3.0 - arc furnaces Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Solar Energy for the Production of Fullerenes and Summary: with the Odeillo (finance) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere......

368

The effects of gasification feedstock chemistries on the infiltration of slag into the porous high chromia refractory and their reaction products  

Science Journals Connector (OSTI)

Abstract Synthetic slags with compositions representative of carbonaceous feedstock derived from coal and petroleum coke were infiltrated into 90%Cr2O3–10%Al2O3 refractory material with a temperature gradient induced along the penetration direction of the slag. Experiments were conducted with a hot-face temperature of 1723 K (1450 °C) in a CO/CO2 gas mixture with a ratio of 1.8, which corresponded to an approximate oxygen partial pressure of 10?8 atm. Interactions between the slags and the refractory produced solid-solution spinel layers on the top interfaces of the refractory samples, whose chemistries reflected the compositions of major constituents of the starting slags. FeCr2O4 formed when samples were infiltrated with slag composition rich in FeO, which was typical for coals derived from eastern USA. (Mg,Fe)Cr2O4 formed when samples were infiltrated with slags, containing considerable concentrations of both MgO and FeO that were common in western US coals. In slags resulted from substituting 50% (by weight) of the coal feedstock by petcoke, similar solid solution phases formed as the pure coal counterparts, but with addition of V2O3, which originated from the petcoke feedstock. The chromium spinel layers, to a reasonable extent, limited infiltration by hindering the slag from flowing into the porous microstructure of the refractory and the formation mechanisms of the product layers were discussed. The Fe(Cr,V)2O4 layer that formed in the presence of petcoke ash exhibited an uneven morphology. As compared to the FeO rich slags, MgO rich slags penetrated further beyond the protective layers and into the refractory. Both of these phenomena could lead to increased refractory spallation rates in actual gasification conditions.

Tetsuya Kenneth Kaneko; Jingxi Zhu; Nathan Howell; Peter Rozelle; Seetharaman Sridhar

2014-01-01T23:59:59.000Z

369

Effectiveness of advanced coating systems for mitigating blast effects on steel components  

E-Print Network [OSTI]

Effectiveness of advanced coating systems for mitigating blast effects on steel components C. Chen1 tool for steel components. The response of polyurea coated steel components under blast loading of polyurea onto armor grade steel plates and an examination of resulting failure modes and governing design

370

Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate  

E-Print Network [OSTI]

Computational Blast Injury Model Aravind Sundaramurthy, Aaron Alai, Shailesh Ganpule, Aaron Holmberg, Erwan head injuries. This has led to an increased number of blast studies of animal models, head surrogates traumatic brain injury (TBI) in soldiers and civilians. In vivo animal models that use shock tubes

Farritor, Shane

371

Quantification and characterization of regional seismic signals from cast blasting in mines: a linear elastic model  

Science Journals Connector (OSTI)

......detonalions that sometimes accompany standard blasting operations. The models...past signal character. We also plan to study the effects of imperfect...pulse with, xf.A thorough review by Michael Hedlin is also appreciated...explosions from simultaneous mining blasts, Bull. seism. Soc......

Sridhar Anandakrishnan; Steven R. Taylor; Brian W. Stump

1997-10-01T23:59:59.000Z

372

Analysis of seismic waves generated by surface blasting at Indiana coal mines  

E-Print Network [OSTI]

Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent implications for understanding different seismic sources, earthquake structures in Indiana, and wave

Polly, David

373

A METHOD FOR RAPID VULNERABILITY ASSESSMENT OF STRUCTURES LOADED BY OUTSIDE BLASTS  

E-Print Network [OSTI]

the structural reliability information for the vulnerability analysis. 1 Corresponding Author: Jamova 39, SI-1000 , Matjaz Leskovar, Marko Cepin, Borut Mavko "Jozef Stefan" Institute, Reactor Engineering Division Keywords blast loads, buildings, rapid assessment, structural reliability ABSTRACT The blast loads have in most

Cizelj, Leon

374

Incineration of Residue from Paint Stripping Operations Using Plastic Media Blasting  

E-Print Network [OSTI]

i INCINERATION OF RESIDUE FROH PAINT STRIPPING OPERATIONS USING PLASTIC MEDIA BLASTING J. E. HELT N. MALLYA Group Leader Chemist Chemical Technology Division Chemical Technology Division Argonne National Laboratory Argonne National... Laboratory Argonne, Illinois Argonne, Illinois ABSTRACT A preliminary investigation has been performed on the environmental consequences of incinerating plastic-media-blasting (PHB) wastes from paint removal operations. PHB is similar to sandblasting...

Helt, J. E.; Mallya, N.

375

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network [OSTI]

to maintain a constant cooling water supply temperature in the cold well. The cooling tower fans can be manually reversed on slow speed for de-icing the cooling tower in winter to remove ice buildup on the slats. Level controller LL-2 shuts down pumps PI...HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...

Darby, D. F.

376

Drilling and blasting techniques and costs for strip mines in Appalachia  

SciTech Connect (OSTI)

On-site investigations of blasting techniques were conducted at twenty surface coal mining operations in the steep slopes of Appalachia. The mine sites represented a range of mountain mining methods and annual coal production levels; all sites used similar techniques and equipment for the removal of fragmented waste rock. Hole loading characteristics and constraints limiting blast designs were observed at each mine site. This report summarizes technical blasting data and geological conditions which require special design considerations. Three mine sites were selected for future research in fragmentation efficiency. Detailed economic data on drilling and blasting were gathered from the three research sites and are reported herein. A great deal of fragmentation difficulties stem from tough, unpredictable geology with specific bedding characteristics and local zones of defined structural weaknesses such as jointing and vertical seams. Exceptionally hard bedrock, existing as a caprock or as the basal layer above the coal seam, persists as the cause of oversize rock breakage or, in the latter case, damage to the coal unless special precautions are taken. Federal blasting regulations strictly control the amount of explosives used as well as throw of the fragmented rock. This requires that blasting modifications be employed. The nature and extent of blast modifications were observed to be related to terrain and demographic conditions around the mine site. Drilling and blasting costs reported for the three mine sites averaged $0.21 per cubic yard of material blasted. Drilling costs varied widely, as drilling time was indicative of geologies and often, drilling costs remained the greatest percentage of total blasting and drilling costs.

Aimone, C.T.

1980-06-01T23:59:59.000Z

377

Multidiscipline Modeling in Materials and Structures Emerald Article: A study of the blast-induced brain white-matter damage  

E-Print Network [OSTI]

Multidiscipline Modeling in Materials and Structures Emerald Article: A study of the blast, (2012),"A study of the blast-induced brain white-matter damage and the associated diffuse axonal injury Abstract Purpose ­ Blast-induced traumatic brain injury (TBI) is a signature injury of the current military

Grujicic, Mica

378

Computational Modeling of Human Head Under Blast Shailesh Ganpule, Dr. Linxia Gu, Dr. Guoxin Cao, Dr.Namas Chandra  

E-Print Network [OSTI]

Computational Modeling of Human Head Under Blast Loading Shailesh Ganpule, Dr. Linxia Gu, Dr;Presentation Objective: To understand role of helmet in blast induced Traumatic Brain Injury (TBI: To understand underlying mechanisms of blast induced Traumatic Brain Injury (TBI) and develop mitigation

Farritor, Shane

379

Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers  

SciTech Connect (OSTI)

An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

1997-12-01T23:59:59.000Z

380

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents [OSTI]

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Determination of heliostat and concentrator size for solar furnace facilities  

SciTech Connect (OSTI)

There are basically two types of solar furnaces -- a vertical-beam or a horizontal-beam facility. A vertical-beam facility uses movable heliostats to redirect the incoming solar energy vertically upward to a stationary parabolid. A horizontal-beam furnace uses the heliostat to redirect the incoming energy horizontally to the paraboloid. This paper presents a method to determine the optimum size of the heliostat and/or concentrator to meet predetermined design criteria. Usually the concentrator size is fixed by the temperature and flux-density required at the test plane and the problem is to size the heliostat so the facility can be used for a certain length of time each day during the entire year. However, the method can also be used when the heliostat size is fixed and the concentrator size must be determined. The analysis considers energy incident from the sun being reflected from a flat spectral surface (heliostat) onto a concentrating surface (concentrator), which then redirects the energy to a focal spot that can then be used as a high temperature, high-flux density source. The analysis uses the basic relations of geometric optics and considers only the central ray of the incoming cone of energy from the sun. Errors involved with this assumption will be minimal for most cases, but if deemed necessary, the reflected cone can be accounted for in the reflected ray from the heliostat.

Mulholland, G.P.

1983-08-01T23:59:59.000Z

382

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect (OSTI)

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

383

Spatial variation of coke quality in the non-recovery beehive coke ovens.  

E-Print Network [OSTI]

??More than 50% of hot metal production worldwide takes place in blast furnaces. Coke is the most expensive raw material in the blast furnace. It… (more)

Segers, Magrieta

2006-01-01T23:59:59.000Z

384

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect (OSTI)

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

385

Fabrication of microstructures on glass by imprinting in conventional furnace for lab-on-chip application  

Science Journals Connector (OSTI)

Imprinting micro structures on glass in conventional furnace instead of vacuum chamber was carried out using a nickel alloy mold which was fabricated by diode-pumped solid state laser writing. The layout is designed to serve for DNA analysis. In the ... Keywords: Conventional furnace, Glass imprinting, Laser direct writing, Ni alloy mold

Qiuling Chen; Qiuping Chen; Gabriele Maccioni; Adriano Sacco; Sergio Ferrero; Luciano Scaltrito

2012-07-01T23:59:59.000Z

386

Our scenario is akin to the magnetic furnace model proposed by Axford and  

E-Print Network [OSTI]

Our scenario is akin to the magnetic furnace model proposed by Axford and McKenzie (14­16) and to ideas invoking reconnection of mesoscale loops (38, 39). We adopt from the furnace model the idea. However, our model of the nascent solar wind is intrinsically 3-D, and the magnetic field geometry

Pe'er, Dana

387

Use of a predictive model for the impact of cofiring coal/biomass blends on slagging and fouling propensity  

SciTech Connect (OSTI)

The paper describes an investigation of slagging and fouling effects when cofiring coal/biomass blends by using a predictive model for large utility boilers. This model is based on the use a zone computational method to determine the midsection temperature profile throughout a boiler, coupled with a thermo-chemical model, to define and assess the risk of elevated slagging and fouling levels during cofiring of solid fuels. The application of this prediction tool was made for a 618 MW thermal wall-fired pulverized coal boiler, cofired with a typical medium volatile bituminous coal and two substitute fuels, sewage sludge and sawdust. Associated changes in boiler efficiency as well as various heat transfer and thermodynamic parameters of the system were analyzed with slagging and fouling effects for different cofiring ratios. The results of the modeling revealed that, for increased cofiring of sewage sludge, an elevated risk of slagging and high-temperature fouling occurred, in complete contrast to the effects occurring with the utilization of sawdust as a substitute fuel. 30 refs., 9 figs.,1 tab.

Piotr Plaza; Anthony J. Griffiths; Nick Syred; Thomas Rees-Gralton [Cardiff University, Cardiff (United Kingdom). Centre for Research in Energy

2009-07-15T23:59:59.000Z

388

Reduced Sulfur in Ashes and Slags from the Gasification of Coals: Availability for Chemical and Microbial Oxidation  

Science Journals Connector (OSTI)

...9 by 30 cm) ofa coal gasifier slag (1.5 kg [air-dried...rates. Ten grams of gasifier ash was suspended in...most-probable-number (MPN) medium de- scribed below except...99. Growth in the medium was scored positive if...S OXIDATION IN COAL GASIFIER SOLID WASTES 745 6 E...

Richard F. Strayer; Edward C. Davis

1983-03-01T23:59:59.000Z

389

Reduced Sulfur in Ashes and Slags from the Gasification of Coals: Availability for Chemical and Microbial Oxidation  

Science Journals Connector (OSTI)

...the TXB-thiosulfate medium described by Brannan...replaced the sulfates. The medium con- tained the following...99. Growth in the medium was scored positive if...Ash and slag particle size distribu- tions were...S OXIDATION IN COAL GASIFIER SOLID WASTES 745 6 E...

Richard F. Strayer; Edward C. Davis

1983-03-01T23:59:59.000Z

390

LWA demonstration applications using Illinois coal gasification slag: Phase 2. Technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. In Phase 1 of this project, Praxis developed a pilotscale production technique and produced a large batch of expanded aggregates from an Illinois coal slag feed. The Phase 2 work focuses on characterization and applications-oriented testing of the expanded slag products as substitutes for conventional ULWAs. Target applications include high-volume uses such as loose fill insulation, insulating concrete, lightweight precast products (blocks), waterproof wallboard, rooftiles, and filtration media. The precast products will be subjected to performance and characterization testing in conjunction with a commercial manufacturer of such products in order to obtain input from a potential user. The production of value-added products from slag will eliminate a solid waste and possibly enhance the overall gasification process economics, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1993-12-31T23:59:59.000Z

391

Assessment of the Modified Emd Ex Ii Dosimeter In Measuring the Exposure of A 1 Khz Induction Furnace Operators  

Science Journals Connector (OSTI)

Magnetic fields in the vicinity of induction furnaces exhibit a marked spatial variation. Those close to a furnace often may exceed 1 mT1 and may exceed exposure guidelines2, but at normal operator positions this...

Philip Chadwick

1999-01-01T23:59:59.000Z

392

What Steps Do You Take to Maintain Your Furnace? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Steps Do You Take to Maintain Your Furnace? Steps Do You Take to Maintain Your Furnace? What Steps Do You Take to Maintain Your Furnace? January 7, 2010 - 7:30am Addthis This week, Chris told you about his plans to maintain his furnace to keep it running efficiently. Proper maintenance is key to ensuring your heating and cooling systems are in working order. No one wants to wake up on the coldest day of the year to find that they have no heat! What steps do you take to maintain your furnace? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Brrrrr. It's Cold In There! Saving Energy and Money Starts at Home 31,000 Homes Weatherized in June

393

DOE Joint Genome Institute: Breaking down cellulose without blasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2011 4, 2011 Breaking down cellulose without blasting lignin: "Dry rot" genome offers lessons for biofuel pretreatment WALNUT CREEK, Calif.-Feared by realtors and homeowners alike, dry rot due to the fungus Serpula lacrymans causes millions of dollars worth of damage to homes and buildings around the world. This brown rot fungus' capacity to break down the cellulose in wood led to its selection for sequencing by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) in 2007, with the goal of identifying the enzymes involved in the degradation process and using the information to improve cellulosic biofuels production. Photo: A variant of Serpula lacrymans causes dry rot. (Dave Brown via Flickr/Creative Commons Attribution 2.0) As reported online July 14 in Science Express, an international team of

394

A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves  

E-Print Network [OSTI]

The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. ...

Courtney, Amy; 10.1016/j.mehy.2008.08.015

2008-01-01T23:59:59.000Z

395

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

396

Phase Equilibria in Synthetic Coal–Petcoke Slags (Al2O3–CaO–FeO–SiO2–V2O3) under Simulated Gasification Conditions  

Science Journals Connector (OSTI)

Phase Equilibria in Synthetic Coal–Petcoke Slags (Al2O3–CaO–FeO–SiO2–V2O3) under Simulated Gasification Conditions ... Phase equilibria of the Al2O3–CaO–FeO–SiO2–V2O3 system in synthetic slag mixtures simulating coal–petcoke slag chemistry at 1500 °C in an oxygen partial pressure of 10–8 atm were investigated by a series of quench experiments. ... Petroleum coke or petcoke is a waste product of petroleum refining and is an attractive feedstock alternative for carbon. ...

Jinichiro Nakano; Kyei-Sing Kwong; James Bennett; Thomas Lam; Laura Fernandez; Piyamanee Komolwit; Seetharaman Sridhar

2011-06-17T23:59:59.000Z

397

BPM Motors in Residential Gas Furnaces: What are theSavings?  

SciTech Connect (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

398

Exergy Analysis and Energy-Saving Evaluation of the Fuming Furnace Device in SKS Lead Smelting System  

Science Journals Connector (OSTI)

To highlight the energy-saving feature of the integral device of fuming furnace and waste heat boiler(referred to as ¡°the fuming furnace device¡± for short) in the Shuikoushan lead smelting system (hereinafter referred to as SKS system) and to ... Keywords: SKS lead smelting, fuming furnace, waste heat boiler, exergy analysis, energy-saving

Jiang Aihua; Mei Chi; Shi Zhangming; Wang Hongcai; Yu Huang; Zhu Xiaojun

2011-02-01T23:59:59.000Z

399

Exergy-based analysis and efficiency evaluation for an aluminum melting furnace in a die-casting plant  

Science Journals Connector (OSTI)

The efficiency of a natural gas-fired aluminum melting furnace in a die-casting plant is examined using energy and exergy methods, to improve understanding of the burner system in the furnace and so that potential improvements can be identified. Such ... Keywords: aluminum, die-casting, efficiency, energy, exergy, melting furnace

Marc A. Rosen; Dennis L. Lee

2009-02-01T23:59:59.000Z

400

Influence of poly(acrylic acid) molar mass on the fracture properties of glass polyalkenoate cements based on waste gasifier slags  

Science Journals Connector (OSTI)

The failure behaviour of glass polyalkenoate cements was investigated using a linear elastic fracture mechanics (LEFM) approach. Cements were based on Drayton gasifier slag and four poly(acrylic acid)s...3 to 6.4...

A. Sullivan; R. Hill

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quantification of dilatory resistance in four rice cultivars to rice blast  

E-Print Network [OSTI]

Dilatory resistance of two rice Cultivars, Jackson and Maybelle, to rice blast was expressed as decreases in different components of resistance. Incubation period was found to be more important in determining dilatory resistance than the other...

Katsar, Catherine Susan

1993-01-01T23:59:59.000Z

402

The design and retrofit of buildings for resistance to blast-induced progressive collapse  

E-Print Network [OSTI]

In recent years, concern has risen drastically regarding the suitability of structural design for blast resistance. Historic events have proven that buildings that are designed in compliance with conventional building codes ...

Abbott Galvão Sobreira Lopes, Isabel

2009-01-01T23:59:59.000Z

403

Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant  

Science Journals Connector (OSTI)

Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant ... This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. ... Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. ...

Maria Izquierdo; Oriol Font; Natalia Moreno; Xavier Querol; Frank E. Huggins; Esther Alvarez; Sergi Diez; Pedro Otero; Juan Carlos Ballesteros; Antonio Gimenez

2007-06-28T23:59:59.000Z

404

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect (OSTI)

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

405

Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects  

E-Print Network [OSTI]

Instrumentation is needed to produce realistic blast waves in a laboratory setting. This paper describes the development and characterization of oxy-acetylene driven, laboratory scale shock tubes for use in studying blast injury, candidate armor materials, and material properties at blast loading rates. The pressure-time profiles show a true shock front and exponential decay characteristic of blast waves and have relevant durations. The modular design includes shock tube diameters of 27 mm and 41 mm, and a selection of peak pressures from 204 kPa to 920 kPa can be produced by selection of the driver section diameter and placement of the test sample. Characterization studies of several driver/driven section combinations showed consistent results, with peak pressures having 0.8 - 6.9 percent uncertainty in the mean. This shock tube design provides a more realistic blast profile than current air-driven shock tubes. In addition, operation does not require specialized personnel or facilities like most blast-driven...

Courtney, Michael

2011-01-01T23:59:59.000Z

406

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

407

LTC vacuum blasting machine (metal): Baseline report; Summary  

SciTech Connect (OSTI)

The LTC coating removal system consists of several hand tools such as a Roto Peen scaler and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The PTC-6 is a vacuum system designed to be used with surface decontamination equipment. Dust and debris are captured by a high efficiency particulate filter (HEPA) vacuum system that deposits the waste directly into an on-board 23-gallon waste drum. The PTC-6 utilizes compressed air delivered from a source via an air hose connected to the air inlet to drive the hand held power tools. The control panel regulated the air pressure delivered to the tool. A separate compressed air flow powers the vacuum generator. The vacuum hoses connect the power tools to the dust chamber, returning paint chips and dust from the surface. A third compressed air flow is used to clean filters by pulsing air through a pipe with slots. The blasts of air shake dust and debris from the filter fabric.

NONE

1997-07-31T23:59:59.000Z

408

Economics of Residential Gas Furnaces and Water Heaters in United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

409

Heat Transfer Coefficient Distribution in the Furnace of a 300MWe CFB Boiler  

Science Journals Connector (OSTI)

Properly understanding and calculating the distributions of heat flux and heat transfer coefficient (?) in the furnace is important in designing a circulating fluidized bed (CFB) boiler, especially with supercrit...

P. Zhang; J. F. Lu; H. R. Yang; J. S. Zhang…

2010-01-01T23:59:59.000Z

410

Towards a reliable and efficient furnace simulation tool for coal fired utility boilers  

Science Journals Connector (OSTI)

A validation exercise is presented with the objective of demonstrating that using a mature furnace simulation tool on high end supercomputers enables the reliable prediction of coal-fired utility boiler perfor...

Benedetto Risio; Uwe Schnell…

1999-01-01T23:59:59.000Z

411

Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating  

E-Print Network [OSTI]

Here the authors report the use of either furnace heating or Joule heating to pacify the exposed graphene edges by loop formation in a novel graphitic nanoribbonmaterial, grown by chemical vapor deposition. The edge energy ...

Jia, Xiaoting

412

An X-based spatial oxide growth visualization software for furnace characterization  

E-Print Network [OSTI]

important utility-oxide growth on the silicon wafer. The software developed is completely generic and has no affiliation to any make of furnace. The data required for simulation can easily be obtained from the actual piece of equipment. Simulation...

Kumar, Ravi C.K

2012-06-07T23:59:59.000Z

413

E-Print Network 3.0 - air-conditioners furnaces air Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by connecting it to a leaky duct system. By decreasing the leakage... condensing unit of a split system air conditioner or heat pump, cooling or heating coil, or the furnace...

414

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

2001 Residential Energy Consumption Survey (RECS 2001; USenergy consumption of residential furnaces and boilers in U.S.US Department of Energy (2001). Residential energy consump- tion survey: household energy consumption

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

415

False diffusion in numerical simulation of combustion processes in tangential-fired furnace  

Science Journals Connector (OSTI)

Numerical simulation serves as one of the most important tools for analyzing coal combustion in Tangentially Fired Furnaces (TFF) with NUMERICAL FALSE DIFFUSION as one key problem that degrades the simulation acc...

Xuchang Xu; Zhigang Wang; Yuqun Zhuo…

2007-11-01T23:59:59.000Z

416

Experimental Investigation of Combustion of Biomass Slurry in an Oil Fired Furnace  

Science Journals Connector (OSTI)

An experimental investigation of combustion of biomass slurry in an oil fired furnace was ... are presented. The calorific value of the biomass slurry increases with equivalence ratio initially, attains ... obser...

S. V. Prakash; S. R. Shankapal

2009-01-01T23:59:59.000Z

417

A Ceramic Waste Heat Recovery System on a Rotary Forge Furnace: An Installation and Operating History  

E-Print Network [OSTI]

heavy duty high temperature ceramic tube recuperator and five high temperature recirculating burners. The energy conservation system was retrofitted onto a rotary hearth furnace with an inside diameter of 11' 5'' (3.5m) and an available hearth area...

Young, S. B.; Campbell, T. E.; Worstell, T. M.

1981-01-01T23:59:59.000Z

418

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

419

Building America Expert Meeting: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Broader source: Energy.gov [DOE]

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

420

Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal  

SciTech Connect (OSTI)

The fate of carbon particles during entrained-flow gasification of coal in the slagging regime is analyzed. More specifically, the study addresses the relevance of segregation of carbon particles in a near-wall region of the gasifier to coal conversion. Segregation of carbon particles is analyzed considering the effects of turbulence- and swirl-promoted particle migration toward the wall, interaction of the impinging particles with the wall ash layer, coverage of the slag layer by refractory carbon particles, accumulation of carbon particles in a dense-dispersed phase near the wall of the gasifier. Operating conditions of the gasifier and slag properties may be combined so as to give rise to a variety of conversion regimes characterized by distinctively different patterns of carbon particles segregation. A simple 1D model of an entrained-flow gasifier has been developed based on the conceptual framework of carbon particle segregation. The model aims at providing a general assessment of the impact of the different patterns of carbon particle segregation on the course and extent of carbon gasification. A sensitivity analysis with reference to selected model parameters is performed to identify key processes controlling carbon segregation and their impact on the gasifier performance. (author)

Montagnaro, Fabio [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, 80126 Napoli (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II and Istituto di Ricerche sulla Combustione, CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

2010-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

422

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

423

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

SciTech Connect (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

424

On the conversion of blast wave energy into radiation in active galactic nuclei and gamma-ray bursts  

E-Print Network [OSTI]

It has been suggested that relativistic blast waves may power the jets of AGN and gamma-ray bursts (GRB). We address the important issue how the kinetic energy of collimated blast waves is converted into radiation. It is shown that swept-up ambient matter is quickly isotropised in the blast wave frame by a relativistic two-stream instability, which provides relativistic particles in the jet without invoking any acceleration process. The fate of the blast wave and the spectral evolution of the emission of the energetic particles is therefore solely determined by the initial conditions. We compare our model with existing multiwavelength data of AGN and find remarkable agreement.

Martin Pohl; Reinhard Schlickeiser

1999-11-24T23:59:59.000Z

425

Basic refractory and slag management for petcoke carbon feedstock in gasifiers  

DOE Patents [OSTI]

The disclosure provides methods of operating a slagging gasifier using a carbon feedstock having a relatively high V.sub.2O.sub.5 to SiO.sub.2 ratio, such as petcoke. The disclosure generates a combined chemical composition in the feed mixture having less than 25 wt. % SiO.sub.2, greater than 20 wt. % V.sub.2O.sub.5, and greater than 20 wt. % CaO. The method takes advantage of a novel recognition that increased levels of SiO.sub.2 tend to decrease dissolution of the V.sub.2O.sub.3 which forms under the reducing conditions of the gasifier, and utilizes the CaO additive to establish a chemical phase equilibria comprised of lower melting compounds. The method further provides for control based on the presence of Al.sub.2O.sub.3 and FeO, and provides for a total combined chemical composition of greater than about 5 wt. % MgO for use with refractory linings comprised of MgO based refractory brick.

Kwong, Kyei-Sing; Bennett, James P; Nakano, Jinichiro

2014-04-22T23:59:59.000Z

426

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

2014-04-22T23:59:59.000Z

427

Evaluation of Retrofit Variable-Speed Furnace Fan Motors  

SciTech Connect (OSTI)

In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

Aldrich, R.; Williamson, J.

2014-01-01T23:59:59.000Z

428

Comparative analysis of failure probability for ethylene cracking furnace tube using Monte Carlo and API RBI technology  

Science Journals Connector (OSTI)

Abstract Ethylene cracking furnace tube is one of the most critical components in the petrochemical industry to crack molecules at high temperature. The furnace tube degrades easily during operations which would cause equipment failure and lead to serious consequences, such as fire and explosion. In this work, a quantitative analysis of failure probability for the ethylene cracking furnace tube is performed using the Monte Carlo method and API Risk-Based Inspection (RBI) technology. The results have shown that the operation life of ethylene cracking furnace tube under interaction of creep and carburization is less than that under creep, and the failure probability calculated based on API RBI technology is lower than that using the Monte Carlo method. Moreover, the comparative analysis results prove further that creep and carburization are two main failure modes of the furnace tube rupture. Therefore, it is very necessary to provide reliable data to perform risk assessment and inspections on ethylene cracking furnace tube.

Wenhe Wang; Kaiwu Liang; Changyou Wang; Qingsheng Wang

2014-01-01T23:59:59.000Z

429

A Multicellular Basis for the Origination of Blast Crisis in Chronic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicellular Basis for the Origination of Blast Crisis in Chronic Multicellular Basis for the Origination of Blast Crisis in Chronic Myeloid Leukemia Philip Hahnfeldt Tufts University School of Medicine Abstract Among radiation-induced cancers, some leukemias, including chronic myeloid leukemia (CML) have especially high excess relative risks. CML, sporadic or radiogenic, is also thought to be comparatively very well understood. Accordingly, CML is considered an important model for assessing radiogenic cancer risk. CML is characterized by a specific chromosome translocation, the BCR-ABL fusion gene, and it has been widely postulated that an advanced stage, CML blast crisis originates mainly via cell-autonomous mechanisms such as secondary mutations or genomic instability. However, there is growing evidence that intercellular interactions can play a critical role

430

Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design  

SciTech Connect (OSTI)

Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

Moss, W C; King, M J; Blackman, E G

2009-04-14T23:59:59.000Z

431

soft X-ray background as a supernova blast wave viewed from inside: solar abundance models  

SciTech Connect (OSTI)

A model of the soft X-ray background is presented in which the Sun is assumed to be inside an active supernova blast wave. The blast wave evolves in a preexisting cavity. The broad band surface brightnesses is explained by such a blast wave with an explosion energy of E sub approx. 5 x 10 to the 50th power ergs and radius 80 to 100 pc, using solar abundances. An approach to treating the problem of large anisotropies in the ambient medium is also explored, accommodating the observed anticorrelation between the soft X-ray surface brightness and the 21 cm column density. It is found that only for post shock temperatures below 10 6 K a shock propagating into a density enhancement will be dimmer than a similar shock in a lower density region.

Edgar, R.J.

1984-01-01T23:59:59.000Z

432

Performance testing of lead free primers: blast waves, velocity variations, and environmental testing  

E-Print Network [OSTI]

Results are presented for lead free primers based on diazodinitrophenol (DDNP)compared with tests on lead styphnate based primers. First, barrel friction measurements in 5.56 mm NATO are presented. Second, shot to shot variations in blast waves are presented as determined by detonating primers in a 7.62x51mm rifle chamber with a firing pin, but without any powder or bullet loaded and measuring the blast wave at the muzzle with a high speed pressure transducer. Third, variations in primer blast waves, muzzle velocities, and ignition delay are presented after environmental conditioning (150 days) for two lead based and two DDNP based primers under cold and dry (-25 deg C,0% relative humidity), ambient (20 deg C, 50% relative humidity), and hot & humid (50 deg C, 100% relative humidity) conditions in 5.56 mm NATO. Taken together, these results indicate that DDNP based primers are not sufficiently reliable for service use.

Courtney, Elya; Summer, Peter David; Courtney, Michael

2014-01-01T23:59:59.000Z

433

Certain rules of formation of the block in melting brucite in an OKB-955N smelting furnace  

Science Journals Connector (OSTI)

Certain rules of columnar crystallization of periclase and of formation of the block in melting of brucite in an OKB-955N smelting furnace are...

K. V. Simonov

434

Fundamental studies of the mechanisms of slag deposit formation: Final report  

SciTech Connect (OSTI)

The kinetics of ash deposition on utility boilers have been studied. A heated tube furnace system was used in the study. Areas of consideration in the deposition mechanics were: close space knowledge of chemical composition and distribution of inorganic constituents in coal, transformations and reactions of the inorganic constituents in the flame, ash transport mechanisms, initial adhesion of ash particles to heat transfer surfaces and subsequently to each other to form a deposit, and further interactions of the deposited ash to grow a strong deposit. Interactions of deposited ash that cause changes in physical and chemical properties in an aged deposit are due to processes such as sintering, chemical reactions, and melting. The degree of these changes increases as the deposit grows from the heat transfer surfaces where it forms. All of these changes during the deposit formation process are coal-specific and are strongly dependent on the boiler configuration and operating conditions. 18 refs., 55 figs., 42 tabs.

Austin, L.G.; Benson, S.; Rabinovich, A.; Tangsathitkulchai, M.; Schobert H.H.

1987-07-01T23:59:59.000Z

435

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

436

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

Johnson, F.; Stone, M.; Miller, D.

2014-09-03T23:59:59.000Z

437

Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant  

SciTech Connect (OSTI)

Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag.

Izquierdo,M.; Font, O.; Moreno, N.; Querol, X.; Huggins, F.; Alvarez, E.; Diez, S.; Otero, P.; Ballesteros, J.; Gimenez, A.

2007-01-01T23:59:59.000Z

438

Planar blast scaling with condensed-phase explosives in a shock tube  

SciTech Connect (OSTI)

Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure, shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.

Jackson, Scott L [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

439

Decontamination of metals by melt refining/slagging. An annotated bibliography: Update on stainless steel and steel  

SciTech Connect (OSTI)

The following presentation is an update to a previous annotation, i.e., WINCO-1138. The literature search and annotated review covers all metals used in the nuclear industries but the emphasis of this update is directed toward work performed on mild steels. As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste problems, Lockheed Idaho Technologies Co (LITCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small wide melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--2,000 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste and Pit 9/RWMC boxes. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development. The program plan will be jointly developed by Montana Tech and LITCO.

Worchester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A. [Montana Tech of the Univ., of Montana (United States); Mizia, R.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-01-01T23:59:59.000Z

440

The Impact of Forced Air System Blowers on Furnace Performance and Utility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Impact of Forced Air System Blowers on Furnace Performance and Utility The Impact of Forced Air System Blowers on Furnace Performance and Utility Loads Speaker(s): Bert Phillips Date: November 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: James Lutz Bert Phillips will talk about the impact of forced air system blower performance on furnace or heating performance and on utility loads, and what can be done to reduce blower power requirements. He will also briefly discuss a ground source heat pump monitoring study that he just finished. Mr. Phillips is a registered Professional Engineer in three Canadian provinces and part owner of UNIES Ltd., an engineering firm in Winnipeg, Manitoba (60 miles straight north of the North Dakota/Minnesota border). He does research and HVAC system design and investigates

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

442

Slagging Behavior of Straw and Corn Stover and the Fate of Potassium under Entrained-Flow Gasification Conditions  

Science Journals Connector (OSTI)

It was observed that, although the major part of the primarily siliceous native ash promptly forms a molten slag, much of the alkalis are evaporated into the syngas. ... Experiments were performed in an electrically heated atmospheric EF reactor [lab-scale combustion and gasification simulator (LCS)] equipped with a multi-stage gas burner that has been applied extensively in previous studies of PF combustion and gasification. ... However, deposition problems could arise when burning other coals, particularly coals with a high S or alkali metal content or a low content of ash. ...

Simon Leiser; Mariusz K. Cieplik; Ruben Smit

2012-12-20T23:59:59.000Z

443

Mechanical and hydration properties of ground granulated blastfurnace slag pastes activated with MgO-CaO mixtures  

E-Print Network [OSTI]

×40mm×40mm cubes covered with cling film and cured at 20 ° C. After 24h, samples were demoulded and cured under two different conditions: (1) immersed in deionised water and (2) sealed in plastic boxes at relative humidity of 99±1%. For both... °C to 1000°C in air with the rate of heating at 10°C/min on a Perkin Elmer STA 6000 machine. The hydration degree of slag was determined by a selective dissolution method using salicyclic acid/methanol/acetone in duplicate according to Luke...

Gu, Mai; Jin, Fei; Al-Tabbaa, Abir; Shi, Bin; Liu, Jin

2014-08-07T23:59:59.000Z

444

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

445

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network [OSTI]

A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented..., described in Figure 1, 2. The combustion oxygen is carried by a more I I i I' has been used as a design basis. The heater is based on the actual design of a unit built by KTI SpA. The furnace does not include air preheater or steam generation...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

446

Coal-fired furnace for testing of thermionic converters. Topical report  

SciTech Connect (OSTI)

The development of thermionic converter technology has progressed to make near-term applications interesting. One of these applications is the thermionic topping of a pulverized coal-fired central station powerplant. Up to now, thermionic converters have been flame tested using natural gas as fuel. A new test furnace is required for evaluation of thermionic converters in a coal-fired environment. The design and costs of a facility which adapts a coal-fired furnace built by Foster Wheeler Development Corporation (FWDC) for thermionic converter testing are discussed. Such a facility would be exempt from air pollution regulations because of its low firing rate.

Not Available

1980-10-01T23:59:59.000Z

447

Combustion process in a biomass grate fired industry furnace: a CFD study  

Science Journals Connector (OSTI)

This paper presents a CFD investigation of the combustion process in a 50 MW grate fired furnace. The CFD results were compared with available experimental data at the furnace outlet to validate the models for the volatile oxidation and NOx formation. The models were then used to predict the effect of an 'ECO' tube system on NOx emissions. It was shown that with an improved flow structure and air distribution, 30% NOx reduction can be obtained. CFD results revealed the impact of load and fuel moisture on the flow structure, the temperature distribution and the flow residence time.

T. Klason; X.S. Bai

2006-01-01T23:59:59.000Z

448

Computational Modeling and Optimization of a Novel Shock Tube to Study Blast Induced Traumatic Brain Injury  

E-Print Network [OSTI]

. Various 2D models to simulate the shock wave propagation in a shock tube to see the effects of varying shock tube geometry and working fluid on the blast profiles were developed. Ranges of different parameters evaluated are: tube length - 5ft to 25ft; tube...

Anumolu, Pratima

2014-08-06T23:59:59.000Z

449

Material Modeling and Development of a Realistic Dummy Testing Blast Induced Traumatic Brain Injury  

E-Print Network [OSTI]

Material Modeling and Development of a Realistic Dummy Head for Testing Blast Induced Traumatic Brain Injury S. G. M. Hossain1, C. A. Nelson1, T. Boulet2, M. Arnoult2, L. Zhang2, A. Holmberg2, J. Hein occurrence rate of traumatic brain injury (TBI) ­ 1.4 million people in US per year ­ 50,000 deaths ­ 235

Farritor, Shane

450

Shock Tube Design for High Intensity Blast Waves for Laboratory Testing of Armor and Combat Materiel  

E-Print Network [OSTI]

Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods were investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which works by increasing the turbulent flow of the deflagration wave, thus increasing its speed and pressure. This approach increased the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increased the peak pressure from 1.17 MPa to 2.25 MPa. Using a 1...

Courtney, Elijah; Courtney, Michael

2015-01-01T23:59:59.000Z

451

Blasting Attenuation Study Crystal Ridge, MacDonald Ranch and MacDonald Highlands  

E-Print Network [OSTI]

#12;#12;#12;#12;Blasting Attenuation Study Crystal Ridge, MacDonald Ranch and MacDonald Highlands Ridge, MacDonald Ranch, and MacDonald Highlands. The purpose of this study was to · evaluate seismograph recorded in the Crystal Ridge, MacDonald Ranch, and MacDonald Highlands areas from 2/25/05 to 3

452

MICRO-METER MEASUREMENT OF CRACKS TO COMPARE BLAST AND ENVIRONMENTAL EFFECTS.  

E-Print Network [OSTI]

to development of a new approach to vibration monitoring called autonomous crack measurement (ACM vibration time histories. Measurements reported herein show that weather- induced response of cracksMICRO-METER MEASUREMENT OF CRACKS TO COMPARE BLAST AND ENVIRONMENTAL EFFECTS. Charles H Dowding

453

Underwater blast loading of sandwich beams: Regimes of behaviour M.T. Tilbrook 1  

E-Print Network [OSTI]

, with a time constant h on the order of millisec- onds. The magnitude of the shock wave peak pressure and decay are charted on maps using axes of blast impulse and core strength. The simulations indicate that continued (1948) and Swisdak (1978) and are repeated briefly here in order to underpin the current study

Fleck, Norman A.

454

Chapter 1.2 - The Direct Reduction of Iron  

Science Journals Connector (OSTI)

Abstract For the past 100 years, the dominant technology to produce iron from iron ores has been the blast furnace, which utilizes carbothermic reduction at elevated temperatures to make a molten iron product and a liquid slag. However, economic ironmaking in this fashion requires massive facilities for economy of scale, and is environmentally problematic with its sinter plants, coke ovens, and large production of carbon dioxide. Direct reduction (DR) is an alternate form of ironmaking that is economic at much smaller scales, generally uses natural gas as reductant instead of coke, and costs considerably less than a blast furnace facility. Worldwide production of Direct Reduced Iron has increased from less than one million tonnes per year in 1971 to over 70 million tonnes forty years later. DRI production is expected to continue this rapid increase for years to come.

Thomas Battle; Urvashi Srivastava; John Kopfle; Robert Hunter; James McClelland

2014-01-01T23:59:59.000Z

455

Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact  

SciTech Connect (OSTI)

A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target response description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the modeling setup is included.

Hatch-Aguilar, T; Najjar, F; Szymanski, E

2011-03-24T23:59:59.000Z

456

Diagnosing and modifying off-site blast effects by seismic means -- A case study  

SciTech Connect (OSTI)

A series of complaints were received from the owners of a 130 year-old farmhouse that had been converted into a bed and breakfast establishment. It was determined that blast effects were most noticeable on the third floor of the farmhouse. A vibration study was proposed aimed at isolating the actual cause of the perceived vibration. To aid in this determination, a customized, split-cable seismograph utilizing three single component transducers was deployed both in the interior and exterior of the farmhouse for two primary blasts. By utilizing a monitoring technique involving both interior and exterior sensors from a single seismograph, vibration time-histories from the three locations could be time-linked, providing an accurate assessment as to the actual mechanism responsible for the complaints. In this case, the split-cable array provided data indicating a low frequency ground vibration effect. Amplification of structure vibration due to the matching of the natural frequency of the farmhouse and the transmitted ground vibration was identified as the probable cause of the complaints. Given the potential impact of low frequency energy with surrounding properties, an analytical approach based on the concept of linear superpositioning was used to determine optimum delay intervals to reduce the off-site impact of future production blasts. Single-hole test blast data was recorded with traditional seismographs and analyzed using vibration control software. Utilization of recommended blasthole sequencing, combined with a change in blast orientation, resulted in the elimination of complaints at the farmhouse, in reduced vibration values at other neighboring properties and in a reduction in the overall liability exposure.

Brashear, S.; Brush, R.; Cook, B.

1995-12-31T23:59:59.000Z

457

Ash melting behavior and slag infiltration into alumina refractory simulating co-gasification of coal and biomass  

Science Journals Connector (OSTI)

Abstract In the present study melting behavior of ashes from German brown coal and biomass (wheat straw) as well as from two artificial mixtures of both has been investigated. The four fuel samples were ashed at 450 °C over a period of 26 h. Ash fusion tests and all other measurements have been executed under reducing atmosphere, simulating gasification conditions. The ash melting and wetting properties have been studied for ash cylinders placed onto an alumina refractory at temperatures up to 1600 °C. Optical microscopy and SEM/EDX studies have been performed to analyze the infiltration of slag into the refractory and related progression. For the ash fusion behavior and surface wetting of the refractory clear distinctions from pure ashes have been detected for the blend with 50 wt.% biomass addition due to the formation of eutectics. From optical microscopy and SEM/EDX images of the sections different infiltration properties and mechanisms have been identified. The qualitative infiltration depth and deceleration of slag infiltration by a formation of solid phases have been provided by FactSage™ calculations. In these calculations the contact zone between the two materials has been reconstructed by a stepwise change in the amounts of ash and refractory. The experimental results are very well reflected in this model. Finally, the obtained results suggest low corrosive biomass amounts for co-use in the present gasifier types designed for pure coal.

Guanjun Zhang; Markus Reinmöller; Mathias Klinger; Bernd Meyer

2015-01-01T23:59:59.000Z

458

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an  

E-Print Network [OSTI]

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium, for the ® rst time, that solid-state lasers required for analysis (ml or mg) and the technique has direct based

Michel, Robert G.

459

STANDARD OPERATING PROCEDURE FOR TUBE "A1-GateOx" furnace in TRL.  

E-Print Network [OSTI]

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas ControlOx" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

460

STANDARD OPERATING PROCEDURE FOR TUBE "B2-Ox-Alloy" furnace in TRL.  

E-Print Network [OSTI]

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas Control_Alloy" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

STANDARD OPERATING PROCEDURE FOR TUBE "B1-Au" furnace in TRL.  

E-Print Network [OSTI]

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas Control" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

462

STANDARD OPERATING PROCEDURE FOR TUBE "A2-WetOxBond" furnace in TRL.  

E-Print Network [OSTI]

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas ControlOxBond" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

463

Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells  

Science Journals Connector (OSTI)

It is well known that distributed combined heat and power (CHP) systems for commercial and industrial buildings are economically desirable because they conserve energy. Here, a thermophotovoltaic (TPV) unit is described that brings CHP into the home providing both heat and electric power by replacing the typical home heating furnace with a combined TPV furnace–generator. First, the design of a 1.5 kWelectric/12.2 kWthermal TPV furnace–generator is described along with the key components that make it possible. Diffused junction GaSb cells are one of these key components. Secondly, an economic cost target is determined for this system where the cost of the photovoltaic array will be key to the economical implementation of this concept. Finally, it is argued that the GaSb cells and arrays can be manufactured at the required low cost. The cost target can be reached because the GaSb cells in the TPV furnace–generator can produce an electrical power density of 1 W cm?2 which is 100 times higher than the typical solar cell. The cost target can also be reached because the GaSb cell fabrication process parallels the silicon solar cell process where no toxic gases are used, no wafer polish is required and cast polycrystalline cells can be used.

L M Fraas; J E Avery; H X Huang

2003-01-01T23:59:59.000Z

464

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

465

A review of NO[sub x] formation mechanisms in recovery furnaces  

SciTech Connect (OSTI)

Review of NOx formation studies shows that NO forms in recovery furnaces primarily by two independent mechanisms, thermal and fuel. Thermal NO formation is extremely temperature-sensitive. However, theoretical predictions indicate that recovery furnace temperatures are not high enough to form significant thermal NO. Fuel NO formation is less temperature-sensitive, and is related to fuel nitrogen content. Black liquors are shown to contain 0.05 to 0.24 weight percent fuel nitrogen. Conversion of just 20% of this would yield approximately 25-120 ppm NOx (at 8% 0[sub 2]) in the flue gas, enough to represent the majority of the total NOx. Data from operating recovery furnaces show NOx emissions ranging from near zero to over 100 ppm at 8% 0[sub 2]. An apparent increase in recovery furnace NOx emissions was observed with increasing solids. This increase is much less than predicted by thermal NO formation theory, indicating that other NO formation/destruction mechanisms, such as fuel NO formation, are important. No data are available to show the relative importance of thermal and fuel NO to total NOx during black liquor combustion.

Nichols, K.M.; Thompson, L.M.; Empie, H.J (Inst. of Paper Science and Technology, Atlanta, GA (United States))

1993-01-01T23:59:59.000Z

466

Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace  

E-Print Network [OSTI]

When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

Ferri, J. L.

1983-01-01T23:59:59.000Z

467

Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces Fans; Correction  

Broader source: Energy.gov [DOE]

On January 3, 2014 the U.S. Department of Energy (DOE) published a final rule in the Federal Register that established the test procedure for residential furnace fans. Due to drafting errors, that document inadvertently removed necessary incorporation by reference material in the Code of Federal Regulations (CFR). This final rule rectifies this error by once again adding the removed material.

468

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al-Mutlaq  

E-Print Network [OSTI]

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al billions of dollars annually. While steel is normally protected from corrosion in concrete by a passive of the effects of addition of Bag House Dust (BHD) on aspects of concrete durability. BHD is a fine powder

Birmingham, University of

469

Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 Chemical State Analysis of Al Contained in Iron and Steel Slag  

E-Print Network [OSTI]

Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 © X Al Chemical State Analysis of Al Contained in Iron and Steel Slag Using Chemical Shift of X-Ray Fluorescence Spectra Tomohiro YAMAMOTO, Hiroya MIYAUCHI, Takashi YAMAMOTO and Jun KAWAI #12;#12;41 177 X Al Adv. X-Ray. Chem. Anal

Jun, Kawai

470

Investigation of sonic/subsonic air-blast atomization using Rayleigh- and Mie-scattering visualization techniques  

E-Print Network [OSTI]

To examine the jet mixing in air-blast twin fluid atomization, the sonic and supersonic air jet developments have been exclusively visualized using the Rayleigh scattering principle and the development of liquid spray has been separately visualized...

Kim, Tae-Kyun

2012-06-07T23:59:59.000Z

471

Confined blasts, and the impact of shock wave reflections on a human head and the related traumatic brain injury  

Science Journals Connector (OSTI)

We examine the effects of blast waves in a confined space on a human head model. A finite element human model (FEHM) is exposed to blast waves from explosions, as well as, to the reflected waves from the confinement walls. The intensity of the travelling blast shock waves is measured computationally and compared with experimental results. We monitor the mechanical response of the brain of the FEHM at different stand-off positions, either close to, or away from the surrounding walls in interaction with the travelling blast waves. The skull pressure, brain intracranial pressure (ICP), acceleration, shear stress, and principal stresses and strains are measured as the biomechanical parameters for injury diagnosis and compared for all the situations and stand-off positions considered. The results illustrate that the additional reflected shock waves due to the surrounding walls can dramatically change the brain biomechanical parameters.

Asghar Rezaei; Mehdi Salimi Jazi; Samad Javid; Ghodrat Karami; Mariusz Ziejewski

2014-01-01T23:59:59.000Z

472

Genes encoding multiples forms of phospholipase A2 are expressed in immature forms of human leukemic blasts  

E-Print Network [OSTI]

leukemic blasts Letter to the Editor Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position, quantitative polymerase chain reaction (Q-PCR) was utilized to determine which of PLA2 mRNAs were expressed

Boyer, Edmond

473

Placement of the dam for the no. 2 kambaratinskaya HPP by large-scale blasting: some observations  

SciTech Connect (OSTI)

Results of complex instrument observations of large-scale blasting during construction of the dam for the No. 2 Kambaratinskaya HPP on the Naryn River in the Republic of Kirgizia are analyzed. The purpose of these observations was: to determine the actual parameters of the seismic process, evaluate the effect of air and acoustic shock waves, and investigate the kinematics of the surface formed by the blast in its core region within the mass of fractured rocks.

Shuifer, M. I.; Argal, E. S. [JSC 'SPII Gidroproekt' (Russian Federation)

2011-11-15T23:59:59.000Z

474

A Multicellular Basis for the Origination of Blast Crisis in Chronic Myeloid Leukemia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicellular Basis for the Origination of Blast Crisis in Multicellular Basis for the Origination of Blast Crisis in Chronic Myeloid Leukemia Philip Hahnfeldt 1 , Lynn Hlatky 1 , Rainer Sachs 2 1 Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA; and 2 Department of Mathematics, University of California, Berkeley, CA Among radiation-induced cancers, some leukemias, including chronic myeloid leukemia (CML) have especially high excess relative risks. CML, sporadic or radiogenic, is also thought to be comparatively very well understood. Accordingly, CML is considered an important model for assessing radiogenic cancer risk. CML is characterized by a specific chromosome translocation, the BCR-ABL fusion gene, and it has been widely postulated that an advanced

475

Beryl Bravo -- Blast wells conversion: Development and testing of steel/carbon fiber composite  

SciTech Connect (OSTI)

Preparation of the Safety Case for Mobil`s Beryl B platform indicated that 2 non-structural fire walls required to be converted to blast walls be able to withstand overpressures from hydrocarbon explosions. Mobil has adopted a novel and innovative reinforcement using high strength, high modulus carbon fibers. The background to the project is described, together with the selection of the solution, the properties of the composite materials and the derivation of the application process.

Galbraith, D.N.; Barnes, F.

1995-12-31T23:59:59.000Z

476

NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE  

SciTech Connect (OSTI)

Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

2013-08-10T23:59:59.000Z

477

Slide 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Objectives Objectives Measure the hydraulic conductivities of LAW cementitious waste forms (in this case, Saltstone) as a function of curing temperature Use the Unsaturated Flow Apparatus (UFA) centrifuge method to measure permeabilities and compare results with those obtained using a conventional permeameter (MACTEC) Correlate dynamic Young's moduli values with the hydraulic conductivities for these mixes Monitor changes in the microstructure with curing temperature using Scanning Electron Microscopy (SEM) Experimental Material Category Vendor Premix wt % Portland Cement Type II Holcim 10 Blast Furnace Slag Grade I Holcim 45 Fly Ash Class F SEFA 45 UFA EFFLUENT COLLECTION CHAMBER SAMPLE HOLDER SAMPLE BUCKET CENTER FLUID FLOWPATH ANNULAR FLUID FLOWPATH SAMPLE BUCKET SAMPLE CUP (Titanium)

478

Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

24 24 Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes James Lutz, Camilla Dunham-Whitehead, Alex Lekov, and James McMahon Energy Analysis Department Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 February 2004 This work was supported by the Office of Building Technologies and Community Systems of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. ABSTRACT In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an

479

Building America Top Innovations 2013 Profile Â… High-Performance Furnace Blowers  

Broader source: Energy.gov (indexed) [DOE]

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

480

Building America Top Innovations 2013 Profile Â… High-Performance Furnace Blowers  

Broader source: Energy.gov (indexed) [DOE]

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

Note: This page contains sample records for the topic "blast furnace slag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Inn Pool & Spa Low Temperature Geothermal Facility Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Inn Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

482

The determination of some anions using ion chromatography and ion chromatography-graphite furnace atomic absorption spectrometry  

E-Print Network [OSTI]

THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Chemistry THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN...

Hillman, Daniel C

1981-01-01T23:59:59.000Z

483

Investigation of lignite and firewood co-combustion in a furnace for tobacco curing application  

SciTech Connect (OSTI)

Co-combustion of lignite and firewood was investigated for an application in tobacco curing industry in Northern Thailand. Extensive experiments have been carried out in a newly developed furnace suitable for small curing unit, in place of locally made furnace. The aim of this investigation is to evaluate the performance of the combustion chamber in the required thermal output range for tobacco curing and to examine the influence of fuel feed rate, fuel mixture ratio and air staging on the combustion and emission characteristics of the furnace during steady state operation. Their effects are characterized in terms of the observed variations of temperature distributions, emissions of CO, SO{sub 2}, CO{sub 2}, O{sub 2} and combustion efficiency. Co-firing of firewood and lignite has been found to exhibit acceptable temperature distribution, high combustion efficiency and low emissions over a wide thermal output span. Stable operation at low (50 kW) and high (150 kW) thermal output was achieved with average CO and SO{sub 2} content in flue gas typically below 1400 and 100 ppm, respectively. Under the conditions considered, it was showed that the fuel feed rate had greater influence on combustion and emissions than firewood and lignite mixture ratio and air staging.

Nakorn Tippayawong; Chutchawan Tantakitti; Satis Thavornun

2006-07-01T23:59:59.000Z

484

Development of the household sample for furnace and boilerlife-cycle cost analysis  

SciTech Connect (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

485

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect (OSTI)

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

486

Advanced furnace air staging and burner modifications for ultra-low NOx firing systems  

SciTech Connect (OSTI)

Overfire air is an effective means to reduce NOx emissions from coal fired furnaces. The current range of overfire air usage on wall-fired boilers in the US is in the range of 10 to 20%. In most cases this is enough to achieve current Title IV NOx reduction requirements. Future applications are likely to go beyond 20% Overfire Air to reduce NOx further for lower investment and operating costs of SCR retrofits. Summer ozone reduction requires NOx emissions of 0.15 lb/MBtu. Currently, industry is exploring the conditions under which this goal is attainable. The paper discussed the approach to achieve ultra-low NOx emissions by using advanced furnace air staging. It describes the unique approach of redesigning the burner to maintain low NOx burner performance when the overfire air system is added or increased in capacity. The impact on furnace corrosion and unburned carbon losses are presented. A case study is used to show the effects of overfire air both on emissions and unburned carbon.

McCarthy, K.; Laux, S.; Grusha, J.

1999-07-01T23:59:59.000Z

487

FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces  

SciTech Connect (OSTI)

A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering m