Sample records for blanket purchase agreement

  1. Power Purchase Agreements Update

    Broader source: Energy.gov [DOE]

    Presentation covers an update on power purchase agreements and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  2. Execution Version POWER PURCHASE AGREEMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    ") and BLUEWATER WIND DELAWARE LLC ("Seller") June 23, 2008 #12;Execution Version POWER PURCHASE AGREEMENT TableExecution Version POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 40 3

  3. POWER PURCHASE AGREEMENT DELMARVA POWER & LIGHT COMPANY

    E-Print Network [OSTI]

    Firestone, Jeremy

    POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer") and BLUEWATER WIND 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 39 3

  4. Quick Guide: Power Purchase Agreements (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Introduction to Federal power purchase agreements (PPAs), including available FEMP services and technical assistance as well as questions to ask when evaluating PPAs for a Federal renewable energy project.

  5. Quick Guide: Power Purchase Agreements (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Introduction to Federal power purchase agreements (PPAs), including available FEMP services and technical assistance as well as questions to ask when evaluating PPAs for a Federal renewable energy project.

  6. Third-Party Financing and Power Purchase Agreements for Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Provides an...

  7. Municipal Bond - Power Purchase Agreement Model Continues to...

    Broader source: Energy.gov (indexed) [DOE]

    for power purchase agreement model to provide low-cost solar energy. Author: National Renewable Energy Laboratory Municipal Bond - Power Purchase Agreement Model Continues to...

  8. Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Power Purchase Agreements Power Purchase Agreements

  9. Proposal for the award of a blanket purchase contract for the supply and maintenance of high-performance Ethernet switches

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a blanket purchase contract for the supply and maintenance of high-performance Ethernet switches

  10. Proposal for the award of a blanket purchase contract for the supply and maintenance of light vehicles

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a blanket purchase contract for the supply and maintenance of light vehicles

  11. GovEnergy 2008 Session Presentation on Power Purchase Agreements...

    Broader source: Energy.gov (indexed) [DOE]

    Agreements Power Purchase Agreements for for Renewable Energy Renewable Energy Jim Snook Steve Dumont Jim Snook Steve Dumont Mike Warwick Mike Warwick AFCESACENF AFCESACENF ACC...

  12. NREL-Third-Party Financing and Power Purchasing Agreements for...

    Open Energy Info (EERE)

    NREL-Third-Party Financing and Power Purchasing Agreements for Public Sector PV Projects Webinar Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Third-Party Financing...

  13. Request for Information: Federal Government Power Purchase Agreements...

    Broader source: Energy.gov (indexed) [DOE]

    request for information for federal government power purchase agreement (PPA) issues. pparfi.pdf More Documents & Publications Response Summary: Department of Energy Power...

  14. Appendix S-50 - Power Purchase Agreement (PPA) - Public Utilities...

    Open Energy Info (EERE)

    0 - Power Purchase Agreement (PPA) - Public Utilities Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions:...

  15. Response Summary: Department of Energy Power Purchase Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    response summary for the U.S. Department of Energy (DOE) request for information on power purchase agreements. pparfisummary.pdf More Documents & Publications Request for...

  16. Third-Party Financing and Power Purchase Agreements for Public...

    Broader source: Energy.gov (indexed) [DOE]

    of power purchase agreements, specifically as they relate to public sector solar photovoltaic projects. Author: National Renewable Energy Laboratory tapwebinar20090527coughli...

  17. Third Party Financing and Power Purchasing Agreements for Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power Purchase Agreements for public sector PV projects presented at the TAP Web Seminar on May 27, 2009, includes economic and legal information. Third Party Financing...

  18. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the...

  19. Sample Documents for On-Site Renewable Power Purchase Agreements

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) works with federal agencies and partners to assemble sample documents from past on-site renewable power purchase agreement (PPA) projects to help streamline the PPA process.

  20. Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon Tue Wed May 28-29,MeteringPower Purchase

  1. Use of New Strategically Sourced Blanket Purchase Agreement. . . |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter-Japan Joint Nuclear D.C.Cool RoofDepartment of

  2. Use of New Strategically Sourced Blanket Purchase Agreement. . .

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads intoMansoor GhassemUse of Bullet Traps and Steel Targets

  3. Proposal for the award of a blanket purchase contract for the replacement and maintenance of lifts giving access to the LHC underground areas

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Proposal for the award of a blanket purchase contract for the replacement and maintenance of lifts giving access to the LHC underground areas

  4. Proposal to negotiate an amendment to a blanket purchase contract for the supply and installation of water-cooled bus bars and cables for the LHC

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal to negotiate an amendment to a blanket purchase contract for the supply and installation of water-cooled bus bars and cables for the LHC

  5. Proposal for the award of a blanket purchase contract for the supply of numerical relays for the protection of electrical power systems

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Proposal for the award of a blanket purchase contract for the supply of numerical relays for the protection of electrical power systems

  6. Proposal to negotiate the renewal of a blanket purchase contract for the supply of high-power RF grid-tubes for the CERN accelerators

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal to negotiate the renewal of a blanket purchase contract for the supply of high-power RF grid-tubes for the CERN accelerators

  7. Proposal for the award of blanket purchase contracts for the supply and maintenance of light petrol and light bi-fuel vehicles

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Proposal for the award of blanket purchase contracts for the supply and maintenance of light petrol and light bi-fuel vehicles

  8. Power Purchase Agreement Checklist for State and Local Governments

    SciTech Connect (OSTI)

    Cory, K.; Canavan, B.; Koenig, R.

    2009-10-01T23:59:59.000Z

    This fact sheet provides information and guidance on the solar photovoltaic (PV) power purchase agreement (PPA), which is a financing mechanism that state and local government entities can use to acquire clean, renewable energy. It addressed the financial, logistical, and legal questions relevant to implementing a PPA, but we do not examine the technical details?those can be discussed later with the developer/contractor. This fact sheet is written to support decision makers in U.S. state and local governments who are aware of solar PPAs and may have a cursory knowledge of their structure but they still require further information before committing to a particular project.

  9. Quick Guide: Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide: Power Purchase Agreements Quick Guide: Power

  10. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  11. Third Party Financing and Power Purchasing Agreements for Public Sector PV Projects

    Broader source: Energy.gov [DOE]

    Provides information on third-party financing and Power Purchase Agreements for public sector PV projects presented at the TAP Web Seminar on May 27, 2009, includes economic and legal information.

  12. Used Computer Equipment Sales Agreement By acknowledgement of this Sale Agreement, _____________________________________ (Purchaser) agrees to

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Used Computer Equipment Sales Agreement By acknowledgement of this Sale Agreement be in the State of Wisconsin. _________________________________________ _________________ Acknowledged

  13. Proposal for the award of a blanket purchase contract for the supply, installation, commissioning and maintenance of electrical switchgear operating at 18kV and 3.3 kV

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Proposal for the award of a blanket purchase contract for the supply, installation, commissioning and maintenance of electrical switchgear operating at 18kV and 3.3 kV

  14. Proposal to negotiate two blanket purchase contracts, without competitive tendering, for the supply of high-power RF grid-tubes for the CERN accelerators

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    This document concerns the award of two contracts, without competitive tendering, for the supply of different types of RF high-power grid-tubes (triodes and tetrodes) for the operation of CERN accelerators. For the reasons set out in this document, the Finance Committee is invited to agree to the negotiation of two blanket purchase contracts, without competitive tendering, for the supply of different types of RF high-power grid-tubes (triodes and tetrodes) with: - THALES (FR) for a total amount of 6 800 000 euros (10 540 000 Swiss francs) for a period of five years, subject to revision for inflation from January 2006; - RICHARDSON (DE) for a total amount of 1 100 000 euros (1 705 000 Swiss francs) for a period of five years, subject to revision for inflation from January 2006.

  15. Proposal for the award of a blanket purchase contract, without competitive tendering, for the supply of control electronics for the LHC collimation system as well as for various test and measurement e

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    This document concerns the negotiation of a blanket purchase contract for the supply of control electronics for the LHC collimation system as well as for various test and measurement equipment and associated software. The Finance Committee is invited to agree to the negotiation of a contract, without competitive tendering, with NATIONAL INSTRUMENTS (CH) for the supply of control electronics for the LHC collimation system as well as for various test and measurement equipment and associated software for an amount not exceeding 7 000 000 Swiss francs for a period of three years, not subject to revision.

  16. apt blanket system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the supply of automation systems and fieldbus equipment CERN Preprints Summary: This document concerns the renewal of two blanket purchase contracts for the supply of...

  17. Solar Power Purchase Agreements

    Energy Savers [EERE]

    Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at 3kW installed cost, simple payback is 18 years (initial electricity cost of 0.10kWh and 3%year...

  18. Power Purchase Agreements Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    could be negotiated at time of option or established in original contract - Must be a "true" option, requiring: 1) No assumption that the option will be exercised 2) No...

  19. Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60

  20. Purchase Obligations, Earnings Persistence and Stock Returns

    E-Print Network [OSTI]

    Lee, Kwang June

    2010-01-01T23:59:59.000Z

    a substantial amount of power purchase agreements. On theassets PG&E Corp • Power purchase, natural gas supply andthat ?Purchase t has incremental explanatory power for ?

  1. Green Purchasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Purchasing Green Purchasing LANL is committed to purchasing and using environmentally preferable products. Contact Environmental Communication & Public Involvement P.O. Box...

  2. ITER convertible blanket evaluation

    SciTech Connect (OSTI)

    Wong, C.P.C.; Cheng, E.

    1995-09-01T23:59:59.000Z

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  3. Materials for breeding blankets

    SciTech Connect (OSTI)

    Mattas, R.F.; Billone, M.C.

    1995-09-01T23:59:59.000Z

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

  4. Tritium breeding blanket

    SciTech Connect (OSTI)

    Smith, D.; Billone, M.; Gohar, Y. (Argonne National Lab., IL (USA)); Baker, C. (Oak Ridge National Lab., TN (USA)); Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H. (Japan Atomic Energy Research Inst., Tokyo (Japan)); Raffray, A. (California Univ., Los Angeles, CA (USA)); Sviatoslavsky, I. (Wisconsin Univ., Madison, WI (USA)); Simbolotti, G. (ENEA, Frascati (Italy). Centro Ricerche Energia); Dae

    1991-01-01T23:59:59.000Z

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs.

  5. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  6. ITER breeding blanket design

    SciTech Connect (OSTI)

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E. [ITER Joint Central Team, Garching (Germany)] [and others

    1995-12-31T23:59:59.000Z

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  7. ITER blanket designs

    SciTech Connect (OSTI)

    Gohar, J.; Parker, R.; Rebut, P.H. [ITER Garching Joint Work Site, Garching bei Munchen (Germany)

    1994-12-31T23:59:59.000Z

    The ITER first wall, blanket, and shield system is being designed to handle 1.5{plus_minus}0.3 GW of fusion power and 3 MWa/m{sup 2} average neutron fluence. The reference shielding blanket (non breeding) uses austenitic steel structural material and water coolant with a copper first wall coated with beryllium. The first wall is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. Liquid lithium is used as tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. A layer of beryllium is incorporated in the blanket to improve the shielding performance and to insure tritium self-sufficiency. In addition, a shielding zone is incorporated at the back of the blanket to allow rewelding the vacuum vessel material during the ITER lifetime. The lithium coolant velocity required to remove the nuclear heating and the surface heat flux is 2 m/s, which produces a pressure drop of 0.6 MPa. Vanadium alloy (V-5Cr-5Ti) is being considered as the structural material because it can accommodate high heat loads and has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under irradiation, good compatibility with liquid lithium, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events.

  8. Solar Power Purchase Agreements | Department of Energy

    Office of Environmental Management (EM)

    NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency" Tool to Compare Solar Energy Program Financing Options Tucson's Solar Experience: Developing PV with RFPs...

  9. Power Purchase Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    tenants, including state and local governments, to realize the benefits of renewable energy generation without having to own the equipment and pay the upfront capital cost. State...

  10. Power Purchase Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric, Inc.Department ofAmountAtomic7951FossilPower North AmericaA

  11. Power Purchase Agreement Webinars | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.WorkEconomicPOWER ELECTRONICS

  12. Solar Power Purchase Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot Solar Manufacturing TechnologyofReady

  13. Technical, Engineering, and Programmatic Support (TEPS) Blanket Purchase

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives | National Nuclear

  14. Policy Flash 2013-73 Utlization of GSA Federal Strategic Sourcing...

    Office of Environmental Management (EM)

    Federal Strategic Sourcing Initiative Blanket Purchase Agreements for Office Supplies Policy Flash 2013-73 Utlization of GSA Federal Strategic Sourcing Initiative Blanket Purchase...

  15. FEMP Offers Training on Federal On-Site Renewable Power Purchase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training on Federal On-Site Renewable Power Purchase Agreements FEMP Offers Training on Federal On-Site Renewable Power Purchase Agreements March 30, 2015 - 2:16pm Addthis The U.S....

  16. Procurement Office, The University of Edinburgh, Charles Stewart House, 9-16 Chambers Street, Edinburgh, EH1 1HT PURCHASE OF SERVICES

    E-Print Network [OSTI]

    Schnaufer, Achim

    & Conditions relating to the purchase of Services. Contract means the agreement constituted by the Supplier

  17. Slice Creditworthiness Agreement 10-29-08

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on which all payment obligations of Customer Name to BPA in connection with the purchase of electric power by Customer Name under section 5 of the Slice Agreement...

  18. ENVIRONMENTAL PURCHASING POLICY

    E-Print Network [OSTI]

    Haase, Markus

    ENVIRONMENTAL PURCHASING POLICY The University of Leeds Environmental Policy includes the following the environmental policy and, in turn, that all suppliers and contractors progressively improve their own environmental performance". In line with this the University's Environmental Purchasing Policy requires

  19. Progress on DCLL Blanket Concept

    SciTech Connect (OSTI)

    Wong, Clement; Abdou, M.; Katoh, Yutai; Kurtz, Richard J.; Lumsdaine, A.; Marriott, Edward P.; Merrill, Brad; Morley, Neil; Pint, Bruce A.; Sawan, M.; Smolentsev, S.; Williams, Brian; Willms, Scott; Youssef, M.

    2013-09-01T23:59:59.000Z

    Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) from the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.

  20. Fusion blanket design and optimization techniques.

    SciTech Connect (OSTI)

    Gohar, Y.

    2005-07-19T23:59:59.000Z

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques.

  1. CONTRACTOR PURCHASING SYSTEM REVIEWS

    Office of Environmental Management (EM)

    PURCHASING SYSTEM REVIEWS RISK ASSESSMENT MATRIX RISK CATEGORY PERFORMANCE SCHEDULE COST HIGH (3) --Performance data casts significant doubt on the ability of the system or...

  2. Ceramic Breeder Blanket for ARIES-CS

    SciTech Connect (OSTI)

    Raffray, A.R. [University of California-San Diego (United States); Malang, S. [Fusion Nuclear Technology Consulting (United States); El-Guebaly, L. [University of Wisconsin (United States); Wang, X. [University of California-San Diego (United States)

    2005-05-15T23:59:59.000Z

    This paper describes the conceptual design of a ceramic breeder blanket considered as one of the candidate blankets in the first phase of the ARIES-CS study. The blanket is coupled to a Brayton power cycle to avoid the safety concern associated with the possibility of Be/steam reaction in case of accident.

  3. Natural Gas Purchasing Options

    E-Print Network [OSTI]

    Watkins, G.

    As a result of economic and regulatory changes, the natural gas marketplace now offers multiple options for purchasers. The purpose of this panel is to discuss short-term purchasing options and how to take advantage of these options both to lower...

  4. UNIVERSITYOFSOUTHFLORIDA Purchasing and PCard

    E-Print Network [OSTI]

    Meyers, Steven D.

    that are open on July 1, 2014 will roll into FY 2014/2015. -All rolled POs that do not pass budget checking uponUNIVERSITYOFSOUTHFLORIDA Purchasing and PCard Year End Dates FY 2014-2015 June 21, 2014 PCard Last grant errors. July 7, 2014 Purchasing Requisitions and receipts can be entered for FY 2015 July 18, 2014

  5. Natural Gas Purchasing Options 

    E-Print Network [OSTI]

    Watkins, G.

    1988-01-01T23:59:59.000Z

    As a result of economic and regulatory changes, the natural gas marketplace now offers multiple options for purchasers. The purpose of this panel is to discuss short-term purchasing options and how to take advantage of these options both to lower...

  6. Fusion reactor blanket-main design aspects

    SciTech Connect (OSTI)

    Strebkov, Yu.; Sidorov, A.; Danilov, I. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation)

    1994-12-31T23:59:59.000Z

    The main function of the fusion reactor blanket is ensuring tritium breeding and radiation shield. The blanket version depends on the reactor type (experimental, DEMO, commercial) and its parameters. Blanket operation conditions are defined with the heat flux, neutron load/fluence, cyclic operation, dynamic heating/force loading, MHD effects etc. DEMO/commercial blanket design is distinguished e.g. by rather high heat load and neutron fluence - up to 100 W/cm{sup 2} and 7 MWa/m{sup 2} accordingly. This conditions impose specific requirements for the materials, structure, maintenance of the blanket and its most loaded components - FW and limiter. The liquid Li-Pb eutectic is one of the possible breeder for different kinds of blanket in view of its advantages one of which is the blanket convertibility that allow to have shielding blanket (borated water) or breeding one (Li-Pb eutectic). Using Li-Pb eutectic for both ITER and DEMO blankets have been considered. In the conceptual ITER design the solid eutectic blanket was carried out. The liquid eutectic breeder/coolant is suggested also for the advanced (high parameter) blanket.

  7. Purchasing Renewable Power | Department of Energy

    Energy Savers [EERE]

    Products & Technologies Renewable Energy Purchasing Renewable Power Purchasing Renewable Power Federal agencies can purchase renewable power or renewable energy certificates...

  8. City of Grand Rapids- Green Power Purchasing Policy

    Broader source: Energy.gov [DOE]

    In 2005, the City of Grand Rapids established a goal of purchasing 20% of its municipal power demand from renewable energy by 2008. In November 2007, the city signed a three-year agreement with a...

  9. Purchased Gas Adjustment Rules (Tennessee)

    Broader source: Energy.gov [DOE]

    The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas...

  10. Purchasing in Texas Counties.

    E-Print Network [OSTI]

    Hervey, E. J.; Bradshaw, H. C.

    1944-01-01T23:59:59.000Z

    from every standpoint. As long as it continues, the purchasing power of the county dollar is sub- stantially reduced, for each company and individual must discount the county's warrants. In these counties, the necessity of developing and maintaining...8 r3' L \\, & #5, CnLpL"; 3' --%I k? TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, Director College Station, Texas BULLETIN NO. 653 JULY 1944 PURCHASING IN TEXAS COUNTIES H. C. BRADSEAW and E. J, HERVEY Division of Farm and Ranch...

  11. Thermomechanical analysis of the ITER breeding blanket

    SciTech Connect (OSTI)

    Majumdar, S.; Gruhn, H. [Argonne National Lab., IL (United States); Gohar, Y.; Giegerich, M. [Max-Planck-Institut fuer Plasmaphysik, Muenchen (Germany). ITER Joint Central Team

    1997-03-01T23:59:59.000Z

    Thermomechanical performance of the ITER breeding blanket is an important design issue because it requires first, that the thermal expansion mismatch between the blanket structure and the blankets internals (such as, beryllium multiplier and tritium breeders) can be accommodated without creating high stresses, and second, that the thermomechanical deformation of various interfaces within the blanket does not create high resistance to heat flow and consequent unacceptably high temperatures in the blanket materials. Thermomechanical analysis of a single beryllium block sandwiched between two stainless steel plates was carried out using the finite element code ABAQUS to illustrate the importance of elastic deformation on the temperature distributions. Such an analysis for the whole ITER blanket needs to be conducted in the future. Uncertainties in the thermomechanical contact analysis can be reduced by bonding the beryllium blocks to the stainless steel plates by a thin soft interfacial layer.

  12. US solid breeder blanket design for ITER

    SciTech Connect (OSTI)

    Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. (Argonne National Lab., IL (USA)); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. (Oak Ridge National Lab., TN (USA)); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. (California Univ., Los Angeles, CA (USA)); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. (Wisconsin Univ., Madison, WI (USA))

    1990-09-01T23:59:59.000Z

    The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.

  13. Fission reactor experiments for solid breeder blankets

    SciTech Connect (OSTI)

    Gierszewski, P.J.; Abdou, M.A.; Puigh, R.

    1986-11-01T23:59:59.000Z

    The testing needs for solid breeder blanket development are different from those for liquid breeder blankets. In particular, a reasonable number of moderate volume test sites in a neutron environment are needed. Existing fission reactors are shown to be able to provide this environment with reasonable simulation of many important blanket conditions. Three major additional fission reactor tests are identified beyond those presently underway. These are thermal behavior, advanced in-situ tritium recovery and nuclear submodule experiments.

  14. US Demo test blankets in ITER

    SciTech Connect (OSTI)

    Waganer, L.M.; Lee, V.D [McDonnell Douglas Aerospace, St. Louis, MO (United States); Abdou, M.A.; Ying, A.Y. [Univ. of California, Los Angeles, CA (United States); Hua, T.; Sze, D.K. [Argonne National Lab., IL (United States); Dagher, M.A. [Rockwell International Corp., Canoga Park, CA (United States)

    1996-12-31T23:59:59.000Z

    This paper summarizes the current status of the Demo blanket test systems and how the ITER reactor design and operations are being accommodated. The US blanket program is planning to develop a liquid metal breeder and a solid breeder blanket for testing and evaluation. The test blanket modules will have prototypical components, materials, and coolants representative of power reactor systems. The modules are to be located in the ITER horizontal test ports and installed/removed with special remote handling equipment. Adjacent ITER blanket neutronic and temperature conditions suggest the use of an isolation frame surrounding the test blanket modules or submodules. This frame will also provide additional shielding to protect the adjacent vacuum vessel. The frame and blanket module are attached to the surrounding backplate to transfer static and dynamic loads. All coolants and tritium-bearing fluids will be routed out of the midplane port to special heat exchangers and tritium separation systems. Special remote handling equipment is being designed to install and extract the test blanket modules. Dedicated transporters will be used to move the blanket and shielding modules to dedicated hot cells. Special facility areas will be provided immediately outside the port areas for the heat exchangers, pumps, and tritium-separation systems. 1 ref., 6 figs.

  15. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01T23:59:59.000Z

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  16. Status of fusion reactor blanket design

    SciTech Connect (OSTI)

    Smith, D.L.; Sze, D.K.

    1986-11-01T23:59:59.000Z

    This paper provides a brief review of the Blanket Comparison and Selection Study (BCSS)/sup 1/ and an overview of more recent fusion reactor blanket design efforts. Specific areas covered include improvements in leading blanket concepts identified in the BCSS, viz., self-cooled liquid metal concepts, helium-cooled solid breeder concepts, and helium-cooled liquid breeder concepts. In addition, a summary of innovative blanket concepts and design features is presented. The key features and critical issues associated with these designs are identified.

  17. Low technology high tritium breeding blanket concept

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.C.; Smith, D.L.; Billone, M.C.; Cha, Y.S.; Clemmer, R.; Finn, P.A.; Hassanein, A.M.; Johnson, C.E.; Liu, Y.

    1987-10-01T23:59:59.000Z

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of approx.2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs.

  18. BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for Students of insurance. Your coverage is governed by a policy of student accident and sickness insurance underwritten

  19. BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for International Students is governed by a policy of student accident and sickness insurance underwritten by BCS Insurance Company BCS

  20. Advanced methods comparisons of reaction rates in the purdue fast breeder blanket facility

    SciTech Connect (OSTI)

    Hill, R.N. (Argonne National Lab., IL (USA). Engineering Div.); Ott, K.O. (Purdue Univ., Lafayette, IN (USA). School of Nuclear Engineering)

    1989-09-01T23:59:59.000Z

    The authors discuss how experiments in the large uniform Purdue University fast breeder blanket facility blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50-group cross sections), a consistent calculated-to-experimental (C/E) drop-off is observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the 51-cm blanket is necessary for agreement with experiments. The usefulness of refined group constant generation, utilizing speciaized weighting spectra, and transport theory methods in correcting this discrepancy is analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The result is that transport methods have no effect on the blanket deviations; thus, the present multigroup transport theory does not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by approximations that are applied in all current multigroup methods.

  1. Methods to enhance blanket power density

    SciTech Connect (OSTI)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01T23:59:59.000Z

    The overall objective of this task is to investigate the extent to which the power density in the FED/INTOR breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow advanced reactor blanket modules to be tested on FED/INTOR under representative conditions.

  2. Development of Solid Breeder Blanket at JAERI

    SciTech Connect (OSTI)

    Enoeda, Mikio; Hatano, Toshihisa; Tsuchiya, Kunihiko; Ochiai, Kentaro; Kawamura, Yoshinori; Hayashi, Kimio; Nishitani, Takeo; Nishi, Masataka; Akiba, Masato [Japan Atomic Energy Research Institute (Japan)

    2005-05-15T23:59:59.000Z

    Japan Atomic Energy Research Institute (JAERI) has been performing blanket development based on the long-term research program of fusion blankets in Japan, which was approved by the Fusion Council of Japan in 1999. The blanket development consists of out-pile R and D, In-pile R and D, TBM Neutronics and TPR Tests and Tritium Recovery System R and D. Based on the achievements of element technology development, the R and D program is now stepping to the engineering testing phase, in which scalable mockup tests will be performed for obtaining engineering data unique to the specific structure of the components, with the objective to define the fabrication specification of test blanket modules for ITER. This paper presents the major achievements of the element technology development of solid breeder blanket in JAERI.

  3. Purchasing Renewable Power

    Broader source: Energy.gov [DOE]

    Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

  4. Oklahoma State University Purchasing Card

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    Oklahoma State University Purchasing Card Guidelines Oklahoma State University Fiscal and Administrative Compliance 306 Whitehurst Stillwater, OK 74078 http://faac.okstate.edu August 2011 Oklahoma State University Purchasing Card Guidelines Fiscal and Administrative Compliance Oklahoma State University #12;Page

  5. Riverside, CA Vehicle Purchase Incentives

    Broader source: Energy.gov [DOE]

    City of Riverside residents and employees are eligible to receive a rebate toward the purchase of qualified natural gas or hybrid electric vehicles purchased from a City of Riverside automobile...

  6. ARIES-IV Nested Shell Blanket Design

    SciTech Connect (OSTI)

    Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R. [General Atomics, San Diego, CA (United States); Cheng, E. [TSI Research, Inc. (United States); Hasan, C.M.; Sharafat, S. [California Univ., Los Angeles, CA (United States)

    1993-11-01T23:59:59.000Z

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design.

  7. A review of ITER blanket designs

    SciTech Connect (OSTI)

    Green, L.; Carelli, M.D.; Stefani, F. [Westinghouse Science & Technology Center, Pittsburgh, PA (United States); Morgan, G.D. [McDonnell Douglas Corp., St. Louis, MO (United States); Mattas, R. [Argonne National Lab., IL (United States)

    1994-11-01T23:59:59.000Z

    Changes in ITER requirements and conditions in the Engineering Design Activity (EDA), and the desire to obtain greater operating flexibility, led to a reconsideration of the ITER Conceptual Design Activity (CDA) blanket designs. The current strategy is to follow a two-tiered development approach: The reference design blanket is non-breeding, and satisfies only the basic performance phase (BPP) functional requirements. This blanket would need to be changed out for the extended performance (EPP). A lower level development effort is also underway on a tritium-breeding blanket. The decision as to which of the two designs to adopt will be made at the end of a two-year development effort. This paper describes the present candidate blankets and the issues associated with each of them. The reference design is a non-breeding, low temperature, low pressure, water cooled, austenitic stainless steel (316SS) blanket/shield (BS). The first wall (FW), which may be integral with or separate from the BS, is a bonded copper-alloy/SS structure with a beryllium coating. Critical issues here are copper-SS bonding, fabricability, and radiation damage and stress corrosion cracking of the SS. The breeding blanket utilizes vanadium alloy structural material, with lithium as the breeder. The coolants are either lithium (self-cooled) or high pressure helium. The primary issues here are the need to electrically insulate the flow channels, the qualification of vanadium as a structural material, and the fabrication of large vanadium structures.

  8. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect (OSTI)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01T23:59:59.000Z

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  9. Blanket management method for liquid metal fast breeder reactors

    SciTech Connect (OSTI)

    Carelli, M.D.

    1986-04-22T23:59:59.000Z

    The method is described of moving blanket assemblies during refueling in a heterogeneous-type core for a liquid-metal-cooled fast-breeder nuclear reactor to improve the performance thereof. The core consists of fissile-material-containing fuel assemblies and fertile-material-containing blanket assemblies, the blanket assemblies including a plurality of inner blanket assemblies positioned in predetermined different locations within the interior of the core and radial blanket assemblies positioned proximate the periphery of the core.

  10. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  11. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1993-01-01T23:59:59.000Z

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  12. BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for the Dependents. It is not a contract of insurance. Your coverage is governed by a policy of student accident and sickness insurance

  13. DOE Princeton Plasma Physics Laboratory Purchase Power Agreement...

    Office of Environmental Management (EM)

    Documents & Publications ECWEBTermsandConditions.doc&0; General Services Administration Photovoltaics Project in Sacramento, California Part 1, Clauses Prescribed in FAR Part 52...

  14. Energy Purchasing/Marketing Strategies- Energy Service Agreement

    E-Print Network [OSTI]

    Filak, J. J. Jr.

    'S commissions. But, in the final analysis, it will demonstrate an option towards improving the efficiency of electricity, create electric price stability and lesson expensive investments for new power plants or special service equipment....

  15. Boulder Valley School District (Colorado) Power Purchase Agreement Case

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximatelyBoostingand Capacity Concerns inStudy

  16. PSC STAFF REPORT ON THE POWER PURCHASE AGREEMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    asserted that the EURCSA's objectives could be satisfied with demand side management ("DSM") programs Public Service Commission Staff 861 Silver Lake Boulevard Cannon Building, Suite 100 Dover, Delaware of Management and Budget (collectively "the State Agencies"), to evaluate the proposals received pursuant

  17. Exploring Power Purchase Agreements - The Basics Part 1 | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon Generation Company,Wind Powerto Reduce Costs

  18. GovEnergy 2008 Session Presentation on Power Purchase Agreements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo for theEnergy NowofDepartment of

  19. On-Site Renewable Power Purchase Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyof Energy informationOilan overview ofThe

  20. On-Site Renewable Power Purchase Agreements | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergyOn October 18th, the

  1. DOE Princeton Plasma Physics Laboratory Purchase Power Agreement Request

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) |Reservation |Plan

  2. Power Purchase Agreement Checklist for State and Local Governments |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.WorkEconomicPOWER ELECTRONICS ANDDepartment

  3. Request for Information: Federal Government Power Purchase Agreements (PPA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergyfor a ManufacturingIssues | Department of

  4. Response Summary: Department of Energy Power Purchase Agreement Request for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <

  5. Sample Documents for On-Site Renewable Power Purchase Agreements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department of iiBiodieselWATER,ProgramFuelFutureofSamantha

  6. Microsoft Word - Mid South and Southeast Wind Power Purchase Agreements

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OF CONTENTS 1of: U.S. Department of11 ClauseMid-South

  7. Municipal Bond - Power Purchase Agreement Model Continues to Provide

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OFDepartment ofDepartmentefficiencyMultiyearLow-Cost

  8. Appendix S-50 - Power Purchase Agreement (PPA) - Public Utilities

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan: EnergySalientInformation

  9. Quick Guide: Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified EnergyDepartment ofOrderDepartment ofbelow

  10. Request for Information: Federal Government Power Purchase Agreements (PPA) Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues CellsReportDepartment of Energy

  11. Purchasing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and Storage of Gases Print ALS users

  12. Blanket design and optimization demonstrations of the first wall/blanket/shield design and optimization system (BSDOS).

    SciTech Connect (OSTI)

    Gohar, Y.; Nuclear Engineering Division

    2005-05-01T23:59:59.000Z

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.

  13. Blanket Design and Optimization Demonstrations of the First Wall/Blanket/Shield Design and Optimization System (BSDOS)

    SciTech Connect (OSTI)

    Gohar, Yousry [Argonne National Laboratory (United States)

    2005-05-15T23:59:59.000Z

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.

  14. Storage Begins with Purchasing purchase minimum needed for experiment

    E-Print Network [OSTI]

    Cohen, Robert E.

    Storage Begins with Purchasing · purchase minimum needed for experiment ­ do not "buy in bulk://www.ehs.washington.edu/forms/epo/peroxideguidelines.pdf #12;Chemical Storage Basics · https://web.mit.edu/environment/pdf/sop/sop_0023.pdf · http://www.lbl.gov/ehs/chsp/html/storage level · do not store chemicals in fume hoods · flammable storage refrigerator needed for flammable

  15. www.ResponsiblePurchasing.org Sustainable Purchasing 101

    E-Print Network [OSTI]

    Escher, Christine

    .ResponsiblePurchasing.org RPN Nonprofit, ~200 members ·States ·Local governments ·Federal agencies ·Colleges and universities.ResponsiblePurchasing.org EPPs are... · Made with recycled content · Highly energy efficient · Designed to be long lasting · Recyclable or compostable · Made from renewable resources · Less toxic than conventional goods · Manufactured

  16. Plan and Strategy for ITER Blanket Testing in Japan

    SciTech Connect (OSTI)

    Enoeda, Mikio [Japan Atomic Energy Research Institute (Japan); Akiba, Masato [Japan Atomic Energy Research Institute (Japan); Tanaka, Satoru [University of Tokyo (Japan); Shimizu, Akihiko [Kyushu University (Japan); Hasegawa, Akira [Tohoku University (Japan); Konishi, Satoshi [Kyoto University (Japan); Kimura, Akihiko [Kyoto University (Japan); Kohyama, Akira [Kyoto University (Japan); Sagara, Akio [National Institute of Fusion Science (Japan); Muroga, Takeo [National Institute of Fusion Science (Japan)

    2005-05-15T23:59:59.000Z

    The Fusion Council of Japan has established the long-term program for the development of blanket in 1999. In the program, the solid breeder blanket was selected as the primary candidate blanket of the fusion power demonstration plant in Japan, while liquid breeder blankets and high temperature solid breeder blanket have been identified as the attractive advanced blanket. Japan Atomic Energy Research Institute (JAERI) is leading the development of solid breeder blankets, while, universities and National Institute for Fusion Science (NIFS) are developing the advanced blankets for potential options of the fusion power demonstration plant and commercial power plants. ITER blanket module testing is regarded as one of the most important milestones, by which integrity of candidate blanket design is qualified for the fusion power demonstration plant, together with material irradiation data by International Fusion Material Irradiation Facility (IFMIF). Japan is investigating the possibility of testing all types of blankets under TBWG framework with both of JAERI and universities/NIFS involvements. This paper presents a plan and strategy for the development of test blanket modules and ITER blanket module testing in Japan.

  17. Louisiana Tech University Purchasing Department

    E-Print Network [OSTI]

    Selmic, Sandra

    of Education or Qualification Achieved: 1. State relevance of purchase to your mission, purpose, research Number: Web Site Address (if available) 5. If purchase related to compatibility with existing equipment, then identify the item(s) and applicable tag numbers(s) of State equipment: #12;6. SOLE SOURCE CONSIDERATIONS

  18. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    SciTech Connect (OSTI)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse

    1988-03-01T23:59:59.000Z

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs.

  19. Electromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    to avoid corrosion or fire. Lithium's high electrical conductivity may possibly permit efficient, compactElectromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999 6-1 CHAPTER 6: ELECTROMAGNETICALLY RESTRAINED LITHIUM BLANKET Contributors Robert Woolley #12;Electromagnetically Restrained Lithium

  20. U. S. ITER shield and blanket design activities

    SciTech Connect (OSTI)

    Baker, C.C.

    1989-03-01T23:59:59.000Z

    This paper summarizes nuclear-related work in support of the U.S. effort for the Internatinoal Thermonuclear Experimental Reactor (ITER) Study. Primary tasks carried out during the past year include design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components, and issues regarding structural materials for an ITER device. The blanket concepts considered are the aqueous/Li salt solution, a water-cooled, solid-breeder blanket, a helium-cooled, solid-breeder blanket, a helium-cooled, solid-breeder blanket, a blanket cooled by helium containing lithium-bearing particulates, and a blanket concept based on breeding tritium from He/sup 3/.

  1. armored blanket development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    award of a blanket contract for the supply of encapsulated-winding dry-type power transformers CERN Preprints Summary: This document concerns the award of a blanket contract for...

  2. Assessment of Hypothermia Blankets Using an Advanced Thermal Manikin: Preprint

    SciTech Connect (OSTI)

    Rugh, J. P.; Barazanji, K.

    2009-07-01T23:59:59.000Z

    A thermal manikin developed at NREL helped to assess thermal blankets used to treat U.S. Army personnel suffering from hypothermia. The chemical blanket showed the best thermal performance.

  3. Evaluation of the parfait blanket concept for fast breeder reactors

    E-Print Network [OSTI]

    Ducat, Glenn Alexander

    1974-01-01T23:59:59.000Z

    An evaluation of the neutronic, thermal-hydraulic, mechanical and economic characteristics of fast breeder reactor configurations containing an internal blanket has been performed. This design, called the parfait blanket ...

  4. The economics of fuel depletion in fast breeder reactor blankets

    E-Print Network [OSTI]

    Brewer, Shelby Templeton

    1972-01-01T23:59:59.000Z

    A fast breeder reactor fuel depletion-economics model was developed and applied to a number of 1000 MWe UMBR case studies, involving radial blanket-radial reflector design, radial blanket fuel management, and sensitivity ...

  5. Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber

    E-Print Network [OSTI]

    Raffray, A. René

    -cooled lithium blanket, a helium-cooled solid breeder blanket, and a dual-coolant lithium lead blanket of the reference blanket. Keywords-Laser fusion; lithium blanket; solid breeder; lithium lead; tritium breedingNeutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber M

  6. Thermal resistance gaps for solid breeder blankets using packed beds

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Tillack, M.S.; Abdou, M.A.

    1989-03-01T23:59:59.000Z

    The main design features of a new concept for solid breeder blanket thermal resistance gaps are described and analysis is shown for the blanket thermal characteristics. The effective thermal conductivity of a helium-beryllium packed bed configuration is studied, including the effect of a purge stream. Possible applications of this concept to ITER blanket designs are stressed.

  7. Experimental Studies of Active Temperature Control in Solid Breeder Blankets

    E-Print Network [OSTI]

    Tillack, Mark

    1 Experimental Studies of Active Temperature Control in Solid Breeder Blankets M. S. Tillack, A. R barrier regions for solid breeder blankets. In particular, particle beds have been studied because breeder blankets is thermomechanical behavior in the fusion environment. Stable and predictable

  8. Breeding Blanket Concepts for Fusion and Materials Requirements

    E-Print Network [OSTI]

    Raffray, A. René

    blanket design is described and key material issues discussed #12;5 Ceramic Breeder + Be and Ferritic1 Breeding Blanket Concepts for Fusion and Materials Requirements A. R. Raffray1, M. Akiba2, V-0417, USA 2Blanket Engineering Laboratory, JAERI, Naka-machi, Naka-gun, Ibaraki-ken, 311-0193 Japan 3ITER

  9. Use of gamma spectroscopy for neutronic analysis of LMFBR Blankets

    E-Print Network [OSTI]

    Kang, Ch?ang-sun

    It was the purpose of the present investigation to extend and apply Ge(Li) gamma-ray spectroscopy to the study of fast reactor blankets. The focal point for this research was the Blanket Test Facility at the MITR and Blanket ...

  10. POLICY: A:VPFA # / Purchasing Policy PROCEDURES

    E-Print Network [OSTI]

    Martin, Jeff

    POLICY: A:VPFA # / Purchasing Policy PROCEDURES: APPENDIX: Approved: April 1, 2013 Revised: Cross References: Purchasing Policy Capital Projects and Renovations Policy Conflict of Interest Policy Sustainability Policy Green Procurement Policy 1 of 9 PROCEDURES: Purchasing Policy AUTHORITY: University

  11. City of Boulder- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    The City of Boulder purchases a portion of its electricity supply from wind power through Xcel Energy's Windsource program and Renewable Choice Energy, headquartered in Colorado. Boulder purchases...

  12. Ceramic breeder blanket development for fusion experimental reactor in JAERI

    SciTech Connect (OSTI)

    Kurasawa, T.; Takatsu, H.; Sato, S. [JAERI, Ibaraki-ken (Japan)] [and others

    1994-12-31T23:59:59.000Z

    Ceramic breeding blanket is a promising breeding blanket concept for the fusion experimental reactor, and world-wide efforts have been devoted to the design and R&D. Irradiation damages of both of breeding materials and neutron multipliers are one of the critical issues for this type of blanket, and usage of these materials as a form of small pebbles has been proposed so as to accommodate expected irradiation damages without degradation of breeding capability. The present paper outlines the progress of the design of layered pebble bed breeding blanket and also shows preliminary results of concept development related to higher fusion power accommodation and convertible blanket.

  13. Water-cooled solid-breeder blanket concept for ITER

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.C.; Attaya, H.; Billone, M.; Clemmer, R.C.; Finn, P.A.; Hassanein, A.; Johnson, C.E.; Majumdar, S.; Mattas, R.F.

    1989-03-01T23:59:59.000Z

    A water cooled solid-breeder blanket concept was developed for ITER. The main function of this blanket is to produce the necessary tritium for the ITER operation. Several design features are incorporated in this blanket concept to increase its attractiveness. The main features are the following: (a) a multilayer concept which reduces fabrication cost; (b) a simple blanket configuration which results in reliability advantages; (c) a very small breeder volume is employed to reduce the tritium inventory and the blanket cost; (d) a high tritium breeding ratio eliminates the need for an outside tritium supply; (e) a low-pressure system decreases the required steel fraction for structural purposes; (f) a low-temperature operation reduces the swelling concerns for beryllium; and (g) the small fractions of structure and breeder materials used in the blanket reduce the decay heat source. The key features and design analyses of this blanket are summarized in this paper.

  14. Contract Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution And Bylaws |ContactFlow DiffusionAgreement between

  15. Previous Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information and graphicPrevious-Agreements Sign In

  16. Agreement Mechanisms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, a highlyTransfersAgreement

  17. Thermal control of ceramic breeder blankets

    SciTech Connect (OSTI)

    Raffray, A.R.; Tillack, M.S.; Abdou, M.A. (Univ. of California, Los Angeles, CA (United States))

    1993-05-01T23:59:59.000Z

    Thermal control is an important issue for ceramic breeder blankets since the breeder needs to operate within its temperature window for the tritium release and inventory to be acceptable. A thermal control region is applicable not only to situations where the coolant can be run at low temperature, such as for the International Thermonuclear Experimental Reactor (ITER) base blanket, but also to ITER test module and power reactor situations, where it would allow for ceramic breeder operation over a wide range of power densities in space and time. Four thermal control mechanisms applicable to ceramic breeder blanket designs are described: A helium gap, a beryllium sintered block region, a beryllium sintered block region with a metallic felt at the beryllium-cladding interface, and a beryllium packed-bed region. Key advantages and issues associated with each of these mechanisms are discussed. Experimental and modeling studies focusing on beryllium packed-bed thermal conductivity and wall conductance, and beryllium sintered block-stainless steel cladding contact resistance are then described. Finally, an assessment of the potential of the different mechanisms for both passive and active control is carried out based on example calculations for a given set of ITER-like conditions. 28 refs., 33 figs., 3 tabs.

  18. Processing and waste disposal representative for fusion breeder blanket systems

    SciTech Connect (OSTI)

    Finn, P.A.; Vogler, S.

    1987-01-01T23:59:59.000Z

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made.

  19. High power density self-cooled lithium-vanadium blanket.

    SciTech Connect (OSTI)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01T23:59:59.000Z

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  20. Innovative Liquid Breeder Blanket Design Activities in Japan

    SciTech Connect (OSTI)

    Sagara, Akio [National Institute for Fusion Science (Japan); Tanaka, Teruya [National Institute for Fusion Science (Japan); Muroga, Takeo [National Institute for Fusion Science (Japan); Hashizume, Hidetoshi [Tohoku University (Japan); Kunugi, Tomoaki [Kyoto University (Japan); Fukada, Satoshi [Kyushu University (Japan); Shimizu, Akihiko [Kyushu University (Japan)

    2005-04-15T23:59:59.000Z

    In order to clarify key engineering issues and to enhance key R and D activities for D-T fusion blankets, many design activities on innovative liquid blanket systems are on going as collaboration studies in Japan. Recently an improved long-life Flibe blanket has been proposed, and the self-cooled Li/V blanket design has started. For Flibe systems, much progress has been made on tritium permeation barrier, energy conversion system, free surface designs, and thermofluid loop experiments. For Li/V systems, evaluation studies have proceeded on Be-free nuclear properties and allowable crack fraction on multilayered MHD insulation coatings.

  1. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    SciTech Connect (OSTI)

    Finn, P.A.

    1985-01-01T23:59:59.000Z

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared.

  2. Resources on Purchasing Renewable Power | Department of Energy

    Energy Savers [EERE]

    Resources on Purchasing Renewable Power Resources on Purchasing Renewable Power Many helpful resources about purchasing renewable power are available. Publications Renewable...

  3. Thermal control of solid breeder blankets

    SciTech Connect (OSTI)

    Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

    1991-12-31T23:59:59.000Z

    An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

  4. Thermal control of solid breeder blankets

    SciTech Connect (OSTI)

    Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

    1991-01-01T23:59:59.000Z

    An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

  5. City of Madison- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    In 1999, Madison’s Metro Maintenance and Administration Facility began purchasing 25% of its electricity from Madison Gas and Electric’s wind power program. The additional cost to purchase the wind...

  6. City of Philadelphia- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    *In contrast to renewable energy purchasing goals of many local governments, Philadelphia's initiative targets total electricity use within the city as opposed to only purchases made by the city ...

  7. South Carolina Municipalities- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Participating residential customers are able to purchase this green power for $3 per 100 kWh block. Commercial participants are able to purchase the power for $6 per 200 kWh block.

  8. City of Chicago- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    For more green power purchasing program listings, visit the U.S. Department of Energy Green Power Network.

  9. An assessment of the base blanket for ITER

    SciTech Connect (OSTI)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01T23:59:59.000Z

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  10. An assessment of the base blanket for ITER

    SciTech Connect (OSTI)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31T23:59:59.000Z

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  11. PROGRESS ON DCLL BLANKET CONCEPT C.P.C. Wonga

    E-Print Network [OSTI]

    Abdou, Mohamed

    Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO and test blanket module (TBM) studies have identified the Dual Coolant Lead Lithium (DCLL) as the primary are limited to a maximum steel structure temperature of corrosion

  12. MHD Effects on Heat Transfer in a Molten Salt Blanket

    SciTech Connect (OSTI)

    Smolentsev, Sergey; Miraghaie, Reza; Abdou, Mohamed [University of California (United States)

    2005-04-15T23:59:59.000Z

    Heat transfer in closed channel flows of molten salts (MS)s, such as FLiBe or FLiNaBe, has been considered under specific reactor conditions. MHD effects have been accessed for two blanket concepts: self-cooled MS blanket, and dual-coolant MS blanket. The effect of heat transfer degradation due to turbulence reduction by a magnetic field in the First Wall channels of the self-cooled blanket was analyzed with the K-{epsilon} model of turbulence. In the dual-coolant blanket, the MS flow is laminar. A 2-D MHD code was used to calculate the laminar velocity profile first. Then, the temperature field was calculated using a 3-D temperature code. Reasonable interface temperatures below the material limit of 550 deg. C, and low heat escape from the breeder zone have been demonstrated. Model limitations and the ways of their improvement are also discussed.

  13. Guide to Purchasing Green Power

    Broader source: Energy.gov [DOE]

    The Guide to Purchasing Green Power is intended for organizations that are considering the merits of buying green power as well as those that have decided to buy it and want help doing so. The guide was written for a broad audience, including businesses, government agencies, universities, and all organizations wanting to diversify their energy supply and reduce the environmental impact of their electricity use. The Guide can help with planning an on-site renewable generation project.

  14. The Breeding Blanket Interface (BBI): Recent results for the solid breeder and the aqueous salt solution blanket concepts

    SciTech Connect (OSTI)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Sze, D.K.; Bartlit, J.R.; Sherman, R.; Anderson, J.L.; Yoshida, H.; Naruse, Y.; Enoeda, M.; Okuno, K. (Argonne National Lab., IL (USA); Los Alamos National Lab., NM (USA); Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan))

    1989-10-01T23:59:59.000Z

    The Tritium Systems Test Assembly (TSTA) at Los Alamos is a full-scale facility dedicated to testing tritium processing for fusion reactors. We are involved in a study of adding a Breeder Blanket Interface (BBI) to the TSTA. The BBI is to test the processing required for the tritium output streams for the various fusion reactor breeder blankets. In the current phase of the study, we are evaluating the characteristics of the output from various breeding blankets types. Emphasis is placed on defining the output stream with respect to H/T ratio, impurity content, and radionuclide content. Reported herein is an assessment for two blanket concepts: solid breeder blanket (ceramic, Li{sub 2}O), and aqueous salt solution. 24 refs., 2 figs., 2 tabs.

  15. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  16. Platte River Cooperative Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY, CO, DOE...

  17. Neutronic assessment of He-cooled molten Li fusion blanket

    SciTech Connect (OSTI)

    Han, B. [Nuclear Engineering Dept., Seoul National Univ., San 56-1, Shinlim-dong, Kwanak-gu, Seoul (Korea, Republic of); Kim, Y. [Korea Atomic Energy Research Inst., 150, Deokjin-dong, Yuseong-gu, Daejeon (Korea, Republic of); Kim, C. H. [Nuclear Engineering Dept., Seoul National Univ., San 56-1, Shinlim-dong, Kwanak-gu, Seoul (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    This study is intended to assess overall neutronic performances of He-cooled molten Li (HCML) blanket with a reflector and investigate the impact of {sup 6}Li enrichment on tritium breeding ratio (TBR). To precisely evaluate the neutronic performances of the reflected HCML blanket, three-dimensional D-shape torus model is utilized and Monte-Carlo calculations are performed. In this study, the neutronic characteristics of five potential reflector candidates are compared and the reflected blanket is also optimized from the neutronic point of view. Taking into account the material availability and potential safety features, a high-density graphite reflector can be a practical choice for a high-performance HCML blanket. The graphite-reflected HCML blanket shows the best performances when the reflector is placed such that the blanket is divided into a thick front region and a thin back region. The HCML blanket with a slightly-enriched Li (8-10 wt% {sup 6}Li) breeder shows the highest TBR. (authors)

  18. EU Blanket Design Activities and Neutronics Support Efforts

    SciTech Connect (OSTI)

    Fischer, U. [Forschungszentrum Karlsruhe (Germany); Batistoni, P. [ENEA Fusion Division (Italy); Boccaccini, L.V. [Forschungszentrum Karlsruhe (Germany); Giancarli, L. [CEA Saclay (France); Hermsmeyer, S. [Forschungszentrum Karlsruhe (Germany); Poitevin, Y. [CEA Saclay (France)

    2005-05-15T23:59:59.000Z

    An overview is provided of the design activities and the related neutronics support efforts conducted in the European Union for the development of breeder blankets for future fusion power reactors. The EU fusion programme considers two blanket lines, the Helium-Cooled Pebble Bed (HCPB) blanket with Lithium ceramics pebbles (Li{sub 4}SiO{sub 4} or Li{sub 2}TiO{sub 3}) as breeder and beryllium pebbles as neutron multiplier, and the Helium-Cooled Lithium-Lead (HCLL) blanket with the Pb-Li eutectic alloy as breeder and neutron multiplier. The blanket design and the related R and D efforts are based on the use of the same coolant and the same modular blanket structure to minimise the development costs as much as possible. The neutronic support efforts include design analyses for the layout and optimization of the modular HCPB/HCLL blankets based on detailed three-dimensional Monte Carlo calculations as well as underlying neutronics activities conducted in the frame of the European Fusion and Activation File (EFF/EAF) projects to develop qualified nuclear data and computational tools for reliable neutronics design calculations.

  19. Solid breeder blanket option for the ITER conceptual design

    SciTech Connect (OSTI)

    Gohar, Y.; Attaya, H.; Billone, M.C.; Finn, P.; Majumdar, S.; Turner, L.R.; Baker, C.C.; Nelson, B.E.; Raffray, R. (Argonne National Lab., IL (USA); Oak Ridge National Lab., TN (USA); California Univ., Los Angeles, CA (USA))

    1989-10-01T23:59:59.000Z

    A solid-breeder water-cooled blanket option was developed for ITER based on a multilayer configuration. The blanket uses beryllium for neutron multiplication and lithium oxide for tritium breeding. The material forms are sintered products for both material with 0.8 density factor. The lithium-6 enrichment is 90%. This blanket has the capability to accommodate a factor of two change in the neutron wall loading without violating the different design guidelines. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. At the same time, the reliability and the safety aspects of the blanket are enhanced by the use of a low-pressure coolant and the separation of the tritium purge lines from the coolant system. The blanket modules are made by hot vacuum forming and diffusion bonding a double wall structure with integral cooling channels. The different aspects of the blanket design including tritium breeding, nuclear heat deposition, activation analyses, thermal-hydraulics, tritium inventory, structural analyses, and water coolant conditions are summarized in this paper. 12 refs., 2 figs., 1 tab.

  20. Overview of EU activities on DEMO liquid metal breeder blanket

    SciTech Connect (OSTI)

    Giancarli, L.; Proust, E. [DRN/DMT/SERMA, Gif-sur-Yvette (France); Benamati, G. [CRE Brasimone, Camugnano (Italy)] [and others

    1994-12-31T23:59:59.000Z

    The European test-blanket development programme, started in 1988, is aiming at the selection by 1995 of two DEMO-relevant blanket lines to be tested in ITER. At present, four lines of blanket are under development, two of them using solid and the other two liquid breeder materials. As far as liquid breeders are concerned, two lines of blankets have been selected within the European Union, the water-cooled lithium-lead (the eutectic Pb-17Li) blankets and the dual-coolant Pb-17Li blankets. Designs have been developed considering an agreed set of DEMO specifications, such as, for instance, a fusion power of 2,200 MW, a neutron wall-loading of 2MW/m{sup 2}, a life-time of 20,000 hours, and the use of martensitic steel as a structural material. Moreover, an experimental program has been set up in order to address the main critical issues for each line. The present paper gives an overview of both design and experimental activities within the European Union concerning these two lines of liquid breeder blankets.

  1. Fusion Engineering and Design 81 (2006) 433441 An overview of US ITER test blanket module program

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    blankets: (1) a helium-cooled solid breeder concept with ferritic steel structure and Be neutron multiplierLi liquid breeder blanket concepts in ITER are identified. © 2005 Elsevier B.V. All rights reserved. Keywords: ITER test blanket module program; Helium-cooled solid breeder blanket; Dual-coolant lead

  2. EFFECTIVE THERMAL CONDUCTIVITY OF LITHIUM CERAMIC PEBBLE BEDS FOR FUSION BLANKETS: A REVIEW

    E-Print Network [OSTI]

    Abdou, Mohamed

    a significant interest as solid breeders for the fusion blankets during the last three decades. The solid for the fusion solid breeder blankets. In order to study the heat transfer in the blanket, effective conductivityEFFECTIVE THERMAL CONDUCTIVITY OF LITHIUM CERAMIC PEBBLE BEDS FOR FUSION BLANKETS: A REVIEW A. ABOU

  3. Types of contracts and agreements guide. Part 1

    SciTech Connect (OSTI)

    Not Available

    1981-05-01T23:59:59.000Z

    The purpose of this volume is to be helpful in providing a comprehensive introduction to a wide variety of contract types and agreements, including a consideration of small purchase procedures and multiyear procurement. In both format and content, it is designed to help those persons who influence the determination of the types of contracts and agreements to be employed in acquiring goods and services for the Department of Energy. Information is presented on selecting and negotiating types of contract compensation arrangements; fixed-price type contract compensation arrangements, including small purchases and multiyear procurement; cost-reimbursement type contract compensation arrangements; other types of contract compensation agreements; and basic agreements and basic ordering agreements. (LCL)

  4. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat AnnualGreen Business infromPurchasing &

  5. A Solid breeder tokamak blanket designed for failure mode operation

    E-Print Network [OSTI]

    Chen, Franklin Fun Kun

    1977-01-01T23:59:59.000Z

    The objective of this study was to evaluate a new concept for a Tokamak type fusion reactor blanket. The design was based on using a packed bed of lithium aluminate as the breeding material with helium gas cooling. The ...

  6. Helium-cooled lithiuim compound suspension blanket concept for ITER

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.C.; Attaya, H.; Billone, M.; Clemmer, R.C.; Finn, P.A.; Hassanein, A.; Johnson, C.E.; Majumdar, S.; Mattas, R.F.

    1988-08-01T23:59:59.000Z

    This blanket concept uses a dilute suspension of fine solid breeder particles (Li/sub 2/O, LiAlO/sub 2/, or Li/sub 4/SiO/sub 4/) in a carrier gas (He) as the coolant and the tritium breeding stream. A small fraction of this stream is processed outside the reactor for tritium recovery. The blanket consists of a beryllium multiplier and carbon/steel reflector. A steel clad is used for all materials. A carbon reflector is employed to reduce the beryllium thickness used in the blanket for a specific tritium breeding ratio. The breeder particle size has to exceed few microns (greater than or equal to2 microns) to avoid sticking problems on the cold surfaces of the heat exchanger. The helium gas pressure is in the range of 2 to 3 MPa to carry the blanket and the heat exchanger loop. The solid breeder concentration in the helium stream is 1 to 5 volume percent. A high lithium-6 enrichment is used to produce a high tritium breeding ratio and to reduce the breeder concentration in the helium gas. At a lithium-6 enrichment of 90%, the local tritium breeding ratio is 2.03 based on a one-dimensional poloidal model. The total thickness of the helium stream is only 4 cm out of the 50 cm total blanket thickness. The blanket uses a 35 cm of beryllium for neutron multiplication. A simple multi-layer design is employed where the blanket sector has the helium coolant flowing in the poloidal direction. The blanket concept has several unique advantages which are very beneficial for fusion reactors including ITER. 10 refs., 2 tabs.

  7. Evaluation of organic moderator/coolants for fusion breeder blankets

    SciTech Connect (OSTI)

    Romero, J.B.

    1980-03-01T23:59:59.000Z

    Organic coolants have several attractive features for fusion breeder blanket design. Their apparent compatibility with lithium and their ideal physical and nuclear properties allows straight-forward, high performance designs. Radiolytic damage can be reduced to about the same order as comparable fission systems by using multiplier/stripper blanket designs. Tritium recovery from the organic should be straightforward, but additional data is needed to make a better assessment of the economics of the process.

  8. U.S. Plans and Strategy for ITER Blanket Testing

    SciTech Connect (OSTI)

    Abdou, M. [UCLA Fusion Engineering Sciences (United States); Sze, D. [UCSD Advanced Energy Technology Group (United States); Wong, C. [General Atomics (United States); Sawan, M. [University of Wisconsin Fusion Technology Institute, Madison (United States); Ying, A. [UCLA Fusion Engineering Sciences (United States); Morley, N.B. [UCLA Fusion Engineering Sciences (United States); Malang, S

    2005-04-15T23:59:59.000Z

    Testing blanket concepts in the integrated fusion environment is one of the principal objectives of ITER. Blanket test modules will be inserted in ITER from Day 1 of its operation and will provide the first experimental data on the feasibility of the D-T cycle for fusion. With the US rejoining ITER, the US community has decided to have strong participation in the ITER Test Blanket Module (TBM) Program. A US strategy for ITER-TBM has evolved that emphasizes international collaboration. A study was initiated to select the two blanket options for the US ITER-TBM in light of new R and D results from the US and world programs over the past decade. The study is led by the Plasma Chamber community in partnership with the Materials, PFC, Safety, and physics communities. The study focuses on assessment of the critical feasibility issues for candidate blanket concepts and it is strongly coupled to R and D of modeling and experiments. Examples of issues are MHD insulators, SiC insert viability and compatibility with PbLi, tritium permeation, MHD effects on heat transfer, solid breeder 'temperature window' and thermomechanics, and chemistry control of molten salts. A dual coolant liquid breeder and a helium-cooled solid breeder blanket concept have been selected for the US ITER-TBM.

  9. PURCHASE ORDER TERMS AND CONDITIONS 1. Any purchase order issued by the Bowling Green State University Purchasing Department is a

    E-Print Network [OSTI]

    Moore, Paul A.

    University Purchasing Department is a binding contract between the Buyer, (Bowling Green State University correspondence to: Bowling Green State University, 103 Park Avenue, Attn: Purchasing Department, Bowling Green: Mail all invoices to Bowling Green State University, Accounts Payable, Room 319 Administration Building

  10. APT Blanket System Loss-of-Helium-Gas Accident Based on Initial Conceptual Design - Helium Supply Rupture into Blanket Module

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    The model results are used to determine if beam power shutdown is necessary (or not) as a result of the LOHGA accident to maintain the blanket system well below any of the thermal-hydraulic constraints imposed on the design. The results also provide boundary conditions to the detailed bin model to study the detailed temperature response of the hot blanket module structure. The results for these two cases are documented in the report.

  11. Items Prohibited for Purchase January 2012

    E-Print Network [OSTI]

    Pennycook, Steve

    Items Prohibited for Purchase January ­ 2012 Advertising/Public Relations Items Alcohol (ethyl SJEOW extension cord with power indicator light in the cord connector. Catalog Numbers: 01287 01288 Turnbuckles Wire rope (slings, clips [clamps]) Illegal supplies purchased through Cuba, Iran, Libya, North

  12. External Research Funding Agreements

    E-Print Network [OSTI]

    Victoria, University of

    1 External Research Funding Agreements University Policy No: RH8200 Classification: Research and university employees under Research Funding Agreements. DEFINITIONS 2.00 Research Funding Agreement means funding provided through an agreement with the university to be used for research purposes, whether

  13. STEP Participation Agreement

    Broader source: Energy.gov [DOE]

    STEP Participation Agreement, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  14. Overview of design activities for Li/V blankets

    SciTech Connect (OSTI)

    Sze, D.K.; Mattas, R.F.

    1997-12-31T23:59:59.000Z

    Recent fusion power plant design studies in the US have been conducted within the ARIES project. The most recent design of Li/V blankets was conducted as part of the ARIES-RS design. The ARIES-RS fusion power plant design study is based on reversed-shear (RS) physics with a Li/V (lithium breeder and vanadium structure) blanket. The reversed-shear discharge has been documented in many large tokamak experiments. The plasma in the RS mode has a high beta, low current, and low current drive requirement. Therefore, it is an attractive physics regime for a fusion power plant. The blanket system based on a Li/V has high temperature operating capability, good tritium breeding, excellent high heat flux removal capability, long structural life time, low activation, low after heat and good safety characteristics. For these reasons, the ARIES-RS reactor study selected Li/V as the reference blanket. The combination of attractive physics and attractive blanket engineering is expected to result in a superior power plant design.

  15. Policy Flash 2015-28 - New GSA Strategic Sourcing Vehicle for...

    Office of Environmental Management (EM)

    Services awarded a Blanket Purchase Agreement (BPA) (BPA Number DE-MA0011379) to Ricoh USA, Inc. of Malvern, PA on May 4, 2015. The BPA is for purchasing, leasing and maintenance...

  16. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Energy Savers [EERE]

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity,...

  17. Buy Energy-Efficient Products: A Guide for Federal Purchasers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buy Energy-Efficient Products: A Guide for Federal Purchasers and Specifiers Buy Energy-Efficient Products: A Guide for Federal Purchasers and Specifiers Document encourages...

  18. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration...

  19. Using government purchasing power to reduce equipment standby power

    E-Print Network [OSTI]

    Harris, Jeffrey; Meier, Alan; Bartholomew, Emily; Thomas, Alison; Glickman, Joan; Ware, Michelle

    2003-01-01T23:59:59.000Z

    or external power supply, other specifications, and purchasethe consumer to purchase extra power strips and extensionan internal standby power function, shall purchase Although

  20. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  1. Energy Department Issues Tribal Renewable Energy Purchase Guidance...

    Energy Savers [EERE]

    Issues Tribal Renewable Energy Purchase Guidance and Project Development Resources Energy Department Issues Tribal Renewable Energy Purchase Guidance and Project Development...

  2. Neutronics Analysis of a Molten Salt Blanket for the HAPL Laser Fusion Power Plant with Magnetic

    E-Print Network [OSTI]

    Raffray, A. René

    of this blanket were compared to those of a lithium-lead blanket in two chamber core configurations. Because chemistry control of the corrosive TF and F2. In order to compare the performance parameters, we carried out

  3. Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff...

    Office of Environmental Management (EM)

    Electric Blanket Delivers K.O. to Space Heater During EnergyFaceoff Round Three Electric Blanket Delivers K.O. to Space Heater During EnergyFaceoff Round Three November 19, 2014...

  4. Neutronics design aspects of reference ARIES-I fusion blanket

    SciTech Connect (OSTI)

    Cheng, E.T. (TSI Research, Solana Beach, CA (USA))

    1990-12-01T23:59:59.000Z

    A SiC composite blanket concept was recently conceived for a deuterium-tritium burning, 1000 MW(e) tokamak fusion reactor design, ARIES-I. SiC composite structural material was chosen due to its very low activation features. High blanket nuclear performance and thermal efficiency, adequate tritium breeding, and a low level of activation are important design requirements for the ARIES-I reactor. The major approaches, other than using SiC as structural material, in meeting these design requirements, are to employ beryllium, the only low activation neutron multiplying material, and isotopically tailored Li{sub 2}ZrO{sub 3}, a tritium breeding material stable at high temperature, as blanket materials. 5 refs., 4 figs., 2 tabs.

  5. Partnership Agreement Options | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement For Commercializing Technology (ACT) CRADA Work For Others Agreement User Agreement Sample Sponsored Research Agreement SBIR-STTR Support Partnerships Home | Connect...

  6. Storage management solutions Buyer's guide: purchasing criteria

    E-Print Network [OSTI]

    Storage management solutions Buyer's guide: purchasing criteria Manage your storage to meet service storage environment cohesively As new guidelines or regulations surface, storage administrators receive increasing numbers of requests for change (RFCs) in storage provisioning. Simultaneously, routine changes

  7. Sustainable Electric Utility (SEU)- SREC Purchase Program

    Broader source: Energy.gov [DOE]

    SREC purchase program is a joint incentive of Delaware Division of Energy and Climate (DNREC) and the state’s Sustainable Energy Utility (SEU). The program offers a standard onetime payment of $450...

  8. City of Bellingham- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    In July 2006, the Bellingham City Council adopted a policy to begin purchasing 100% green power for all facilities owned by the city -- one of the most aggressive such goals in the United States....

  9. City of Aspen- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    In 2005, the City of Aspen set a goal to purchase 75% of the city government's energy from renewable sources by 2010. As of December 2006, Aspen had accomplished its goal to provide 75% non-carbon...

  10. Purchase Obligations, Earnings Persistence and Stock Returns

    E-Print Network [OSTI]

    Lee, Kwang June

    2010-01-01T23:59:59.000Z

    purchase, natural gas supply and transportation, and nuclearNatural Gas Utilities Communication Personal Services Business Services Computer Hardware Computer Software Electronic Equipment Measuring and Control Equipment Business Supplies Shipping Containers Transportation

  11. Progress in blanket designs using SiCf/SiC composites L. Giancarli a,

    E-Print Network [OSTI]

    Raffray, A. René

    Progress in blanket designs using SiCf/SiC composites L. Giancarli a, 1, H. Golfier b , S. Nishio c the use of SiCf/SiC composite as structural material for fusion power reactor breeding blanket. SeveralCf/SiC. # 2002 Published by Elsevier Science B.V. Keywords: Blanket designs; SiCf/SiC composites; Self

  12. MODELING TRITIUM TRANSPORT IN PBLI BREEDER BLANKETS UNDER STEADY STATE , M. Abdou1

    E-Print Network [OSTI]

    Abdou, Mohamed

    MODELING TRITIUM TRANSPORT IN PBLI BREEDER BLANKETS UNDER STEADY STATE H. Zhang1 , A. Ying1 , M breeder blankets under realistic reactor-like conditions in this paper. Tritium concentration. Tritium behavior in the liquid metal breeder blanket requires a thorough understanding of the sequence

  13. Fusion Engineering and Design 81 (2006) 659664 Solid breeder test blanket module design and analysis

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    Fusion Engineering and Design 81 (2006) 659­664 Solid breeder test blanket module design This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration

  14. Blanket/First Wall Challenges and Required R&D on the pathway to DEMO

    E-Print Network [OSTI]

    Abdou, Mohamed

    Ceramic Breeder Blanket Technology." · J. Van Lew et al, "Discrete element method simulations to determineBlanket/First Wall Challenges and Required R&D on the pathway to DEMO ISFNT11 Invited paper and Technology Center, UCLA Barceloneta, Barcelona #12;Introductory Remarks 2 · The importance of blanket

  15. Fusion Engineering and Design 46 (1999) 177183 ITER reference breeding blanket design

    E-Print Network [OSTI]

    Raffray, A. René

    1999-01-01T23:59:59.000Z

    breeding blanket with a lithium ceramic as breeder material and beryllium as neutron multiplierFusion Engineering and Design 46 (1999) 177­183 ITER reference breeding blanket design M. Ferrari a The ITER reference breeding blanket design is water-cooled and is characterised by the use of the neutronic

  16. Test blanket modules in ITER: An overview on proposed designs and required DEMO-relevant materials

    E-Print Network [OSTI]

    Abdou, Mohamed

    Test blanket modules in ITER: An overview on proposed designs and required DEMO-relevant materials, Russian Federation Abstract Within the framework of the ITER Test Blanket Working Group, the ITER Parties have made several proposals for test blanket modules to be tested in ITER from the first day of H

  17. Modular Dual Coolant Pb-17Li Blanket Design For ARIES-CS Compact Stellarator Power Plant

    E-Print Network [OSTI]

    Raffray, A. René

    of the study. The preferred blanket concept is a dual coolant blanket with a He- cooled ferritic steel firstModular Dual Coolant Pb-17Li Blanket Design For ARIES-CS Compact Stellarator Power Plant X.R. Wanga from the engineering effort during the second phase of ARIES-CS study on the conceptual design

  18. GO GREEN! BUY GREEN! Introduction to Green Purchasing

    E-Print Network [OSTI]

    Lafferriere, Gerardo

    for Existing Buildings Sustainable purchasing policy Green Cleaning policy (with purchasing requirements) #12 ­ Building products ­ Green meetings and conference services · Low or non-toxic or non-hazardous chemicalsGO GREEN! BUY GREEN! Introduction to Green Purchasing April 22nd, 2010 Karen Preston - Purchasing

  19. Liquid Walls Innovative Concepts for First Walls and Blankets

    E-Print Network [OSTI]

    Abdou, Mohamed

    with existing technology · Size of plasma devices and power plants can be substantially reduced High PoloidalLiquid Walls Innovative Concepts for First Walls and Blankets Mohamed Abdou Professor, Mechanical as part of the US Restructured Fusion Program Strategy to enhance innovation · Natural Questions

  20. Accelerator driven production of tritium: target and blanket design 

    E-Print Network [OSTI]

    Ragusa, Jean Concetto

    1996-01-01T23:59:59.000Z

    investigated. The target designs in the heterogeneous systems were 1 / liquid lead, and 2/ layers of solid lead plates cooled by heavy water. The tritium breeding blanket assemblies contained either lithium oxide or molten fluorine salt with or without UF4...

  1. Fusion-reactor blanket-material safety-compatibility studies

    SciTech Connect (OSTI)

    Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

    1982-11-01T23:59:59.000Z

    Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO/sub 2/, Li/sub 2/ZrO/sub 3/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/ and LiTiO/sub 3/) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li/sub 7/Pb/sub 2/ alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li/sub 17/Pb/sub 83/ alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li/sub 17/Pb/sub 83/ alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns.

  2. September 14-16, 2004/ARR CERAMIC BREEDER BLANKET

    E-Print Network [OSTI]

    California at San Diego, University of

    . Dual-Coolant blanket concept with He-cooled steel structure and self-cooled liquid metal (Li or Pb-17Li · Optimization studies · Conclusions #12;September 14-16, 2004/ARR 3 Engineering Activities During Phase I for Down Selection to a Couple of Combinations for Detailed Studies During Phase II - Three Possible

  3. US ITER (International Thermonuclear Experimental Reactor) shield and blanket design activities

    SciTech Connect (OSTI)

    Baker, C.C.

    1988-08-01T23:59:59.000Z

    This paper summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. Primary tasks carried out during the past year include design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components, and issues regarding structural materials for an ITER device. The blanket concepts considered are the aqueous/Li salt solution, a water-cooled, solid breeder blanket, a helium-cooled, solid-breeder blanket, a blanket cooled by helium containing lithium-bearing particulates, and a blanket concept based on breeding tritium from He/sup 3/. 1 ref., 2 tabs.

  4. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  5. Partnership Agreement Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Agreement Form Learn more at energy.goveereamobetter-plants The Better Buildings, Better Plants Program is a national initiative to significantly improve energy...

  6. An Overview of US ITER Test Blanket Module Program

    SciTech Connect (OSTI)

    Ying, A.; Abdou, Mohamed A.; Wong, Clement; Malang, S.; Morley, Neil B.; Sawan, M.; Merrill, Brad; Sze, Dai Kai; Kurtz, Richard J.; Willms, Scott; Ulrickson, Mike; Zinkle, Steven J.

    2006-01-01T23:59:59.000Z

    A testing strategy and corresponding test plan have been presented for the two proposed US candidate breeder blankets: 1) a helium-cooled solid breeder concept with ferritic steel structure and Be neutron multiplier, but without a fully independent TBM, and 2) a dual-coolant helium-cooled ferritic steel structure with self-cooled LiPb breeding zone that uses a flow channel insert as MHD and thermal insulator. Example test module designs, and configuration choices for each line of ITER TBM are shown and discussed in the paper. In addition, near-term R&D items for decision-making on testing of both solid breeder and dual-coolant PbLi liquid breeder blanket concepts in ITER are identified.

  7. APT {sup 3}He target/blanket. Topical report

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    The {sup 3}He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D{sub 2}O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process.

  8. Gas Purchasing Strategies for the '90s 

    E-Print Network [OSTI]

    Schuler, S. H.

    1989-01-01T23:59:59.000Z

    significant portion of the nation's refining in petrochemical capacity. HL&P has 12,855 MW of generating capacity and sells approximately 25% of Texas' total electric utility sales. As a gas purchaser, HL&P is situated in "pipeline alley" and now has pipeline...

  9. University of Hawaii Purchasing Cardholder Information

    E-Print Network [OSTI]

    Olsen, Stephen L.

    No Accounting Code Account Code: Subcode: Campus Code: Fiscal Officer Code: Division Code: Executive Level Code: School Code: Department Code: Sub-Dept. Code: rev. 09/20051 Monthly Credit Limit: $ Single Purchase Limit Information Department Liaison: Approving Official: (Vice President, Chancellor, Dean or Director) Who

  10. Blanket comparison and selection study. Final report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1984-09-01T23:59:59.000Z

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  11. Blanket comparison and selection study. Final report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1984-09-01T23:59:59.000Z

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  12. A Helical Coolant Channel Design for the Solid Wall Blanket

    SciTech Connect (OSTI)

    Mogahed, E.A. [University of Wisconsin-Madison (United States)

    2003-07-15T23:59:59.000Z

    A helical coolant channel scheme is proposed for the APEX solid wall blanket module. The self-coolant breeder in this system is FLIBE (LiF)2(BeF2). The structural material is the nanocomposited alloy 12YWT. The neutron multiplier used in the current design is either stationary or slow moving liquid lead. The purpose of this study is to design a blanket that can handle a high wall loading (5 MW/m{sup 2}). In the mean time the design provides means to attain the maximum possible blanket outlet temperature and meet all engineering limits on temperature of structural material and liquids. An important issue for such a design is to optimize the system for minimum pressure loss. For advanced ferritic steel (12YWT) an upper temperature limit of 800 deg. C is expected, and a limit of 700 deg. C at the steel/FLIBE interface is recommended.The blanket module is composed of two main continuous routes. The first route is three helical rectangular channels side-by-side that surround a central box. The helical channels are fed from the bottom and exit at the top to feed the central channels in the central box. The coolant helical channels have a cross sectional area with a length of about 10 cm and a width that changes according to the position around the central box. For instance: the width of the coolant channels facing the plasma is the narrowest while it is the widest in the back (farthest from the plasma).In this design the coolant runs around the central box for only 5 turns to cover the total height of the first wall (6.8 m). The design is optimized with the FW channel width as a parameter with the heat transfer requirements at the first wall as the constraints.

  13. 1-pin blanket mockup: Results of the extended test campaign

    SciTech Connect (OSTI)

    Ferrari, M.; Talarico, C. [EURATOM-ENEA, Frascati (Italy); Furrer, M.; Simbolotti, G. [ENEA, S. Maria in Galeria (Italy)

    1996-12-31T23:59:59.000Z

    Following a preliminary test campaign (200 thermal cycles) on a solid breeder blanket mockup, an extended test campaign (about 1000 thermal cycles) has been carried out by ENEA. The duration of the test campaign represents a significant fraction of the blanket module lifetime in the ITER device. In particular, these out-of-pile experiments have been performed in order to test (both functional and endurance testing) the thermal-hydraulic and thermo-mechanical performance of a water cooled breeder-in-tube blanket mockup (1-PIN) using Li{sub 2}ZrO{sub 3} pebbles as a breeder material. The test campaign has been completed and the resulting data concerning thermal and thermal-hydraulic parameters have been elaborated and analyzed by means of a comparison with theoretical predictions based on a proper thermal-hydraulic model. The post test examination of the pebbles is in progress in order to investigate the thermo-mechanical behavior of the breeder material under cycling. The paper deals with the first part of the results. 6 refs., 11 figs., 1 tab.

  14. Service Level Agreement University ServicesPurchasing with University Services customers

    E-Print Network [OSTI]

    Webb, Peter

    be determined individually with each customer for each service contract. USP provides services that can

  15. FEMP Offers Training on Federal On-Site Renewable Power Purchase Agreements

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFE DOCKETPlanning to Project|

  16. Response Summary: Department of Energy Power Purchase Agreement Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Dr. JuliaPOINTRespond to theResponsePower

  17. Third-Party Financing and Power Purchase Agreements for Public Sector PV

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology PerformanceDepartmentfor

  18. NREL-Third-Party Financing and Power Purchasing Agreements for Public

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames GlobalViewLCI(RedirectedSector PV

  19. Third-Party Financing and Power Purchase Agreements for Public Sector PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department Third Report to the President

  20. Quick Guide: Power Purchase Agreements (Fact Sheet), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified EnergyDepartment ofOrderDepartment ofbelow arePPA

  1. PartnershipAgreementsTraining

    Energy Savers [EERE]

    may be assumed on the third working day. 21 SBA-Responsibilities (cont.) n All proposed joint venture agreements involving 8(a) firms shall be reviewed and approved by SBA before...

  2. Wind Agreements (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

  3. NONCOMMERCIAL SOFTWARE LICENSE AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this AGREEMENT be declared or be determined by a court of competent jurisdiction to be illegal or invalid, the validity of the remaining parts, terms or provisions shall not be...

  4. What Is Your Latest Energy Efficient Purchase? | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Latest Energy Efficient Purchase? What Is Your Latest Energy Efficient Purchase? February 10, 2011 - 6:30am Addthis On Tuesday, Andrea told us about her new door and the research...

  5. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  6. Purchase of High Performance Computing (HPC) Central Compute Resources

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers summarizes High Performance Computing (HPC) compute resources that faculty engaged in research may purchase of code on the Quest high performance computing system. The installation cycles for new

  7. The Ohio State University Delegation of Purchasing Authority

    E-Print Network [OSTI]

    Jones, Michelle

    , the College agrees to verify with the iBuy website and/or the Purchasing Department. 4. The College and Buyer: Vending Coordinator, Purchasing Department · Weapons, Ammunition and Explosives: Assistant Vice President

  8. Helium-cooled, FLiBe-breeder, beryllium-multiplier blanket for MINIMARS

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.

    1986-06-01T23:59:59.000Z

    We adapted the helium-cooled, FLiBe-breeder blanket to the commercial tandem-mirror fusion-reactor design, MINIMARS. Vanadium was used to achieve high performance from the high-energy-release neutron-capture reactions and from the high-temperature operation permitted by the refractory property of the material, which increases the conversion efficiency and decreases the helium-pumping power. Although this blanket had the highest performance among the MINIMARS blankets designs, measured by Mn/sub th/ (blanket energy multiplication times thermal conversion efficiency), it had a cost of electricity (COE) 18% higher than the University of Wisconsin (UW) blanket design (42.5 vs 35.9 mills/kW.h). This increased cost was due to using higher-cost blanket materials (beryllium and vanadium) and a thicker blanket, which resulted in higher-cost central-cell magnets and the need for more blanket materials. Apparently, the high efficiency does not substantially affect the COE. Therefore, in the future, we recommend lowering the helium temperature so that ferritic steel can be used. This will result in a lower-cost blanket, which may compensate for the lower performance resulting from lower efficiency.

  9. APT Blanket System Model Based on Initial Conceptual Design - Integrated 1D TRAC System Model

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    This report documents the approaches taken in establishing a 1-dimensional integrated blanket system model using the TRAC code, developed by Los Alamos National Laboratory.

  10. Study of MHD Corrosion and Transport of Corrosion Products of Ferritic/Martensitic Steels in the Flowing PbLi and its Application to Fusion Blanket

    E-Print Network [OSTI]

    Saeidi, Sheida

    2014-01-01T23:59:59.000Z

    components of a liquid breeder blanket of a fusion powerPb-17Li breeder first wall and blanket concept developmentPb-17Li breeder first wall and blanket concept development

  11. Creative renewable energy purchasing options for businesses

    SciTech Connect (OSTI)

    Lokey, Elizabeth

    2007-01-15T23:59:59.000Z

    Green energy providers are creating novel ways for large commercial clients to get involved in the long-term development of renewable energy generation. Some plans are designed to allow the purchase of energy to provide long-term off-take stability and other financial benefits to companies developing renewable energy projects. Two new insurance products could help absorb some of the financial risk taken on by the clients. (author)

  12. Gas Purchasing Strategies for the '90s

    E-Print Network [OSTI]

    Schuler, S. H.

    GAS PURCHASING STRATEGIES FOR THE '90S STEVEN H. SCHULER Manager-Acquisition & Contract Administration Houston Lighting & Power Company Houston, Texas The purpose of my talk today is to: 1. provide a brief summary of the structural... changes which have occurred in the natural gas market over the last several years 2. discuss some of the effects of these changes and some of the potential issues that could result from these changes, and 3. finally to offer some advice on how...

  13. Bonneville Power Administration's Purchasing of Energy Savings

    E-Print Network [OSTI]

    Schick, H.

    BONNEVILLE POWER ADMINISTRATION'S PURCHASE OF ENERGY SAVINGS Harold (Skip) Schick Leslie E. McMillan Bonneville Power Administration Port1and, Oregon INTRODUCTION The Bonneville Power Administration (BPA) is conducting a commercial... buildings retrofit program in the Pacific Northwest by making pay ments to a sponsor, such as an energy serv ice company or architectural and engineering firm, for energy savings which actually occur in a commercial building. This effort is one...

  14. Canadian Seismic Agreement

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lapointe, S.P.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Adams, J.; Cajka, M.G.; McNeil, W.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada))

    1992-05-01T23:59:59.000Z

    This is a progress report of work carried out under the terms of a research agreement entitled the Canadian Seismic Agreement'' between the US Nuclear Regulatory Commission (USNRC), the Canadian Commercial Corporation and the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1989 to June 30, 1990. The Canadian Seismic Agreement'' supports generally the operation of various seismograph stations in eastern Canada and the collection and analysis of earthquake data for the purpose of mitigating seismic hazards in eastern Canada and the northeastern US. The specific activities carried out in this one-year period are summarized below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong-motion network developments and earthquake activity. During this period the first surface fault unequivocably determined to have accompanied a historic earthquake in eastern North America, occurred in northern Quebec.

  15. Canadian seismic agreement

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C., Anglin, F.M.; Plouffe, M.; Lapointe, S.P.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)

    1990-04-01T23:59:59.000Z

    This is the twenty-first progress report under the agreement entitled Canadian Seismic Agreement between the US Nuclear Regulatory Commission (NRC) and the Canadian Commercial Corporation. Activities undertaken by the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1988 to June 30, 1989 and supported in part by the NRC agreement are described below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong motion network developments and earthquake activity. In this time period eastern Canada experienced its largest earthquake in over 50 years. This earthquake, which has been christened the Saguenay earthquake, has provided a wealth of new data pertinent to earthquake engineering studies in eastern North America and is the subject of many continuing studies, which are presently being carried out at GD and elsewhere. 41 refs., 21 figs., 7 tabs.

  16. INTERNSHIP AGREEMENT (Please Print)

    E-Print Network [OSTI]

    Bogaerts, Steven

    Rev. 5/12 INTERNSHIP AGREEMENT (Please Print) STUDENT MUST HAVE A GPA OF 2.0+ AND A MINIMUM OF 64 COMPLETED CREDIT HOURS TO REGISTER FOR AN INTERNSHIP. ALL INTERNSHIPS DONE FOR CREDIT ARE PASS/FAIL. A MAXIMUM OF 10 SEMESTER HOURS OF INTERNSHIP CREDIT IS POSSIBLE. THROUGH A COMBINATION OF INTERNSHIPS

  17. Personal Services Agreements Waivers

    E-Print Network [OSTI]

    these services. 4. Support and Maintenance Agreements: Services include preventive maintenance as well - Equipment Maintenance/Repair Services in this category are used for all types of equipment maintenance the equipment necessary to perform certain services. 2. Equipment Maintenance and Repair: Services include

  18. Holocene blanket peat development in south west Scotland : the roles of human activity, climate change and vegetation change 

    E-Print Network [OSTI]

    Flitcroft, Catherine Esther

    2006-11-29T23:59:59.000Z

    This thesis examines the role of autogenic and allogenic forces in determining the timing and development of blanket peat initiation and how the occurrence and growth of blanket peat subsequently constrains human activities. A number of factors...

  19. Overview of US Liquid Metal Blanket R&D ActivitiesR&D Activities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Overview of US Liquid Metal Blanket R&D ActivitiesR&D Activities Mohamed A. Abdou and the US FNST 2324, 2010 Madrid, Spain Thursday, September 23y, p S1I3 Mohamed Abdou: "Overview of US Liquid Metal Transport inCorrosion/Deposition and Tritium Transport in LiquidMetal Blankets" S7I2 C. Wong/M. Abdou

  20. Thermal-Hydraulic Analysis of Seed-Blanket Unit Duplex Fuel Assemblies with VIPRE-01

    E-Print Network [OSTI]

    McDermott, Patrick 1987-

    2012-11-15T23:59:59.000Z

    and blanket unit (SBU) configuration, where the seed region contains standard UO2 fuel, and the blanket region contains an inert matrix (Pu,Np,Am)O2-MgO-ZrO2 fuel. The research efforts of this thesis are first to consider the higher burnup effects on DUPLEX...

  1. Project EARTH-11-SPH1: Impact ejecta blankets characteristics, origins and processes

    E-Print Network [OSTI]

    Henderson, Gideon

    and Chixculub ejecta have been proposed as either double layer ejecta (DLE) or multi-layer (MLE) ejecta blankets. The SFM can also be thought of as a DLE ejecta blanket which has a melt-clast rich lower layer, thought

  2. Page 1 of 3 Blanket and First Wall Science Priority and Funding Requirements,

    E-Print Network [OSTI]

    /photon/plasma transport and material interactions; heat, tritium and corrosion mass transfer; incompressible MHD) - the US has developed a potentially attractive family of blanket concepts based on liquid lead lithium, the socalled Dual Coolant Lead Lithium (DCLL) blanket being a leading example - the development of coupled

  3. MHD Analysis of Dual Coolant Pb-17Li Blanket for ARIES-CS C. Mistrangelo1

    E-Print Network [OSTI]

    Raffray, A. René

    MHD Analysis of Dual Coolant Pb-17Li Blanket for ARIES-CS C. Mistrangelo1 , A. R. Raffray2 of California, San Diego, La Jolla, CA 92093-0438, USA, rraffray@ucsd.edu A dual coolant Pb-17Li (DCLL) blanket of magnetohydrodynamic (MHD) flows in the poloidal channels that distribute the liquid metal in the breeder units has

  4. MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed-mail (Sergey Smolentsev): Sergey@fusion.ucla.edu Heat transfer in closed channel flows of molten salts (MS), a number of blanket design options with molten salt (FLiBe or FLiNaBe) as the tritium breeder/coolant have

  5. Chapter 11 HELIUM-COOLED REFRACTORY ALLOYS FIRST WALL AND BLANKET EVALUATION

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 Chapter 11 HELIUM-COOLED REFRACTORY ALLOYS FIRST WALL AND BLANKET EVALUATION 11.1 Introduction performed thermal hydraulics, nuclear, activation and safety designs and analysis. High-pressure helium of the refractory alloy helium-cooled breeder FW/blanket concept developed under the APEX program is presented

  6. Heat-pipe liquid-pool-blanket concept for the Tandem Mirror Reactor

    SciTech Connect (OSTI)

    Hoffman, M.A.; Werner, R.W.; Johnson, G.L.

    1981-10-01T23:59:59.000Z

    The blanket concept for the tandem mirror reactor described in this paper was developed to produce the medium temperature heat (approx. 850 to 950 K) for the General Atomic sulfur-iodine thermochemical process for producing hydrogen. This medium temperature heat from the blanket constitutes about 81% of the total power output of the fusion reactor.

  7. Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at

    E-Print Network [OSTI]

    Angenent, Lars T.

    Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at Low Temperatures Largus anaerobic migrating blanket reactor (AMBR) was studied for the treatment of low- strength soluble wastewater). KEYWORDS: anaerobic treatment, low-strength wastewater, low-tem- perature conditions, compartmentalized

  8. Sample Retention Incentive Service Agreement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Phased Retirement Service Agreement Introduction This is an employment agreement between (employee's name) (hereinafter referred to as "you" or "your") and the...

  9. Cooperative Research & Development Agreements | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRADA SHARE Cooperative Research and Development Agreement A Cooperative Research and Development Agreement (CRADA) allows non-federal entities (industry, universities,...

  10. Tritium processing system for the ITER Li/V blanket test module

    SciTech Connect (OSTI)

    Sze, D.K.; Hua, T.Q. [Argonne National Lab., IL (United States); Abdou, M.A. [Univ. of California, Los Angeles, CA (United States); Dagher, M.A.; Waganer, L.M.

    1997-04-01T23:59:59.000Z

    The purpose of the ITER Blanket Testing Module is to test the operating and performance of candidate blanket concepts under a real fusion environment. To assure fuel self-sufficiency the tritium breeding, recovery and processing have to be demonstrated. The tritium produced in the blanket has to be processed to a purity which can be used for refueling. All these functions need to be accomplished so that the tritium system can be scaled to a commercial fusion power plant from a safety and reliability point of view. This paper summarizes the tritium processing steps, the size of the equipment, power requirements, space requirements, etc. for a self-cooled lithium blanket. This information is needed for the design and layout of the test blanket ancillary system and to assure that the ITER guidelines for remote handling of ancillary equipment can be met.

  11. Effective Thermal Conductivity of Lithium Ceramic Pebble Beds for Fusion Blankets: A Review

    SciTech Connect (OSTI)

    Abou-Sena, A.; Ying, A.; Abdou, M. [University of California, Los Angeles (United States)

    2005-05-15T23:59:59.000Z

    The use of lithium ceramic pebble beds has been considered in many blanket designs for the fusion reactors. Lithium ceramics have received a significant interest as tritium breeders for the fusion blankets during the last three decades. The thermal performance of the lithium ceramic pebble beds plays a key role for the fusion blankets. In order to study the heat transfer in the blanket, the effective thermal conductivity of the lithium ceramics pebble beds has to be well measured and characterized. The data of effective thermal conductivity of lithium ceramic pebble beds is important for the blanket design. Several studies have been dedicated to investigate the effective conductivity of the lithium ceramics pebble beds. The objective of this work is to review and compare the available data, presented by various studies, of effective conductivity of lithium ceramic pebble beds in order to address the current status of these data.

  12. Neutronics and thermal design analyses of US solid breeder blanket for ITER

    SciTech Connect (OSTI)

    Gohar, Y.; Billone, M.; Attaya, H. (Argonne National Lab., IL (USA)); Sawan, M. (Wisconsin Univ., Madison, WI (USA))

    1990-09-01T23:59:59.000Z

    The US Solid Breeder Blanket is designed to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Safety, low tritium inventory, reliability, flexibility cost, and minimum R D requirements are the other design criteria. To satisfy these criteria, the produced tritium is recovered continuously during operation and the blanket coolant operates at low pressure. Beryllium multiplier material is used to control the solid-breeder temperature. Neutronics and thermal design analyses were performed in an integrated manner to define the blanket configuration. The reference parameters of ITER including the operating scenarios, the neutron wall loading distribution and the copper stabilizer are included in the design analyses. Several analyses were performed to study the impact of the reactor parameters, blanket dimensions, material characteristics, and heat transfer coefficient at the material interfaces on the blanket performance. The design analyses and the results from the different studies are summarized. 6 refs., 3 figs., 3 tabs.

  13. Fusion Engineering and Design 81 (2006) 461467 An overview of dual coolant Pb17Li breeder first wall and blanket

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    . Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb­17Li.V. All rights reserved. Keywords: Blanket; Pb­17Li breeder; Dual-coolant; Helium-cooled; ITER coolant Pb­17Li liquid breeder (DCLL) blanket design, a con- cept that has been explored extensively

  14. THERMOMECHANICAL ANALYSIS OF THE REVISED U.S. ITER DCLL TEST BLANKET MODULE Aaron T. Aoyama1

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    wall and blanket structure, and the self-cooled Pb-17Li breeder is circulated for power conversion and blanket, and self-cooled Pb-17Li breeder circulated for power conversion and tritium extraction. A midTHERMOMECHANICAL ANALYSIS OF THE REVISED U.S. ITER DCLL TEST BLANKET MODULE Aaron T. Aoyama1

  15. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    SciTech Connect (OSTI)

    Kramer, G J; Ellis, R; Gorelenkova, M; Heidbrink, W W; Kurki-Suonio, T; Nazikian, R; Salmi, A; Schaffer, M J; Shinohara, K; Snipes, J A; Spong, D A; Koskela, T

    2011-06-03T23:59:59.000Z

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mockup of two Test Blanket Modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam-ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot which is predicted to be different among the various codes.

  16. Non-destructive assay of EBR-II blanket elements using resonance transmission analysis.

    SciTech Connect (OSTI)

    Klann, R.T.; Poenitz, W.P.

    1998-09-11T23:59:59.000Z

    Resonance transmission analysis utilizing a faltered reactor beam was examined as a means of determining the {sup 239}Pu content in Experimental Breeder Reactor-II depleted uranium blanket elements. The technique uses cadmium and gadolinium falters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range of this resonance (0.1 eV to 0.5 ev), the total microscopic cross-section of {sup 239}Pu is significantly greater than the cross-sections of {sup 238}U and {sup 235}U. This large difference allows small changes in the {sup 239}Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and {sup 239}Pu foils indicate a significant change in response based on the {sup 239}Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of {sup 239}Pu up to approximately two weight percent.

  17. Helium-cooled solid breeder blanket for ITER

    SciTech Connect (OSTI)

    Raffray, A.R.; Abdou, M.A.; Chou, P.; Gorbis, Z.; Tillack, M.; Watanabe, Y.; Ying, A.

    1989-03-01T23:59:59.000Z

    This paper summarizes the latest results of a design study of a helium-cooled solid breeder blanket for ITER. Attractive features of this design include the following: (1) There is a significant design margin since only part of the allowable solid breeder temperature window needs to be used. (2) There is an expanding data base available from solid breeder experiments carried out internationally. (3) The solid breeder can be designed to operate at high reactor-relevant temperature, while the helium is kept at moderate temperature and pressure for safety and reliability. In addition, since helium is a gas, it can be run so as to optimize the structure temperature and accommodate long term power variation without incurring any substantial pressure penalty. (4) The use of helium, an inert gas minimizing any chemical reaction and corrosion, in combination with a low activation solid breeder, is a safety advantage. An extensive list of the blanket operating parameters is provided and key factors are discussed.

  18. Engineering Scaling Requirements for Solid Breeder Blanket Testing

    SciTech Connect (OSTI)

    Ying, A.; Sharafat, S.; Youssef, M.; An, J.; Hunt, R.; Rainsberry, P.; Abdou, M. [University of California, Los Angeles (United States)

    2005-05-15T23:59:59.000Z

    An engineering scaling process is applied to the solid breeder ITER TBM designs in accordance with the testing objectives of validating the design tools and the database, and evaluating blanket performance under prototypical operating conditions. The goal of scaling is to ensure that changes in structural response and performance caused by changes in size and operating conditions do not reduce the usefulness of the tests. Initially, constitutive equations are applied to lay out the basic operating and design parameters that dominate blanket phenomena. The suitability of these similarity criteria for the TBM design is then confirmed by comparing finite element predictions of prototype and scale model responses. The TBM design also takes into account the need to check the codes and data for future design use. Specifically, predictability of tritium production and nuclear heating rates in a complex geometry, tritium release and permeation characteristics under fusion environments belong to this category. We conclude that this engineering scaling design process has maximized the value of ITER testing.

  19. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and Storage of Gases Print ALS users

  20. When to Purchase Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto Purchase Premium Efficiency Motors

  1. Jackson Purchase Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensysIslandJackson Purchase Energy

  2. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL: Shale natural gas provedArcPurchase,

  3. Name Title E-mail Address Phone Jane Scott Purchasing Card Manager jscott@purchasing.utah.edu (801) 581-6622

    E-Print Network [OSTI]

    Tipple, Brett

    @purchasing.utah.edu (801) 587-7859 Heidi Slack Purchasing Card Auditor hslack@purchasing.utah.edu (801) 581-7945 Ashley://fbs.admin.utah.edu/pcard/ Resources Other Resources #12;3 Contents Resources

  4. Issues in Purchasing and Maintaining Intrinsic Standards

    SciTech Connect (OSTI)

    PETTIT,RICHARD B.; JAEGER,KLAUS; EHRLICH,CHARLES D.

    2000-09-12T23:59:59.000Z

    Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.

  5. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory ViewAgreements

  6. Danny Lloyd Supply Purchasing Manager & Jlab Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Danny Lloyd Supply Purchasing Manager & Jlab Small Business Program Manager JSA Mentor-Protg Program Thomas Jefferson National Accelerator Facility Newport, News, Virginia...

  7. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  8. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

  9. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  10. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information Administration Petroleum Marketing...

  11. Energy Department Announces Funding to Develop Aggregate Purchasing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    today announced up to 2 million to support aggregate purchasing models for plug-in electric and other alternative fuel and advanced technology vehicles, subsystems,...

  12. AEP Ohio - Renewable Energy Credit (REC) Purchase Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Check the program web site for more information. ''''' As part of AEP Ohio's Renewable Energy Credit (REC) Purchase Program, customers can sell their RECs produced...

  13. Aggregated Purchasing and Workplace Charging Can Drive EV Market...

    Office of Environmental Management (EM)

    Standing before PG&E's new plug-in electric bucket truck, Secretary Moniz announced the Energy Department's notice of intent to support pilot aggregated purchasing models for...

  14. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01T23:59:59.000Z

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  15. Optimisation of physical and financial power purchase portfolios

    E-Print Network [OSTI]

    2003-03-10T23:59:59.000Z

    protect a power purchase portfolio against market risks. Facing this question, a multicriterial linear stochastic optimisation model has been developed. It is based

  16. Major habitat purchase in Columbia estuary benefits salmon ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fredlund, Corps, 503-808-4510 (EDITORS: Click for maps, photos and video.) Major habitat purchase in Columbia estuary benefits salmon The Columbia Land Trust, Bonneville Power...

  17. Optimisation of physical and financial power purchase portfolios

    E-Print Network [OSTI]

    Gorden Spangardt

    2002-10-18T23:59:59.000Z

    Oct 18, 2002 ... Optimisation of physical and financial power purchase portfolios. Gorden Spangardt (spa ***at*** umsicht.fhg.de) Michael Lucht (luc ***at*** ...

  18. Revisiting the Income Effect: Gasoline Prices and Grocery Purchases

    E-Print Network [OSTI]

    Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

    2008-01-01T23:59:59.000Z

    Sold On Sale and Retail Gasoline Prices Log % Purchased Onhigher gasoline prices into retail prices, by investigatingexcluding California average retail gasoline price for all

  19. Sandia National Laboratories: model of solar purchase dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar purchase dynamics Price Premiums for Solar Home Sales On February 25, 2015, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems...

  20. A European proposal for a ITER water cooled solid breeder blanket

    SciTech Connect (OSTI)

    Lorenzetto, P. [NET, Garching (Germany); Gierszewski, P. [CFFTP, Mississauga, Ontario (Canada); Simbolotti, G. [ENEA, Frascati (Italy)

    1994-12-31T23:59:59.000Z

    The Water Cooled Solid Breeder Blanket concept here proposed is based on a conservative approach, involving well proven technologies and-qualified materials. 316 L type stainless steel has been selected as the structural material. The nominal performances are: 1 MW/m{sup 2} as the average neutron wall load which corresponds to a fusion power of about 1.5 GW, and 1 MWy/m{sup 2} as the average neutron fluence. The power margins of the proposed concept have been estimated. The proposed blanket concept is based on a Breeder Inside Tube (BIT) type blanket with poloidal breeding elements, whose dimensions are compatible with space available in test fission reactor core channels, that makes easier in-pile testing required for the blanket development and qualification. Each breeding element consists of two concentric tubes. 1.2 mm lithium metazirconate (Li{sub 2}ZrO{sub 3}) pebbles are filled into the inner tube, the water coolant flows in the annular channel between the two tubes, and 2 mm Beryllium pebbles are poured into the blanket box outside the outer tube. Lithium metazirconate has been selected as the breeder material because it presents today the best tritium release properties at low temperature. A helium purge gas flows through the breeder pebble bed for tritium recovery. A Shielding Blanket can be derived from the proposed Blanket concept by removing the breeder pebbles from the inner tube. In-situ convertibility issues are addressed.

  1. UNIVERSITY OF TORONTO PURCHASING CHARGE CARD REQUEST FORM & ACKNOWLEDGEMENT OF

    E-Print Network [OSTI]

    and the Card Program Administrator immediately. Furthermore, I understand that this Card is the property duties in connection with the university, and I will not use the Card to make any personal purchases. I fully understand that purchases made using this Card are to be authorized by a departmental manager

  2. Sample Licensing Agreements | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be modified to meet individual circumstances. Licensing Agreements Nonexclusive Patent License Exclusive Patent License Nonexclusive Copyright License Nondisclosure (NDA)...

  3. REACHING AGREEMENT A Fundamental Task--

    E-Print Network [OSTI]

    Schneider, Fred B.

    REACHING AGREEMENT A Fundamental Task-- Even in Distributed Computer Systems by Fred B. Schneider consists of a collection of computers interconnected by communication channels. The computers are usually that will achieve ByzantineAgreement: Agreement. All nontraitorous generals execute the same action. Validity

  4. Polymer material selection and testing of resistive wire arrangement for a transparent infant warming blanket

    E-Print Network [OSTI]

    Salazar, Madeline

    2013-01-01T23:59:59.000Z

    The ThermoCloud was designed as a portable, scalable, transparent electrical blanket to warm and insulate infants, while permitting hassle-free medical transportation and maximum visualization of a patient's thorax and ...

  5. Design, construction and evaluation of a facility for the simulation of fast reactor blankets

    E-Print Network [OSTI]

    Forbes, Ian Alexander

    1970-01-01T23:59:59.000Z

    A facility has been designed and constructed at the MIT Reactor for the experimental investigation of typical LMFBR breeding blankets. A large converter assembly, consisting of a 20-cm-thick layer of graphite followed by ...

  6. Normal Operation (NO) of APT Blanket System and its Components Based on Initial Conceptual Design

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  7. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-10-05T23:59:59.000Z

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to /sup 7/Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation.

  8. The effect of reactor size on the breeding economics of LMFBR blankets

    E-Print Network [OSTI]

    Tagishi, Akinori

    1975-01-01T23:59:59.000Z

    The effect of reactor size on the neutronic and economic performance of LMFBR blankets driven by radially-power-flattened cores has been investigated using both simple models and state-of-the-art computer methods. Reactor ...

  9. Irradiation Testing of Blanket Materials at the HFR Petten with On Line Tritium Monitoring

    SciTech Connect (OSTI)

    Magielsen, A.J.; Laan, J.G. van der; Hegeman, J.B.J.; Stijkel, M.P.; Ooijevaar, M.A.G

    2005-07-15T23:59:59.000Z

    Irradiation experiments are performed in support of fusion blanket technology development. These comprise ceramic solid breeder materials, and a liquid Lithium Lead alloy, as well as blanket subassemblies and components. Experimental facilities at the HFR to study tritium release, permeation characteristics, and neutron irradiation performance, have recently been extended. This paper gives an overview on the tritium breeding materials irradiation programme and describes the facilities required for irradiation testing and on-line tritium measurement.

  10. Application of variational techniques for parametric studies of steady-state controlled thermonuclear reactor blankets 

    E-Print Network [OSTI]

    Pearce, James David

    1975-01-01T23:59:59.000Z

    APPLICATION OF VARIATIONAL TECHNIQUES FOR PARAMETRIC STUDIES OF STEADY-STATE CONTROLLED THERMONUCLEAR REACTOR BLANKETS A Thesis JAMES DAVID PEARCE Submitted to the Graduate College of Texas A6M University in partial fulfillment... of the requirement for the degree of MASTER OP SCIENCE May 1975 Ma)or Subject: Nuclear Engineering APPLICATION OF VARIATIONAL TECHNIQUES FOR PARAMETRIC STUDIES OF STEADY-STATE CONTROLLED THERMONUCLEAR REACTOR BLANKETS A Thesis by JAMES DAVID PEARCE Approved...

  11. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    SciTech Connect (OSTI)

    Lee C. Cadwallader

    2010-06-01T23:59:59.000Z

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  12. Application of variational techniques for parametric studies of steady-state controlled thermonuclear reactor blankets

    E-Print Network [OSTI]

    Pearce, James David

    1975-01-01T23:59:59.000Z

    APPLICATION OF VARIATIONAL TECHNIQUES FOR PARAMETRIC STUDIES OF STEADY-STATE CONTROLLED THERMONUCLEAR REACTOR BLANKETS A Thesis JAMES DAVID PEARCE Submitted to the Graduate College of Texas A6M University in partial fulfillment... of the requirement for the degree of MASTER OP SCIENCE May 1975 Ma)or Subject: Nuclear Engineering APPLICATION OF VARIATIONAL TECHNIQUES FOR PARAMETRIC STUDIES OF STEADY-STATE CONTROLLED THERMONUCLEAR REACTOR BLANKETS A Thesis by JAMES DAVID PEARCE Approved...

  13. C:\\Documents and Settings\\rpriesmeyer\\My Documents\\Word\\FAMIS Purchasing Guidelines.doc FAMIS Purchasing Guidelines

    E-Print Network [OSTI]

    Behmer, Spencer T.

    C:\\Documents and Settings\\rpriesmeyer\\My Documents\\Word\\FAMIS Purchasing Guidelines.doc FAMIS Purchasing Guidelines We are now utilizing the FAMIS (Financial Accounting Information Systems) State of measure & unit price of each item) · Indicate if there is a separate charge for shipping and handling

  14. INTERNATIONAL INTERNSHIP AGREEMENT This International Internship Agreement (the "Agreement") is entered into as of this day

    E-Print Network [OSTI]

    Napier, Terrence

    11/12/2012 INTERNATIONAL INTERNSHIP AGREEMENT This International Internship Agreement (the") located at . International Internships are established based upon a cooperative three-party relationship between the Internship placement (work experience company), the student, and the University, all working

  15. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.

    1999-10-07T23:59:59.000Z

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  16. Progress and critical issues for IFE blanket and chamber research

    SciTech Connect (OSTI)

    Abdou, M.; Kulcinski, G.L.; Latkowski, J.F.; Logan, B.G.; Meier, W.R.; Moir, R.W.; Nobile, A.; Peterson, P.F.; Petti, D.; Schultz, K.R.; Tillack, M.S.

    1999-06-23T23:59:59.000Z

    Advances in high gain target designs for Inertial Fusion Energy (IFE), and the initiation of construction of large megajoule-class laser facilities in the U.S. (National Ignition Facility) and France (Laser-Megajoule) capable of testing the requirements for inertial fusion ignition and propagating burn, have improved the prospects for IFE. Accordingly, there have recently been modest increases in the US fusion research program related to the feasibility of IFE. These research areas include heavy-ion accelerators, Krypton-Fluoride (KrF) gas lasers, diode-pumped, solid-state (DPSSL) lasers, IFE target designs for higher gains, feasibility of low cost IFE target fabrication and accurate injection, and long-lasting IFE fusion chambers and final optics. Since several studies of conceptual IFE power plant and driver designs were completed in 1992-1996 [1-5], U.S. research in the IFE blanket, chamber, and target technology areas has focused on the critical issues relating to the feasibility of IFE concepts towards the goal of achieving economically-competitive and environmentally-attractive fusion energy. This paper discusses the critical issues in these areas, and the approaches taken to address these issues. The U.S. research in these areas, called IFE Chamber and Target Technologies, is coordinated through the Virtual Laboratory for Technology (VLT) formed by the Department of Energy in December 1998.

  17. Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation

    SciTech Connect (OSTI)

    Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

    1999-08-01T23:59:59.000Z

    Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study.

  18. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy Information Administration Petroleum...

  19. Purchasing Water-Efficient Faucets, Pre-Rinse Spray Valves, Showerhead...

    Energy Savers [EERE]

    Products & Technologies Energy-Efficient Products Purchasing Water-Efficient Faucets, Pre-Rinse Spray Valves, Showerheads, Toilets, and Urinals Purchasing Water-Efficient...

  20. A. R. Raffray, et, al., High Performance Blanket for ARIES-AT Power Plant, SOFT 2000 HIGH PERFORMANCE BLANKET FOR ARIES-AT

    E-Print Network [OSTI]

    California at San Diego, University of

    material. This paper describes the results of the design study of this blanket including a discussionCf/SiC composite as structural material. The Pb-17Li operating temperature is optimized to provide high power cycle) = 35 °C · Turbine efficiency = 93%; Compressor efficiency = 90% #12;A. R. Raffray, et, al., High

  1. Interconnection Agreements for Onsite Generation

    Broader source: Energy.gov [DOE]

    Presentation covers Interconnection Agreements for Onsite Generation and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  2. GSA-Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the General Service Administration's (GSA's) utility interconnection agreements.

  3. DCLL TBM Safety Assessment A key objective for ITER includes integrated testing of blanket concepts suitable for demonstrating fusion

    E-Print Network [OSTI]

    prototypical blanket modules into designated ports. Because ITER will be a licensed nuclear facility, occupation radiation exposure (ORE) analyzed, and decommissioning and waste disposal analysis performed

  4. A passively-safe fusion reactor blanket with helium coolant and steel structure

    SciTech Connect (OSTI)

    Crosswait, K.M.

    1994-04-01T23:59:59.000Z

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  5. Pallets of PV: Communities Purchase Solar and Drive Down Costs...

    Open Energy Info (EERE)

    Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2017) Super...

  6. Economical Energy Storage Option Enhances Energy Purchasing Strategies

    E-Print Network [OSTI]

    Hansen, D. W.; Winters, P. J.

    Chilled Water Thermal Energy Storage (TES) offers benefits to both the electricity supplier and the electricity user. This well-established technology uses stratified chilled water to store energy in thermal form so that electricity can be purchased...

  7. air force purchasing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (see Figures 2-4) Overhead on coral island formation (see Figure 5) One can of white shaving cream 466 Vue Processes and Guidance for Island Purchases and Owners Austin Tate,...

  8. aircraft purchase rights: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shall be ratified by the Board within 90 days. unknown authors 2001-01-01 17 Natural Gas Purchasing Options Texas A&M University - TxSpace Summary: As a result of economic and...

  9. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  10. Minimum Purchase Price Regulations (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    The Minimum Purchase Price Regulations establish the price which utilities must pay for power produced by large-scale renewable energy generators – that is those capable of producing more than 100...

  11. Microsoft Word - ProvisionsFundsColvilleConfederatedTribesPurchaseLoup...

    Broader source: Energy.gov (indexed) [DOE]

    Confederated Tribes for purchase of the Loup Loup Creek and Aeneas Creek properties. Fish and Wildlife Project No.: 2008-104-00 Categorical Exclusion Applied (from Subpart D, 10...

  12. Government Practices in purchasing R&D: Intellectual Property...

    Broader source: Energy.gov (indexed) [DOE]

    Practices in Purchasing R&D: Intellectual Property Provisions at the Department of Energy Paul Gottlieb Assistant General Counsel for Tech. Transfer & IP 202-586-3439 (fax 2805)...

  13. Argonne User Facility Agreements | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne User Facility Agreements About User Agreements If you are not an Argonne National Laboratory employee, a user agreement signed by your home institution is a prerequisite...

  14. Air-Cooled Electric Chillers, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Energy efficiency purchasing specifications for federal procurements of air-cooled electric chillers.

  15. Commercial Central Air Conditioners, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Energy efficiency purchasing specifications for federal procurements of commercial central air conditioners.

  16. Residential Dishwashers, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Performance and purchasing specifications for residential dishwashers under the FEMP-designated product program.

  17. Clothes Washers, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Performance and purchasing specifications for residential clothes washers under the FEMP-designated product program.

  18. A note on testing for purchasing power parity Florian Heinen1

    E-Print Network [OSTI]

    Weber, Stefan

    A note on testing for purchasing power parity Florian Heinen1 Institute of Statistics, Faculty data transformation · Purchasing Power Parity 1 Introduction Purchasing power parity (PPP) is arguably] instinctively believe in some variant of purchasing power parity as an anchor for long-run real exchange rates

  19. Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

  20. INTEGRATION OF THE MODULAR DUAL COOLANT PB-17LI BLANKET CONCEPT IN THE ARIES-CS POWER PLANT

    E-Print Network [OSTI]

    Raffray, A. René

    , San Diego, CA, 9500 Gilman Drive, La Jolla, CA 92093-0438, USA, xrwang@ucsd.edu 2 Fusion Nuclear blanket became also the reference concept in the US-ITER Test Blanket Module (TBM) program.4 Connected. II. RADIAL BUILD OF THE POWER CORE WITH INTERNAL VACUUM VESSEL The thickness of the different zones

  1. Fusion Engineering and Design 41 (1998) 561567 Combination of a self-cooled liquid metal breeder blanket with

    E-Print Network [OSTI]

    1998-01-01T23:59:59.000Z

    , the cost of electricity. Self-cooled liquid metal breeder blankets have a high potential to meetFusion Engineering and Design 41 (1998) 561­567 Combination of a self-cooled liquid metal breeder blanket with a gas turbine power conversion system S. Malang a, *, H. Schnauder a , M.S. Tillack b

  2. School of Animal, Rural and Environmental Sciences Management of carbon budgets for severely eroded upland blanket peat bogs impacts

    E-Print Network [OSTI]

    Evans, Paul

    upland blanket peat bogs ­ impacts of restoration Blanket bog is an important carbon sink and an Annex 1 Habitat priority under the EU Habitats Directive, but in the Peak District National Park much suffers peat by Natural England as an important site for studies of vegetation history and peat erosion in the Pennines

  3. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect (OSTI)

    Bromley, B.P.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, 1 Plant Road, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01T23:59:59.000Z

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ?50% content of low-power blanket bundles may require power de-rating (?58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)

  4. Intellectual Property Provisions (CSB-1003) Cooperative Agreement...

    Energy Savers [EERE]

    003) Cooperative Agreement Research, Development, or Demonstration Domestic Small Businesses Intellectual Property Provisions (CSB-1003) Cooperative Agreement Research,...

  5. Master Safeguards and Security Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-02-03T23:59:59.000Z

    To establish the Department of Energy policy, requirements, responsibilities, and authorities for the development and implementation of Master Safeguards and Security Agreements (MSSA's). Does not cancel another directive. Canceled by DOE O 5630.13A

  6. Business Agreements Printing & Mail Services

    E-Print Network [OSTI]

    Business Agreements Storehouse Printing & Mail Services Receiving Equipment Management Director Planning/ Resource Planning Space ManagementAccounting Services Student Business Services Education Administration Finance and Business Operations Organization Risk Management Finance & Business Operations

  7. Flibe blanket concept for transmuting transuranic elements and long lived fission products.

    SciTech Connect (OSTI)

    Gohar, Y.

    2000-11-15T23:59:59.000Z

    A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful, which established the technical bases for this application. This paper provides the technical analyses and the performance of the Flibe blanket concept as an example of this class of blankets.

  8. Thorium oxide slurries as blankets in fissile producing fusion- fission hybrids

    E-Print Network [OSTI]

    Geer, Thomas Charles

    1982-01-01T23:59:59.000Z

    of Advisory Committee: Dr. T. A. Parish An alternative to fixed-fertile and molten salt fissile producing fusion-fission hybrid blankets was developed. The neutronic feasibility of a thorium oxide-heavy water slurry as a blanket was tested for a Catalyzed... of continuous fission product and fissile material removal, thus limiting the in-situ burnup of the product. A natural consideration for such a fluid fuel system is a molten salt. Fluorides of either uranium of thorium can be dissilved in molten flouride...

  9. LOW TECHNOLOGY HIGH TRITIUM BREEDING BLANKET CONCEPT* Y. Gohar, C. C. Baker, D. L. Smith, M. C. Billone, Y. S. Cha,

    E-Print Network [OSTI]

    Harilal, S. S.

    of beryllium and 6 cm of solid breeder (LI20, LIA102, or LiASi04) both with a 0.8 density factor. This blanket the chances for water-breeder interaction. This improves the safety and environmental aspects of the blanketLOW TECHNOLOGY HIGH TRITIUM BREEDING BLANKET CONCEPT* Y. Gohar, C. C. Baker, D. L. Smith, M. C

  10. SOLID BREEDER BLANKET OPTION FOR THE ITER CONCEPTUAL DESIGN* Y. Cohar, H. Attaya, M.C. Billone, P. Finn, S. Majumdar, L.R. Turner

    E-Print Network [OSTI]

    Raffray, A. René

    SOLID BREEDER BLANKET OPTION FOR THE ITER CONCEPTUAL DESIGN* Y. Cohar, H. Attaya, M.C. Billone, P in this paper. lntroduction A solid-breeder water-cooled blanket option was developed for ITER based lithium-6 enrichment reduces the solid breeder volume required in the blanket and the total tritium

  11. AGREEMENT

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg 1 8-3-11Prepared

  12. AGREEMENT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCD _ RESPONSE

  13. MAST 1 purchased products--components. Final report

    SciTech Connect (OSTI)

    Brown, R.J.

    1995-10-01T23:59:59.000Z

    AlliedSignal Inc., Kansas City Division, the production agency, was provided with funding to acquire purchased product components in support of the MAST (Multi-Application Surety Technology) Program. Implementation efforts, closing procurement status, and proposals for improvements in the procurement process are presented. The intent of this project was to fund the Purchased Product Team`s traditional procurement of components, with significantly reduced flowtime, in accordance with the Qualification Evaluation System, and to exercise the system to the extent possible. When funding was reduced, it became obvious that full implementation of the Qualification Evaluation System could not be achieved due to limited resources.

  14. Fusion Engineering and Design 48 (2000) 371378 Blanket system selection for the ARIES-ST

    E-Print Network [OSTI]

    California at San Diego, University of

    2000-01-01T23:59:59.000Z

    ) is to investigate the attractiveness of a low-aspect-device as the confinement concept for a fusion power plant-ST is investigating the attractive- ness of using an ST configuration as plasma source for a commercial power plant, a 20 cm shield is used. There is no breeding blanket on the in board (IB) of the power plant. Therefore

  15. Fusion Engineering and Design 4950 (2000) 689695 ARIES-ST breeding blanket design and analysis

    E-Print Network [OSTI]

    Pulsifer, John

    2000-01-01T23:59:59.000Z

    -cooled ferritic steel structures. The main features of the blanket design are summarized here together properties, as well as the compatibility with ferritic steels and vanadium alloys for this liquid metal-DEMO design include extension of the power handling capability of the first wall by using an advanced ODS

  16. U.S. PLANS AND STRATEGY FOR ITER BLANKET TESTING , M. Sawan4

    E-Print Network [OSTI]

    Abdou, Mohamed

    U.S. PLANS AND STRATEGY FOR ITER BLANKET TESTING M. Abdou1 , D. Sze2 , C. Wong3 , M. Sawan4 , A. Ying1 , N. B. Morley1 , S. Malang5 1 UCLA Fusion Engineering Sciences, Los Angeles, CA, abdou

  17. First-wall and blanket engineering development for magnetic-fusion reactors

    SciTech Connect (OSTI)

    Baker, C.; Herman, H.; Maroni, V.; Turner, L.; Clemmer, R.; Finn, P.; Johnson, C.; Abdou, M.

    1981-01-01T23:59:59.000Z

    A number of programs in the USA concerned with materials and engineering development of the first wall and breeder blanket systems for magnetic-fusion power reactors are described. Argonne National Laboratory has the lead or coordinating role, with many major elements of the research and engineering tests carried out by a number of organizations including industry and other national laboratories.

  18. Scientific Framework for Advancing Blanket/FW/Tritium Fuel Cycle Systems

    E-Print Network [OSTI]

    Ying, Sergey Smolentsev, and Neil Morley University of California, Los Angeles 1 (Greenwald Gaps G11, G that blankets designed with current knowledge of phenomena and data will not work ­ The source of this problem instabilities that affect transport phenomena (Heat , T, Corrosion) Base flow strongly altered leading

  19. NEUTRONICS ANALYSIS OF A SELF-COOLED BLANKET FOR A LASER FUSION PLANT WITH MAGNETIC DIVERSION

    E-Print Network [OSTI]

    Raffray, A. René

    NEUTRONICS ANALYSIS OF A SELF-COOLED BLANKET FOR A LASER FUSION PLANT WITH MAGNETIC DIVERSION M. INTRODUCTION The High Average Power Laser (HAPL) program is carrying out a coordinated effort to develop laser accommodate the ion and photon threat spectra from the fusion micro-explosion over its required lifetime

  20. Fusion Engineering and Design 46 (1999) 159175 Engineering design of the ITER blanket and relevant

    E-Print Network [OSTI]

    Raffray, A. René

    levels of nuclear radiation. In combination with the thick vessel, the blanket provides the shielding methods defined the construction path which has been tested in prototypes. The main body is built. Prototypes of the module attachment have been built and are under integrated tests. © 1999 Elsevier Science S

  1. High Performance PbLi Blanket M. S. Tillacka and S. Malangb

    E-Print Network [OSTI]

    Tillack, Mark

    concept based on ferritic steel as structural material using helium to cool the first wall is achievable, allowing either an advanced Rankine steam cycle or a closed-cycle helium gas turbine (Brayton with solid breeder blankets irrespective of the structural material used, because the maximum breeder

  2. June 20-21, 2005 Overview of Chamber/Blanket Work

    E-Print Network [OSTI]

    Raffray, A. René

    . A baseline case with minimum risk in getting there based on present day material development and knowledge of what could be gained with a more ambitious material R&D program. · Three blanket options 1. Self = 0.89 - hturb = 0.93 - Effect.recup = 0.95 I. 3 Compressor stages (with 2 intercoolers) + 1 turbine

  3. March 21-22, 2006 HAPL meeting, ORNL Status of Chamber and Blanket Effort

    E-Print Network [OSTI]

    Raffray, A. René

    Spectra Spectra in a 10.75 m Chamber #12;March 21-22, 2006 HAPL meeting, ORNL 5 Smoothness of Plot of Ion Plates Estimated for Cone-Shaped Chamber · Duck bill configuration assumed for the equatorial ion dumpMarch 21-22, 2006 HAPL meeting, ORNL 1 Status of Chamber and Blanket Effort A. René Raffray UCSD

  4. Passive safety in a helium-cooled tritium breeding blanket with steel structure

    SciTech Connect (OSTI)

    Crosswait, K.M.; Meyer, J.E. (MIT Plasma Fusion Center, Cambrige, MA (United States))

    1993-06-01T23:59:59.000Z

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accidents such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This paper proposes a new helium-cooled, tritium breeding blanket concept which uses a metallic structure, and which performs significantly better during such accidents than related designs. The proposed blanket uses modified, reduced-activation HT-9 steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m[sup 2]. This concept uses novel features such as: (1) a [open quotes]beryllium-joint[close quotes] design which allows beryllium to be used to conduct heat away from the first wall, while accomodating swelling of the beryllium, and (2) a shield cooled by naturally circulating water. These features help the blanket passively withstand a worst-case undercooling accident scenario.

  5. European ceramic B.I.T. blanket for DEMO: Recent development for the zirconate version

    SciTech Connect (OSTI)

    Bielak, B.; Eid, M.; Fuetterer, M. [DRN/DMT/SERMA, Gif-sur-Yvette (France)

    1994-12-31T23:59:59.000Z

    Within the framework of the European test-blanket program, CEA and ENEA are jointly developing a DEMO-relevant, helium-cooled, Breeder-Inside-Tube (BIT) ceramic blanket. Two ceramics are possible breeder material candidate: LiAlO{sub 2} and Li{sub 2}ZrO{sub 3}. Despite the design has been originally developed for aluminate, the CEA has recently focused its work on zirconate. This concept blanket segments are made by a directly-cooled vacuum-tight steel box which contains banana-shaped poloidal breeder modules arranged in rows (6 rows in an outboard segment and 4 rows in an inboard one). A breeder module consists of a pressure vessel containing a bundle of breeder rods surrounded by baffles. Each one of the rods is made-up of a steel tube containing a stack of annular pellets of sintered lithium-zirconate, through which flows helium (the tritium purge gas). The thermo-mechanical analysis has shown that the thermal gradient in the ceramics can be kept at acceptable levels despite the poorer out-of-pile thermo-mechanical properties of zirconate compared to aluminate. Moreover, the neutronic analysis has shown that, besides the maintained tritium-breeding self-sufficiency capability of this blanket, the lower lithium burn-up could be an indication that the zirconate characteristics remains more stable after long term irradiation (i.e., close to the end-of-life fluence of 5 MWa/m{sup 2}).

  6. Breeding channel for the ITER blanket with lithium-lead eutectic Li17Pb83

    SciTech Connect (OSTI)

    Danilov, I.; Sidorov, A.; Strebkov, Y. [ENTEK-RDIPE, Moscow (Russian Federation)] [and others

    1994-12-31T23:59:59.000Z

    The report contains some features of using Li{sub 17}Pb{sub 83} eutectic as breeder for ITER fusion reactor. The use of eutectic in the ITER blanket as breeding material has its own advantages. Results of improvements of lithium-lead blanket channels are described in the report. Design analysis, operation conditions of breeding channels, technique of filling up with eutectic and tritium recovery problems are considered. The eutectic detritization is performed outside and also inside the reactor without removing the eutectic from the blanket. The report contains a survey of investigations of eutectic and channel structure thermal-mechanical behavior, that was the cause of the up to date channel design improvement. The first stage of the thermal and mechanical tests results in change of the channel structure to the sectioning one. The comprehensive tests of the channel models including thermo-mechanical effect of eutectic on the channel structure at the different operating conditions of the channel including the accident ones, the techniques for handling with eutectic etc. to justify the design decisions concerning the breeding eutectic blanket. Suggestions for the further development of the channel design are presented.

  7. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    SciTech Connect (OSTI)

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André; Vervier, Michel [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC partner, B-1000 Brussels (Belgium)

    2014-02-12T23:59:59.000Z

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

  8. Experimental study of the MHD flow in a prototypic inlet manifold section of the DCLL blanket

    E-Print Network [OSTI]

    Abdou, Mohamed

    . The MHD flow patterns and their associated transport properties that result from the interaction between Lithium (DCLL) blanket concept. A series of experiments is carried out in order to understand stacked in the direction the magnetic field lines. For values of the interaction parameter , the flow

  9. M.I.T. LMFBR Blanket Physics Project : final summary report

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1983-01-01T23:59:59.000Z

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at M.I. T. in the period 1969-1983. During this span of time, work was carried out ...

  10. Fusion Engineering and Design 4950 (2000) 709717 Helium-cooled refractory alloys first wall and blanket

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2000-01-01T23:59:59.000Z

    impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. Systems study results show that at a closed cycle gas turbine (CCGT) gross thermal team, we performed the preliminary design of the W-alloy FW/blanket concept. We projected

  11. A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors

    SciTech Connect (OSTI)

    Martinez-Frances, N.; Timm, W.; Rossbach, D. [AREVA, AREVA NP, Erlangen (Germany)

    2012-07-01T23:59:59.000Z

    Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main design criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)

  12. TRITIUM ANALYSIS OF A WATER-COOLED SOLID BREEDER BLANKET FOR ITER*

    E-Print Network [OSTI]

    Abdou, Mohamed

    .A. Abdou Mechanical,Aerospace and Nuclear Engineering Department University of California, Los Angeles Los at reduced power level. Key parameters affecting the kinetics of the tritium release and the inventory. The blanket uses beryllium for neutron multiplication and lithium-base ceramic such as oxide or orthosilicate

  13. Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect (OSTI)

    Bromley, B.P.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, 1 Plant Road, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01T23:59:59.000Z

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (about 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)

  14. Status of EC solid breeder blanket designs and R&D for DEMO fusion reactors

    SciTech Connect (OSTI)

    Dalle Donne, M. [INR, Karlsruhe (Russian Federation); Anziedi, L.A. [C.R.E., Franscati (Italy); Kwast, H. [ECN, Petten (Netherlands)] [and others

    1994-12-31T23:59:59.000Z

    In the framework of the European Community Fusion Technology Program four blanket concepts for a DEMO reactor are being investigated. DEMO is the next step after ITER. It should ensure tritium self-sufficiency and operate at coolant temperatures high enough to have a reasonable plant efficiency. Further requirements have been specified for the four concepts, namely an average neutron wall load of 2.2 MW/m{sup 2}, a blanket lifetime of 20000 hours and the capability of the blanket segment to withstand the forces caused by a rapid distribution of the plasma current (20 MA to zero in 20 ms), so that after the disruption the segment can still allow a comparison of the various options, in view of reducing this number to two in 1995 and to design and develop modules and articles representative of the chosen blankets to be tested in ITER. The present paper deals with two solid breeder concepts. They have many features in common: both use high pressure helium as coolant and helium to purge the tritium from the breeder material, martensitic steel as structural material and beryllium as neutron multiplier. The configuration of the two blankets are however different: in the B.I.T. (Breeder Inside Tube) concept the breeder material is LiAlO{sub 2} or LiZrO{sub 3} in the form of annular pellets contained in tubes surrounded by beryllium blocks, the coolant helium being outside the tubes, whereas in the B.O.T. (Breeder out of Tube) the breeder and multiplier material are Li{sub 4}SiO{sub 4} and beryllium pebbles forming a mixed bed placed outside the tubes containing the coolant helium.

  15. USOSP Agreement MEMORANDUM OF UNDERSTANDING

    E-Print Network [OSTI]

    Rutten, Rob

    USO­SP Agreement USO ­ SP MEMORANDUM OF UNDERSTANDING on UTRECHT ­ STOCKHOLM ­ OSLO COLLABORATION IN SOLAR PHYSICS CONSIDERING that ­ the Solar Physics group of the Sterrekundig Instituut Utrecht, Faculteit Natuur- en Ster- renkunde, Utrecht University, Utrecht, The Netherlands (henceforth abbreviated

  16. Canadian Seismic Agreement: Annual report

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Drysdale, J.A.

    1987-10-01T23:59:59.000Z

    This report describes activities undertaken by the Geophysics Division (GD) of the Geological Survey of Canada (GSC) during the period June 1986 to June 1987 and supported in part by the NRC agreement. The activities include ECTN and portable network developments, datalab developments, strong motion network developments and earthquake activity.

  17. AGREEMENT BETWEEN BOARD OF TRUSTEES

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    AGREEMENT BETWEEN THE BOARD OF TRUSTEES OF THE UNIVERSITY OF MASSACHUSETTS AND THE MASSACHUSETTS of Massachusetts ("Employer") and the Massachusetts Society of Professors/Faculty Staff Union/MTA/NEA ("Union l50E and rules and regulations promulgated thereunder, the parties clearly recognize their statutory

  18. STANDARD TERMS OF PURCHASE APPLICABLE TO SUPPLY AND SERVICES CONTRACTS

    E-Print Network [OSTI]

    Chamroukhi, Faicel

    STANDARD TERMS OF PURCHASE APPLICABLE TO SUPPLY AND SERVICES CONTRACTS ENTERED INTO BY SUD TOULON and its co-contracting parties for all government supplies and services contracts entered into pursuant supply and services contracts in its version annexed to the Decree of 19 January 2009 approving

  19. Business and Finance Purchasing Policy #2.21

    E-Print Network [OSTI]

    or vice presidential area, by the director of purchasing, subject to certain responsibilities insofar as state or federal statute and institutional policy permit. 5. Conduct business with potential, insofar as the established policies of my institution permit. 9. Accord a prompt and courteous reception

  20. Main Campus Emissions In 2007, Yale purchased the

    E-Print Network [OSTI]

    Main Campus Emissions In 2007, Yale purchased the Bayer Pharmaceutical campus to expand the University's science and medical research. The 2005 baseline represents emissions when Bayer was operating,899 4,623 31,280 39,260 MAIN CAMPUS EMISSIONS WEST CAMPUS EMISSIONS 2014 2005 2014 2005 University Fleet

  1. UV Pasteurization of Cider USDA Apple Juice Purchases

    E-Print Network [OSTI]

    Ginzel, Matthew

    1 UV Pasteurization of Cider USDA Apple Juice Purchases New Zealand Tour Pruning Grapes Pruning Referendum Child Labor Restrictions 2000 Spray Guides New Bramble Publication Imidan Under Threat Return December and by late January had set in solidly. Sub-zero temperatures were reported across the northern

  2. Title: Purchasing --University Bidding Policy Code: 5-400-005

    E-Print Network [OSTI]

    Huang, Jianyu

    Purchasing's scope of operation, the qualification of potential bidders, the solicitation and analysis manufacturer, or a sole or preferred source as the supplier of a product or service that must be bid justification for the request, including evaluations of the product or service and the supplier

  3. MASTER CLINICAL RESEARCH STUDY SITE AGREEMENT THIS MASTER CUNICAL RESEARCH STUDY SITE AGREEMENT ("Master Agreement")

    E-Print Network [OSTI]

    Cui, Yan

    ("Master Agreement") is entered into as of the 14th day of May, 2009 ("Effective Date"), by and between UT "clinies in the Memphis,Shelby County, Tennessee area that serve as study sites for r~search studies by The University, pursuant to the terms and conditions of this Master ~~~~. . ..- T~RMS AND CONDITIONS 1. REQUEST

  4. Confidentiality Agreement between the Nuclear Decommissioning...

    Broader source: Energy.gov (indexed) [DOE]

    Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority...

  5. Thermoelectric Materials By Design: Mechanical Reliability (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of Vehicle...

  6. Technology Investment Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial...

  7. Sample Sponsored Research Agreements | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Sponsored Research Group and the Partner prior to final execution. Work for Others MSOF CRADA Short-Form CRADA User Agreement - Nonproprietary User Agreement - Proprietary...

  8. Advanced Collaborative Emissions Study (ACES) NETL Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NETL Agreement 13919 Advanced Collaborative Emissions Study (ACES) NETL Agreement 13919 Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  9. DOE/EEI Model Agreement Explanation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EEI Model Agreement Explanation Introduction The attached document serves as a model for the development of formal agreements between a Federal civilian Agency and its serving...

  10. Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993

    SciTech Connect (OSTI)

    Martin, D.R.

    1994-02-01T23:59:59.000Z

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

  11. Breeder-in-tube design for a helium-cooled Li/sub 2/O tokamak blanket

    SciTech Connect (OSTI)

    Billone, M.C.; Jung, J.; Liu, Y.Y.; Smith, D.L.

    1986-01-01T23:59:59.000Z

    Of the solid breeder designs considered in the Blanket Comparison and Selection Study (BCSS), the lithium oxide breeder with helium coolant and ferritic steel (HT-9) structural material received the highest overall ranking for both tokamak and tandem mirror systems in terms of engineering, economics, safety, and R and D requirements. The BCSS blanket surrounding the fusion plasma consists of a number of thin breeder plates externally cooled by flowing helium and internally purged of tritium by a separate helium stream. A detailed review of this design indicated that significant improvements would be realized in the areas of tritium breeding, blanket thickness, blanket energy multiplication, power-conversion efficiency, breeder temperature window, and geometrical integrity of the coolant and purge paths by using a neutron multiplier (beryllium), a higher temperature structural material (vanadium-based alloy), and a tube geometry. The neutronics, thermal-hydraulics, tritium recovery, and structural performance characteristics of this innovative solid breeder design are discussed in this paper.

  12. Policy Title: Purchasing Card HARVARD UNIVERSITY FINANCIAL POLICY Responsible Office: UFS

    E-Print Network [OSTI]

    Policy Title: Purchasing Card HARVARD UNIVERSITY FINANCIAL POLICY Responsible Office: UFS Effective Date: April 1, 2010 Revision Date:PURCHASING CARD Policy Number: UFS100 HARVARD UNIVERSITY FINANCIAL POLICY POLICY STATEMENT Harvard Purchasing Cards (PCards) are University-liability credit cards issued

  13. P:\\Policy & Procedures\\OSUA\\OSUA #2-purchasing.doc Office of Space Utilization & Analysis

    E-Print Network [OSTI]

    Fernandez, Eduardo

    AND PURPOSE: To establish a standard procedure for purchasing computers and computer related equipment. It is the responsibility of the Maintenance Contractor to purchase the current version of the operating system softwareP:\\Policy & Procedures\\OSUA\\OSUA #2-purchasing.doc Office of Space Utilization & Analysis Policy

  14. International Conference of the Centennial Anniversary of the Purchasing Power of Money by Irving Fisher

    E-Print Network [OSTI]

    Boyer, Edmond

    International Conference of the Centennial Anniversary of the Purchasing Power of Money monétaires en économie ouverte. When French economists read The Purchasing Power of Money "International Conference of the Centennial Anniversary of the Purchasing Power of Money by Irving Fisher, Lyon

  15. Long Run Purchasing Power Parity: Cassel or Balassa-Samuelson? David H. Papell and Ruxandra Prodan

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Long Run Purchasing Power Parity: Cassel or Balassa-Samuelson? David H. Papell and Ruxandra Prodan countries to investigate two alternative versions of Purchasing Power Parity (PPP): reversion to a constant (713) 743-3798, email: dpapell@mail.uh.edu #12;1 1. Introduction Purchasing Power Parity (PPP) is one

  16. Vehicle Purchases In accordance with the Energy Policy Act of 2005 (EPAct 2005), Florida Atlantic University

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Vehicle Purchases In accordance with the Energy Policy Act of 2005 (EPAct 2005), Florida Atlantic University has been mandated to purchase "E85" compliant flex-fuel vehicles. This is federally mandated campuses. Vehicles purchased for the university must comply with this mandate. E85 compliant vehicles

  17. Energy Efficiency Financing Program Agreement Template

    Broader source: Energy.gov [DOE]

    A template agreement that addresses the full energy efficiency or renewable energy loan origination cycle.

  18. Axially staggered seed-blanket reactor-fuel-module construction. [LWBR

    DOE Patents [OSTI]

    Cowell, G.K.; DiGuiseppe, C.P.

    1982-10-28T23:59:59.000Z

    A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.

  19. Tritium Recovery from Solid Breeder Blanket by Water Vapor Addition to Helium Sweep Gas

    SciTech Connect (OSTI)

    Kawamura, Yoshinori; Iwai, Yasunori; Nakamura, Hirofumi; Hayashi, Takumi; Yamanishi, Toshihiko; Nishi, Masataka [Japan Atomic Energy Research Institute (Japan)

    2005-07-15T23:59:59.000Z

    In the solid breeder blanket of fusion reactor, bred tritium is planned to be extracted from the blanket as HT by passing of H{sub 2}-added sweep gas in general. In that case, tritium leakage by permeation to coolant can not be ignored. So, the application of H{sub 2}O-added sweep gas is discussed, with which tritium leakage to coolant can be much reduced. As the result of discussion, H{sub 2}O-added sweep gas is probable method of tritium recovery. For the further detailed discussion, it is important to enrich the data correlated to the interaction of H{sub 2}, H{sub 2}O, breeder, multiplier and structures.

  20. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    SciTech Connect (OSTI)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01T23:59:59.000Z

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  1. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    SciTech Connect (OSTI)

    Davidson, J.W.; Battat, M.E.; Dudziak, D.J.

    1985-01-01T23:59:59.000Z

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinner copper first wall, a /sup 6/Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis.

  2. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOE Patents [OSTI]

    Peterson, Per F.

    2013-05-14T23:59:59.000Z

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  3. Optimal purchasing of raw materials: A data-driven approach

    SciTech Connect (OSTI)

    Muteki, K.; MacGregor, J.F. [McMaster University, Hamilton, ON (Canada). Dept. of Chemical Engineering

    2008-06-15T23:59:59.000Z

    An approach to the optimal purchasing of raw materials that will achieve a desired product quality at a minimum cost is presented. A PLS (Partial Least Squares) approach to formulation modeling is used to combine databases on raw material properties and on past process operations and to relate these to final product quality. These PLS latent variable models are then used in a sequential quadratic programming (SQP) or mixed integer nonlinear programming (MINLP) optimization to select those raw-materials, among all those available on the market, the ratios in which to combine them and the process conditions under which they should be processed. The approach is illustrated for the optimal purchasing of metallurgical coals for coke making in the steel industry.

  4. PEPCO study compares utility materials, inventory, purchasing practices

    SciTech Connect (OSTI)

    Not Available

    1985-10-01T23:59:59.000Z

    A comparison of Potomac Electric Power Co. (PEPCO) materials operations with those of eight similar companies showed that, while most have a formal materials group with stated functions, there was no consensus on organization. The study found inadequate warehousing facilities because stores were generally omitted from plant design and later crowded into unwanted space. Most did have central warehousing for transmission and distribution facilities. The companies have purchasing and contract managers, but vendor performance follow up is a problem. Two approaches to vendor bid evaluation have either the user or purchasing make the decision. There was little consistency in inventory control. The study also found that an investment recovery specialist handles most scrap sales, computers are in wide use in material groups, and most utilities evaluate transformer losses over the total life cycle. 2 tables.

  5. EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type

    E-Print Network [OSTI]

    EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type Size Category (Btu/h) Size.ahridirectory.org/ceedirectory/pages/ac/cee/defaultSearch.aspx 12,000 Btu/h = 1 ton Less than 65,000 Btu/h Air Conditioners, Air Cooled Air Conditioners, Water completed by the California Energy Commission at a rate of 12,000 Btu/h per ton of air conditioning Source

  6. Feasibility of recoil enhanced tritium release from fusion blankets containing solid lithium compounds 

    E-Print Network [OSTI]

    Palmrose, Donald Edwin

    1986-01-01T23:59:59.000Z

    FEASIBILITY OF RECOIL ENHANCED TRITIUM RELEASE FROM FUSION BLANXETS CONTAINING SOLID LITHIUM COMPOUNDS A Thesis by DONALD EDWIN PALMROSE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1986 Major Subject: Nuclear Engineering 1986 DONALD EDIJIi4 PAL;lROSE ALL RIGHTS RESERVED FEASIBILITY OF RECOIL ENHANCED TRITIUM RELEASE FROM FUSION BLANKETS CONTAINING SOLID LITHIUM COMPOUNDS A Thesis...

  7. The petrology and petrography of sediments from the Sigsbee blanket, Yucatan Shelf, Mexico 

    E-Print Network [OSTI]

    Williams, Joseph Delano

    1963-01-01T23:59:59.000Z

    by; {Chairman of Committee (Head of Department May, 1963 858I18 ABSTRACT The Sigsbse blanket 1 ~ ~ lithologically distinct unit of the Holocene to Recent sediment mantle which covers the outer shag and continental elope provinces... of the Yucatan Shelf. A detailed petrographic study has revealed ChaC the unit is composed dominantly of planktonic lutite with varying percentages of calcareous pellets, ooids lithic fragments, non-skeletal aggregates, algal fragment ~, tests of benthonic...

  8. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    SciTech Connect (OSTI)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01T23:59:59.000Z

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  9. User Agreements | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser Agreements User

  10. South Valley Compliance Agreement Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftware HelpsSouth Valley Agreement Name South Valley

  11. Target/blanket conceptual design for the Los Alamos ATW concept

    SciTech Connect (OSTI)

    Ames, K. [ed.] [ed.; Cappiello, M.; Ireland, J.; Sapir, J.; Farnum, G.

    1992-01-01T23:59:59.000Z

    The Los Alamos Accelerator Transmutation of Waste (ATW) concept has many potential applications that include defense waste transmutation, defense material production (i.e., tritium and {sup 238}Pu), and the transmutation of hazardous nuclear wastes from commercial nuclear reactors (fission products and actinides). A more advanced long-term Los Alamos effort is investigating the potential of an accelerator- driven system to produce fission energy with a minimal nuclear waste stream. All applications employ a high-energy (800- to 1600-MeV), high-current (25--250 mA) proton linear accelerator as the driver. In this report, we discuss only the target/blanket conceptual design for the commercial nuclear waste application. A conceptual design for the target/blanket of the Los Alamos ATW concept has been presented. The neutronics, mechanical design, and heat transfer have been investigated in some detail for the base-case design. Much more work needs to be done, but at this point it appears that the design is feasible and will approach the design goal of supporting two commercial power reactors with each target/blanket module.

  12. Neutronic and thermal calculation of blanket for high power operating condition of fusion reactor

    SciTech Connect (OSTI)

    Sagawa, H.; Shimakawa, S.; Kuroda, T. [Oarai Research Establishement of JAERI, Ibaraki (Japan)] [and others

    1994-12-31T23:59:59.000Z

    Internal (breeding region) structures of ceramic breeder blanket to accommodate high power operating conditions such as a DEMO reactor have been investigated. The conditions considered here are the maximum neutron wall load of 2.8 MW/m{sup 2} at outboard midplane corresponding to a fusion power of 3.0 GW and the coolant temperature of 200{degrees}C. Structure of a blanket is based on the layered pebble bed concept, which has been proposed by Japan since the ITER CDA. Lithium oxide with 50% enriched {sup 6}Li is used in a shape of small spherical pebbles which are filled in a 316SS can avoid its compatibility issue with Be. Beryllium around the breeder can is filled also in a shape of spherical pebbles which works not only as a neutron multiplier but also as a thermal resistant layer to maintain breeder temperature for effective in-situ tritium recovery. Diameters and packing fractions of both pebbles are {<=} 1 mm and 65%, respectively. A layer of block Be between cooling panels is introduced as a neutron multiplier (not as the thermal resistant layer) to enhance tritium breeding performance. Inlet temperature of water coolant is 200{degrees}C to meet the high temperature conditioning requirement to the first wall which is one of walls of the blanket vessel. Neutronics calculations have been carried out by one-dimensional transport code, and thermal calculations have also been carried out by one-dimensional slab code.

  13. Assessment of First Wall and Blanket Options with the Use of Liquid Breeder

    SciTech Connect (OSTI)

    Wong, C.P.C.; Malang, S.; Sawan, M. (and others)

    2005-04-15T23:59:59.000Z

    As candidate blanket concepts for a U.S. advanced reactor power plant design, with consideration of the time frame for ITER development, we assessed first wall and blanket design concepts based on the use of reduced activation ferritic steel as structural material and liquid breeder as the coolant and tritium breeder. The liquid breeder choice includes the conventional molten salt Li{sub 2}BeF{sub 4} and the low melting point molten salts such as LiBeF{sub 3} and LiNaBeF{sub 4} (FLiNaBe). Both self-cooled and dual coolant molten salt options were evaluated. We have also included the dual coolant leadeutectic Pb-17Li design in our assessment. We take advantage of the molten salt low electrical and thermal conductivity to minimize impacts from the MHD effect and the heat losses from the breeder to the actively cooled steel structure. For the Pb-17Li breeder we employ flow channel inserts of SiC{sub f}/SiC composite with low electrical and thermal conductivity to perform respective insulation functions. We performed preliminary assessments of these design options in the areas of neutronics, thermal-hydraulics, safety, and power conversion system. Status of the R and D items of selected high performance blanket concepts is reported. Results from this study will form the technical basis for the formulation of the U.S. ITER test module program and corresponding test plan.

  14. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    SciTech Connect (OSTI)

    Sonat Sen; Gilles Youinou

    2013-02-01T23:59:59.000Z

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  15. Test Strategy for the European HCPB Test Blanket Module in ITER

    SciTech Connect (OSTI)

    Boccaccini, L.V.; Meyder, R.; Fischer, U. [Forschungszentrum Karlsruhe (Germany)

    2005-05-15T23:59:59.000Z

    According to the European Blanket Programme two blanket concepts, the Helium Cooled Pebble Bed (HCPB) and a Helium Cooled Lithium Lead (HCLL) will be tested in ITER. During 2004 the test blanket modules (TBM) of both concepts were redesigned with the goal to use as much as possible similar design options and fabrication techniques for both types in order to reduce the European effort for TBM development. The result is a robust TBM box being able to withstand 8 MPa internal pressure in case of in-box LOCA; the TBM box consists of First wall (FW), caps, stiffening grid and manifolds. The box is filled with typically 18 and 24 breeding units (BU), for HCPB and HCLL respectively. A breeding unit has about 200 mm in poloidal and toroidal direction and about 400 mm in radial direction; the design is adapted to contain and cooling ceramic breeder/beryllium pebble beds for the HCPB and eutectic Lithium-Lead for the HCLL.The use of a new material, EUROFER, and the innovative design of these Helium Cooled components call for a large qualification programme before the installation in ITER; availability and safety of ITER should not be jeopardised by a failure of these components. Fabrication technologies especially in the welding processes (diffusion welding, EB, TIG, LASER) need to be tested in the manufacturing of large mock-ups; an extensive out-of-pile programme in Helium facility should be foreseen for the verification of the concept from basic helium cooling functions (uniformity of flow in parallel channels, heat transfer coefficient in FW, etc.) up to the verification of large portions of the TBM design under relevant ITER loading.In ITER the TBM will have the main objective to collect information that will contribute to the final design of DEMO blankets. A strategy has been proposed in 2001 that leads to the tests in ITER 4 different Test Blanket Modules (TBM's) type during the first 10 years of ITER operation. For the new HCPB design this strategy is confirmed with some additional possibilities taking into account the modular design of the breeding zone.

  16. Proposal for the award of a blanket contract for the supply, commissioning and maintenance of water-and air-cooled chillers

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Proposal for the award of a blanket contract for the supply, commissioning and maintenance of water-and air-cooled chillers

  17. Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message. Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message. #12;Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message. #12;Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message. #12;Please purchase 'e-PDF Creator

  18. PATENT AND TECHNOLOGY EXCLUSIVE LICENSE AGREEMENT SHORT FORM This AGREEMENT ("AGREEMENT") is made on this _______ day of _______________, 20____, (the

    E-Print Network [OSTI]

    Barrash, Warren

    PATENT AND TECHNOLOGY EXCLUSIVE LICENSE AGREEMENT SHORT FORM This AGREEMENT ("AGREEMENT") is made, and __________ a _____ corporation having a principal place of business located at ___________ ("LICENSEE"). BSU owns certain PATENT inventions and discoveries listed on Exhibit I and covered by PATENT RIGHTS and/or TECHNOLOGY RIGHTS within

  19. COLUMBIA RIVER TREATY ENTITY AGREEMENT ON THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT (10NTSSA) The Bonneville Power Administration (BPA) and the British Columbia Hydro and Power Authority (B.C. Hydro) have signed an agreement relating to the use of...

  20. COLUMBIA RIVER TREATY ENTITY AGREEMENT ON THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT (09NTSSA) The Bonneville Power Administration @PA) and the British Columbia Hydro and Power Authority (B.C. Hydro) have signed an agreement relating to the use of...

  1. COLUMBIA RIVER TREATY ENTITY AGREEMENT ON THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT (1 1NTSSA) The Bonneville Power Administration (BPA) and the British Columbia Hydro and Power Authority (B.C. Hydro) have signed an agreement relating to the use of...

  2. COLUMBIA RIVER TREATY ENTITY AGREEMENT ON THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT (12NTSSA) The Bonneville Power Administration (BP A) and the British Columbia Hydro and Power Authority (B.C. Hydro) have signed an agreement relating to the use of...

  3. Extending purchasing with document management, workflow and the internet

    SciTech Connect (OSTI)

    SIMPSON,SUZANNE L.; PERICH,JULIE K.

    2000-02-09T23:59:59.000Z

    Sandia is a national security laboratory operated for the U.S. department of Energy by the Sandia Corporation, a Lockheed Martin Company. Sandia designs all non-nuclear components for the nation's nuclear weapons, performs a wide variety of energy research and development projects, and works on assignments that respond to national security threats - both military and economic. They encourage and seek partnerships with appropriate U.S. industry and government groups to collaborate on emerging technologies that support their mission. Today, Sandia has two primary facilities, one in Albuquerque, New Mexico, and one in Livermore, California. They employ about 7,600 people and manage about $1.4 billion of work per year. In 1995, a decision was made to move from their in-house developed systems to commercial software. This decision was driven partly by Y2K compliance issues associated with the existing operating system and support environment. Peoplesoft was selected for human resources and Oracle for manufacturing and financial. They implemented Peoplesoft for human resources (HR) in 1997. They then implemented 7 Oracle modules in manufacturing in October 1998, including WIP, BOM, engineering, quality, inventory, MRP, cost management and limited HR/purchasing/receiving functionality required to support manufacturing. In March of 1999, they brought a portion of their Projects module up to allow for input of project/task information by their line customers and on October 1, 1999, they went live with the fill-blown financial package. They implemented projects, GL, receivables, payables, purchasing, assets and incorporated manufacturing modules and HR. This paper will discuss the analysis and implementation of the purchasing module.

  4. Intellectual Property Provisions (CDSB-115) Cooperative Agreement...

    Office of Environmental Management (EM)

    CDSB-115) Cooperative Agreement - Special Data Statute Research, Development, or Demonstration Domestic Small Business Intellectual Property Provisions (CDSB-115) Cooperative...

  5. Confidentiality Agreement between the Nuclear Decommissioning...

    Office of Environmental Management (EM)

    Services Communication & Engagement International Programs Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy...

  6. Contractor Purchasing Balanced Scorecard for FY 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluor FederalEnergy ContractContractorPurchasing

  7. COLLECTIVE AGREEMENT THE UNIVERSITY OF BRITISH COLUMBIA

    E-Print Network [OSTI]

    Michelson, David G.

    COLLECTIVE AGREEMENT Between THE UNIVERSITY OF BRITISH COLUMBIA and CANADIAN UNION OF PUBLIC OF BRITISH COLUMBIA #12;COLLECTIVE AGREEMENT Between THE UNIVERSITY OF BRITISH COLUMBIA and CANADIAN UNION) THE UNIVERSITY OF BRITISH COLUMBIA #12;COLLECTIVE AGREEMENT Between THE UNIVERSITY OF BRITISH COLUMBIA

  8. Search Tool for Leveraged Procurement Agreements

    E-Print Network [OSTI]

    Search Tool for Leveraged Procurement Agreements (LPA) Illustrated User Manual #12;2 Search Tool://www.bidsync.com #12;3 Search Tool for Leveraged Procurement Agreements (LPA) Rev. 5/5/09 Introduction Bid: Select Search Contracts/Leveraged Procurement Agreements (LPA's). #12;4 Search Tool for Leveraged

  9. LOS ALAMOS NATIONAL LABORATORY MATERIAL TRANSFER AGREEMENT

    E-Print Network [OSTI]

    LOS ALAMOS NATIONAL LABORATORY MATERIAL TRANSFER AGREEMENT THISMATERIALTRANSFERAGREEMENT("Agreement to as the "RECIPIENT," the parties to this Agreement being referred to individually as a "Party," and collectively Nuclear Security Administration. Certain MATERIAL has been developed in the course of the PROVIDER

  10. A helium-cooled blanket design of the low aspect ratio reactor

    SciTech Connect (OSTI)

    Wong, C.P.; Baxi, C.B.; Reis, E.E. [General Atomics, San Diego, CA (United States); Cerbone, R.; Cheng, E.T. [TSI Research, Solana Beach, CA (United States)

    1998-03-01T23:59:59.000Z

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh.

  11. Summary of benchmark experiments for simulation of fusion reactors using an annular blanket with a line deuterium-tritium source

    SciTech Connect (OSTI)

    Maekawa, H.; Abdou, M.A.; Oyama, Y. [Japan Atomic Energy Research Inst., Ibaraki (Japan)] [and others

    1995-09-01T23:59:59.000Z

    The Japan Atomic Energy Research lnstitute (JAERI)/U.S. Department of Energy collaborative program was performed using the Fusion Neutronics Source facility at JAERI. In Phase III of this program, tritium breeding measurements were conducted in prototypical blankets driven by a simulated deuterium-tritium neutron line source. This phase differed from the earlier two phases in respect to the spatial distribution of the source as the earlier experiments were done with a point neutron source. This series basically consisted of an annular test blanket and a pseudoline source to investigate the effect of source spread on the neutronic performance. A concise description is on the outlines of the simulated line source, the test blanket systems for Phases-IIIA, -IIIB, and -IIIC, measured items, experimental results, and their analyses. 23 refs., 8 figs., 3 tabs.

  12. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    SciTech Connect (OSTI)

    L. C. Cadwallader; C. P. C. Wong; M. Abdou; B. B. Morely; B.J Merrill

    2014-10-01T23:59:59.000Z

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.

  13. Engineering Scaling Requirements for Solid Breeder Blanket Testing A. Ying, S. Sharafat, M. Youssef, J. An, R. Hunt, P. Rainsberry, M. Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    Engineering Scaling Requirements for Solid Breeder Blanket Testing A. Ying, S. Sharafat, M. Youssef@fusion.ucla.edu An engineering scaling process is applied to the solid breeder ITER TBM designs in accordance with the testing objectives of validating the design tools and the database, and evaluating blanket performance under

  14. Small Wind Guidebook/Things to Consider When Purchasing a Small...

    Open Energy Info (EERE)

    Small Wind GuidebookThings to Consider When Purchasing a Small Wind Turbine < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT &...

  15. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    data reported. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information Administration Petroleum Marketing Annual...

  16. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    12.17 12.80 Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information AdministrationPetroleum Marketing Annual...

  17. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    17.18 17.64 Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information AdministrationPetroleum Marketing Annual...

  18. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Broader source: Energy.gov (indexed) [DOE]

    second of several solicitations planned to purchase up to four million barrels of crude oil for the United States' crude oil reserve. The first solicitation, issued March 16,...

  19. Co-Tenancy Agreement This agreement was reached on _________________________________, 20_______ between

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Co-Tenancy Agreement This agreement was reached on _________________________________, 20:___________________________________ Rent amount:______________________ These persons shall from now on in this agreement be called "Co: 1. Lease and Rules: Each co-tenant agrees to abide by the terms of any lease or agreement entered

  20. Effective Thermal Conductivity of a Li{sub 2}TiO{sub 3} Pebble Bed for a DEMO Blanket

    SciTech Connect (OSTI)

    Hatano, T.; Enoeda, M.; Suzuki, S.; Kosaku, Y.; Akiba, M. [Japan Atomic Energy Research Institute (Japan)

    2003-07-15T23:59:59.000Z

    In development of the ceramic breeder blanket, the effective thermal conductivity of pebble beds is an important design parameter. For thermo-mechanical design of blanket, pebble beds were investigated used for Li{sub 2}TiO{sub 3} that was a candidate for tritium breeder. Li{sub 2}TiO{sub 3} pebble beds, whose size was 0.28-1.91 mm diameter, were measured on load under no neutron irradiation. The effective thermal conductivity was increased with load increasing was obtained.

  1. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  2. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  3. Summary of experiments and analysis from the JAERI/USDOE collaborative program on fusion blanket neutronics

    SciTech Connect (OSTI)

    Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan); Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    The JAERI/USDOE Collaborative program on Fusion Blanket Neutronics was started officially on Oct. 23, 1984 using the intense D-T neutron generator FNS and terminated in 1993. The objectives of the program are: (1) to validate neutronics methods, codes and nuclear data, (2) to provide estimates of uncertainties in satisfying tritium self-sufficiency in fusion reactors, (3) to provide integral data on nuclear heating, induced radioactivity and afterheat, and (4) to develop the neutronics technology for the design and testing of the next fusion devices. The program was divided into three phases depending on the ideas of the source and test blanket arrangements. Useful and reliable benchmark data have been accumulated through this collaboration experiments. They are tritium production rates (TPR) of Li-6, Li-7 and Li-natural, various reaction rates measured by activation foils, neutron spectra, gamma-ray spectra, gamma-ray heating rates and so on. Both Japan and US analyzed these benchmark experiments using latest and/or newly developed data and methods, e.g., GMVP, MCNP, JENDL-3, etc. A novel methodology has been developed to estimate design safety factors and the associated confidence levels. These safety factors are based on the prediction uncertainties of TPR as derived from the numerous calculational and experimental data accumulated during the program.

  4. Nuclear-radiation-actuated valve. [Patent application; for increasing coolant flow to blanket

    DOE Patents [OSTI]

    Christiansen, D.W.; Schively, D.P.

    1982-01-19T23:59:59.000Z

    The present invention relates to a breeder reactor blanket fuel assembly coolant system valve which increases coolant flow to the blanket fuel assembly to minimize long-term temperature increases caused by fission of fissile fuel created from fertile fuel through operation of the breeder reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  5. Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    SciTech Connect (OSTI)

    Jiang, J.; Yuan, B.; Jin, M.; Wang, M.; Long, P.; Hu, L. [Inst. of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Univ. of Science and Technology of China, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, Univ. of Science and Technology of China, No.350 Shushanhu Road, Shushan District, Hefei, Anhui, 230031 (China)

    2012-07-01T23:59:59.000Z

    Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate the demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)

  6. Developing a gas purchasing strategy using a linear model

    SciTech Connect (OSTI)

    Alst, K.M. Van [Midland Cogeneration Venture Limited Partnership, Midland, MI (United States)

    1995-12-31T23:59:59.000Z

    This paper outlines the process of developing a gas purchasing strategy with the use of a linear programming model. The linear model is used to determine the least cost approach regarding the acquisition of natural gas which has a considerable impact on the company`s financial performance. The author discusses the importance of optimizing gas costs from an end-user`s perspective. The Midland Cogeneration Venture (MCV) is the country`s largest cogeneration facility. The Facility has been certified by FERC (Federal Energy Regulatory Commission) as a Q.F. (Qualifying Facility) under PURPA (Public Utility Regulatory Policies Act of 1978). Unlike utilities, who have the ability to pass costs through to customers, MCV`s revenues are based on long-term contracts with its utility and industrial customers. Therefore, MCV cannot pass costs through to its customers. As such, effectively managing costs is vital to the success of the company.

  7. Energy Efficiency Financing Program Agreement—Template

    Broader source: Energy.gov [DOE]

    A template agreement that addresses the full energy efficiency or renewable energy loan origination cycle. Author: U.S. Department of Energy

  8. Pax Global: Compromise Agreement (2013-SE-1413)

    Broader source: Energy.gov [DOE]

    DOE and Pax Global, Inc., entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

  9. International reservoir operations agreement helps NW fish &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

  10. agreements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage, Conversion and Utilization Websites Summary: 1 External Research Funding Agreements University Policy No: RH8200 Classification: Research Change: Mandated...

  11. Golden Opportunity: Compromise Agreement (2013-SE-1418)

    Broader source: Energy.gov [DOE]

    DOE and Golden Opportunity, Inc. entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

  12. Haier: Compromise Agreement (2011-SE-1408)

    Broader source: Energy.gov [DOE]

    DOE and Haier America Trading, L.L.C., entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

  13. Cooperative Agreement Awarded to Energy Communities Alliance...

    Energy Savers [EERE]

    to National Conference of State Legislatures Cooperative Agreement Awarded DOE Awards Small Business Contract to Support Cleanup of New York West Valley Demonstration Project...

  14. CE: Compromise Agreement (2013-SE-1429)

    Broader source: Energy.gov [DOE]

    DOE and CE North America entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

  15. g:\\fpdc\\contracts unit\\consultant selection and agreement forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 1 of 24

    E-Print Network [OSTI]

    Dyer, Bill

    \\owner consultant agreement final pdc.doc Page 1 of 24 MONTANA STATE UNIVERSITY PLANNING, DESIGN & CONSTRUCTION 6TH forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 2 of 24 TABLE OF CONTENTS PART\\consultant selection and agreement forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 3 of 24 1

  16. Buying in a volatile market: variable or fixed price? Professor of Purchasing Management

    E-Print Network [OSTI]

    Vellekoop, Michel

    , in markets like money, stock or oil markets; sometimes they are rather lengthy, in markets like the steelBuying in a volatile market: variable or fixed price? Jan Telgen Professor of Purchasing Management Many commodities are bought in a volatile market, where the purchasing price changes constantly

  17. Sourcing team success: Team studies in a purchasing and supply management context

    E-Print Network [OSTI]

    Franssen, Michael

    1 Sourcing team success: Team studies in a purchasing and supply management context Dissertation by Boudewijn A. Driedonks Summary Sourcing teams have become an increasingly important form of organization in purchasing and supply management. Sourcing teams, also referred to as category or commodity teams

  18. Bill of materials Table 1 lists significant items purchased in the construction of the prosthesis testbed.

    E-Print Network [OSTI]

    Collins, Steven H.

    Bill of materials Table 1 lists significant items purchased in the construction of the prosthesis Marine Universal prosthesis adapter (titanium) 1 FND-227014 Ohio Willow Wood Series springs purchased in the construction of the prosthesis testbed. Stock materials (e.g. aluminum bars, steel shafts

  19. SUPPLEMENTARY METHODS AND FIGURES Enzymes: Asp-N endoproteinase was purchased from Roche Applied Science (Mannheim,

    E-Print Network [OSTI]

    Palczewski, Krzysztof

    spectrometry-grade trypsin by Promega (Madison, WI). Phusion high-fidelity polymerase was purchased from New). OPTI-FLUOR scintillation liquid was obtained from PerkinElmer (Shelton, CT). Alumina was purchased from, Sweden). The scintillation counter model LS 6500 was furnished by Beckman Coulter (Fullerton, CA

  20. Bowling Green State University University Policy on Purchasing, Sales and Disposal of

    E-Print Network [OSTI]

    Moore, Paul A.

    Bowling Green State University University Policy on Purchasing, Sales and Disposal of University and Administration, or his/her designee. #12;Bowling Green State University University Policy on Purchasing, Sales contracts, Inter-University Council contracts, Bowling Green State University contracts or other

  1. September 11, 2000 A. R. Raffray, et al., High Performance Blanket for ARIES-AT Power Plant, SOFT 2000

    E-Print Network [OSTI]

    Raffray, A. René

    and coolant and SiCf/SiC composite as structural material. This paper describes the results of the design and material choice yielding acceptable TBR · Low activation material with no serious consequences on blanket · Turbine efficiency = 0.93 · Compressor efficiency = 0.88 · Recuperator effectiveness (advanced design) = 0

  2. Activation analysis and characteristics of the European community water cooled ceramic breeder blanket design proposal for ITER

    SciTech Connect (OSTI)

    Petrizzi, L.; Rado, V. [ENEA-ERG-FUS, Frascati (Italy); Cepraga, D.G. [ENEA-INN-FIS, Bologna (Italy)

    1994-12-31T23:59:59.000Z

    The European Community (EC) Home Team has proposed various alternative blanket designs to the basic concept (essentially integrated first wall, cooled by liquid metal, with structures made by vanadium alloys). One of the EC proposal is the Water Cooled Ceramic Blanket developed on the basis of a common action between NET and ENEA. It is based on a more conservative approach, but involving well proven technologies and qualified materials: SS-316L as structural material, Li{sub 2}ZrO{sub 3} as first breeder material choice (50% Li{sup 6} enrichment) and low temperature water coolant (160/200{degrees}C). Beryllium has been chosen as multiplying material. The nominal performance are: 1 MW/m{sup 2} as average neutron wall load, corresponding to 1.5 GW fusion power, 1 MW-y/m{sup 2} beneath it has been proved to withstand power excursion till 5 GW. The proposed blanket concept is based on a Breeder Inside Tube (BIT) type technology, with poloidal breeding elements, each one consisting of two concentric tubes. Breeder pebbles are filled into the inner tube, the water coolant flows in the annular channel between the two tubes. Beryllium pebbles fill the space of the blanket box outside the outer tube. A helium purge gas flows through the breeder pebbles bed for tritium recovery. Alternative operating water temperature and pressure are proposed, considering also batch tritium recovery.

  3. Bl k t T h l F l C l dBlanket Technology, Fuel Cycle and Tritium Self Sufficiency

    E-Print Network [OSTI]

    Abdou, Mohamed

    and TechnologyNuclear Science and Technology (FNST). 4 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technologyBl k t T h l F l C l dBlanket Technology, Fuel Cycle and Tritium Self Sufficiency M h d Abd

  4. Investigation of Neutron Characteristics for Salt Blanket Models; Integral Fission Cross Section Measurements of Neptunium, Plutonium, Americium and Curium Isotopes

    E-Print Network [OSTI]

    E. Fomushkin

    2002-08-30T23:59:59.000Z

    Neutron characteristics of salt blanket micromodels containing mixtures of sodium, zirconium and uranium sulphides were measured on FKBN-2M, BIGR and MAKET installations. The effective fission cross sections of neptunium, plutonium, americium and curium isotopes were measured on the neutron spectra formed by micromodels.

  5. Residence Coordinator Agreement Concerning University Provided Housing

    E-Print Network [OSTI]

    Howitt, Ivan

    Residence Coordinator Agreement Concerning University Provided Housing I understand-campus apartments and provides such housing. My acceptance of employment also constitutes my agreement to the following terms related to housing provided to me by the University: 1. I agree to make no substantial

  6. Cooperative monitoring of regional security agreements

    SciTech Connect (OSTI)

    Pregenzer, A.L.; Vannoni, M.; Biringer, K.L. [Sandia National Labs., Albuquerque, NM (United States). Nonproliferation and Arms Control Analysis Dept.

    1996-11-01T23:59:59.000Z

    This paper argues that cooperative monitoring plays a critical role in the implementation of regional security agreements and confidence building measures. A framework for developing cooperative monitoring options is proposed and several possibilities for relating bilateral and regional monitoring systems to international monitoring systems are discussed. Three bilateral or regional agreements are analyzed briefly to illustrate different possibilities. These examples illustrate that the relationship of regional or bilateral arms control or security agreements to international agreements depends on a number of factors: the overlap of provisions between regional and international agreements; the degree of interest in a regional agreement among the international community; efficiency in implementing the agreement; and numerous political considerations. Given the importance of regional security to the international community, regions should be encouraged to develop their own infrastructure for implementing regional arms control and other security agreements. A regional infrastructure need not preclude participation in an international regime. On the contrary, establishing regional institutions for arms control and nonproliferation could result in more proactive participation of regional parties in developing solutions for regional and international problems, thereby strengthening existing and future international regimes. Possible first steps for strengthening regional infrastructures are identified and potential technical requirements are discussed.

  7. DOE Cooperative Research and Development Agreements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 483.1, DOE Cooperative Research and Development Agreements, dated 1-12-01, which establishes requirements for the performance of technology transfer through the use of Cooperative Research and Development Agreements (CRADAs). Canceled by DOE O 483.1A.

  8. DEPARTMENT OF FACILITIES MANAGEMENT PRIME CONSULTANT'S AGREEMENT

    E-Print Network [OSTI]

    deYoung, Brad

    for the construction and completion of the Project, or the approved Construction Cost Budget, whichever cost identified Consultant's Agreement (October 2013 Rev 2.2).doc PRIME CONSULTANT'S AGREEMENT INDEX 1. DEFINITIONS 2. PROJECT DESIGN STAFF 6. PROJECT MANAGEMENT/CONSTRUCTION MANAGEMENT 7. REIMBURSABLE EXPENSES 8. FEES 9

  9. Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    E-Print Network [OSTI]

    Barthelat, Francois

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) #12; Create PDF files without this message without this message by purchasing novaPDF printer (http://www.novapdf.com) #12

  10. Cooperative monitoring of regional security agreements

    SciTech Connect (OSTI)

    Pregenzer, A.L.; Vannoni, M.; Biringer, K.L.

    1995-08-01T23:59:59.000Z

    This paper argues that cooperative monitoring plays a critical role in the implementation of regional security agreements and confidence building measures. A framework for developing cooperative monitoring options is proposed and several possibilities for relating bilateral and regional monitoring systems to international monitoring systems are discussed. Three bilateral or regional agreements are analyzed briefly to illustrate different possibilities: (1) the demilitarization of the Sinai region between Israel and Egypt in the 1970s; (2) the 1991 quadripartite agreement for monitoring nuclear facilities among Brazil, Argentina, The Argentine-Brazilian Agency for Accounting and Control of Nuclear Materials and the International Atomic Energy Agency; and (3) a bilateral Open Skies agreement between Hungary and Romania in 1991. These examples illustrate that the relationship of regional or bilateral arms control or security agreements to international agreements depends on a number of factors: the overlap of provisions between regional and international agreements; the degree of interest in a regional agreement among the international community; efficiency in implementing the agreement; and numerous political considerations.Given the importance of regional security to the international community, regions should be encouraged to develop their own infrastructure for implementing regional arms control and other security agreements. A regional infrastructure need not preclude participation in an international regime. On the contrary, establishing regional institutions for arms control and nonproliferation could result in more proactive participation of regional parties in developing solutions for regional and international problems, thereby strengthening existing and future international regimes. Possible first steps for strengthening regional infrastructures are identified and potential technical requirements are discussed.

  11. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    E-Print Network [OSTI]

    Thompson, Lisa

    2010-01-01T23:59:59.000Z

    including existing power purchase agreements and utilityincluding existing power purchase agreements and utilityincluding existing power purchase agreements and utility

  12. Proposal for the award of two blanket contracts for the supply of high-grade helium

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    This document concerns the supply of up to 280 000 kg of high-grade helium. Following a call for tenders (IT-3235/AT) sent on 4 July 2003 to seven firms, in four Member States, CERN had, by the closing date, received six tenders from six firms in four Member States. The Finance Committee is invited to agree to the negotiation of two blanket contracts for the supply of up to 280 000 kg of high-grade helium with AIR PRODUCTS (FR) and CARBAGAS (CH) for a total maximum amount for both contracts of 5 577 800 US dollars (7 736 400 Swiss francs), not subject to revision, for a period of four years starting 1 January 2004. The rates of exchange used are those stipulated in the tenders. The firms have indicated the following distribution by country of the contract value covered by this adjudication proposal: AIR PRODUCTS : PL - 100%; CARBAGAS : PL - 100%.

  13. Modeling Tritium Transport in PbLi Breeder Blankets Under Steady State

    SciTech Connect (OSTI)

    H. Zhang; A. Ying; M. Abdou; B. Merrill

    2011-08-01T23:59:59.000Z

    Tritium behavior in the breeder/coolant plays a crucial role in keeping the tritium loss under an allowable limit and realizing high tritium recovery efficiency. In this paper, progress toward the development of a comprehensive 3D predictive capability is discussed and presented. The sequence of transport processes leading to tritium release includes diffusion and convection through the PbLi, transfer across the liquid/solid interface, diffusion of atomic tritium through the structure, and dissolution-recombination at the solid/gas interface. Numerical simulation of the coupled individual physics phenomena of tritium transport is performed for DCLL/HCLL type breeder blankets under realistic reactor-like conditions in this paper. Tritium concentration and permeation are presented and the MHD effects are evaluated. Preliminary results shows that the MHD velocity profile has the significant effect in preventing tritium permeation due to the higher convection effects near the wall.

  14. Neutronics Experiments Using Small Partial Mockups of the ITER Test Blanket Module with a Solid Breeder

    SciTech Connect (OSTI)

    Sato, Satoshi; Verzilov, Yury; Nakao, Makoto; Ochiai, Kentaro; Wada, Masayuki; Nishitani, Takeo [Japan Atomic Energy Research Institute (Japan)

    2005-05-15T23:59:59.000Z

    In order to evaluate the impacts of the incident neutron spectrum and the tungsten armor on the tritium production, integral experiments have been performed with small partial mockups relevant to the ITER test blanket module using DT neutrons at FNS of JAERI. The Monte Carlo calculation results for the integrated tritium productions agree well with the experimental data within 2 and 11 % for the mockups without the armor in the experiments without and with the neutron reflector, respectively. It is clarified that the tritium production can be very accurately predicted in the experiment without the reflector. In the mockups with the 12.6 and 25.2 mm thick tungsten armors, it is experimentally clarified that the integrated tritium productions are reduced by 3 and 6 % relative to the case without the armor, respectively.

  15. APEX ADVANCED FERRITIC STEEL, FLIBE SELF-COOLED FIRST WALL AND BLANKET DESIGN

    SciTech Connect (OSTI)

    WONG,CPC; MALANG,S; SAWAN,M; SVIATOSLAVSKY,I; MOGAHED,E; SMOLENTSEV,S; MAJUMDAR,S; MERRILL,B; MATTAS,R; FRIEND,M; BOLIN,J; SHARAFAT,S

    2003-11-01T23:59:59.000Z

    OAK-B135 As an element in the US Advanced Power Extraction (APEX) program, they evaluated the design option of using advanced nanocomposite ferritic steel (AFS) as the structural material and Flibe as the tritium breeder and coolant. They selected the recirculating flow configuration as the reference design. Based on the material properties of AFS, they found that the reference design can handle a maximum surface heat flux of 1 MW/m{sup 2}, and a maximum neutron wall loading of 5.4 MW/m{sup 2}, with a gross thermal efficiency of 47%, while meeting all the tritium breeding and structural design requirements. This paper covers the results of the following areas of evaluation: materials selection, first wall and blanket design configuration, materials compatibility, components fabrication, neutronics analysis, thermal hydraulics analysis including MHD effects, structural analysis, molten salt and helium closed cycle power conversion system, and safety and waste disposal of the recirculating coolant design.

  16. A Grid of NLTE Line-Blanketed Model Atmospheres of Early B-type Stars

    E-Print Network [OSTI]

    Thierry Lanz; Ivan Hubeny

    2006-11-29T23:59:59.000Z

    We have constructed a comprehensive grid of 1540 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to early B-type stars. The BSTAR2006 grid considers 16 values of effective temperatures, 15,000 K grid complements our earlier OSTAR2002 grid of O-type stars (Lanz & Hubeny, 2003, ApJS, 146, 417). The paper contains a description of the BSTAR2006 grid and some illustrative examples and comparisons. NLTE ionization fractions, bolometric corrections, radiative accelerations, and effective gravities are obtained over the parameter range covered by the grid. By extrapolating radiative accelerations, we have determined an improved estimate of the Eddington limit in absence of rotation between 55,000 and 15,000 K. The complete BSTAR2006 grid is available at the TLUSTY website (http://nova.astro.umd.edu).

  17. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-06T23:59:59.000Z

    The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

  18. Argument licensing and agreement in Zulu

    E-Print Network [OSTI]

    Halpert, Claire

    2012-01-01T23:59:59.000Z

    In this thesis, I examine some core grammatical phenomena - case licensing, agreement, the EPP - through the lens of the Bantu language Zulu. Zulu has a number of remarkable and puzzling properties whose analysis affords ...

  19. Expectations for a New Climate Agreement

    E-Print Network [OSTI]

    Jacoby, H.D.

    With the objective of stimulating timely and open discussion of the current attempt to formulate a new climate agreement—to be reached at the 21st meeting of the Conference of Parties (COP-21) in Paris during November of ...

  20. CNA: Compromise Agreement (2013-SE-1430)

    Broader source: Energy.gov [DOE]

    DOE and CNA International, Inc., d/b/a MC Appliance Corp. entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

  1. COLLECTIVE AGREEMENT THE UNIVERSITY OF BRITISH COLUMBIA

    E-Print Network [OSTI]

    Michelson, David G.

    Between THE UNIVERSITY OF BRITISH COLUMBIA and CANADIAN UNION OF PUBLIC EMPLOYEES Local 2278 September 1 __________________________________________________________________ THE UNIVERSITY OF BRITISH COLUMBIA #12;COLLECTIVE AGREEMENT Between THE UNIVERSITY OF BRITISH COLUMBIA

  2. Michigan Technological University Non-Disclosure Agreement

    E-Print Network [OSTI]

    Michigan Technological University Non-Disclosure Agreement PARTIES: Michigan Technological mutually agree as follows: 1. Michigan Technological University shall be: Disclosing Party Receiving Party Both Disclosing Party Receiving Party Both 2. DESIGNATED REPRESENTATIVES: Michigan Technological

  3. Ignition Control for HCCI - Agreement 9285

    Broader source: Energy.gov (indexed) [DOE]

    UT-Battelle for the Department of Energy Purpose of Work Project Overview A multi-year CRADA agreement between ORNL and Delphi to demonstrate a practical application of HCCI in a...

  4. Mutual Dependence for Secret Key Agreement

    E-Print Network [OSTI]

    Chan, Chung

    A mutual dependence expression is established for the secret key agreement problem when all users are active. In certain source networks, the expression can be interpreted as certain notions of connectivity and network ...

  5. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. No cancellation.

  6. The inspection of power purchase contracts at the Western Area Power Administration

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Office of Inspector General received an allegation regarding possible irregularities in certain power purchase contracts awarded by the Western Area Power Administration (WAPA). Based on our survey of WAPA`s power purchase procedures, we expanded our allegation based inquiry to include several management issues. Thus, the purpose of this inspection was to review the specific allegation as well as to evaluate WAPA`s power purchase contracting procedures relating to competition, the documentation of the solicitation, negotiation, and award processes, and the determination of the reasonableness of the rates negotiated by WAPA.

  7. Freeport LNG Development, L.P. (Freeport LNG)- Blanket Authorization to Export Previously Imported LNG- FE Dkt. No. 15-103-NG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed June 25, 2015 by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied...

  8. APT Blanket System Loss-of-Coolant Accident Based on Initial Conceptual Design - Case 5: External RHR Break Near Inlet Header

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  9. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  10. Prediction Indicators for Voluntary Carbon-Offset Purchases Among Trail Runners

    E-Print Network [OSTI]

    Peterson, M. Nils

    & Corre, 2007). Activities funded by VCO purchases (e.g., reducing fuel wood requirements for a rural of extreme weather patterns, and rising sea levels may reduce global welfare by an amount equivalent

  11. Using MotorMaster to Track Motor Inventory and Analyze Purchasing Decisions

    E-Print Network [OSTI]

    Brown, M.; Meffort, W.

    2007-01-01T23:59:59.000Z

    maintenance actions and to analyze motor replacement options. The approach used to secure and enter motor nameplate data along with examples of purchasing analyses completed will be presented. The success of the MotorMaster software with large motors has...

  12. Time to Buy: Determining How Airfares Vary with Purchase Day of the Week

    E-Print Network [OSTI]

    Taylor, Lisa

    2012-02-14T23:59:59.000Z

    In this paper, I empirically identify a new source of price discrimination utilized by airlines, namely, price discrimination based on the day of the week a ticket is purchased. Using unique transaction data, I compare tickets that are identical...

  13. El Paso Electric Company- Small and Medium System Renewable Energy Certificate Purchase Program

    Broader source: Energy.gov [DOE]

    Effective January 1, 2010, El Paso Electric is purchasing renewable energy certificates (RECs) from its New Mexico customers who install small photovoltaic (PV) systems and wind systems up to 10...

  14. Purchasing Water-Efficient Faucets, Pre-Rinse Spray Valves, Showerheads, Toilets, and Urinals

    Broader source: Energy.gov [DOE]

    Federal agencies are required to purchase U.S. Environmental Protection Agency (EPA) WaterSense-labeled products where applicable. Faucets, pre-rinse spray valves, showerheads, toilets, and urinals are covered under the WaterSense program.

  15. Effects of purchase and presentation order on the valuation of physical and digital good bundles

    E-Print Network [OSTI]

    Duan, Tianzhou

    2014-01-01T23:59:59.000Z

    Many digital goods also come on physical mediums, such as movies and games on discs. We investigate how the order of purchase (buying a digital copy of a good already owned in physical form or vice versa) and order of ...

  16. Proposal for the Award of a Blanket Contract for the Supply and Installation of Optical Fibre Cabling Systems

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    This document concerns the award of a blanket contract for the supply and installation of optical fibre cabling systems. Following a market survey carried out among 41 firms in thirteen Member States, a call for tenders (IT-3120/ST/LHC) was sent on 26 February 2003 to three firms and two consortia each consisting of two firms, in six Member States. By the closing date, CERN had received five tenders from the three firms and two consortia in six Member States. The Finance Committee is invited to agree to the negotiation of a blanket contract with DRAKA (NL), the lowest bidder, for the supply and installation of optical fibre cabling systems for a total estimated amount not exceeding 12 150 000 Swiss francs, subject to revision for inflation from 1 January 2006. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: NL - 38%; CH - 37%; DE - 12%; FR - 8%; GB - 5%.

  17. Lithium Ceramic Blankets for Russian Fusion Reactors and Influence of Breeding Operation Mode on Parameters of Reactor Tritium Systems

    SciTech Connect (OSTI)

    Kapyshev, Victor K.; Chernetsov, Mikhail Yu.; Zhevotov, Sergej I.; Kersnovskij, Alexandr Yu.; Kolbasov, Boris N.; Kovalenko, Victor G.; Paltusov, Nikolaj P.; Sernyaev, Georgeij A.; Sterebkov, Juri S.; Zyryanov, Alexej P. [A.A. Bochvar Institute of Inorganic Materials (Russian Federation)

    2005-07-15T23:59:59.000Z

    Russian controlled fusion program supposes development of a DEMO reactor design and participation in ITER Project. A solid breeder blanket of DEMO contains a ceramic lithium orthosilicate breeder and a beryllium multiplier. Test modules of the blanket are developed within the scope of ITER activities. Experimental models of module tritium breeding zones (TBZ), materials and fabrication technology of the TBZ, tritium reactor systems to analyse and process gas released from lithium ceramics are being developed. Two models of tritium breeding and neutron multiplying elements of the TBZ have been designed, manufactured and tested in IVV-2M nuclear reactor. Initial results of the in-pile experiments and outcome of lithium ceramics irradiation in a water-graphite nuclear reactor are considered to be a data base for development of the test modules and initial requirements for DEMO tritium system design. Influence of the tritium release parameters and hydrogen concentration in a purge gas on parameters of reactor system are discussed.

  18. Agreement Execution Process Study: CRADAs and NF-WFO Agreements and the Speed of Business

    SciTech Connect (OSTI)

    Harrer, Bruce J.; Cejka, Cheryl L.; Macklin, Richard; Miksovic, Ann

    2011-02-01T23:59:59.000Z

    This report summarizes the findings of a study on the execution of Cooperative Research and Development Agreements (CRADAs) and Non-Federal Work for Others (NF-WFO) agreements across the U.S. Department of Energy (DOE) laboratory complex. The study provides quantitiative estimates of times required to negotiate and execute these agreements across the DOE complex. It identifies factors impacting on cycle times and describes best practicies used at various laboratories and site offices that reduce cycle times.

  19. Clock Agreement Among Parallel Supercomputer Nodes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jones, Terry R.; Koenig, Gregory A.

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  20. Clock Agreement Among Parallel Supercomputer Nodes

    SciTech Connect (OSTI)

    Jones, Terry R.; Koenig, Gregory A.

    2014-04-30T23:59:59.000Z

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  1. Results of an international study on a high-volume plasma-based neutron source for fusion blanket development

    SciTech Connect (OSTI)

    Abdou, M.A.; Ying, A. [Univ. of California, Los Angeles, CA (United States); Berk, S.E. [Department of Energy, Washington, DC (United States)] [and others

    1996-01-01T23:59:59.000Z

    A number of scenarios for fusion facilities were evaluated using a cost/benefit/risk analysis approach. Blanket tests in the International Thermonuclear Experimental Reactor (ITER) alone with a fluence of 1 MW.yr/m{sup 2} can address most of the needs for concept verification, but it cannot adequately address the blanket component reliability growth/demonstration testing requirements. An effective path to fusion DEMO is suggested. It involves two parallel facilities: (a) ITER to provide data on plasma performance, plasma support technology, and system integration and (b) a high-volume plasma-based neutron source (HVPNS) dedicated to testing, developing, and qualifying fusion nuclear components and material combinations for DEMO. For HVPNS to be attractive and cost effective, its capital cost must be significantly lower than ITER, and it should have low fusion power (nearly 150 MW). Exploratory studies indicate the presence of a design window with a highly driven plasma. A testing and development strategy that includes HVPNS would decisively reduce the high risk of initial DEMO operation with a poor blanket system availability and would make it possible - if operated parallel to the ITER basic performance phase - to meet the goal of DEMO operation by the year 2025. Such a scenario with HVPNS parallel to ITER provides substantial savings in the overall R&D cost toward DEMO compared with an ITER-alone strategy. 75 refs., 13 figs., 31 tabs.

  2. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    SciTech Connect (OSTI)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05T23:59:59.000Z

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  3. Analysis of the separation of protium from blanket tritium-product streams

    SciTech Connect (OSTI)

    Misra, B.; Maroni, V.A.

    1981-07-01T23:59:59.000Z

    The case is considered in which the blanket product stream has been purified to the point where only protium, tritium, and a small quantity of deuterium remain. A cryogenic distillation cascade concept developed specifically to handle this enrichment problem is shown. The concept is based on a series of distillation columns and equilibrators capable of producing a protium-rich stream containing less than 1000 appm T and a tritium-rich stream containing less than 2000 appm H. It is envisioned that both of these streams could be blended with streams of comparable composition in the mainstream position of the fuel cycle without further processing. The computational analysis of the cascade was based on a fixed arrangement of columns and equilibrators and a fixed number of theoretical plates per columns, since these features are less easily varied in an actual system than reflux ratios and flow rates. In order to test the flexibility of this conceptual enruchment system to adjust to variations of the H/T ratio in the feed, H/T values of 0.333, 1.00, and 3.00 were investigated.

  4. A Thermal Discrete Element Analysis of EU Solid Breeder Blanket subjected to Neutron Irradiation

    E-Print Network [OSTI]

    Yixiang Gan; Francisco Hernandez; Dorian Hanaor; Ratna Annabattula; Marc Kamlah; Pavel Pereslavtsev

    2014-06-17T23:59:59.000Z

    Due to neutron irradiation, solid breeder blankets are subjected to complex thermo-mechanical conditions. Within one breeder unit, the ceramic breeder bed is composed of spherical-shaped lithium orthosilicate pebbles, and as a type of granular material, it exhibits strong coupling between temperature and stress fields. In this paper, we study these thermo-mechanical problems by developing a thermal discrete element method (Thermal-DEM). This proposed simulation tool models each individual ceramic pebble as one element and considers grain-scale thermo-mechanical interactions between elements. A small section of solid breeder pebble bed in HCPB is modelled using thousands of individual pebbles and subjected to volumetric heating profiles calculated from neutronics under ITER-relevant conditions. We consider heat transfer at the grain-scale between pebbles through both solid-to-solid contacts and the interstitial gas phase, and we calculate stresses arising from thermal expansion of pebbles. The overall effective conductivity of the bed depends on the resulting compressive stress state during the neutronic heating. The thermal-DEM method proposed in this study provides the access to the grain-scale information, which is beneficial for HCPB design and breeder material optimization, and a better understanding of overall thermo-mechanical responses of the breeder units under fusion-relevant conditions.

  5. MATERIAL TRANSFER AGREEMENT LOS ALAMOS NATIONAL LABORATORY

    E-Print Network [OSTI]

    of business at P.O. Box 1663, Los Alamos, NM 87545 ("RECIPIENT"), the parties to this Agreement being referred with the U.S. Department of Energy, National Nuclear Security Administration. The PROVIDER has developed of Description of use: 4. PROVIDER shall be responsible for all costs of delivery and return shipping

  6. Internship Student Learning Agreement Educational Psychology 3861

    E-Print Network [OSTI]

    Simons, Jack

    Internship Student Learning Agreement Educational Psychology 3861 A. I understand my receipt of academic credit for the Career Services Internship Program is based on my ability to document university the internship within 60 days of my final paper due date. G. I will not register for or receive concurrent credit

  7. Internship Student Learning Agreement Educational Psychology 3861

    E-Print Network [OSTI]

    Tipple, Brett

    Internship Student Learning Agreement Educational Psychology 3861 A. I understand my receipt of academic credit for the Career Services Internship Program is based on my ability to document university complete the internship within 60 days of my final paper due date. G. I will not register for or receive

  8. VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE All drivers of vehicles must certify to the following: 1. I certify that I have a valid driver's license appropriate for the vehicle type and will abide belts. 2. I have read and understand the vehicle operating policies and procedures as defined

  9. SHOC commissioning agreement 20111030 aasg & rc

    E-Print Network [OSTI]

    Glass, Ian S.

    SHOC commissioning agreement 20111030 aasg & rc Thank you for being interested in becoming a user commissioning process, we would like members of the astronomical community to learn to use the systems in order for the instrument to be employed during commissioning. (1) Anyone who uses the instrument must

  10. COLLECTIVE AGREEMENT THE UNIVERSITY OF WINNIPEG

    E-Print Network [OSTI]

    Martin, Jeff

    -New Year's Break 85 Proper Care of Research/Teaching Animals During a Strike or Lockout 87 Employment, lockouts, waste, avoidable expenses, and unnecessary delays. 1.2 While this Collective Agreement) The Employer shall not declare or cause a lockout of the Employees. ARTICLE 2 DEFINITION AND SCOPE 2.1 The term

  11. Mentoring Agreement Form Printed Name of

    E-Print Network [OSTI]

    Edwards, Paul N.

    Mentoring Agreement Form Printed Name of Student Mentee Term of Graduation Student ID Date Student email address Signature of Mentee Printed Name of Faculty Mentor Signature of Faculty Mentor Students are responsible for requesting appointments with mentors at least once each semester

  12. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Admin Chg, dated 9-18-2013. Canceled by DOE O 483.1A.

  13. STUDENT EMPLOYMENT AGREEMENT (Off Semester Employment)

    E-Print Network [OSTI]

    Oyet, Alwell

    STUDENT EMPLOYMENT AGREEMENT (Off Semester Employment) STUEMP 10/05 Personal Information Department Signature Date Employment Information Grant Holder Department Head Date Date I certify that the information Status Information * *Employing Departments are required to verify the status of recommended students

  14. AGREEMENT FOR MOBILE TECHNOLOGY ACCESS AND ALLOWANCE

    E-Print Network [OSTI]

    Oregon, University of

    AGREEMENT FOR MOBILE TECHNOLOGY ACCESS AND ALLOWANCE My signature on the "Mobile Technology Access and conditions identified in the Access to Mobile Technology and the Payment Options for Mobile Technology policies [http://hr.uoregon.edu/policy/MobileTechnologyDevice.html]. 2. I understand that that I must

  15. AGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE

    E-Print Network [OSTI]

    National Laboratory, agrees to provide the Technology services described below at no cost to the REQUESTERAGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE Date: Agreement: TO: FROM: Battelle Memorial Title: Field of Use: The activities to be performed under this Technology assistance will be: BATTELLE

  16. COLLECTIVE AGREEMENT MEMORIAL UNIVERSITY OF NEWFOUNDLAND

    E-Print Network [OSTI]

    Warkentin, Ian G.

    OF PUBLIC AND PRIVATE EMPLOYEES (LOCAL 7803 and 1804) On Behalf of Campus Enforcement and Patrol Personnel Action 10 18. Personal Files 11 19. Seniority 11 20. Sick Leave 13 21. Other Leaves 15 22. Resignations Evaluation 37 45. Duration of Agreement 39 46. Criminal or Legal Liability 39 Schedule A - Rates of Pay 41

  17. Geography 484: Internship Statement of Agreement between

    E-Print Network [OSTI]

    Geography 484: Internship Statement of Agreement between Internship Director, Student, and Professor Student Intern Name: Internship Director: Professor of Record: Dr. William D. Heyman, Department of Geography Internship Title: The Student Agrees to: 1. Complete the internship giving a minimum of ____hours

  18. Interim Process Agreement Proposal June 3, 2003

    E-Print Network [OSTI]

    Interim Process Agreement Proposal June 3, 2003 Overview For the near term, the Columbia Basin Fish) return to the planning and budget management process patterned after the 1996-2001 Bonneville Power implementation of the Fish and Wildlife Program (Program) through a quarterly review process, 3) establishing

  19. Amendment of Contract High Water Mark Power Sales Contracts and Residential Purchase and Sales Agreement to Reflect Implementation of Tiered Rates Methodolgy Record of Decision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe MetroWeinberg SHARE AlvinAmbipolar482of

  20. U.S. and Russia Sign Plutonium Disposition Agreement | National...

    National Nuclear Security Administration (NNSA)

    weapons grade plutonium. Under the agreement, the surplus plutonium will be irradiated in nuclear reactors or by immobilizing it with high-level radioactive waste. The agreement...