National Library of Energy BETA

Sample records for blade aka sinoma

  1. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  2. Jiangxi Sinoma New Solar Materials Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sinoma New Solar Materials Co Ltd Jump to: navigation, search Name: Jiangxi Sinoma New Solar Materials Co Ltd Place: Xinyu, Jiangxi Province, China Zip: 338032 Product:...

  3. Sinoma Science Technology Co Ltd SSTCL | Open Energy Information

    Open Energy Info (EERE)

    Science Technology Co Ltd SSTCL Jump to: navigation, search Name: Sinoma Science & Technology Co Ltd (SSTCL) Place: Nanjing, Jiangsu Province, China Zip: 210012 Product: A...

  4. Shanghai Aerospace Industrial General Corporation aka Shanghai...

    Open Energy Info (EERE)

    Industrial General Corporation aka Shanghai Academy of Spaceflight Technology Jump to: navigation, search Name: Shanghai Aerospace Industrial General Corporation (aka Shanghai...

  5. Strategeco Solar aka Eneovia | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Strategeco Solar (aka Eneovia) Place: Joinville-le-Pont, France Zip: 94340 Product: French PV project developer of medium to large scale projects....

  6. Photowatt Technologies aka Photowatt International SA | Open...

    Open Energy Info (EERE)

    Name: Photowatt Technologies (aka Photowatt International SA) Place: Bourgoin-Jallieu, France Zip: 38300 Product: French manufacturer of integrated PV products from ingots to...

  7. RAPID/Roadmap/18-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Underground Storage Tank Permit (18-AK-a) 18AKA - StorageTankRegistration (1).pdf Error creating...

  8. Jiangxi Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor...

    Open Energy Info (EERE)

    Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor Alkali Manufacturing Jump to: navigation, search Name: Jiangxi Ganzhong Chlorine & Caustic Company (aka China Jiangxi...

  9. Pan Jit International Inc aka Panjit Group | Open Energy Information

    Open Energy Info (EERE)

    Jit International Inc aka Panjit Group Jump to: navigation, search Name: Pan Jit International Inc (aka Panjit Group) Place: Kaohsiung Hsien, Taiwan Zip: 820 Sector: Solar Product:...

  10. Luoyang Zhonggui High Technology Co Ltd aka Luoyang Polysilicon...

    Open Energy Info (EERE)

    Zhonggui High Technology Co Ltd aka Luoyang Polysilicon Company China Silicon High Tech Jump to: navigation, search Name: Luoyang Zhonggui High Technology Co Ltd (aka Luoyang...

  11. Thermal Product Solutions aka Kayex | Open Energy Information

    Open Energy Info (EERE)

    Product Solutions aka Kayex Jump to: navigation, search Name: Thermal Product Solutions (aka Kayex) Place: Rochester, New York Zip: 14624 Product: Makes industrial ovens and...

  12. Solar Environmental Technologies Tianjin Corp aka SETC Cenicom...

    Open Energy Info (EERE)

    Environmental Technologies Tianjin Corp aka SETC Cenicom Solar Etc Jump to: navigation, search Name: Solar & Environmental Technologies (Tianjin) Corp (aka SETC, Cenicom, Solar...

  13. TrendSetter Solar Products Inc aka Trendsetter Industries formerly...

    Open Energy Info (EERE)

    TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name: TrendSetter Solar Products Inc (aka Trendsetter Industries,...

  14. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic Power Co Ltd...

  15. United Solar Systems Corp USSC aka Bekaert ECD Solar Systems...

    Open Energy Info (EERE)

    Systems Corp USSC aka Bekaert ECD Solar Systems LLC Jump to: navigation, search Name: United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC) Place: Middletown...

  16. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  17. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System...

    Open Energy Info (EERE)

    Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name: Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place:...

  18. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  19. Jiangsu Jiasheng Photovoltaic Technology Co Ltd aka JS Solar...

    Open Energy Info (EERE)

    Jiasheng Photovoltaic Technology Co Ltd aka JS Solar Ltd Jump to: navigation, search Name: Jiangsu Jiasheng Photovoltaic Technology Co Ltd (aka JS Solar Ltd) Place: Jiangsu...

  20. Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy...

    Open Energy Info (EERE)

    Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund Jump to: navigation, search Name: Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund) Place: New...

  1. Sun Materials Technology aka Shanyang Technology | Open Energy...

    Open Energy Info (EERE)

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  2. Sinocome Solar aka Perfect Field Investment | Open Energy Information

    Open Energy Info (EERE)

    Solar aka Perfect Field Investment Jump to: navigation, search Name: Sinocome Solar (aka Perfect Field Investment) Place: China Product: Chinese manufacturer of amorphous silicon...

  3. PVM Lines and Services LLC aka PVML Photovoltaics | Open Energy...

    Open Energy Info (EERE)

    PVM Lines and Services LLC aka PVML Photovoltaics Jump to: navigation, search Name: PVM Lines and Services LLC (aka PVML Photovoltaics) Place: Princeton, New Jersey Zip: 8540...

  4. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    Open Energy Info (EERE)

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  5. Solucar Energia SA aka Abengoa Solar | Open Energy Information

    Open Energy Info (EERE)

    Solucar Energia SA aka Abengoa Solar Jump to: navigation, search Name: Solucar Energia SA (aka Abengoa Solar) Place: Sevilla, Spain Zip: 410002 Sector: Solar Product: Developer of...

  6. JA Solar Holdings Co aka Jingao | Open Energy Information

    Open Energy Info (EERE)

    Name: JA Solar Holdings Co (aka Jingao) Place: Hebei Province, China Product: Chinese PV cell manufacturer. References: JA Solar Holdings Co (aka Jingao)1 This article is a...

  7. Guanquan Shandong Photoelectric Technology aka United LED Corporation...

    Open Energy Info (EERE)

    Guanquan Shandong Photoelectric Technology aka United LED Corporation Jump to: navigation, search Name: Guanquan (Shandong) Photoelectric Technology (aka United LED Corporation)...

  8. GCL Solar Energy Technology Holdings formerly GCL Silicon aka...

    Open Energy Info (EERE)

    GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL Silicon, aka Jiangsu Zhongneng Polysilicon)...

  9. Jining Sunrich Solar Energy aka Huahan | Open Energy Information

    Open Energy Info (EERE)

    Jining Sunrich Solar Energy aka Huahan Jump to: navigation, search Name: Jining Sunrich Solar Energy (aka Huahan) Place: Shandong Province, China Sector: Solar Product:...

  10. Seattle Biodiesel aka Seattle BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name: Seattle Biodiesel (aka Seattle BioFuels) Place: Seattle, Washington Sector: Renewable Energy Product:...

  11. Tynsolar Corporation aka Tyntek Solar | Open Energy Information

    Open Energy Info (EERE)

    Tynsolar Corporation (aka Tyntek Solar) Place: Taiwan Sector: Solar Product: Solar module producer References: Tynsolar Corporation (aka Tyntek Solar)1 This article is a...

  12. Krempel Group aka August Krempel | Open Energy Information

    Open Energy Info (EERE)

    Krempel Group aka August Krempel Jump to: navigation, search Name: Krempel Group, aka August Krempel Place: Germany Product: Makes laminates (including TPT) for the front and back...

  13. Grupo Jema aka Jesus Maria Aguirre SA | Open Energy Information

    Open Energy Info (EERE)

    Jema aka Jesus Maria Aguirre SA Jump to: navigation, search Name: Grupo Jema (aka Jesus Maria Aguirre SA) Place: Gipuzkoa, Spain Zip: 20160 Product: A Spanish electronics company...

  14. Mepsolar AG aka Munich Energy Partners | Open Energy Information

    Open Energy Info (EERE)

    AG aka Munich Energy Partners Jump to: navigation, search Name: Mepsolar AG (aka Munich Energy Partners) Place: Munich, Germany Zip: 81829 Product: Develops utility scale PV...

  15. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...

    Open Energy Info (EERE)

    Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing Universal Antecedence) Place:...

  16. Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative...

    Open Energy Info (EERE)

    Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name: Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China...

  17. ENN Group aka XinAo Group | Open Energy Information

    Open Energy Info (EERE)

    ENN Group aka XinAo Group Jump to: navigation, search Name: ENN Group (aka XinAo Group) Place: Langfang, Hebei Province, China Zip: 65001 Product: Chinese private industrial...

  18. RAPID/Roadmap/3-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  19. RAPID/Roadmap/17-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap17-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  20. Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Informatio...

    Open Energy Info (EERE)

    Devices Inc (aka ECD Ovonics) Place: Rochester Hills, Michigan Zip: 48309 Sector: Solar Product: Michigan-based materials developer and holding company for thin-film silicon...

  1. Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells...

    Open Energy Info (EERE)

    Germany Zip: 12489 Product: Specialised in fuel cell demonstration applications for education and outreach. References: Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel...

  2. NUE Pty Ltd aka NU Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: NUE Pty Ltd (aka NU Energy) Place: Victoria, Australia Product: Australia-based energy systems integrator with the capabaility to design...

  3. VHF Technologies SA aka Flexcell | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: VHF-Technologies SA (aka Flexcell) Place: Yverdon-les-Bains, Switzerland Zip: CH-1400 Product: Manufactures thin-film amorphous silicon PV...

  4. Solasta aka The Eagle Axis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 2458 Sector: Efficiency, Solar Product: Start-up planning to produce high-efficiency solar cells using nanoscale elements. References: Solasta (aka The Eagle Axis)1 This...

  5. Edinburgh University aka Wave Power Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Edinburgh University aka Wave Power Group Address: School of Engineering and Electronics The King s Buildings Mayfield Road Place: Edinburgh Zip: EH9 3JL Region: United...

  6. Nippon Mining Holdings Inc aka Shinnikko | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Nippon Mining Holdings Inc (aka Shinnikko) Place: Tokyo, Japan Zip: 105-0001 Product: Japanese holding company engaged in oil, metals, and...

  7. Conserval aka SolarWall | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Conserval (aka SolarWall) Place: Toronto, Ontario, Canada Zip: M3J2N5 Sector: Solar Product: Makes solar passive heating and cooling products,...

  8. RAPID/Roadmap/12-AK-a | Open Energy Information

    Open Energy Info (EERE)

    12-AK-a.1 - Will the Project Affect Streams or Other Bodies of Water? The Anadromous Fish Act (AS 16.05.871-.901) requires that an individual or government agency provide prior...

  9. RAPID/Roadmap/6-AK-a | Open Energy Information

    Open Energy Info (EERE)

    of a load upon a highway. Examples of such vehicles are self-propelled cranes, pump trucks, off-road construction equipment or other road maintenance equipment. 6-AK-a.3 -...

  10. RAPID/Roadmap/7-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Us Power Plant Siting Process (7-AK-a) Add text. 07AKAPowerPlantSitingConstruction.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  11. RAPID/Roadmap/13-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Land Use Assessment (13-AK-a) 13AKALandUseAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  12. RAPID/Roadmap/15-AK-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Assessment Process (15-AK-a) The Clean Air Act is the law that defines the...

  13. Solar Self Help Inc aka Light Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Self Help Inc aka Light Energy Systems Jump to: navigation, search Name: Solar Self Help Inc. (aka Light Energy Systems) Place: Concord, California Sector: Solar Product:...

  14. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy...

    Open Energy Info (EERE)

    Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name: Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place: Xinyu, Jiangxi Province, China Zip:...

  15. Asia Silicon Qinghai Co Ltd aka Asia Si Material | Open Energy...

    Open Energy Info (EERE)

    Silicon Qinghai Co Ltd aka Asia Si Material Jump to: navigation, search Name: Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material) Place: Xining, Qinghai Province, China Zip:...

  16. Ceramic blade attachment system

    DOE Patents [OSTI]

    Boyd, Gary L. (Alpine, CA)

    1995-01-01

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk.

  17. Ceramic blade attachment system

    DOE Patents [OSTI]

    Boyd, G.L.

    1995-04-11

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk. 6 figures.

  18. Global Scratch (/global/scratch2 aka $GSCRATCH) will be retired...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aka GSCRATCH) will be retired on October 14 at 12:00 PDT October 9, 2015 by Richard Gerber This is a reminder that the Global Scratch (globalscratch2 aka GSCRATCH) file...

  19. Apricus Solar Co Ltd aka Focus Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Solar Co Ltd aka Focus Technology Co Ltd Jump to: navigation, search Name: Apricus Solar Co Ltd (aka Focus Technology Co Ltd) Place: Nanjing, Jiangsu Province, China Zip: 210061...

  20. China Solar Power CSP aka General Solar Power Yantai Co Ltd ...

    Open Energy Info (EERE)

    Power CSP aka General Solar Power Yantai Co Ltd Jump to: navigation, search Name: China Solar Power (CSP) (aka General Solar Power Yantai Co Ltd) Place: China Sector: Solar...

  1. Bazhou Deli Solar Energy Heating Co Ltd aka Deli Solar PRC |...

    Open Energy Info (EERE)

    Deli Solar Energy Heating Co Ltd aka Deli Solar PRC Jump to: navigation, search Name: Bazhou Deli Solar Energy Heating Co Ltd (aka Deli Solar (PRC)) Place: Beijing, Beijing...

  2. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co...

  3. G A S Energy Technology Inc aka GAS Energietechnologie GmbH and...

    Open Energy Info (EERE)

    aka GAS Energietechnologie GmbH and GAS Energietechnik Jump to: navigation, search Name: G.A.S. Energy Technology Inc (aka GAS Energietechnologie GmbH and GAS Energietechnik)...

  4. Coeur d Alene Fiber Fuels Inc aka Atlas | Open Energy Information

    Open Energy Info (EERE)

    Coeur d Alene Fiber Fuels Inc aka Atlas Jump to: navigation, search Name: Coeur d' Alene Fiber Fuels, Inc. (aka Atlas) Place: Hauser, Idaho Zip: ID 83854 Product: Coeur...

  5. Weihai Blue Star Glass Holding Co Ltd aka Shandong Lanxing Glass...

    Open Energy Info (EERE)

    aka Shandong Lanxing Glass Group Co Ltd Jump to: navigation, search Name: Weihai Blue Star Glass Holding Co Ltd (aka Shandong Lanxing Glass Group Co Ltd) Place: Weihai City,...

  6. ReneSola Ltd aka Zhejiang Yuhui Solar Energy Source Co Ltd |...

    Open Energy Info (EERE)

    ReneSola Ltd aka Zhejiang Yuhui Solar Energy Source Co Ltd Jump to: navigation, search Name: ReneSola Ltd (aka Zhejiang Yuhui Solar Energy Source Co Ltd) Place: Jiashan County,...

  7. Just where exactly is the radar? (a.k.a. the radar antenna phase...

    Office of Scientific and Technical Information (OSTI)

    Just where exactly is the radar? (a.k.a. the radar antenna phase center). Citation Details In-Document Search Title: Just where exactly is the radar? (a.k.a. the radar antenna...

  8. H2 Hydrogen Hungary Ltd aka Integral Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Hungary Ltd aka Integral Energy Jump to: navigation, search Name: H2 Hydrogen Hungary Ltd (aka Integral Energy) Place: Ipoly u 1A, Hungary Zip: H-6000 Sector: Solar...

  9. Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited...

    Open Energy Info (EERE)

    Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Jump to: navigation, search Name: Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited...

  10. Cyber Power Group Ltd aka Fine Silicon Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Cyber Power Group Ltd aka Fine Silicon Co Ltd Jump to: navigation, search Name: Cyber Power Group Ltd (aka Fine Silicon Co Ltd) Place: Baoding, Hebei Province, China Product:...

  11. T E C Center Inc aka TEC Incubator Center | Open Energy Information

    Open Energy Info (EERE)

    E C Center Inc aka TEC Incubator Center Jump to: navigation, search Name: T.E.C. Center Inc. (aka TEC Incubator Center) Place: United States Sector: Services Product: General...

  12. BLADED IMPELLER FOR TURBOBLOWERS

    DOE Patents [OSTI]

    Baumann, K.

    1949-10-01

    A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

  13. Sandia Energy - Blade Reliability Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Collaborative Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Blade Reliability Collaborative Blade Reliability...

  14. Yingli Green Energy Holding Co Ltd aka Tianwei Yingli New Energy...

    Open Energy Info (EERE)

    Yingli New Energy Resources or Yingli Solar Jump to: navigation, search Name: Yingli Green Energy Holding Co Ltd (aka Tianwei Yingli New Energy Resources or Yingli Solar)...

  15. Hydrodynamic blade guide

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA); Davis, Pete J. (Pleasanton, CA); Landram, Charles S. (Livermore, CA)

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  16. Composite fan blade

    SciTech Connect (OSTI)

    Farr, J.D.

    1993-08-31

    A composite fan blade is described for a prop fan engine comprising: a support disk having a plurality of hinge lugs formed therein, the disk being connected to an engine drive means; a bushing element; a fan blade formed from a first set of radially oriented unidirectional layers of fibers, the first set of layers of fibers being wrapped around the bushing element to form an elongated front side, an elongated back side, and a portion encompassing the bushing element; a blade platform formed from a second set of unidirectional layers of fibers having a first and a second end which are both wrapped around respective resin filler elements to form resin filled support pockets, the second set of unidirectional layers of fibers being wrapped around the portion of the fan blade encompassing the bushing element to place the resin filled support pockets against the portion of the fan blade encompassing the bushing element, wherein the fan blade and the blade platform form a fan blade assembly, the fan blade assembly having a plurality of hinge slots formed therein; and a pin element extending through the hinge formed by the plurality of hinge lugs in the support disk and the plurality of hinge slots in the fan blade assembly for attaching the fan blade assembly to the support disk.

  17. Ceramic blade attachment system

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL)

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  18. Ceramic blade attachment system

    DOE Patents [OSTI]

    Shaffer, J.E.

    1995-07-11

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figs.

  19. Turbine blade platform seal

    DOE Patents [OSTI]

    Zagar, Thomas W. (Winter Springs, FL); Schiavo, Anthony L. (Oviedo, FL)

    2001-01-01

    A rotating blade group 90 for a turbo-machine having an improved device for sealing the gap 110 between the edges 112,114 of adjacent blade platforms 96,104. The gap 110 between adjacent blades 92,100 is sealed by a seal pin 20 its central portion 110 and by a seal plate 58,60 at each of the front 54 and rear 56 portions. The seal plates 58,60 are inserted into corresponding grooves 62,64 formed in the adjacent edges 112,114 of adjoining blades 92,100 and held in place by end plates 40,42. The end of the seal plates 58,60 may be chamfered 78,80 to improve the seal against the end plate 40,42. The seal pin 20 provides the required damping between the blades 92,100 and the seal plates 58,60 provide improved sealing effectiveness.

  20. Ceramic blade attachment system

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL)

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  1. Ceramic blade attachment system

    DOE Patents [OSTI]

    Shaffer, J.E.

    1995-01-10

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figures.

  2. Ceramic blade attachment system

    DOE Patents [OSTI]

    Boyd, Gary L. (Alpine, CA)

    1994-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion.

  3. Ceramic blade attachment system

    DOE Patents [OSTI]

    Boyd, G.L.

    1994-12-13

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion. 3 figures.

  4. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  5. Sandia Energy - Rotor Blade Sensors and Instrumentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blade Sensors and Instrumentation Home Stationary Power Energy Conversion Efficiency Wind Energy Rotor Innovation Rotor Blade Sensors and Instrumentation Rotor Blade Sensors and...

  6. Ceramic blade attachment system

    DOE Patents [OSTI]

    Frey, deceased, Gary A. (late of Poway, CA); Jimenez, Oscar D. (Escondia, CA)

    1996-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed therebetween. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. And, a pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade.

  7. Ceramic blade attachment system

    DOE Patents [OSTI]

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  8. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  9. Surface controlled blade stabilizer

    DOE Patents [OSTI]

    Russell, Larry R. (6025 Edgemor, Suite C, Houston, TX 77081)

    1983-01-01

    Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.

  10. Cooled snubber structure for turbine blades

    DOE Patents [OSTI]

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  11. Resistive band for turbomachine blade

    DOE Patents [OSTI]

    Roberts, Herbert Chidsey; Taxacher, Glenn Curtis

    2015-08-25

    A turbomachine system includes a rotor that defines a longitudinal axis of the turbomachine system. A first blade is coupled to the rotor, and the first blade has first and second laminated plies. A first band is coupled to the first blade and is configured to resist separation of the first and second laminated plies.

  12. DOE's New Large Blade Test Facility in Massachusetts Completes...

    Energy Savers [EERE]

    DOE's New Large Blade Test Facility in Massachusetts Completes First Commercial Blade Tests DOE's New Large Blade Test Facility in Massachusetts Completes First Commercial Blade ...

  13. Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar Friendly Blades - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER March 28, 2014 - 5:11pm ...

  15. Snubber assembly for turbine blades

    DOE Patents [OSTI]

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  16. Ceramic blade with tip seal

    DOE Patents [OSTI]

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  17. FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow and Heat Transport Simulator(aka FALCON)

    Broader source: Energy.gov [DOE]

    FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow and Heat Transport Simulator(aka FALCON) presentation at the April 2013 peer review meeting held in Denver, Colorado.

  18. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  19. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  20. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  1. Multiple piece turbine blade

    DOE Patents [OSTI]

    Kimmel, Keith D (Jupiter, FL)

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  2. Optical Blade Position Tracking System Test

    SciTech Connect (OSTI)

    Fingersh, L. J.

    2006-01-01

    The Optical Blade Position Tracking System Test measures the blade deflection along the span of the blade using simple off-the-shelf infrared security cameras along with blade-mounted retro-reflective tape and video image processing hardware and software to obtain these measurements.

  3. Wooden wind turbine blade manufacturing process

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT)

    1986-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  4. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, Steven R. (49 Williams Ave., West Valley, NY 14171)

    1990-01-01

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials.

  5. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, S.R.

    1990-03-20

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials. 2 figs.

  6. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  7. Enormous blades for offshore energy

    Broader source: Energy.gov [DOE]

    Sandia’s design for giant wind turbine blades that are stowed at dangerous wind speeds to reduce the risk of damage. | Courtesy of TrevorJohnston.com/Popular Science

  8. Ceramic blade with tip seal

    DOE Patents [OSTI]

    Glezer, Boris (Del Mar, CA); Bhardwaj, Narender K. (San Diego, CA); Jones, Russell B. (San Diego, CA)

    1997-01-01

    The present gas turbine engine (10) includes a disc assembly (64) defining a disc (66) having a plurality of blades (70) attached thereto. The disc (66) has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc (66). A shroud assembly (100) is attached to the gas turbine engine (10) and is spaced from the plurality of blades (70) a preestablished distance forming an interface (108) therebetween. Positioned in the interface is a seal (110) having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades (70).

  9. Baoding Tianwei Wind Power Blade Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Blade Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Blade Co Ltd Place: Hebei Province, China Sector: Wind energy Product: Wind turbine blade maker....

  10. Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Hughes, S.

    2010-07-20

    Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

  11. Blade for a gas turbine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-10-26

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  12. Turbine blade tip flow discouragers

    DOE Patents [OSTI]

    Bunker, Ronald Scott (Niskayuna, NY)

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  13. Turbine blade tip gap reduction system

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  14. Articulated limiter blade for a tokamak fusion reactor

    DOE Patents [OSTI]

    Doll, David W. (San Diego, CA)

    1985-01-01

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  15. Articulated limiter blade for a tokamak fusion reactor

    DOE Patents [OSTI]

    Doll, D.W.

    1982-10-21

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  16. Rotor Blade Sensors and Instrumentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blade Sensors and Instrumentation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  17. Rotor blades for turbine engines

    DOE Patents [OSTI]

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  18. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  19. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S. (Albuquerque, NM); Lobitz, Donald W. (Albuquerque, NM)

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  20. Cooling arrangement for a tapered turbine blade

    DOE Patents [OSTI]

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  1. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind turbine blade

  2. Neutron Computed Tomography of Turbine Blade

    SciTech Connect (OSTI)

    Bilheux, Hassina

    2015-06-03

    ORNL Researcher Hassina Bilheux explains the ability of SNS to explore the internal structure of a 3D-printed turbine blade.

  3. Sandia Energy - Blade Materials and Substructures Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is used to characterize new composite materials to obtain design properties. Wind turbine blades are subjected to a higher number of complex loading cycles not experienced in...

  4. Wind Turbine Blade Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbine Blade Design Wind Turbine Blade Design Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy Summary Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building

  5. Turbine blade tip with offset squealer

    DOE Patents [OSTI]

    Bunker, Ronald Scott (Niskayuna, NY)

    2001-01-01

    An industrial turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationary shroud. The rotating blade includes a root section, an airfoil having a pressure sidewall and a suction sidewall defining an outer periphery and a tip portion having a tip cap. An offset squealer is disposed on the tip cap. The offset squealer is positioned inward from the outer periphery of the rotating blade. The offset squealer increases the flow resistance and reduces the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  6. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    SciTech Connect (OSTI)

    Desmond, M.; Hughes, S.; Paquette, J.

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  7. Adaptor assembly for coupling turbine blades to rotor disks

    DOE Patents [OSTI]

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  8. Multiple piece turbine rotor blade

    DOE Patents [OSTI]

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  9. Panel resonant behavior of wind turbine blades.

    SciTech Connect (OSTI)

    Paquette, Joshua A.; Griffith, Daniel Todd

    2010-03-01

    The principal design drivers in the certification of wind turbine blades are ultimate strength, fatigue resistance, adequate tip-tower clearance, and buckling resistance. Buckling resistance is typically strongly correlated to both ultimate strength and fatigue resistance. A composite shell with spar caps forms the airfoil shape of a blade and reinforcing shear webs are placed inside the blade to stiffen the blade in the flap-wise direction. The spar caps are dimensioned and the shear webs are placed so as to add stiffness to unsupported panel regions and reduce their length. The panels are not the major flap-wise load carrying element of a blade; however, they must be designed carefully to avoid buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static testing of blades under a simulated extreme loading condition. The focus of this paper is on the use of experimental modal analysis to measure localized resonances of the blade panels. It can be shown that the resonant behavior of these panels can also provide a means to evaluate buckling resistance by means of analytical or experimental modal analysis. Further, panel resonances have use in structural health monitoring by observing changes in modal parameters associated with panel resonances, and use in improving panel laminate model parameters by correlation with test data. In recent modal testing of wind turbine blades, a set of panel modes were measured. This paper will report on the findings of these tests and accompanying numerical and analytical modeling efforts aimed at investigating the potential uses of panel resonances for blade evaluation, health monitoring, and design.

  10. SNL Researchers Assess Wind Turbine Blade Inspection and Repair Methods |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SNL Researchers Assess Wind Turbine Blade Inspection and Repair Methods SNL Researchers Assess Wind Turbine Blade Inspection and Repair Methods May 18, 2015 - 5:32pm Addthis A picture of several wind turbine blade panels set out on a table and held in place with metal clamps. Flaws in wind turbine blades emanating from the manufacturing process are an important factor in blade reliability. Blade failures can cause extensive down time and lead to expensive repairs, which

  11. Huayi Wind Blade Research Center | Open Energy Information

    Open Energy Info (EERE)

    Huayi Wind Blade Research Center Jump to: navigation, search Name: Huayi Wind Blade Research Center Place: Baoding, Hebei Province, China Zip: 71051 Sector: Wind energy Product:...

  12. Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongqi Wind Turbine Blade Engineering Co Ltd Jump to: navigation, search Name: Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd Place: Tianjin Municipality, China Sector: Wind...

  13. Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name: Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind...

  14. Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades February 20, 2015 - 4:55pm Addthis On February...

  15. Sandia Energy - 2015 Wind Turbine Blade ManufactureConference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Wind Turbine Blade Manufacture Conference-Dusseldorf, Germany Home Wind Energy Conferences Wind News 2015 Wind Turbine Blade Manufacture Conference-Dusseldorf, Germany Previous...

  16. Massachusetts Large Blade Test Facility Final Report

    SciTech Connect (OSTI)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  17. Turbine blade damping device with controlled loading

    DOE Patents [OSTI]

    Marra, John J.

    2015-09-29

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  18. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  19. Turbine blade damping device with controlled loading

    DOE Patents [OSTI]

    Marra, John J

    2013-09-24

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  20. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    SciTech Connect (OSTI)

    Tangler, J.L.

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  1. Variable diameter wind turbine rotor blades

    DOE Patents [OSTI]

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  2. Method of making a wooden wind turbine blade

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT)

    1984-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  3. Method of making a wooden wind turbine blade

    DOE Patents [OSTI]

    Coleman, C.

    1984-08-14

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis. 8 figs.

  4. Investigating the Effects of Flatback Airfoils and Blade Slenderness on Large Wind Turbine Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INVESTIGATING THE EFFECTS OF FLATBACK AIRFOILS AND BLADE SLENDERNESS ON THE DESIGN OF LARGE WIND TURBINE BLADES D. Todd Griffith Sandia National Laboratories Wind Energy Technology Department dgriffi@sandia.gov Phillip W. Richards Sandia National Laboratories Wind Energy Technology Department pwricha@sandia.gov Abstract: Design and development of large blades is very challenging due to economics, logistics, and technical barriers. Regarding the technical barriers, designs must satisfy

  5. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at WINDPOWER | Department of Energy Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER March 28, 2014 - 5:11pm Addthis This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams

  6. Pin and roller attachment system for ceramic blades

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL)

    1995-01-01

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints.

  7. Pin and roller attachment system for ceramic blades

    DOE Patents [OSTI]

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  8. DOE's New Large Blade Test Facility in Massachusetts Completes First

    Office of Environmental Management (EM)

    Commercial Blade Tests | Department of Energy DOE's New Large Blade Test Facility in Massachusetts Completes First Commercial Blade Tests DOE's New Large Blade Test Facility in Massachusetts Completes First Commercial Blade Tests December 19, 2011 - 3:15pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D Newsletter. Since opening its doors for business in May, the Wind Technology Testing Center (WTTC), in Boston, Massachusetts, has come up to full

  9. 2014 Sandia Wind Turbine Blade Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Energy Department's Sandia National Laboratories will host its 2014 Sandia Wind Turbine Blade Workshop at the Marriott Pyramid North in Albuquerque, New Mexico. The workshop provides a unique, blade focused collaborative forum that will bring together wind energy leaders from industry, academia, and government. Stay tuned for updates. Information regarding past Wind Workshops can be found at: http://windworkshops.sandia.gov/.

  10. Concepts to Facilitate Very Large Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Institute of Aeronautics and Astronautics 1 Concepts to Facilitate Very Large Blades Thomas Ashwill* Sandia National Laboratories, Albuquerque, NM, 87185, USA Daniel Laird* Sandia National Laboratories, Albuquerque, NM, 87185, USA Sandia National Laboratories (SNL) is developing concepts that will enable the utilization of longer blades that weigh less, are more efficient structurally and aerodynamically, and impart reduced loads to the system. Several of these concepts have been

  11. High efficiency turbine blade coatings.

    SciTech Connect (OSTI)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

  12. User's Guide to MBC3: Multi-Blade Coordinate Transformation Code for 3-Bladed Wind Turbine

    SciTech Connect (OSTI)

    Bir, G. S.

    2010-09-01

    This guide explains how to use MBC3, a MATLAB-based script NREL developed to perform multi-blade coordinate transformation of system matrices for three-bladed wind turbines. In its current form, MBC3 can be applied to system matrices generated by FAST.2.

  13. The SNL100-01 blade : carbon design studies for the Sandia 100-meter blade.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  14. Methods of making wind turbine rotor blades

    DOE Patents [OSTI]

    Livingston, Jamie T. (Pensacola, FL); Burke, Arthur H. E. (Gulf Breeze, FL); Bakhuis, Jan Willem (Nijverdal, NL); Van Breugel, Sjef (Enschede, NL); Billen, Andrew (Daarlerveen, NL)

    2008-04-01

    A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

  15. Wind blade spar cap and method of making

    DOE Patents [OSTI]

    Mohamed, Mansour H. (Raleigh, NC)

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  16. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Energy Savers [EERE]

    Technology Testing Center Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an ...

  17. Suzhou Red Maple Wind Blade Mould Co | Open Energy Information

    Open Energy Info (EERE)

    Red Maple Wind Blade Mould Co Jump to: navigation, search Name: Suzhou Red Maple Wind Blade Mould Co Place: Jiangsu Province, China Zip: 215400 Sector: Wind energy Product: Jiangsu...

  18. Structural Testing at the NWTC Helps Improve Blade Design and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Testing at the NWTC Helps Improve Blade Design and Increase System Reliability Biaxial fatigue test of an MHI Wind Power Americas, Inc. turbine blade at the NWTC. Photo...

  19. Methods and apparatus for rotor blade ice detection

    DOE Patents [OSTI]

    LeMieux, David Lawrence

    2006-08-08

    A method for detecting ice on a wind turbine having a rotor and one or more rotor blades each having blade roots includes monitoring meteorological conditions relating to icing conditions and monitoring one or more physical characteristics of the wind turbine in operation that vary in accordance with at least one of the mass of the one or more rotor blades or a mass imbalance between the rotor blades. The method also includes using the one or more monitored physical characteristics to determine whether a blade mass anomaly exists, determining whether the monitored meteorological conditions are consistent with blade icing; and signaling an icing-related blade mass anomaly when a blade mass anomaly is determined to exist and the monitored meteorological conditions are determined to be consistent with icing.

  20. Method and apparatus for reducing cleaning blade wear

    DOE Patents [OSTI]

    Grannes, Steven G. (St. Paul, MN); Rhoades, Charles A. (St. Paul, MN); Hebbie, Terry L. (Bloomington, MN)

    1992-01-01

    An improved cleaning blade construction (10) for eliminating erosion troughs (6) in the upper surface (15) of a cleaning blade member (14) by introducing pressurized fluid through a pressure manifold chamber (16) formed in the upper surface (15) of the cleaning blade member (14). The pressurized fluid will prevent carryback material (7) from passing through a wear groove (6) formed in the cleaning blade member.

  1. UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process August 4, 2010 - 2:04pm Addthis Researchers at the University of Massachusetts Lowell work on a wind blade project. | Photo courtesy of University of Massachusetts Lowell Researchers at the University of Massachusetts Lowell work on a wind blade project. | Photo courtesy of University of Massachusetts Lowell Stephen Graff Former Writer

  2. Enormous Blades for Offshore Energy | Department of Energy

    Energy Savers [EERE]

    Enormous Blades for Offshore Energy Enormous Blades for Offshore Energy February 8, 2016 - 2:00pm Addthis Sandia's design for giant wind turbine blades that are stowed at dangerous wind speeds to reduce the risk of damage. | Courtesy of TrevorJohnston.com/Popular Science Stephanie Holinka Sandia National Laboratories A new design for gigantic blades longer than two football fields could help bring offshore 50-megawatt (MW) wind turbines to the United States and the world. Sandia's research on

  3. Method for maintaining a cutting blade centered in a kerf

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA); Davis, Pete J. (Pleasanton, CA); Landram, Charles S. (Livermore, CA)

    2002-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  4. Blade reliability collaborative : collection of defect, damage and repair data.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.; Ogilvie, Alistair B.; Paquette, Joshua A.

    2013-04-01

    The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

  5. Turbine blade squealer tip rail with fence members

    DOE Patents [OSTI]

    Little, David A

    2012-11-20

    A turbine blade includes an airfoil, a blade tip section, a squealer tip rail, and a plurality of chordally spaced fence members. The blade tip section includes a blade tip floor located at an end of the airfoil distal from the root. The blade tip floor includes a pressure side and a suction side joined together at chordally spaced apart leading and trailing edges of the airfoil. The squealer tip rail extends radially outwardly from the blade tip floor adjacent to the suction side and extends from a first location adjacent to the airfoil trailing edge to a second location adjacent to the airfoil leading edge. The fence members are located between the airfoil leading and trailing edges and extend radially outwardly from the blade tip floor and axially from the squealer tip rail toward the pressure side.

  6. Turbine blade with contoured chamfered squealer tip

    DOE Patents [OSTI]

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axially extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.

  7. Tip cap for a turbine rotor blade

    DOE Patents [OSTI]

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  8. Prediction of stochastic blade loads for three-bladed, rigid-hub rotors

    SciTech Connect (OSTI)

    Wright, A.D.; Weber, T.L.; Thresher, R.W.; Butterfield, C.P.

    1989-11-01

    Accurately predicting wind turbine blade loads and response is important for the design of future wind turbines. The need to include turbulent wind inputs in structural dynamics models is widely recognized. In this paper, the Force and Loads Analysis Program (FLAP) code will be used to predict turbulence-induced bending moments for the SERI Combined Experiment rotor blade and the Howden 330-kW blade. FLAP code predictions will be compared to the power spectra of measured blade-bending moments. Two methods will be used to generate turbulent wind inputs to FLAP: a theoretical simulation: the Pacific Northwest Laboratories (PNL) simulation theory; and measured wind-speed data taken from an array of anemometers upwind of the turbine. Turbulent wind-speed time series are input to FLAP for both methods outlined above. Power spectra of predicted flap-bending moments are compared to measured results for different wind conditions. Conclusions are also drawn as to the ability of the turbulence simulation models to provide accurate wind input to FLAP and to FLAP's ability to accurately simulate blade response to turbulence. Finally, suggestions are made as to needed improvements in the theoretical model. 11 refs., 8 figs.

  9. SCALING OF COMPOSITE WIND TURBINE BLADES FOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-0696 1 ALTERNATIVE COMPOSITE MATERIALS FOR MEGAWATT-SCALE WIND TURBINE BLADES: DESIGN CONSIDERATIONS AND RECOMMENDED TESTING Dayton A. Griffin Global Energy Concepts, LLC 5729 Lakeview Drive NE, Suite 100 Kirkland, WA 98033 Thomas D. Ashwill Wind Energy Technology Department Sandia National Laboratories Albuquerque, NM 87185-0708 ABSTRACT As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies program, Global Energy Concepts LLC (GEC) is performing a

  10. Fabrication of AMI Demonstration Blade Begun

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication of AMI Demonstration Blade Begun - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  11. Turbine blade with tuned damping structure

    DOE Patents [OSTI]

    Campbell, Christian X.; Messmann, Stephen J.

    2015-09-01

    A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.

  12. Micromachined cutting blade formed from {211}-oriented silicon

    DOE Patents [OSTI]

    Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen

    2003-09-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  13. Micromachined cutting blade formed from {211}-oriented silicon

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Burbank, CA); Sniegowski, Jeffry J. (Tijeras, NM); Montague, Stephen (Albuquerque, NM)

    2011-08-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  14. Sweep-twist adaptive rotor blade : final project report.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  15. Turbine blade having a constant thickness airfoil skin

    DOE Patents [OSTI]

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  16. Carbon Design Studies for Large Blades: Performance and Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Studies for Large Blades: Performance and Cost Tradeoffs for the Sandia 100-meter Wind Turbine Blade D. Todd Griffith, 1 Brian R. Resor, 2 and Wade Johanns 3 Sandia National Laboratories, Albuquerque, New Mexico 87185 Sandia National Laboratories' (SNL) Wind & Water Power Technologies Department, as part of its ongoing R&D efforts, creates and evaluates innovative large blade concepts for horizontal axis wind turbines to promote designs that are more efficient aerodynamically,

  17. Utilization of localized panel resonant behavior in wind turbine blades.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd

    2010-11-01

    The shear webs and laminates of core panels of wind turbine blades must be designed to avoid panel buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static loading of a blade to failure under a simulated extreme loading condition. This paper examines an alternative means for evaluating blade buckling resistance using non-destructive modal tests or FEA. In addition, panel resonances can be utilized for structural health monitoring by observing changes in the modal parameters of these panel resonances, which are only active in a portion of the blade that is susceptible to failure. Additionally, panel resonances are considered for updating of panel laminate model parameters by correlation with test data. During blade modal tests conducted at Sandia Labs, a series of panel modes with increasing complexity was observed. This paper reports on the findings of these tests, describes potential ways to utilize panel resonances for blade evaluation, health monitoring, and design, and reports recent numerical results to evaluate panel resonances for use in blade structural health assessment.

  18. Senator Bingaman Tells Sandia Wind Turbine Blade Workshop That...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable Energy Is Important to U.S. Policy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee ...

  19. PPG and MAG Team Up for Turbine Blade Research

    Broader source: Energy.gov [DOE]

    Two companies work together to move forward in the industry, researching materials and processes that could lead to stronger, more reliable wind blades.

  20. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings. Part 2: A model for supersonic flow

    SciTech Connect (OSTI)

    Koenig, W.M.; Hennecke, D.K.; Fottner, L.

    1996-01-01

    New blading concepts as used in modern transonic axial-flow compressors require improved loss and deviation angle correlations. The new model presented in this paper incorporates several elements and treats blade-row flows having subsonic and supersonic inlet conditions separately. The second part of the present report focuses on the extension of a well-known correlation for cascade losses at supersonic inlet flows. It was originally established for DCA bladings and is now modified to reflect the flow situation in blade rows having low-cambered, arbitrarily designed blades including precompression blades. Finally, the steady loss increase from subsonic to supersonic inlet-flow velocities demonstrates the matched performance of the different correlations of the new model.

  1. The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.

    SciTech Connect (OSTI)

    Griffith, Daniel; Richards, Phillip William

    2014-09-01

    A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.

  2. Multiple piece turbine blade/vane

    DOE Patents [OSTI]

    Kimmel, Keith D

    2013-02-05

    An air cooled turbine blade or vane of a spar and shell construction with the shell made from a high temperature resistant material that must be formed from an EDM process. The shell and the spar both have a number of hooks extending in a spanwise direction and forming a contact surface that is slanted such that a contact force increases as the engaging hooks move away from one another. The slanted contact surfaces on the hooks provides for an better seal and allows for twisting between the shell and the spar while maintaining a tight fit.

  3. Turbine blades and systems with forward blowing slots

    DOE Patents [OSTI]

    Zuteck, Michael D.; Zalusky, Leigh; Lees, Paul

    2015-09-15

    A blade for use in a wind turbine comprises a pressure side and suction side meeting at a trailing edge and leading edge. The pressure side and suction side provide lift to the turbine blade upon the flow of air from the leading edge to the trailing edge and over the pressure side and suction side. The blade includes one or more openings at the suction side, in some cases between the leading edge and the trailing edge. The one or more openings are configured to provide a pressurized fluid towards the leading edge of the blade, in some cases at an angle between about 0.degree. and 70.degree. with respect to an axis oriented from a centerline of the blade toward the leading edge.

  4. Risk assessment of Cumberland unit 2 L-O blades

    SciTech Connect (OSTI)

    Lam, T.C.T.; Puri, A.

    1996-12-31

    Concern about the reliability of the 1,300 mw Cumberland steam turbine units after an unexpected blade tip failure in the fall of 1995 caused TVA to conduct an investigation into the current reliability of the L-O blades. A probabilistic model based on the measured frequencies, damping and material fatigue data was generated. The influence of significant erosion damage on the blade natural frequencies and on the local stresses was estimated. A probabilistic model of the local fatigue limit was generated based on test data. Monte Carlo simulation was employed to estimate the probability of blade failure by comparing the dynamic stress with the fatigue limit. Risk assessment of the blade failure is presented.

  5. Wind turbine blade testing system using base excitation

    DOE Patents [OSTI]

    Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

    2014-03-25

    An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

  6. Aluminum-blade development for the Mod-0A 200-kilowatt wind turbine

    SciTech Connect (OSTI)

    Linscott, B.S.; Shaltens, R.K.; Eggers, A.G.

    1981-12-01

    This report documents the operating experience with two aluminum blades used on the DOE/NASA Mod-0A 200-kilowatt wind turbine located at Clayton, New Mexico. Each Mod-0A aluminum blade is 59.9 feet long and weighs 2360 pounds. The aluminum Mod-0A blade design requirements, the selected design, fabrication procedures, and the blade analyses are discussed. A detailed chronology is presented on the operating experience of the Mod-0A aluminum blades used at Clayton, New Mexico. Blade structural damage was experienced. Inspection and damage assessment were required. Structural modifications that were incorporated to the blades successfully extended the useful operating life of the blades. The aluminum blades completed the planned 2 years of operation of the Clayton wind turbine. The blades were removed from service in August 1980 to allow testing of advanced technology wood composite blades.

  7. Definition of a 5MW/61.5m wind turbine blade reference model.

    SciTech Connect (OSTI)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  8. Turbine blade with spar and shell

    DOE Patents [OSTI]

    Davies, Daniel O. (Palm City, FL); Peterson, Ross H. (Loxahatchee, FL)

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  9. Gas turbine blade with intra-span snubber

    DOE Patents [OSTI]

    Merrill, Gary B.; Mayer, Clinton

    2014-07-29

    A gas turbine blade (10) including a hollow mid-span snubber (16). The snubber is affixed to the airfoil portion (14) of the blade by a fastener (20) passing through an opening (24) cast into the surface (22) of the blade. The opening is defined during an investment casting process by a ceramic pedestal (38) which is positioned between a ceramic core (32) and a surrounding ceramic casting shell (48). The pedestal provides mechanical support for the ceramic core during both wax and molten metal injection steps of the investment casting process.

  10. The SNL100-02 blade : advanced core material design studies for the Sandia 100-meter blade.

    SciTech Connect (OSTI)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  11. Health assessment for Rhinehart (Aka Winchester) Tire Fire National Priorities List (NPL) Site, Frederick County, Virginia, Region 3. CERCLIS No. VAD980831796. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-04-17

    The Rhinehart (aka Winchester) Tire Fire Site is located near the town of Winchester in Frederick County, Virginia. In October 1983, a fire was started in the tires disposed of on the site. Hot oil was released from the melting and pyrolysis of the tires. This oil made its way to Massey Run, a nearby surface water body. The fire was brought under control within a few days, but continued to smolder for six months. The migration of the oil and the residue from the fire have contaminated the site. The site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse human health effects. Human exposure to heavy metals, polynuclear aromatic hydrocarbons and volatile organic compounds may occur via ingestion, inhalation and dermal absorption of contaminated groundwater, surface water, sediments and soils.

  12. Dynamically Adjustable Wind Turbine Blades: Adaptive Turbine Blades, Blown Wing Technology for Low-Cost Wind Power

    SciTech Connect (OSTI)

    2010-02-02

    Broad Funding Opportunity Announcement Project: Caitin is developing wind turbines with a control system that delivers compressed air from special slots located in the surface of its blades. The compressed air dynamically adjusts the aerodynamic performance of the blades, and can essentially be used to control lift, drag, and ultimately power. This control system has been shown to exhibit high levels of control in combination with an exceptionally fast response rate. The deployment of such a control system in modern wind turbines would lead to better management of the load on the system during peak usage, allowing larger blades to be deployed with a resulting increase in energy production.

  13. Microsoft PowerPoint - Sandia2012_BladeWorkshop_Capellaro [Kompatibilitätsmodus]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stiftungslehrstuhl Windenergie am Institut für Flugzeugbau Design Challenges for Bend Twist Coupled Blades for Wind Turbines: and application to standard blades 2012 Sandia Wind Turbine Blade Workshop Mark Capellaro Phd Researcher Chair of Wind Energy (SWE) University of Stuttgart, Germany Table of Contents * Introduction * Bend twist coupled wind turbine blades * Load reduction potential * background research * Improving blade performance through better models 2 Design Challenges for Bend

  14. Turbine blade and non-integral platform with pin attachment

    DOE Patents [OSTI]

    Campbell, Christian X; Eng, Darryl; Marra, John J

    2015-01-27

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  15. Horizontal-Axis Wind Turbine Wake Sensitivity to Different Blade...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U inflow angle at blade section relative to plane of rotation + , degrees angular velocity of rotor, rads SW iF T Scaled Wind Farm Technology x time average of...

  16. Determining effects of turbine blades on fluid motion

    DOE Patents [OSTI]

    Linn, Rodman Ray (Los Alamos, NM); Koo, Eunmo (Los Alamos, NM)

    2012-05-01

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  17. Determining effects of turbine blades on fluid motion

    DOE Patents [OSTI]

    Linn, Rodman Ray (Los Alamos, NM); Koo, Eunmo (Los Alamos, NM)

    2011-05-31

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  18. New Funding Opportunity to Develop Larger Wind Turbine Blades

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $1.8 million in funding for the development of larger wind turbine blades that will help capture more power from wind resources and increase the efficiency of wind energy systems.

  19. PowerBlades GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: PowerBlades GmbH Place: Lemwerder, Hamburg, Germany Zip: 27809 Sector: Wind energy Product: Developement and production of in-house...

  20. Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades

    Broader source: Energy.gov [DOE]

    On February 20, EERE’s Wind Program announced a Notice of Intent to issue a funding opportunity titled “U.S. Wind Manufacturing: Larger Blades to Access Greater Wind Resources and Lower Costs.”

  1. CX-100 and TX-100 blade field tests.

    SciTech Connect (OSTI)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  2. Aerodynamic testing of a rotating wind turbine blade

    SciTech Connect (OSTI)

    Butterfield, C.P.; Nelsen, E.N.

    1990-01-01

    Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

  3. Wind Technology Testing Center Acquires New Blade Fatigue Test System |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Second Quarter 2013 edition of the Wind Program R&D Newsletter. The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, recently acquired a significant piece of testing equipment needed to offer its industry partners a full state-of-the-art suite of wind turbine blade certification tests. As utility-scale wind turbines have grown in size over the last decade, their blades have become longer, heavier, and more costly to manufacture, install, and repair.

  4. Blading designs to improve thermal performance of HP and IP steam turbines

    SciTech Connect (OSTI)

    Chen, S.; Martin, H.F.

    1996-12-31

    Improved blade designs are available for high pressure and intermediate pressure steam turbines for increased thermal efficiency. These designs and the technology used to develop and verify them are discussed in this paper. The blading designs include twisted blade designs and full three dimensional designs. Appropriate strategies are discussed for the application of these different types of blading for new and retrofit applications. The market place in the electric energy industry in the United States is changing. The impact of this change on the need for improved blade designs and application strategies for the use of this blading is also discussed.

  5. Incipient Crack Detection in Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Taylor, Stuart G.; Choi, Mijin; Jeong, Hyomi; Jang, Jae Kyeong; Park, Gyuhae; Farinholt, Kevin; Farrar, Charles R.; Ammerman, Curtt N.; Todd, Michael D.; Lee, Jung-Ryul

    2012-08-28

    This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results in detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.

  6. Blade platform seal for ceramic/metal rotor assembly

    DOE Patents [OSTI]

    Wertz, John L.

    1982-01-01

    A combination ceramic and metal turbine rotor for use in high temperature gas turbine engines includes a metal rotor disc having a rim with a plurality of circumferentially spaced blade root retention slots therein to receive a plurality of ceramic blades, each including side platform segments thereon and a dovetail configured root slidably received in one of the slots. Adjacent ones of the platform segments including edge portions thereon closely spaced when the blades are assembled to form expansion gaps in an annular flow surface for gas passage through the blades and wherein the assembly further includes a plurality of unitary seal members on the rotor connected to its rim and each including a plurality of spaced, axially extending, flexible fingers that underlie and conform to the edge portions of the platform segments and which are operative at turbine operating temperatures and speeds to distribute loading on the platform segments as the fingers are seated against the underside of the blade platforms to seal the gaps without undesirably stressing thin web ceramic sections of the platform.

  7. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect (OSTI)

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  8. Dual-axis resonance testing of wind turbine blades

    SciTech Connect (OSTI)

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  9. Near wall cooling for a highly tapered turbine blade

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  10. ZhongHang Baoding Huiteng Windpower Equipment Co Ltd HT Blade...

    Open Energy Info (EERE)

    ZhongHang Baoding Huiteng Windpower Equipment Co Ltd HT Blade Jump to: navigation, search Name: ZhongHang (Baoding) Huiteng Windpower Equipment Co Ltd (HT Blade) Place: Baoding,...

  11. Wind Technology Testing Center Earns A2LA Accreditation for Blade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earns A2LA Accreditation for Blade Testing Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing October 1, 2012 - 12:16pm Addthis This is an excerpt from the...

  12. Recovery Act-Funded 90-m Blade Test Facility Commissioned May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011 Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011 May 20, 2011 - 3:06pm Addthis This is ...

  13. Retention system and method for the blades of a rotary machine

    DOE Patents [OSTI]

    Pedersen, Poul D. (Cincinnati, OH); Glynn, Christopher C. (Hamilton, OH); Walker, Roger C. (Piedmont, SC)

    2002-01-01

    A retention system and method for the blades of a rotary machine for preventing forward or aft axial movement of the rotor blades includes a circumferential hub slot formed about a circumference of the machine hub. The rotor blades have machined therein a blade retention slot which is aligned with the circumferential hub slot when the blades are received in correspondingly shaped openings in the hub. At least one ring segment is secured in the blade retention slots and the circumferential hub slot to retain the blades from axial movement. A key assembly is used to secure the ring segments in the aligned slots via a hook portion receiving the ring segments and a threaded portion that is driven radially outwardly by a nut. A cap may be provided to provide a redundant back-up load path for the centrifugal loads on the key. Alternatively, the key assembly may be formed in the blade dovetail.

  14. Recovery Act-Funded 90-m Blade Test Facility Commissioned May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    suite of certification tests for turbine blades up to 90 m in length as the state-of-the-art facility opened May 18, 2011. The center is the first commercial large blade test...

  15. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings. Part 1: A model for subsonic flow

    SciTech Connect (OSTI)

    Koenig, W.M.; Hennecke, D.K.; Fottner, L.

    1996-01-01

    New blading concepts as used in modern transonic axial-flow compressors require improved loss and deviation angle correlations. The new model presented in this paper incorporates several elements and treats blade-row flows having subsonic and supersonic inlet conditions separately. In the first part of this paper two proved and well-established profile loss correlations for subsonic flows are extended to quasi-two-dimensional conditions and to custom-tailored blade designs. Instead of a deviation angle correlation, a simple method based on singularities is utilized. The comparison between the new model and a recently published model demonstrates the improved accuracy in prediction of cascade performance achieved by the new model.

  16. Large Wind Turbine Blade Test Facilities to be in Mass., Texas - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Large Wind Turbine Blade Test Facilities to be in Mass., Texas Access to waterways key; NREL to continue testing smaller blades in Colorado June 25, 2007 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will work with consortiums from Texas and Massachusetts to design, build and operate new facilities to test the next generation of giant wind turbine blades. The Department of Energy (DOE) announced the blade test facility cooperative research and

  17. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  18. Microsoft PowerPoint - STP Blade Failure_Hentschel_SWPA Conf (11 Jun 09).ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BUILDING STRONG Stockton Turbine Blade Failure Spillway Tainter Gates Tailrace Powerhouse Switchyard BUILDING STRONG Stockton Power Plant Cross Section Location of failed blade section Runner Blade Draft Tube Bulkheads Intake Gates Intake Bulkheads BUILDING STRONG Runner Blade Failure * Unit experience severe vibration the morning of 4 Feb 09 activating the vibration alarms * Plant personnel observed cyclic banging and water leakage at the draft tube hatch door * Unit was immediately shut down *

  19. Mixing blade system for high-resistance media

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-07-09

    A blade system is described for stirring and agitating a medium, comprising a shaft bearing a plurality of paddles, each having a different geometry and each having approximately the same rotational moment. The geometrically different paddles sweep through different volumes of the medium to minimize shear zone development and maximize the strength of the system with respect to medium-induced stress. 6 figures.

  20. Test of a coaxial blade tuner at HTS FNAL

    SciTech Connect (OSTI)

    Pischalnikov, Y.; Barbanotti, S.; Harms, E.; Hocker, A.; Khabiboulline, T.; Schappert, W.; Bosotti, A.; Pagani, C.; Paparella, R.; /LASA, Segrate

    2011-03-01

    A coaxial blade tuner has been selected for the 1.3GHz SRF cavities of the Fermilab SRF Accelerator Test Facility. Results from tuner cold tests in the Fermilab Horizontal Test Stand are presented. Fermilab is constructing the SRF Accelerator Test Facility, a facility for accelerator physics research and development. This facility will contain a total of six cryomodules, each containing eight 1.3 GHz nine-cell elliptical cavities. Each cavity will be equipped with a Slim Blade Tuner designed by INFN Milan. The blade tuner incorporates both a stepper motor and piezo actuators to allow for both slow and fast cavity tuning. The stepper motor allows the cavity frequency to be statically tuned over a range of 500 kHz with an accuracy of several Hz. The piezos provide up to 2 kHz of dynamic tuning for compensation of Lorentz force detuning and variations in the He bath pressure. The first eight blade tuners were built at INFN Milan, but the remainder are being manufactured commercially following the INFN design. To date, more than 40 of the commercial tuners have been delivered.

  1. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  2. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  3. Mixing blade system for high-resistance media

    DOE Patents [OSTI]

    Kronberg, James W. (Beech Island, SC)

    1991-01-01

    A blade system for stirring and agitating a medium, comprising a shaft bearing a plurality of paddles, each having a different geometry and each having approximately the same rotational moment. The geometrically different paddles sweep through different volumes of the medium to minimize shear zone development and maximize the strength of the system with respect to medium-induced stress.

  4. First wind turbine blade delivered to Pantex | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration wind turbine blade delivered to Pantex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  5. Thermal Imaging of Medical Saw Blades and Guides (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Thermal Imaging of Medical Saw Blades and Guides Citation Details In-Document Search Title: Thermal Imaging of Medical Saw Blades and Guides Better Than New, LLC., has developed a surface treatment to reduce the friction and wear of orthopedic saw blades and guides. The medical saw blades were thermally imaged while sawing through fresh animal bone and an IR camera was used to measure the blade temperature as it exited the bone. The thermal performance of as-manufactured

  6. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect (OSTI)

    ILINSKI P.

    2012-07-10

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  7. Sandia Wind-Turbine Blade Flaw Detection Experiments in Denmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Turbine Blade Flaw Detection Experiments in Denmark - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  8. Senator Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Is Important to U.S. Policy Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable Energy Is Important to U.S. Policy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  9. Preform spar cap for a wind turbine rotor blade

    DOE Patents [OSTI]

    Livingston, Jamie T. (Simpsonville, SC); Driver, Howard D. (Greer, SC); van Breugel, Sjef (Enschede, NL); Jenkins, Thomas B. (Cantonment, FL); Bakhuis, Jan Willem (Nijverdal, NL); Billen, Andrew J. (Daarlerveen, NL); Riahi, Amir (Pensacola, FL)

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  10. Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Wind Energy Wind Energy Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (825 KB) Technology Marketing SummarySandia has developed a method and apparatus for depositing thermal barrier coatings on gas turbine

  11. Energy harvesting to power sensing hardware onboard wind turbine blade

    SciTech Connect (OSTI)

    Carlson, Clinton P; Schichting, Alexander D; Quellette, Scott; Farinholt, Kevin M; Park, Gyuhae

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  12. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  13. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    SciTech Connect (OSTI)

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Lundstrom, Troy; LeBlanc, Bruce; Hughes, Scott; Desmond, Michael; Beattie, Alan; Rumsey, Mark; Klute, Sandra M.; Pedrazzani, Renee; Werlink, Rudy; Newman, John

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.

  14. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Lundstrom, Troy; LeBlanc, Bruce; Hughes, Scott; Desmond, Michael; Beattie, Alan; Rumsey, Mark; et al

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-opticmore » strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.« less

  15. Microsoft Word - Modeling and Testing of 9m Research Blades Paquette Laird Griffith.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Modeling and Testing of 9m Research Blades * Joshua Paquette † , Daniel Laird ‡ , and D. Todd Griffith § Sandia National Laboratories ** , Albuquerque, NM, 87185, USA Laura Rip National Renewable Energy Laboratory, Golden, CO, 80401, USA Wind turbines and their blades continue to grow in size. The resulting increase in blade mass and cost requires the implementation of new design concepts. Among these is the selective use of carbon fiber. In 2002, Sandia National Laboratories (SNL)

  16. Image Analysis of Turbine Blades Using CT Scans| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceptional potential but are hidden and undetected. These flaws can occur during the manufacturing processes of turbine blades in a jet or gas engine. If large enough, they...

  17. The SNL100-03 Blade: Design Studies with Flatback Airfoils for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used to design the 100-meter blade external geometry. HARPOpt performs a dual-objective genetic algorithm optimization, where the objectives are annual energy production (AEP)...

  18. SNL Begins Field Testing on First SMART Blades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SNL Begins Field Testing on First SMART Blades SNL Begins Field Testing on First SMART Blades December 19, 2011 - 9:30am Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D Newsletter. In October, the Department of Energy (DOE) Sandia National Laboratories (SNL) completed fabrication and began field testing a set of wind turbine blades with active load control capabilities. Based on the proven Sandia CX-100 blade design, the Structural and Mechanical

  19. Dual-Axis Resonance Testing of Wind Turbine Blades - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Wind Energy Wind Energy Find More Like This Return to Search Dual-Axis Resonance Testing of Wind Turbine Blades National Renewable Energy Laboratory Contact NREL About This Technology <em>Dual-axis testing can concurrently test edgewise and flapwise blade stability which is significant in reducing the amount of time needed to fatigue test wind turbine blades. </em><br /> Dual-axis testing can concurrently test edgewise and flapwise blade stability which is

  20. Sandia Energy - The Influence of Rotor Blade Design on Wake Developmen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Rotor Blade Design on Wake Development Home Renewable Energy Energy SWIFT Facilities News Wind Energy News & Events Systems Analysis Systems Engineering The Influence...

  1. Microsoft Word - Modeling and Testing of 9m Research Blades Paquette...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Testing of 9m Research Blades * Joshua Paquette , Daniel Laird , and D. Todd Griffith Sandia National Laboratories ** , Albuquerque, NM, 87185, USA Laura Rip...

  2. A comparison of baseline aerodynamic performance of optimally-twisted versus non-twisted HAWT blades

    SciTech Connect (OSTI)

    Simms, D.A.; Robinson, M.C.; Hand, M.M.; Fingersh, L.J.

    1995-01-01

    NREL has completed the initial twisted blade field tests of the ``Unsteady Aerodynamics Experiment.`` This test series continues systematic measurements of unsteady aerodynamic phenomena prevalent in stall-controlled horizontal axis wind turbines (HAWTs). The blade twist distribution optimizes power production at a single angle of attack along the span. Abrupt transitions into and out of stall are created due to rapid changes in inflow. Data from earlier experiments have been analyzed extensively to characterize the steady and unsteady response of untwisted blades. In this report, a characterization and comparison of the baseline aerodynamic performance of the twisted versus non-twisted blade sets will be presented for steady flow conditions.

  3. Rotationally Augmented Flow Structures and Time Varying Loads on Turbine Blades: Preprint

    SciTech Connect (OSTI)

    Schreck, S. J.

    2007-01-01

    To better understand wind turbine flow physics, time dependent blade surface pressure data were acquired from the NREL Unsteady Aerodynamics Experiment.

  4. Forging of compressor blades: Temperature and ram velocity effects

    SciTech Connect (OSTI)

    Saigal, A.; Zhen, K.; Chan, T.S.

    1995-07-01

    Forging is one of the most widely used manufacturing process for making high-strength, structurally integrated, impact and creep-resistant Ti-6Al-4V compressor blades for jet engines. In addition, in modern metal forming technology, finite element analysis method and computer modeling are being extensively employed for initial evaluation and optimization of various processes, including forging. In this study, DEFORM, a rigid viscoplastic two-dimensional finite element code was used to study the effects of initial die temperature and initial ram velocity on the forging process. For a given billet, die temperature and ram velocity influence the strain rate, temperature distribution,and thus the flow stress of the material. The die temperature and the ram velocity were varied over the range 300 to 700 F and 15--25 in./sec, respectively, to estimate the maximum forging load and the total energy required to forge compressor blades. The ram velocity was assumed to vary linearly as a function of stroke. Based on the analysis,it was found the increasing the die temperature from 300 to 700 F decreases the forging loads by 19.9 percent and increases the average temperature of the workpiece by 43 F. Similarly, increasing the initial ram velocity from 15 to 25 in./sec decreases the forging loads by 25.2 percent and increases the average temperature of the workpiece by 36 F. The nodal temperature distribution is bimodal in each case. The forging energy required to forge the blades is approximately 18 kips *in./in.

  5. Blade System Design Study. Part II, final project report (GEC).

    SciTech Connect (OSTI)

    Griffin, Dayton A.

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of 9-m and 30-m length, as well as other non-wind related structures.

  6. Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

  7. Resonant Vibrations Resulting from the Re-Engineering of a Constant-Speed 2-Bladed Turbine to a Variable-Speed 3-Bladed Turbine

    SciTech Connect (OSTI)

    Fleming, P.; Wright, A. D.; Finersh, L. J.

    2010-12-01

    The CART3 (Controls Advanced Research Turbine, 3-bladed) at the National Wind Technology Center has recently been converted from a 2-bladed constant speed machine to a 3-bladed variable speed machine designed specically for controls research. The purpose of this conversion was to develop an advanced controls field-testing platform which has the more typical 3-bladed configuration. A result of this conversion was the emergence of several resonant vibrations, some of which initially prevented operation of the turbine until they could be explained and resolved. In this paper, the investigations into these vibrations are presented as 'lessons-learned'. Additionally, a frequency-domain technique called waterfall plotting is discussed and its usefulness in this research is illustrated.

  8. Swept Blade Aero-Elastic Model for a Small Wind Turbine (Presentation)

    SciTech Connect (OSTI)

    Damiani, R.; Lee, S.; Larwood, S.

    2014-07-01

    A preprocessor for analyzing preswept wind turbines using the in-house aero-elastic tool coupled with a multibody dynamic simulator was developed. A baseline 10-kW small wind turbine with straight blades and various configurations that featured bend-torsion coupling via blade-tip sweep were investigated to study their impact on ultimate loads and fatigue damage equivalent loads.

  9. DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES

    SciTech Connect (OSTI)

    Amarendra K. Rai

    2006-12-04

    Turbine blades in coal derived syngas systems are subject to oxidation and corrosion due to high steam temperature and pressure. Thermal barrier coatings (TBCs) are developed to address these problems. The emphasis is on prime-reliant design and a better coating architecture, having high temperature and corrosion resistance properties for turbine blades. In Phase I, UES Inc. proposed to develop, characterize and optimize a prime reliant TBC system, having smooth and defect-free NiCoCrAlY bond layer and a defect free oxide sublayer, using a filtered arc technology. Phase I work demonstrated the deposition of highly dense, smooth and defect free NiCoCrAlY bond coat on a single crystal CMSX-4 substrate and the deposition of alpha-alumina and yttrium aluminum garnet (YAG) sublayer on top of the bond coat. Isothermal and cyclic oxidation test and pre- and post-characterization of these layers, in Phase I work, (with and without top TBC layer of commercial EB PVD YSZ) revealed significant performance enhancement.

  10. Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

    SciTech Connect (OSTI)

    William C. Leighty; DOE Project Officer - Keith Bennett

    2005-10-04

    Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

  11. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    SciTech Connect (OSTI)

    Claytor, Thomas N; Ammerman, Curtt N; Park, Gyu Hae; Farinholt, Kevin M; Farrar, Charles R; Atterbury, Marie K

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  12. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect (OSTI)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  13. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    SciTech Connect (OSTI)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.

  14. Superhydrophobic anti-ultraviolet films by doctor blade coating

    SciTech Connect (OSTI)

    Cai, Chang-Yun; Yang, Hongta; Lin, Kun-Yi Andrew

    2014-11-17

    This article reports a scalable technology for fabricating polymer films with excellent water-repelling and anti-ultraviolet properties. A roll-to-roll compatible doctor blade coating technology is utilized to prepare silica colloidal crystal-polymer composites. The silica microspheres can then be selectively removed to create flexible self-standing macroporous polymer films with crystalline arrays of pores. The void sizes are controlled by tuning the duration of a reactive ion etching process prior to the removal of the templating silica microspheres. After surface modification, superhydrophobic surface can be achieved. This study further demonstrates that the as-prepared transparent porous films with 200?nm of pores exhibit diffraction of ultraviolet lights originated from the Bragg's diffractive of light from the three-dimensional highly ordered air cavities.

  15. Automated ultrasonic inspection of turbine blade tenons results summary

    SciTech Connect (OSTI)

    Kotteakos, B.

    1996-12-31

    Cracks occurring in turbine blade tenons have the possibility of producing severe damage if not detected. Undetected cracks can propagate to a critical size, resulting in loss of shroud, excessive vibration and consequential unit shut down. Advances in the development of ultrasonic techniques have provided Southern California Edison Company (SCE) with an effective method of detecting tenon cracking prior to crack propagation to critical size. The ultrasonic system utilized by SCE incorporates focused array technology and automated scanning techniques and provides many advantages over the conventional manual scanning techniques. This paper addresses the system utilized by the company and the results of inspections since the introduction of the equipment to the power generation industry.

  16. Hot spot detection system for vanes or blades of a combustion turbine

    DOE Patents [OSTI]

    Twerdochlib, Michael (Oviedo, FL)

    1999-01-01

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature.

  17. Wind turbine composite blade manufacturing : the need for understanding defect origins, prevalence, implications and reliability.

    SciTech Connect (OSTI)

    Cairns, Douglas S.; Riddle, Trey; Nelson, Jared

    2011-02-01

    Renewable energy is an important element in the US strategy for mitigating our dependence on non-domestic oil. Wind energy has emerged as a viable and commercially successful renewable energy source. This is the impetus for the 20% wind energy by 2030 initiative in the US. Furthermore, wind energy is important on to enable a global economy. This is the impetus for such rapid, recent growth. Wind turbine blades are a major structural element of a wind turbine blade. Wind turbine blades have near aerospace quality demands at commodity prices; often two orders of magnitude less cost than a comparable aerospace structure. Blade failures are currently as the second most critical concern for wind turbine reliability. Early blade failures typically occur at manufacturing defects. There is a need to understand how to quantify, disposition, and mitigate manufacturing defects to protect the current wind turbine fleet, and for the future. This report is an overview of the needs, approaches, and strategies for addressing the effect of defects in wind turbine blades. The overall goal is to provide the wind turbine industry with a hierarchical procedure for addressing blade manufacturing defects relative to wind turbine reliability.

  18. Hot spot detection system for vanes or blades of a combustion turbine

    DOE Patents [OSTI]

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  19. Composite turbine blade design options for Claude (open) cycle OTEC power systems

    SciTech Connect (OSTI)

    Penney, T.R.

    1985-11-01

    Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

  20. Energy Department Awards $1.8 Million to Develop Wind Turbine Blades to

    Office of Environmental Management (EM)

    Access Better Wind Resources and Reduce Costs | Department of Energy 1.8 Million to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs Energy Department Awards $1.8 Million to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs September 15, 2015 - 9:00am Addthis The Energy Department today announced the selection of two organizations to develop larger wind turbine blades that can take advantage of better wind resources and can lower costs.

  1. fan blades Karr, O.F.; Brooks, J.B.; Seay, E. 20 FOSSIL-FUELED...

    Office of Scientific and Technical Information (OSTI)

    draft fan blades Karr, O.F.; Brooks, J.B.; Seay, E. 20 FOSSIL-FUELED POWER PLANTS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 42 ENGINEERING NOT INCLUDED IN OTHER...

  2. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    SciTech Connect (OSTI)

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  3. Modal analysis and SHM investigation of CX-100 wind turbine blade

    SciTech Connect (OSTI)

    Deines, Krystal E; Marinone, Timothy; Schultz, Ryan A; Farinholt, Kevin M; Park, Gyuhae

    2011-01-24

    This paper presents the dynamic characterization of a CX100 blade using modal testing. Obtaining a thorough dynamic characterization of these turbine blades is important because they are complex structures, making them difficult to monitor for damage initiation and subsequent growth. This dynamic characterization was compared to a numerical model developed for validation. Structural Health Monitoring (SHM) techniques involving Lamb wave propagation, frequency response functions, and impedance based methods were also used to provide insight into blade dynamic response. SHM design parameters such as traveling distance of the wave, sensing region of the sensor and the power requirements were examined. Results obtained during modal and SHM testing will provide a baseline for future damage detection and mitigation techniques for wind turbine blades.

  4. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    SciTech Connect (OSTI)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  5. Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011

    Broader source: Energy.gov [DOE]

    The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, now offers a full suite of certification tests for turbine blades up to 90 m in length as the state-of-the-art facility opened May 18, 2011.

  6. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect (OSTI)

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  7. Department of Energy to Invest up to $4 Million for Wind Turbine Blade

    Energy Savers [EERE]

    Testing Facilities | Department of Energy up to $4 Million for Wind Turbine Blade Testing Facilities Department of Energy to Invest up to $4 Million for Wind Turbine Blade Testing Facilities June 25, 2007 - 2:07pm Addthis New facilities in Massachusetts and Texas will bring cutting-edge technology to wind research WASHINGTON, DC - The U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE has selected the Commonwealth of Massachusetts Partnership in

  8. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect (OSTI)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  9. Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-17

    A method for reducing at least one of loads, deflections of rotor blades, or peak rotational speed of a wind turbine includes storing recent historical pitch related data, wind related data, or both. The stored recent historical data is analyzed to determine at least one of whether rapid pitching is occurring or whether wind speed decreases are occurring. A minimum pitch, a pitch rate limit, or both are imposed on pitch angle controls of the rotor blades conditioned upon results of the analysis.

  10. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis

    Office of Scientific and Technical Information (OSTI)

    Tidal Current Turbine Under Operational Condition (Journal Article) | SciTech Connect Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Citation Details In-Document Search Title: Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its

  11. Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eco-Driving | Department of Energy Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving July 23, 2010 - 5:17pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs On Thursday, Secretary Chu announced six projects that aim to find ways of convert captured carbon dioxide (CO2) emissions from industrial sources into

  12. Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy

    Energy Savers [EERE]

    Future | Department of Energy Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future July 17, 2012 - 2:14pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? The Energy Department is supporting the validation of newly developed technologies at wind testing facilities across America. There's a simple truth in wind energy -- the

  13. Non-Destructive Evaluation of Wind Turbine Blades Using an Infrared Camera

    SciTech Connect (OSTI)

    Beattie, A.G.; Rumsey, M.

    1998-12-17

    The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.

  14. Viscous throughflow modeling of axial compressor bladerows using a tangential blade force hypothesis

    SciTech Connect (OSTI)

    Gallimore, S.J.

    1998-10-01

    This paper describes the modeling of axial compressor blade rows in an axisymmetric viscous throughflow method. The basic method, which has been reported previously, includes the effects of spanwise mixing, using a turbulent diffusion model, and endwall shear within the throughflow calculation. The blades are modeled using a combination of existing two-dimensional blade performance predictions for loss and deviation away from the annulus walls and a novel approach using tangential blade forces in the endwall regions. Relatively simple assumptions about the behavior of the tangential static pressure force imposed by the blades allow the secondary deviations produced by tip clearance flows and the boundary layer flows at fixed blade ends to be calculated in the axisymmetric model. Additional losses are assigned in these regions based on the calculated deviations. The resulting method gives realistic radial distributions of loss and deviation across the whole span at both design and off-design operating conditions, providing a quick method of estimating the magnitudes of these effects in the preliminary design process. Results from the method are compared to measured data in low and high-speed compressors and multistage three-dimensional viscous CFD predictions.

  15. Aerodynamic pressure and flow-visualization measurement from a rotating wind turbine blade

    SciTech Connect (OSTI)

    Butterfield, C.P.

    1988-11-01

    Aerodynamic, load, flow-visualization, and inflow measurements have been made on a 10-m, three-bladed, downwind, horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor was used to record nighttime and daytime video images of tufts attached to the low-pressure side of a constant-chord, zero-twist blade. Load measurements were made using strain gages mounted at every 10% of the blade's span. Pressure measurements were made at 80% of the blade's span. Pressure taps were located at 32 chordwise positions, revealing pressure distributions comparable with wind tunnel data. Inflow was measured using a vertical-plane array of eight propvane and five triaxial (U-V-W) prop-type anemometers located 10 m upwind in the predominant wind direction. One objective of this comprehensive research program was to study the effects of blade rotation on aerodynamic behavior below, near, and beyond stall. To this end, flow patterns are presented here that reveal the dynamic and steady behavior of flow conditions on the blade. Pressure distributions are compared to flow patterns and two-dimensional wind tunnel data. Separation boundary locations are shown that change as a function of spanwise location, pitch angle, and wind speed. 6 refs., 23 figs., 1 tab.

  16. Local Mass and Heat Transfer on a Turbine Blade Tip

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, P.; Goldstein, R. J.

    2003-01-01

    Local mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.866.90% of chord) are investigated at various exit Reynolds numbers (47 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the wholemorewidth of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.less

  17. Sound generation by a centrifugal pump at blade passing frequency

    SciTech Connect (OSTI)

    Morgenroth, M.; Weaver, D.S.

    1996-12-01

    This paper reports the results of an experimental study of the pressure pulsations produced by a centrifugal volute pump at its blade passing frequency and their amplification by acoustic resonance in a connected piping system. Detailed measurements were made of the pressure fluctuations in the piping as a function of pump speed and flow rate. A semi-empirical model was used to separate acoustic standing waves from hydraulic pressure fluctuations. The effects of modifying the cut-water geometry were also studied, including the use of flow visualization to observe the flow behavior at the cut-water. The results suggest that the pump may act as an acoustic pressure or velocity source, depending on the flow rate. At conditions of acoustic resonance, the pump acted as an open termination of the piping, i.e., as a node in the acoustic pressure standing waves. Rounding the cut-water had the effect of reducing the amplitude of acoustic resonance, apparently because of the ability of the stagnation point to move and thereby reduce the vorticity generated. A notable example of this acoustic resonance in the Primary Heat Transport (PHT) system at Ontario Hydro`s Darlington nuclear power station.

  18. Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346

    SciTech Connect (OSTI)

    Snowberg, D.; Hughes, S.

    2013-04-01

    Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

  19. Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America

    SciTech Connect (OSTI)

    Cotrell, J.; Musial, W.; Hughes, S.

    2006-05-01

    The wind power industry in North America has an immediate need for larger blade test facilities to ensure the survival of the industry. Blade testing is necessary to meet certification and investor requirements and is critical to achieving the reliability and blade life needed for the wind turbine industry to succeed. The U.S. Department of Energy's (DOE's) Wind Program is exploring options for collaborating with government, private, or academic entities in a partnership to build larger blade test facilities in North America capable of testing blades up to at least 70 m in length. The National Renewable Energy Laboratory (NREL) prepared this report for DOE to describe the immediate need to pursue larger blade test facilities in North America, categorize the numerous prospective partners for a North American collaboration, and document the requirements for a North American test facility.

  20. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE

    SciTech Connect (OSTI)

    Galib Abumeri; Frank Abdi

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

  1. Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Nailu; Balas, Mark J.; Nikoueeyan, Pourya; Yang, Hua; Naughton, Jonathan W.

    2016-01-01

    Stall flutter is an aeroelastic phenomenon resulting in unwanted oscillatory loads on the blade, such as wind turbine blade, helicopter rotor blade, and other flexible wing blades. Although the stall flutter and related aeroelastic control have been studied theoretically and experimentally, microtab control of asymmetric limit cycle oscillations (LCOs) in stall flutter cases has not been generally investigated. This paper presents an aeroservoelastic model to study the microtab control of the blade section undergoing moderate stall flutter and deep stall flutter separately. The effects of different dynamic stall conditions and the consequent asymmetric LCOs for both stall cases are simulatedmore » and analyzed. Then, for the design of the stall flutter controller, the potential sensor signal for the stall flutter, the microtab control capability of the stall flutter, and the control algorithm for the stall flutter are studied. The improvement and the superiority of the proposed adaptive stall flutter controller are shown by comparison with a simple stall flutter controller.« less

  2. Wind turbine blade fatigue tests: lessons learned and application to SHM system development

    SciTech Connect (OSTI)

    Taylor, Stuart G.; Farinholt, Kevin M.; Jeong, Hyomi; Jang, JaeKyung; Park, Gyu Hae; Todd, Michael D.; Farrar, Charles R.; Ammerman, Curtt N.

    2012-06-28

    This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

  3. Base excitation testing system using spring elements to pivotally mount wind turbine blades

    DOE Patents [OSTI]

    Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

    2013-12-10

    A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

  4. Comparison of strength and load-based methods for testing wind turbine blades

    SciTech Connect (OSTI)

    Musial, W.D.; Clark, M.E.; Egging, N.

    1996-11-01

    The purpose of this paper is to compare two methods of blade test loading and show how they are applied in an actual blade test. Strength and load-based methods were examined to determine the test load for an Atlantic Orient Corporation (AOC) 15/50 wind turbine blade for fatigue and static testing. Fatigue load-based analysis was performed using measured field test loads extrapolated for extreme rare events and scaled to thirty-year spectra. An accelerated constant amplitude fatigue test that gives equivalent damage at critical locations was developed using Miner`s Rule and the material S-N curves. Test load factors were applied to adjust the test loads for uncertainties, and differences between the test and operating environment. Similar analyses were carried, out for the strength-based fatigue test using the strength of the blade and the material properties to determine the load level and number of constant amplitude cycles to failure. Static tests were also developed using load and strength criteria. The resulting test loads were compared and contrasted. The analysis shows that, for the AOC 15/50 blade, the strength-based test loads are higher than any of the static load-based cases considered but were exceeded in the fatigue analysis for a severe hot/wet environment.

  5. Effect of Manufacturing-Induced Defects on Reliability of Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Julie Chen; Christopher Niezrecki; James Sherwood; Peter Avitabile; Mark Rumsey; Scott Hughes; Stephen Nolet; et al.

    2012-08-31

    In support of DOE?¢????s efforts on developing ?¢????affordable, reliable domestic wind power?¢???, this ARRA project brought together a strong, complementary team from academia (University of Massachusetts Lowell), two DOE laboratories (NREL and Sandia), and a major wind turbine blade manufacturer (TPI) to address one of the key issues affecting wind power cost and reliability ?¢???? manufacturing-induced defects in the blades. The complexity of this problem required the assembled team?¢????s expertise in materials ?¢???? specifically textile and composite structures ?¢???? finite element modeling, composites manufacturing, mechanical characterization, structural dynamics, nondestructive inspection (NDI) and structural health monitoring (SHM), sensors, and wind turbine blade testing. This final report summarizes the results of this project.

  6. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOE Patents [OSTI]

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  7. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    SciTech Connect (OSTI)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  8. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    SciTech Connect (OSTI)

    J.L. Rovey K. Chandrashekhara

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

  9. X-ray microdiffraction study of martensit-retained austenite microstructures at the tip of a steel blade.

    SciTech Connect (OSTI)

    Cai, Z.; Lai, B.; Ilinski, P.; Legnini, D.; Yun, W.; Experimental Facilities Division; Xradia

    2001-01-01

    The x-ray microdiffraction technique was used to study lattice-strain field and phase concentration near the surface of a carburised steel blade on a micron-length scale. Our results show larger compressive lattice strains and more completed phase transformation at the location near the tip of the blade than that the locations away from the tip.

  10. Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same

    DOE Patents [OSTI]

    Wetzel, Kyle Kristopher

    2014-06-24

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  11. Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same

    DOE Patents [OSTI]

    Wetzel, Kyle Kristopher (Lawrence, KS)

    2008-03-18

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  12. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.

    2013-12-01

    This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

  13. Analysis of SNL/MSU/DOE fatigue database trends for wind turbine blade materials.

    SciTech Connect (OSTI)

    Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.; Sears, Aaron T.; Agastra, Pancasatya; Laird, Daniel L.; Samborsky, Daniel D.

    2010-12-01

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infused and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.

  14. Geek-Up[09.17.2010]-- Water Blades, Biomass Conversion and Antineutrino Detection

    Broader source: Energy.gov [DOE]

    Scientists have engineered a blade of water that’s strong enough and fast enough to penetrate through steel, which will help soldiers in Afghanistan disable deadly IEDs, plus researchers are currently testing an aboveground water-based antineutrino detector that will improve monitoring capabilities at nuclear facilities.

  15. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect (OSTI)

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  16. Development and Analysis of a Swept Blade Aeroelastic Model for a Small Wind Turbine (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Damiani, R.; Lee, S.; Larwood, S.

    2014-06-01

    As part of the U.S. Department-of-Energy-funded Competitiveness Improvement Project, the National Renewable Energy Laboratory (NREL) developed new capabilities for aeroelastic modeling of precurved and preswept blades for small wind turbines. This presentation covers the quest for optimized rotors, computer-aided engineering tools, a case study, and summary of the results.

  17. VP 100: New Facility in Boston to Test Large-Scale Wind Blades

    Broader source: Energy.gov [DOE]

    Thanks in part to funding from the Recovery Act, the Wind Technology Testing Center in Massachusetts will be first in the U.S. to test wind turbine blades up to 300 feet in length -- creating 300 construction jobs and 30 permanent design jobs in the process.

  18. Multi-piece wind turbine rotor blades and wind turbines incorporating same

    DOE Patents [OSTI]

    Moroz; Emilian Mieczyslaw (San Diego, CA) [San Diego, CA

    2008-06-03

    A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

  19. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect (OSTI)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  20. Field Testing of Linear Individual Pitch Control on the Two-Bladed Controls Advanced Research Turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; van Wingerden, Jan-Willem

    2016-03-01

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicablemore » in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. The field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.« less

  1. Unified continuum damage model for matrix cracking in composite rotor blades

    SciTech Connect (OSTI)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  2. A vibrating razor blade machining tool for material removal on low- density foams

    SciTech Connect (OSTI)

    Hillyer, D.F. Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 {mu}m (0.001 in.) flatness are achieved over areas of 8.75 in.{sup 2} (2.5 {times} 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described. 20 figs.

  3. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    SciTech Connect (OSTI)

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

  4. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    SciTech Connect (OSTI)

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  5. Design of 9-meter carbon-fiberglass prototype blades : CX-100 and TX-100 : final project report.

    SciTech Connect (OSTI)

    Berry, Derek

    2007-09-01

    TPI Composites, Inc. (TPI), Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ) have collaborated on a project to design, manufacture, and test prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National Laboratories, involves prototype blades in both conventional (unidirectional spar fibers running along the blade span) and ''adaptive'' (carbon fibers in off-axis orientation to achieve bend-twist-coupling) configurations. After manufacture, laboratory testing is being conducted to determine the static and fatigue strength of the prototypes, in conjunction with field testing to evaluate the performance under operational conditions.

  6. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    SciTech Connect (OSTI)

    Guntur, S.; Schreck, S.; Sorensen, N. N.; Bergami, L.

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be investigated. Results from the dynamic stall subroutine indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current 2D dynamic stall model as used in BEM-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model.

  7. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    SciTech Connect (OSTI)

    Naughton, Jonathan W.

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as an analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.

  8. Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Nailu; Balas, Mark J.; Yang, Hua; Jiang, Wei; Magar, Kaman T.

    2015-01-01

    This study presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore » case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less

  9. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

  10. Sustainable Energy Solutions Task 4.2: UV Degradation Prevention on Fiber-Reinforced Composite Blades

    SciTech Connect (OSTI)

    Janet M. Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Use of wind energy has expanded very quickly because of the energy prices, environmental concerns and improved efficiency of wind generators. Rather than using metal and alloy based wind turbine blades, larger size fiber (glass and carbon) reinforced composite blades have been recently utilized to increase the efficiency of the wind energy in both high and low wind potential areas. In the current composite manufacturing, pre-preg and vacuum-assisted/heat sensitive resin transfer molding and resin infusion methods are employed. However, these lighter, stiffer and stronger composite blades experience ultraviolet (UV) light degradation where polymers (epoxies and hardeners) used for the blades manufacturing absorb solar UV lights, and cause photolytic, thermo-oxidative and photo-oxidative reactions resulting in breaking of carbon-hydrogen bonds, polymer degradation and internal and external stresses. One of the main reasons is the weak protective coatings/paints on the composite blades. This process accelerates the aging and fatigue cracks, and reduces the overall mechanical properties of the blades. Thus, the lack of technology on coatings for blade manufacturing is forcing many government agencies and private companies (local and national windmill companies) to find a better solution for the composite wind blades. Kansas has a great wind potential for the future energy demand, so efficient wind generators can be an option for continuous energy production. The research goal of the present project was to develop nanocomposite coatings using various inclusions against UV degradation and corrosion, and advance the fundamental understanding of degradation (i.e., physical, chemical and physiochemical property changes) on those coatings. In pursuit of the research goal, the research objective of the present program was to investigate the effects of UV light and duration on various nanocomposites made mainly of carbon nanotubes and graphene nanoflakes, contribute the valuable information to this emerging field of advanced materials and manufacturing and advance the Kansas economy through creation of engineering knowledge and products in the wind energy. The proposed work was involved in a multidisciplinary research program that incorporates nanocomposite fabrication, advanced coating, characterization, surface and colloidal chemistry, physicochemistry, corrosion science, and analysis with a simple and effective testing methodology. The findings were closely related to our hypothesis and approaches that we proposed in this proposal. The data produced in the study offered to advance the physical understanding of the behavior of nanostructured materials for the prevention of UV light at different exposure time and salt fogging. Founding of this proposal enabled the first UV resistive nanocomposite corrosion coating effort in Kansas to impact the local and national wind mill industry. Results of this program provided valuable opportunities for the multidisciplinary training of undergraduate and graduate students at Wichita State University (WSU), as well as a number of aircraft companies (e.g., Cessna, Hawker Beechcraft, Spirit, Boeing and Bombardier/Learjet) and other local and regional industries.

  11. CFD analysis of rotating two-bladed flatback wind turbine rotor.

    SciTech Connect (OSTI)

    van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

  12. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine

    SciTech Connect (OSTI)

    Francis A. Di Bella

    2010-06-01

    The Phase I SBIR effort completed the feasibility design, fabrication, and wind tunnel testing of a self-actuated blade articulation mechanism that uses a torsion bar and a lightweight airfoil to affect the articulation of the Wells airfoil. The articulation is affected only by the air stream incident on the airfoil. The self-actuating blade eliminates the complex and costly linkage mechanism that is now needed to perform this function on either a variable pitch Wells-type or Dennis-Auld air turbine. Using the results reported by independent researchers, the projected improvement in the Wells-type turbine efficiency is 20-40%, in addition to an increase in the operating air flow range by 50-100%, therefore enabling a smaller or slower single turbine to be used.

  13. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

    SciTech Connect (OSTI)

    Deng, Yehao; Peng, Edwin; Shao, Yuchuan; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    2015-03-25

    Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperature to guide the nucleation and grain growth process. The domain size reached 80–250 μm in 1.5–2 μm thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)–N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 μm which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.

  14. Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-06-16

    The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

  15. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-12-08

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactionsrepresenting fish collisions with turbine bladesare explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more representative of blade-strike probability than the steady solution is, mainly because DEM particles accounted for the full fish length, thus resolving (instead of modeling) the collision event.

  16. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Yehao; Peng, Edwin; Shao, Yuchuan; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    2015-03-25

    Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperaturemore » to guide the nucleation and grain growth process. The domain size reached 80–250 μm in 1.5–2 μm thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)–N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 μm which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.« less

  17. FIELD PERFORMANCE OF EROSION RESISTANT MATERIALS ON BOILER INDUCED DRAFI' FAN BLADES

    Office of Scientific and Technical Information (OSTI)

    FIELD PERFORMANCE OF EROSION RESISTANT MATERIALS ON BOILER INDUCED DRAFI' FAN BLADES TENNESSEE VALLEY AUTHORIT!if KINGSTON FOSSIL PLANT M a y 1993 Prepared by TENNESSEE VALLEY AUTHORITY RESOURCE GROUP RESEARCH AND DEVELOPMENT GENERATIONS PROJECTS DEPARTMENT PRINCIPAL INVESTIGATORS 0 . F. Karr, Mechanical Engineer Generation Projects Department Research and Development J. B. Brooks, Metallurgist Generation Projects Department Research and Development Ed Seay, Manager of Modifications Kingston

  18. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Introduction Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz Sandia National Laboratories* Albuquerque, New Mexico 87185 dwlobit@sandia.gov Classical aeroelastic flutter instability historically has not been a driving issue in wind turbine design. In fact, rarely has this issue even been addressed in the past. Commensurately, of the wind turbines that have been built, rarely has classical flutter ever been observed. However, with the advent of larger turbines fitted

  19. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade(LCC-0104)

    SciTech Connect (OSTI)

    Seryi, A

    2003-10-02

    This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design.

  20. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  1. Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Third Quarter 2012 edition of the Wind Program R&D Newsletter. The Massachusetts Wind Technology Testing Center (WTTC), a joint effort by the U.S. Department of Energy (DOE), the Massachusetts Clean Energy Center, and the National Renewable Energy Laboratory (NREL), was recently accredited by the American Association for Laboratory Accreditation (A2LA) to test wind turbine blades to International Electrotechnical Commission (IEC) standards. The facility is one of the

  2. Enhancement of soft X-ray lasing action with thin blade radiators

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton Junction, NJ); Skinner, Charles H. (Kingston, NJ); Voorhees, David R. (Hopewell, NJ)

    1988-01-01

    An enhancement of approximately 100 of stimulated emission over spontaneous emission of the CVI 182 Angstrom line was obtained in a recombining magnetically confined plasma column. The plasma was formed by focusing a CO.sub.2 laser beam on a carbon disc. A magnetic solenoid produced a strong magnetic field which confined the plasma to the shape of a column. A single thin carbon blade extended parallel to the plasma column and served to make the column axially more uniform and also acted as a heat sink. Axial and transverse measurements of the soft X-ray lasing action were made from locations off-set from the central axis of the plasma column. Multiple carbon blades located at equal intervals around the plasma column were also found to produce acceptable results. According to another embodiment 10 a thin coating of aluminum or magnesium was placed on the carbon disc and blade. The Z of the coating should preferably be at least 5 greater than the Z of the target. Measurements of the soft X-rays generated at 182 Angstroms showed a significant increase in intensity enhancement.

  3. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.

  4. Application of a wireless sensor node to health monitoring of operational wind turbine blades

    SciTech Connect (OSTI)

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R; Todd, Michael D

    2009-01-01

    Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

  5. Manufacturing process modeling for composite materials and structures, Sandia blade reliability collaborative

    SciTech Connect (OSTI)

    Guest, Daniel A.; Cairns, Douglas S.

    2014-02-01

    The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flow rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.

  6. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  7. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  8. Microsoft Word - Increased Strength in Wind Turbine Blades through Innovative Structural Design.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This paper is declared work of the U.S. Government and is not subject to copyright protection in the United States. † Sandia National Laboratories Wind Energy Technology Department, MS 1124 ‡ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy under contract DE-AC04-94AL85000 Increased Strength in Wind Turbine Blades through Innovative Structural Design * J. A. Paquette † P. S. Veers † Sandia National

  9. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    SciTech Connect (OSTI)

    Huyer, S. [Univ. of Colorado, Boulder, CO (US)] [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  10. Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn: Preprint

    SciTech Connect (OSTI)

    Ning, S. A.; Hayman, G.; Damiani, R.; Jonkman, J.

    2014-12-01

    Blade element momentum methods, though conceptually simple, are highly useful for analyzing wind turbines aerodynamics and are widely used in many design and analysis applications. A new version of AeroDyn is being developed to take advantage of new robust solution methodologies, conform to a new modularization framework for National Renewable Energy Laboratory's FAST, utilize advanced skewed-wake analysis methods, fix limitations with previous implementations, and to enable modeling of highly flexible and nonstraight blades. This paper reviews blade element momentum theory and several of the options available for analyzing skewed inflow. AeroDyn implementation details are described for the benefit of users and developers. These new options are compared to solutions from the previous version of AeroDyn and to experimental data. Finally, recommendations are given on how one might select from the various available solution approaches.

  11. Structural Testing at the NWTC Helps Improve Blade Design and Increase System Reliability; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    Since 1990, the National Renewable Energy Laboratory’s (NREL's) National Wind Technology Center (NWTC) has tested more than 150 wind turbine blades. NWTC researchers can test full-scale and subcomponent articles, conduct data analyses, and provide engineering expertise on best design practices. Structural testing of wind turbine blades enables designers, manufacturers, and owners to validate designs and assess structural performance to specific load conditions. Rigorous structural testing can reveal design and manufacturing problems at an early stage of development that can lead to overall improvements in design and increase system reliability.

  12. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  13. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary layer of water flowing over the blade surface. The study quantified both immediate and delayed mortalities (observed immediately, 3 hours, and 24 hours after encountering the blade) among freshwater YOY fish resulting from contact with the blade or turbulent flows in the wake of the blade.

  14. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei

    2010-09-01

    Wind turbine blades are subjected to complex multiaxial stress states during operation. A review of the literature suggests that mixed mode fracture toughness can be significantly less than that of the tensile opening mode (Mode I), implying that fracture failure can occur at a much lower load capacity if the structure is subject to mixed-mode loading. Thus, it will be necessary to identify the mechanisms that might lead to failure in blade materials under mixed-mode loading conditions. Meanwhile, wind turbine blades are typically fabricated from fiber reinforced polymeric materials, e.g. fiber glass composites. Due to the large degree of anisotropy in mechanical properties that is usually associated with laminates, the fracture behavior of these composite materials is likely to be strongly dependent on the loading conditions. This may further strengthen the need to study the effect of mixed-mode loading on the integrity and durability of the wind turbine blade composites. To quantify the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading, a new testing technique is proposed based on the spiral notch torsion test (SNTT). As a 2002 R&D 100 Award winner, SNTT is a novel fracture testing technology. SNTT has many advantages over conventional fracture toughness methods and has been used to determine fracture toughness values on a wide spectrum of materials. The current project is the first attempt to utilize SNTT on polymeric and polymer-based composite materials. It is expected that mixed-mode failure mechanisms of wind turbine blades induced by typical in-service loading conditions, such as delamination, matrix cracking, fiber pull-out and fracture, can be effectively and economically investigated by using this methodology. This project consists of two phases. The Phase I (FY2010) effort includes (1) preparation of testing material and testing equipment set-up, including calibration of associated instruments/sensors, (2) development of design protocols for the proposed SNTT samples for both polymer and composite materials, such as sample geometries and fabrication techniques, (3) manufacture of SNTT samples, and (4) fracture toughness testing using the SNTT method. The major milestone achieved in Phase I is the understanding of fracture behaviors of polymeric matrix materials from testing numerous epoxy SNTT samples. Totals of 30 epoxy SNTT samples were fabricated from two types of epoxy materials provided by our industrial partners Gougeon Brothers, Inc. and Molded Fiber Glass Companies. These samples were tested with SNTT in three groups: (1) fracture due to monotonic loading, (2) fracture due to fatigue cyclic loading, and (3) monotonic loading applied to fatigue-precracked samples. Brittle fractures were observed on all tested samples, implying linear elastic fracture mechanics analysis can be effectively used to estimate the fracture toughness of these materials with confidence. Appropriate fatigue precracking protocols were established to achieve controllable crack growth using the SNTT approach under pure torsion loading. These fatigue protocols provide the significant insights of the mechanical behavior of epoxy polymeric materials and their associated rate-dependent characteristics. Effects of mixed-mode loading on the fracture behavior of epoxy materials was studied. It was found that all epoxy samples failed in brittle tensile failure mode; the fracture surfaces always follow a 45o spiral plane that corresponded to Mode I tensile failure, even when the initial pitch angle of the machined spiral grooves was not at 45o. In addition, general observation from the fatigue experiments implied that loading rate played an important role determining the fracture behavior of epoxy materials, such that a higher loading rate resulted in a shorter fatigue life. A detailed study of loading rate effect will be continued in the Phase II. On the other hand, analytical finite element ana

  15. SU-E-I-51: Use of Blade Sequences in Cervical Spine MR Imaging for Eliminating Motion, Truncation and Flow Artifacts

    SciTech Connect (OSTI)

    Mavroidis, P; Lavdas, E; Kostopoulos, S; Ninos, C; Strikou, A; Glotsos, D; Vlachopoulou, A; Oikonomou, G; Economopoulos, N; Roka, V; Sakkas, G; Tsagkalis, A; Batsikas, G; Statkahis, S; Papanikolaou, N

    2014-06-01

    Purpose: To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. Methods: Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitative analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). Results: Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. Conclusion: The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved.

  16. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei; Tan, Ting; Mandell, John; Agastra, Pancasatya

    2011-11-01

    To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

  17. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Broader source: Energy.gov [DOE]

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing , and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  18. An analysis of axial compressor fouling and a blade cleaning method

    SciTech Connect (OSTI)

    Tarabrin, A.P.; Schurovsky, V.A.; Bodrov, A.I.; Stalder, J.P.

    1998-04-01

    The paper describes the phenomenon of axial compressor fouling due to aerosols contained in the air. Key parameters having effect on the level of fouling are determined. A mathematical model of a progressive compressor fouling using the stage-by-stage calculation method is developed. Calculation results on the influence of fouling on the compressor performance are presented. A new index of sensitivity of axial compressors to fouling is suggested. The paper gives information about Turbotect`s deposit cleaning method of compressor blading and the results of its application on an operating industrial gas turbine. Regular on-line and off-line washings of the compressor flow path made it possible to maintain a high level of engine efficiency and output.

  19. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system

    SciTech Connect (OSTI)

    Guo, Haotian; Duan, Fajie; Wu, Guoxiu; Zhang, Jilong

    2014-11-15

    The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power received by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02?mm and the range of the system is about 9 mm.

  20. The manufacture of replacement low pressure carrier casings and associated stationary guide vane blading through on site component sample measurement

    SciTech Connect (OSTI)

    Fraser, M.J.

    1996-12-31

    In today`s competitive utility market place, the manufacture of replacement components by alternate manufacturing has become an increasingly important available option for turbine operators seeking to achieve substantive cost and lead time reductions in spare part purchasing. Essential to this strategy--in the absence of a total redesign of the component(s) or their assemblies--is the provision or access to the selected alternate manufacture of the necessary sample parts. This paper details the manufacture by reverse engineering of 3 replacement low pressure carrier guide vane blade casings for a 60 MW steam turbine complete with their associated blading and ancillary parts where the necessary sample parts and assemblies could not be released from site due to outage constraints.

  1. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    SciTech Connect (OSTI)

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)

  2. Progress Toward Luminescence-Based VAATE Turbine Blade And Vane Temperature Measurement

    SciTech Connect (OSTI)

    Jenkins, Tom P.; Allison, Stephen W; Eldridge, Jeffrey I.; Niska, R. H.; Condevaux, J. J.; Wolfe, Doug E.; Jordan, Eric H.; Heeg, Bauke

    2012-01-01

    Progress towards fielding luminescence-based temperature measurements for the Versatile Affordable Advanced Turbine Engine (VAATE) program is described. The near term programmatic objective is to monitor turbine vane temperatures and health by luminescence from a rare-earth doped thermal barrier coating (TBC), or from a thermographic phosphor layer coated onto a TBC. The first goal is to establish the temperature measurement capability to 1300 C with 1 percent uncertainty in a test engine. An eventual goal is to address rotating turbine blades in an F135 engine. The project consists of four phases, of which the first two have been completed and are described in this paper. The first phase involved laser heating of a 2.54-cm-diameter test sample, coated with a TBC and a thermographic phosphor layer, to produce a thermal gradient across the TBC layer similar to that expected in a turbine engine. Phosphor temperatures correlated well with those measured by long wavelength pyrometry. In the second phase, 10x10- cm coupons were exposed to a jet fuel flame at a burner rig facility. The thermographic phosphor/TBC combination survived the aggressive flame and high exhaust gas velocity, even though the metal substrate melted. Reliable temperature measurements were made up to about 1400 C using YAG:Dy as the thermographic phosphor. In addition, temperature measurements using YAG:Tm showed very desirable background radiation suppression.

  3. RAPID/Roadmap/20-AK-a | Open Energy Information

    Open Energy Info (EERE)

    to confirm location; however, surface pressure may not subject the casing to a hoop stress that will exceed 70 percent of the minimum yield strength of the casing. At least 24...

  4. RAPID/Roadmap/1-AK-a | Open Energy Information

    Open Energy Info (EERE)

    for state lands within the planning area. Two types of state land use plans might govern geothermal development on state-owned land: an area plan or a management plan. These plans...

  5. Parke Panda Corporation aka Parke Industries | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 91740 Product: A licensed, bonded, and fully insured C-10 designbuild contractor. Coordinates: 39.83977, -75.074694 Show Map Loading map......

  6. RAPID/Roadmap/5-AK-a | Open Energy Information

    Open Energy Info (EERE)

    agency overseeing regulation of geothermal drilling and well development is the Alaska Oil and Gas Conservation Commission. The developer must have acquired a lease prior to this...

  7. RAPID/Roadmap/4-AK-a | Open Energy Information

    Open Energy Info (EERE)

    (including both geophysical or seismic and shallow hole testing). The Alaska Division of Oil and Gas regulates the drilling and exploratory activities within the state and a...

  8. Array Technologies Inc aka Wattsun | Open Energy Information

    Open Energy Info (EERE)

    Albuquerque,, New Mexico Zip: 87107 Sector: Solar Product: Manufactures the Wattsun Solar Tracker, a sun-tracking mounting system for PV modules. Coordinates: 35.08418,...

  9. RAPID/Roadmap/14-AK-a | Open Energy Information

    Open Energy Info (EERE)

    by the proposed project. Restoration of an affected waterbody is accomplished through the development and implementation of either a TMDL document or a Waterbody Recovery Plan....

  10. Millennium Electric TOU Ltd aka Millennium Solar EIG Solar |...

    Open Energy Info (EERE)

    Sector: Efficiency, Solar Product: Israeli manufacturer of PV modules, incorporating solar concentrators to increase cell efficiency. References: Millennium Electric TOU Ltd...

  11. RAPID/Roadmap/11-AK-a | Open Energy Information

    Open Energy Info (EERE)

    of private persons: Before any construction, alteration, or improvement of any nature is undertaken on a privately owned, officially designated state monument or historic...

  12. EnerGoSolar SA aka Heliogrid | Open Energy Information

    Open Energy Info (EERE)

    Zip: 1053 Product: Manufactures, sells and implements turnkey production lines for thin-film silicon PV modules; subsidiary HelioGrid runs a plant using these lines....

  13. Qingdao DTK Industries aka Jupiter Corporation | Open Energy...

    Open Energy Info (EERE)

    Qingdao, Shandong Province, China Zip: 266700 Product: Qingdao-based silicon raw material manufacturer. Coordinates: 36.087509, 120.34272 Show Map Loading map......

  14. RAPID/Roadmap/19-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Use of Water Request for Water Right Permit Extension Statement of Beneficial Water Use Water Maps and Data Feedback | Add a Reference Print PDF Retrieved from "http:...

  15. CHINT Solar Co Ltd aka Astronergy | Open Energy Information

    Open Energy Info (EERE)

    A subsidiary company of CHINT Group, producing multicrystalline and monocrystalline solar cells, modules, thin-film solar cells and PV application products. Coordinates:...

  16. RAPID/Roadmap/9-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Stat. ch. 38.35, telephone or electric transmission and distribution lines, log storage, oil well drilling sites and production facilities for the purposes of recovering minerals...

  17. SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology...

    Open Energy Info (EERE)

    China Zip: 271000 Sector: Solar Product: Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References:...

  18. Zhicheng Champion aka Guangdong Cheshing Champion | Open Energy...

    Open Energy Info (EERE)

    Cheshing Champion) Place: Dongguan, Guangdong Province, China Zip: 523718 Product: Lead-acid battery and UPS maker moving into a-Si thin-film PV production. Coordinates:...

  19. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  20. Microsoft PowerPoint - 1-A-3-Beaudry-LOSIQUE-Brief to Blade Workshop 07-20-2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Briefing to Blade Workshop Jacques Beaudry-Losique Program Manager Wi d d W t P T h l i Energy Efficiency & Renewable Energy eere.energy.gov 1 Program Name or Ancillary Text eere.energy.gov Wind and Water Power Technologies July 20, 2010 Goals Alignment Administration goals: Reduce carbon emissions 50% by 2030, 80% by 2050 Reduce oil consumption 50% by 2030, 80% by 2050 Sti l t j b d i th h RE d l t Stimulate jobs and economic recovery through RE development Department of Energy strategic

  1. Simulation of the Manufacturing of Non-Crimp Fabric-Reinforced Composite Wind Turbine Blades to Predict the Formation of Wave Defects

    SciTech Connect (OSTI)

    Fetfatsidis, K. A.; Sherwood, J. A. [Department of Mechanical Engineering, University of Massachusetts, Lowell One University Ave., Lowell, MA 01854 (United States)

    2011-05-04

    NCFs (Non-Crimp Fabrics) are commonly used in the design of wind turbine blades and other complex systems due to their ability to conform to complex shapes without the wrinkling that is typically experienced with woven fabrics or prepreg tapes. In the current research, a form of vacuum assisted resin transfer molding known as SCRIMP registered is used to manufacture wind turbine blades. Often, during the compacting of the fabric layers by the vacuum pressure, several plies may bunch together out-of-plane and form wave defects. When the resin is infused, the areas beneath the waves become resin rich and can compromise the structural integrity of the blade. A reliable simulation tool is valuable to help predict where waves and other defects may appear as a result of the manufacturing process. Forming simulations often focus on the in-plane shearing and tensile behavior of fabrics and do not necessarily consider the bending stiffness of the fabrics, which is important to predict the formation of wrinkles and/or waves. This study incorporates experimentally determined in-plane shearing, tensile, and bending stiffness information of NCFs into a finite element model (ABAQUS/Explicit) of a 9-meter wind turbine blade to investigate the mechanical behaviors that can lead to the formation of waves as a result of the manufacturing process.

  2. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  3. Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Health Monitoring Offshore Wind High-Resolution ...

  4. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  5. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  6. Blade Reliability Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Collaborative - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  7. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    SciTech Connect (OSTI)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of incoming wind speeds that could be provided by LIDAR. Non-causal series expansion and Preview Control methods reduce blade root loads but increase tower bending in simulation results. The optimized FIR filter reduces loads overall, keeps pitch rates low, and maintains rotor speed regulation and power capture, while using imperfect wind measurements provided by the spinning continuous-wave LIDAR model.

  8. Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge and Blade Tip Ejection under Rotating Turbine Conditions

    SciTech Connect (OSTI)

    Schobeiri, Meinhard; Han, Je-Chin

    2014-09-30

    This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.

  9. Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.

  10. Just where exactly is the radar? (a.k.a. the radar antenna phase...

    Office of Scientific and Technical Information (OSTI)

    as the focal point of a dish reflector. This report calculates the phase center of an offset-fed dish reflector antenna. Authors: Doerry, Armin Walter Publication Date: 2013-12-01...

  11. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel Todd

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  12. Optimized Active Aerodynamic Blade Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... loads and increased energy capture. van Dam et. al., 4-6 has investigated both ... In reference 9 van Dam, et.al. have developed a microtab wing section for wind tunnel ...

  13. Blade Materials and Substructures Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Substructures Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  14. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This fact puts the United States at a disadvantage when compared to low cost-of-labor markets such as Brazil, India, China, and Mexico. The key to making U.S.-based construction of ...

  15. Help Wanted at Kansas Wind Blade Company

    Broader source: Energy.gov [DOE]

    Enertech, Inc., a small-scale wind manufacturer in Newton, Kansas, has added six new employees in the last eight months, boosting its workforce to 20, and aims to hire six more workers soon.

  16. Compliant sleeve for ceramic turbine blades

    DOE Patents [OSTI]

    Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern

    2000-01-01

    A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.

  17. Wind Turbine Blade Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Revolutionary Onboard Turbine Reshape) - Making it Real bowman2 Is a 'Mad Max' apocalypse possible? Luis-Felipe-WillcoxM&DV Monitoring and Diagnosis of Transformers...

  18. Active Aerodynamic Blade Distributed Flap Control Design Procedure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Van Dam et. al., 2-4 have investigated, both computationally with CFD investigations and ... Ca., June 4-6, 2007. 2 Yen, D., van Dam, C.P., Smith, R.L. and Collins, S.D., ...

  19. Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidized fibers move to a high temperature furnace, where material is converted into carbon fiber at Oak Ridge National Laboratory's Carbon Fiber Technology Facility (CFTC). The ...

  20. Three-dimensional Numerical Analysis on Blade Response of Vertical...

    Office of Scientific and Technical Information (OSTI)

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. ...

  1. SNL Researchers Assess Wind Turbine Blade Inspection and Repair...

    Broader source: Energy.gov (indexed) [DOE]

    ... Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production Using its fiberglass technology expertise and a grant from the Energy Department's State Energy ...

  2. Sandia Energy - Wind-Turbine Blade Materials and Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the technology to be evaluated in terms of its probability of detection (POD). Different types and sizes of flaws were embedded into substructure components representing...

  3. Active Aerodynamic Blade Control Design for Load Alleviation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The accurate evaluation of the impact of AALC fatigue load reductions on the Cost of Energy (COE) of a wind turbine will require a complete new turbine design that fully integrates ...

  4. Sandia Energy - Aerodynamic Wind-Turbine Blade Design for the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Rotor Testbed Home Renewable Energy Energy SWIFT Facilities Capabilities News Wind Energy News & Events Research & Capabilities Systems Analysis Modeling Modeling &...

  5. First wind turbine blade delivered to Pantex | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  6. Surveillance study of health effects associated with cleanup of a hazardous waste site, Ralph Gray Trucking Company (a/k/a Westminster Tract Number 2633), Westminster, Orange County, California, Region 9: CERCLIS number CAD981995947

    SciTech Connect (OSTI)

    Hoshiko, S.; Underwood, M.C.; Smith, D.; DeLorenze, G.; Neuhaus, J.

    1999-04-01

    Excavation of a Superfund site, the Ralph Gray Truncking Company located in Westminster Orange County, California was anticipated to release sulfur dioxide and other chemicals. The California Department of Health Services, under cooperative agreement with the Agency for Toxic Substances and Disease Registry, conducted a surveillance study to assess whether illnesses were associated with cleanup activities. A panel primarily composed of more sensitive persons (n = 36) was selected to report daily respiratory symptoms and odors. Exposures included sulfur dioxide (SO{sub 2}) measurements and daily tonnage of waste removed. Analysis used Conditional Likelihood Regression and Generalized Estimating Equations (GEE) methods. Levels of SO{sub 2} were generally higher than usual ambient air, at times exceeding levels which can cause health effects among asthmatics in laboratory settings. Wheeze and cough were significantly associated with tonnage of waste removed, especially on days when the highest amounts of waste were removed. Upper respiratory symptoms were found to be associated with SO{sub 2}, and weak relationships were found with nausea and burning nose and SO{sub 2}.

  7. Hanergy Holdings Group Company Ltd formerly Farsighted Group...

    Open Energy Info (EERE)

    Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui Group Jump to: navigation, search Name: Hanergy Holdings Group Company Ltd (formerly Farsighted Group, aka...

  8. Advancing Wind Technology, One Massive Blade at a Time | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of discussion in Germany over the past few years, and even more recently with the "Energiewende" taking place - a radical commitment of the German government to renewable energy,...

  9. SAND REPORT I SAND2002-1879 Blade System Design Studies Volume...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In summary, these are: 0 Processes with low volatile emissions: - Prepreg materials - Infusion processes (vacuum assisted resign transfer molding, resin film infusion) - Carbon I...

  10. AEROELASTIC BEHAVIOR OF TWIST-COUPLED HAWT BLADES Don W. Lobitz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Here we examine more modest twist angles intended to produce load alleviation and perhaps power regulation or enhancement through bendtwist coupling. It seems quite possible to...

  11. Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Robinson, M.

    2007-08-01

    This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

  12. Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Copping, Andrea E.; Watkins, Michael L.; Jepsen, Richard A.; Metzinger, Kurt

    2012-02-01

    Report to DOE on an analysis to determine the effects of a potential impact to an endangered whale from tidal turbines proposed for deployment in Puget Sound.

  13. In-field use of laser Doppler vibrometer on a wind turbine blade

    SciTech Connect (OSTI)

    Rumsey, M.; Hurtado, J.; Hansche, B.

    1998-12-31

    One of our primary goals was to determine how well a laser Doppler vibrometer (LDV) could measure the structural dynamic response of a wind turbine that was parked in the field. We performed a series of preliminary tests in the lab to determine the basic limitations of the LDV for this application. We then instrumented an installed parked horizontal axis wind turbine with accelerometers to determine the natural frequencies, damping, and mode shapes of the wind turbine and rotor as a baseline for the LDV and our other tests. We also wanted to determine if LDV modal information could be obtained from a naturally (wind) excited wind turbine. We compared concurrently obtained accelerometer and LDV data in an attempt to assess the quality of the LDV data. Our test results indicate the LDV can be successfully used in the field environment of an installed wind turbine, but with a few restrictions. We were successful in obtaining modal information from a naturally (wind) excited wind turbine in the field, but the data analysis requires a large number of averaged data sets to obtain reasonable results. An ultimate goal of this continuing project is to develop a technique that will monitor the health of a structure, detect damage, and hopefully predict an impending component failure.

  14. SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced Manufacturing of Wind Turbine Blades

    Broader source: Energy.gov [DOE]

    Funded by the U.S. Department of Commerce, the SMART Wind Consortium is connecting collaborators to form consensus on near-term and mid-term plans needed to increase cost competitiveness of U.S....

  15. Drifting potential humps in ionization zones: The propeller blades of high power impulse magnetron sputtering

    SciTech Connect (OSTI)

    Anders, Andr; Ni, Pavel; Panjan, Matja; Joef Stefan Institute, Jamova 39, 1000 Ljubljana ; Franz, Robert; Montanuniversitt Leoben, Franz-Josef-Strasse 18, 8700 Leoben ; Andersson, Joakim; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore

    2013-09-30

    Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to EB, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.

  16. Inspection system for a turbine blade region of a turbine engine

    DOE Patents [OSTI]

    Smed, Jan P.; Lemieux, Dennis H.; Williams, James P.

    2007-06-19

    An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

  17. Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Institute of Aeronautics and Astronautics 1 Pitch Error and Shear Web Disbond ... This methodology was used to investigate the effects of rotor imbalance and shear web ...

  18. HESCORE

    Energy Science and Technology Software Center (OSTI)

    003349MLTPL00 Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore) homeenergyscore.lbl.gov

  19. NREL: Wind Research - National Wind Technology Center Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test the blades for endurance. To test the new, larger blades, NREL installed a larger blade test stand capable of testing blades up to 50 meters in length. At the STL, companies...

  20. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOE Patents [OSTI]

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  1. Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.

    2013-01-01

    Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.

  2. Angel wing seals for blades of a gas turbine and methods for determining angel wing seal profiles

    DOE Patents [OSTI]

    Wang, John Zhiqiang (Greenville, SC)

    2003-01-01

    A gas turbine has buckets rotatable about an axis, the buckets having angel wing seals. The seals have outer and inner surfaces, at least one of which, and preferably both, extend non-linearly between root radii and the tip of the seal body. The profiles are determined in a manner to minimize the weight of the seal bodies, while maintaining the stresses below predetermined maximum or allowable stresses.

  3. Concord, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Concord, California Cogent Energy Solar Self Help Inc aka Light Energy Systems References US Census Bureau Incorporated place...

  4. California's 10th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    Controls Power Air Corp formerly Fortune Partners Renewable Energy Solutions, LLC Solar Self Help Inc aka Light Energy Systems Ultracell Corporation Xtreme Energetics Retrieved...

  5. Oakland County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc aka ECD Ovonics Friction Control Solutions Inc FriCSo Global Wind Systems Inc Guardian Industries Guardian Industries Corp Integrated Concepts and Research Corporation ICRC...

  6. Michigan's 9th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Energy Conversion Devices Inc aka ECD Ovonics Friction Control Solutions Inc FriCSo Guardian Industries Guardian Industries Corp Luma Resources LLC Ovonic Hydrogen Systems LLC...

  7. United Solar Ovonic LLC Unisolar | Open Energy Information

    Open Energy Info (EERE)

    US-based manufacturer of flexible amorphous silicon PV laminates; the main division of Energy Conversion Devices, aka ECD Ovonics. Leading supplier of flexible PV for rooftop...

  8. Fracture Network and Fluid Flow Imaging for EGS Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions...

  9. EA-1855: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lincoln and Spokane Counties, Washington (aka DOEEA-4406) This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact for the Creston-Bell...

  10. EA-1855: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1855: Final Environmental Assessment Creston-Bell Rebuild Project, Lincoln and Spokane Counties, Washington (aka DOEEA-4406) This EA evaluates...

  11. Rochester Hills, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Companies in Rochester Hills, Michigan Energy Conversion Devices Inc aka ECD Ovonics Luma Resources LLC Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC...

  12. CX-100 Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAND2008-4648 Unlimited Release Printed July 2008 Blade System Design Studies Phase II: Final Project Report Derek S. Berry TPI Composites, Inc. 373 Market Street Warren, RI 02885 Abstract This report details the work completed under Phase II of the Sandia National Laboratories Blade System Design Study blade design and manufacturing project; an integrated 9 meter blade design, tooling design and manufacturing, assembly fixture design and fabrication, blade production, blade instrumentation and

  13. Microsoft PowerPoint - EWEC_07_Ashwill.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ashwill Technical Staff Member Wind Energy Department Sandia National Laboratories Gary Kanaby Director of Blade Manufacturing Knight & Carver Sweep-Twist Adaptive Blade (as presented at EWEC_07, Milan, IT) May 7, 2007 2 SNL Blade Activities * Current focus is on innovative blade research * Concepts to lighten blades for larger rotors - slender planforms with thicker airfoils - new materials (carbon) * Concepts for high quality and more reliable blades - material forms - advanced

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Enter terms Search Showing 1 - 1 of 1 result. Download Wind Turbine Blade Design Blade engineering and design is one of the most complicated and important...

  15. SAND81-1762

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1981 Effects of Blade Preset Pitch Offset on Curved-Blade Oarrieus Vertical Axis Wind Turbine Performance Paul C. Klimas, Mark H. Worstell Prepared by Sandia National...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eereeducationdownloadsscale-models-and-wind-turbines Download Wind Turbine Blade Design Blade engineering and design is one of the most complicated and important aspects of...

  17. Sandia Energy - Sandia Participated in AMII to Support American...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produced blades more cost competitive with blades from countries that pay workers lower wages. The Advanced Manufacturing Innovation Initiative (AMII), a three-year, 6.3M...

  18. Search results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Download Wind Turbine Blade Design Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Enter terms Search Showing 31 - 40 of 53 results. Download Wind Turbine Blade Design Blade engineering and design is one of the most complicated and important...

  1. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower, 80 m Minivan Rotor blades: * Shown feathered * Length, 37-m Larger and taller ... capacity factors Pursue larger rotors and taller towers Continue improvements to blades, ...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables Search results Search results Enter terms Search Showing 31 - 40 of 53 results. Download Wind Turbine Blade Design Blade engineering and design is one of the most...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Science Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Wind Turbine Blade Design Blade engineering and design is one of the...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 111 - 120 of 189 results. Download Wind Turbine Blade Design Blade engineering and design is one of the most complicated...

  5. Sandia Energy Conferences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 2015 Wind Turbine Blade Manufacture Conference-Dusseldorf, Germany http:energy.sandia.gov2015-wind-turbine-blade-manufacture-conference-dusseldorf-ge...

  6. Sandia Energy Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Turbine Blade Flaw Detection Experiments in Denmark http:energy.sandia.govsandia-wind-turbine-blade-flaw-detection-experiments-in-denmark http:energy.sandia.gov...

  7. Sandia Energy Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Wind-Turbine Blade Design for the National Rotor Testbed http:energy.sandia.govaerodynamic-wind-turbine-blade-design-for-the-national-rotor-testbed http:...

  8. Integrated high efficiency blower apparatus for HVAC systems

    DOE Patents [OSTI]

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  9. Aeroacoustic Tests of Flatback Airfoils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08, June 2-4, 2008, Houston, TX Aerodynamic and Aeroacoustic Properties of a Flatback Airfoil (Will it Rumble or Whisper?) Dale E. Berg * and Matthew Barone † Sandia National Laboratories Albuquerque, NM 87185-1124 USA Abstract: The blade design resulting from the Sandia National Laboratories (SNL) Blade Systems Design Study, known as the BSDS blade, utilizes "flatback" airfoils for the inboard section of the blade to achieve a lighter, stronger blade. Compared to a thick

  10. Lightning protection system for a wind turbine

    DOE Patents [OSTI]

    Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  11. Microsoft Word - CX-100 Final Report - SAND2007-6065.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CX-100 Manufacturing Final Project Report Derek S. Berry TPI Composites, Inc. 373 Market Street Warren, RI 02885 Sandia Technical Manager: Tom Ashwill Abstract This report details the work completed under the CX-100 blade manufacturing project. It presents the tooling design and manufacturing, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The CX-100 blade was designed to demonstrate the efficient use of carbon fiber in the spar cap of a wind

  12. SPXXL2012_NERSCupdate.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Update Jason Hick jhick@lbl.gov Storage Systems Group Lead SPXXL January 10, 2012 * Operated by University of California for the US Department of Energy * NERSC serves a large population - Approximately 4000 users, 400 projects, 500 codes - Focus on "unique" resources * High-end computing systems * High-end storage systems - Large shared GPFS (a.k.a. NGF) - Large archive (a.k.a. HPSS) * Interface to high speed networking - ESnet soon to be 100Gb (a.k.a. Advanced Networking

  13. Passive load control for large wind turbines.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.

    2010-05-01

    Wind energy research activities at Sandia National Laboratories focus on developing large rotors that are lighter and more cost-effective than those designed with current technologies. Because gravity scales as the cube of the blade length, gravity loads become a constraining design factor for very large blades. Efforts to passively reduce turbulent loading has shown significant potential to reduce blade weight and capture more energy. Research in passive load reduction for wind turbines began at Sandia in the late 1990's and has moved from analytical studies to blade applications. This paper discusses the test results of two Sandia prototype research blades that incorporate load reduction techniques. The TX-100 is a 9-m long blade that induces bend-twist coupling with the use of off-axis carbon in the skin. The STAR blade is a 27-m long blade that induces bend-twist coupling by sweeping the blade in a geometric fashion.

  14. Turbine seal assembly

    DOE Patents [OSTI]

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  15. Advanced Airfoils for Wind Turbines: Office of Power Technologies (OPT) Success Stories Series Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Office of Geothermal and Wind Technologies Blades are where the turbine meets the wind. Turbine blades take advantage of aero- dynamics to extract the wind's energy, which can then be converted to useful electricity. Airfoils-the cross-sectional shape of the blades-determine the aerodynamic forces on blades. They are key to blade design. In the seventies, the young and fast-growing U.S. wind industry used airfoil designs from airplane wings to design turbine blades because those airfoil

  16. Munich, Germany: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Companies in Munich, Germany ACTANOL Service Ltd Allianz Climate Solutions ACS GmbH Amann GmbH BMW BayWa Group Centrosolar Group AG FutureCamp GmBH Mepsolar AG aka...

  17. BPA-2011-00869-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    charges related to the FOIA. You have requested the following: Any successor to or any land use agreement between BPA and The BOC Group Inc. a.k.a. Linde LLC andor EA Engineering...

  18. NALCAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conjectorium Speaker: Terrance Figy, University of Manchester WH3NE Title: Electroweak Higgs Boson Production in Association with Three Jets (A.K.A. VBF + 1 Jet) at NLO QCD 3:30...

  19. Aurora final report

    SciTech Connect (OSTI)

    Robert, Dross; Amedeo, Conti

    2013-12-06

    Final Technical report detailing the work done by Nuvera and its partners to fulfill the goals of the program "Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks" (a.k.a. AURORA)

  20. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Fish Hatchery Springs in preparation for the siting of a second binary geothermal power plant, which included the CW-2 and the MPLP CW-3 (a.k.a. Chance 3) wells along the...

  1. Kootenai County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Kootenai County, Idaho Coeur d Alene Fiber Fuels Inc aka Atlas Places in Kootenai County, Idaho Athol, Idaho Coeur d'Alene, Idaho Dalton Gardens,...

  2. BPA-2012-01715-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ways obtained in the 1950's in association with the McNary Transmission Line aka McNary Big-Eddy(Harvalan) (1)Further reduced to only to easements across private owned lands....

  3. FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat ...

  4. Draft 2009 Resource Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power available in the region. Solar thermal power generation (a.k.a. concentrated solar power or CSP) uses lenses or mirrors to concentrate solar radiation on a heat...

  5. Solar Secure Schools: Strategies and Guidelines; October 2004--April 2005

    SciTech Connect (OSTI)

    Braun, G. W.; Varadi, P. F.

    2006-01-01

    This report explores the technical and economic aspects of installing solar power (photovoltaic aka PV) systems on schools to improve the schools' energy security and provide power during disasters.

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (aka our "shadow" dataset ) with two pairs (SW and LW) of additional RT algorithms: from CAM3 and from GSFC's fvGCM. BBHRP uses AER's SW and LW RRTM codes. How we learn: If the RT...

  7. Obama Administration Announces Additional $13,969,700 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 41,700 AK Native Village of Minto 42,400 AK Native Village of Nanwalek (aka English Bay) 40,100 AK Native Village of Napaimute 34,500 AK Native Village of Napakiak ...

  8. Evaluation of the Whooshh Fish Transport System

    Broader source: Energy.gov [DOE]

    Last November, John Oliver highlighted during his program Last Week Tonight the Whooshh Fish Transport System (aka “salmon cannon”), a new, innovate fish transport system developed by Whooshh...

  9. BPA-2012-00195-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inc. 2. A copy of all correspondence between the BPA andor its agents, and Mike Ward (aka Mike Wardski). 3. A copy of all correspondence between the BPA andor its agents...

  10. Aucma Group: Withdrawal and Closure (2011-CE-1405)

    Broader source: Energy.gov [DOE]

    DOE withdrew the civil penalty notice issued to Aucma Group (aka Qingdao Aucma Import and Export Co., Ltd.) after DOE discovered that Aucma Group does not sell covered products in the U.S.

  11. Lee Berry, Paul Bonoli, David Green

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lee Berry, Paul Bonoli, David Green Lee Berry, Paul Bonoli, David Green FES Requirements Worksheet 1.1. Project Information - Center for Simulation of Wave-Plasma Interactions (aka RF SciDAC) Document Prepared By Lee Berry, Paul Bonoli, David Green Project Title Center for Simulation of Wave-Plasma Interactions (aka RF SciDAC) Principal Investigator Paul Bonoli Participating Organizations Massachusetts Institute of Technology, Princeton Plasma Physics Laboratory, Oak Ridge National Laboratory,

  12. Energy Efficiency and Conservation Block Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title AK-TRIBE-NANWALEK (AKA ENGLISH BAY) Location: Tribe AK-TRIBE- NANWALEK (AKA ENGLISH BAY) AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Nanwalek IRA Council proposes to explore the feasibility of wind generation capacity specifically for the purpose of determining if wind generation is a viable

  13. Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka

  14. MHK Technologies/Tidal Defense and Energy System TIDES | Open...

    Open Energy Info (EERE)

    of its hydro blades to vary the ratio of freely flowing water-to-water contact over its blade surfaces. In 2006, Oceana entered into a Cooperative Research & Development Agreement...

  15. Large Eddy Simulation of a Wind Turbine Airfoil at High Freestream-Flow Angle

    SciTech Connect (OSTI)

    2015-04-13

    A simulation of the airflow over a section of a wind turbine blade, run on the supercomputer Mira at the Argonne Leadership Computing Facility. Simulations like these help identify ways to make turbine blades more efficient.

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade...

  17. California Maritime Academy: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Figure 7 --- Blade l oading for on revolution 12 With this in mind, a FEA analysis was performed modeling the blade as an idealized cantilever beam experiencing 321 g's, which ...

  18. 2015 Key Wind Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Inclined Blade-Mounted Tri-Axial Blade Actuation System ROI-09-17 2009 Shaft-Mounted System for Wind Turbine Drivetrain Testing with 6 DOF Load Capabilities ROI-09-67 2009 ...

  19. FINAL REPORT FOA AWARD NO. DE-EE0001359 ASC REPORT NO. ASC-2011...

    Office of Scientific and Technical Information (OSTI)

    ... re-optimized with the validated GENOA methodology to achieve a light-weight, low-cost ... Design Study (BSDS) blade is a subscale research blade that was developed to examine ...

  20. MHK Technologies/Microturbine River In Stream | Open Energy Informatio...

    Open Energy Info (EERE)

    HDPE blades are the only moving parts in the water.This gives the turbine high resistance to silty or salty water. Blades designed to survive impact of 1500 lb object. HDPE...

  1. Unknown

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joints as shown in Figure 2, a schematic of the blade shape geometry. Because of the multi-sectioned, step- tapered characteristics of the Test Bed blades, the normally-used...

  2. TX-100 manufacturing final project report.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.; Berry, Derek S.

    2007-11-01

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

  3. Preparation of Papers for AIAA Technical Conferences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Aeroacoustic Properties of Flatback Airfoils Dale E. Berg * and Jose R. Zayas † Sandia National Laboratories ‡ Albuquerque, NM 87185-1124 USA In 2002, Sandia National Laboratories (SNL) initiated a research program to demonstrate the use of carbon fiber in wind turbine blades and to investigate advanced structural concepts through the Blade Systems Design Study, known as the BSDS. One of the blade designs resulting from this program, commonly referred to as the BSDS blade, resulted from

  4. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  5. nev91a0.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-2130 1 AN APPROACH TO THE FATIGUE ANALYSIS OF VERTICAL AXIS WIND TURBINE BLADES* Paul S. Veers Sandia National Laboratories** Division 5523 Albuquerque, New Mexico 87105 Abstract A cursory analysis of the stress history of wind turbine blades indicates that a single stress level at each wind speed does not adequately describe the blade stress history. A statistical description is required. Blade stress data collected from the DOE/ALCOA Low Cost experimental turbines indicate that the Rayleigh

  6. Fabrication, Integration and Initial Testing of a SMART Rotor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication, Integration, and Initial Testing of a SMART Rotor * Jonathan Berg † , Dale Berg ‡ , and Jon White § Sandia National Laboratories ** , Albuquerque, NM, 87185-1124 Sandia National Laboratories has designed and built a full set of three 9-meter blades (based on the Sandia CX-100 blade design) equipped with active aerodynamic blade load control surfaces on the outboard trailing edges. The fabrication of the blades, modifications to allow integration of the active control modules,

  7. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  8. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    National Labs., Albuquerque, NM (USA)","USDOE","17 WIND ENERGY; DARRIEUS ROTORS; TURBINE BLADES; AERODYNAMICS; AIRFOILS; COMPARATIVE EVALUATIONS; DATA COMPILATION;...

  9. Microsoft Word - TX-100 Final Report - SAND2007-6066.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TX-100 Manufacturing Final Project Report Derek S. Berry TPI Composites, Inc. 373 Market Street Warren, RI 02885 Sandia Technical Manager: Tom Ashwill Abstract This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural

  10. Drum lid removal tool

    SciTech Connect (OSTI)

    Pella, Bernard M.; Smith, Philip D.

    2010-08-24

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  11. Sandia National Laboratories is a multi-program laboratory managed and operated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration under contract DE-AC04- 94AL85000. Sandia Large Rotor Design Scorecard (SNL100-00) Example completed for SNL100-00. Reference: D.T. Griffith and T.D. Ashwill, "The Sandia 100-meter All-glass Baseline Wind Turbine Blade: SNL100-00," Sandia National Laboratories Technical Report, SAND2011-3779. Table 1: Blade Parameters Parameter Value Blade Designation SNL100-00 Wind Speed Class IB Blade Length (m) 100 Blade Weight (kg) 114,172 Span-wise CG location (m) 33.6 #

  12. Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint

    SciTech Connect (OSTI)

    Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

    2015-01-01

    This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

  13. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-1178 Unlimited Release Printed February 2013 The SNL100-01 Blade: Carbon Design Studies for the Sandia 100-meter Blade D. Todd Griffith Wind and Water Power Technologies Department Sandia National Laboratories P.O. Box 5800 Albuquerque, New Mexico 87185-MS1124 Abstract A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides

  14. Microsoft Word - 2000ReportOngTsaiFinal.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2000-0478 Unlimited Release Printed March 2000 The Use of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example Cheng-Huat Ong & Stephen W. Tsai Department of Aeronautics & Astronautics Stanford University Stanford CA 94305-4035 Sandia Contract: BE-6196 Abstract The benefit of introducing carbon fibers in a wind turbine blade was evaluated. The SERI-8 wind turbine blade was used as a baseline for study. A model of the blade strength and stiffness properties was created using

  15. Development of a transonic front stage of an axial flow compressor for industrial gas turbines

    SciTech Connect (OSTI)

    Katoh, Y.; Ishii, H.; Tsuda, Y.; Yanagida, M. . Mechanical Engineering Research Lab.); Kashiwabara, Y. . Dept. of Mechanical Systems Engineering)

    1994-10-01

    This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.

  16. Engine exhaust control system and method

    SciTech Connect (OSTI)

    Billington, W.G.

    1990-04-03

    This patent describes an exhaust gas control apparatus for an internal combustion engine. It comprises: a rotary fan blade assembly having a hollow hub and plurality of hollow blades, each having a plurality of apertures in a trailing edge; drive means for driving the rotary fan blade assembly; feed means feeding exhaust gases from the engine into the hollow hub and hollow blades; air intake means for feeding intake air to the rotary fan blade assembly from a direction opposite to the direction of flow of the exhaust gases into the hollow hub of the rotary fan blade assembly; exhaust means for exhausting a mixture of air and the exhaust gases; whereby the flow of exhaust gases through the rotary fan blade assembly and out through the exhaust means reduces back-pressure, exhaust noise, exhaust temperature and exhaust pollutants.

  17. The NERSC Global File System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Global File System (NGF) Jason Hick jhick@lbl.gov Storage Systems Group Lead http://www.nersc.gov/nusers/systems/NGF/ CAS2K11 September 11-14, 2011 * Operated by University of California for the US Department of Energy * NERSC serves a large population - Approximately 4000 users, 400 projects, 500 codes - Focus on "unique" resources * High-end computing systems * High-end storage systems - Large shared GPFS (a.k.a. NGF) - Large archive (a.k.a. HPSS) * Interface to high speed

  18. Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Global Scratch (/global/scratch2 aka $GSCRATCH) will be retired on October 14 at 12:00 PDT October 9, 2015 by Richard Gerber This is a reminder that the Global Scratch (/global/scratch2 aka $GSCRATCH) file system will be retired on next Wednesday, October 14 at 12:00 (noon) PDT. The file system will be decommissioned and not be accessible after its retirement. Please make sure to back up your important files to HPSS or another permanent file systems. Do not wait until the last day

  19. Fuji2011_BusinessValueOfTape.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leveraging the Business Value of Tape Jason Hick jhick@lbl.gov NERSC Storage Systems Group Fujifilm Global IT Executive Summit June 8-10, 2011 *! Operated by UC for the DOE *! NERSC serves a large population -! Approximately 4000 users, 400 projects, 500 codes -! Focus on "unique" resources *! High-end computing systems *! High-end storage systems -! Large shared GPFS (a.k.a. NGF) -! Large archive (a.k.a. HPSS) *! Interface to high speed networking -! Center-wide 10Gb -! Testing 100Gb

  20. Microsoft Word - Wen, Wen and Wen complaint.docx

    Energy Savers [EERE]

    JUSTICE United States Attorney William J. Hochul, Jr. Western District of New York FOR IMMEDIATE RELEASE CONTACT: Barbara Burns February 24, 2016 PHONE: (716) 843-5817 www.usdoj.gov/usao/nyw FAX #: (716) 551-3051 WASHINGTON STATE MAN, BROTHER AND SISTER-IN-LAW ARRESTED AND CHARGED IN A SCHEME TO DEFRAUD FEDERAL RESEARCH FUNDING ROCHESTER, NY-U.S. Attorney William J. Hochul, Jr. announced today that Haifang Wen, aka Harry, 41, of Pullman, WA, his brother Bin Wen, aka Ben, 44, and Ben's wife Pang

  1. Jason Hick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oracle OpenWorld 2011: Digital Archiving and Preservation in Government Departments and Agencies Jason Hick jhick@lbl.gov NERSC LBNL http://www.nersc.gov/nusers/systems/HPSS/ October 6, 2011 * Operated by the University of California for the U.S. DOE * NERSC serves a large population - Approximately 4000 users, 400 projects, 500 codes - Focus on "unique" resources * High-end computing systems * High-end storage systems - Large shared GPFS (a.k.a. NGF) - Large archive (a.k.a. HPSS) *

  2. Sunshade for building exteriors

    DOE Patents [OSTI]

    Braunstein, Richard (Atlanta, GA); McKenna, Gregory B. (Cumming, GA); Hewitt, David W. (Alpharetta, GA); Harper, Randolph S. (Keezletown, VA)

    2002-01-01

    A sunshade for shading window exteriors includes at least one connecting bracket for attachment to a window mullion, a blade support strut attached to the connecting bracket at a first joint, and a plurality of louvered blades supported by the blade support strut at a second joint. The pivot angle at the first joint may be varied to extend the louvered blades a desired distance from the window mullion. The louvered blades are positioned at a preselected fixed profile angle on the second joint in order to optimize shading at the latitude where the sunshade is installed. In a preferred embodiment, the louvered blades have top walls supporting photovoltaic cells and the sunshade includes electric cables for connecting the photovoltaic cells to an electric circuit.

  3. Wind turbine rotor hub and teeter joint

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT); Jankowski, Joseph (Stowe, VT)

    1994-10-11

    A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.

  4. Prop-fan with improved stability

    SciTech Connect (OSTI)

    Rothman, E.A.; Violette, J.A.

    1988-03-15

    A prop-fan is described comprising swept, rotatable airfoil blades pivotally mounted to a hub for pitch change movement with respect thereto, and having a solidity ratio of 1.0 or greater at the roots of the blades and less than 1.0 at the tips of the blades. The prop fan is operable at or above critical Mach numbers and at transonic or supersonic tip speeds, and is characterized by: each of the blades having a leading edge. The leading edge, from a location thereon at approximately a midportion of the span and the blade, outwardly to the tip thereof, is curved in a chordal direction to define blade sweep while exhibiting no significant offset curvature in a span-wise direction.

  5. Apparatus and process for removing a predetermined portion of reflective material from mirror

    DOE Patents [OSTI]

    Perry, Stephen J.; Steinmetz, Lloyd L.

    1994-01-01

    An apparatus and process are disclosed for removal of a stripe of soft reflective material of uniform width from the surface of a mirror by using a blade having a large included angle to inhibit curling of the blade during the cutting operation which could result in damage to the glass substrate of the mirror. The cutting blade is maintained at a low blade angle with respect to the mirror surface to produce minimal chipping along the cut edge and to minimize the force exerted on the coating normal to the glass surface which could deform the flat mirror. The mirror is mounted in a cutting mechanism containing a movable carriage on which the blade is mounted to provide very accurate straightness of the travel of the blade along the mirror.

  6. Composite airfoil assembly

    DOE Patents [OSTI]

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  7. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy - CompositeTesting-BNaughton Permalink Gallery New report highlights key composite testing trends for more reliable and lower cost wind blade designs News, Partnership, Publications, Renewable Energy, Research & Capabilities, Wind Energy, Wind News New report highlights key composite testing trends for more reliable and lower cost wind blade designs Sandia National Laboratories recently published "Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade

  8. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Unlimited Release Printed April 2013 Large Blade Manufacturing Cost Studies Using the Sandia Blade Manufacturing Cost Tool and Sandia 100-meter Blades D. Todd Griffith and Wade Johanns Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National

  9. Assessing R&D Opportunities for Clean Energy Technologies - Continuum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magazine | NREL photo of wind turbine blades being transported by a train through a city. As technologies continue to advance in U.S. wind manufacturing, larger blade designs may, in turn, increase manufacturing opportunities. Because transportation is complicated, larger blades are typically manufactured near the area of use. Photo by Dennis Schroeder, NREL Assessing R&D Opportunities for Clean Energy Technologies NREL sees opportunity for the United States to use and manufacture clean

  10. Electric arc saw apparatus

    DOE Patents [OSTI]

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  11. Hanford Tour Restrictions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tours Hanford Tour Restrictions Hanford Site Tours Hanford Tour Restrictions Hanford Tour Restrictions Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Prohibited Items The following items are prohibited anywhere on the Hanford Site or in Site-associated facilities. Dangerous weapons Note: Prohibited knives include: blades exceeding four (4) inches in length; spring blade knives or any knife with a blade which is automatically released by a spring mechanism or

  12. Final Report WSU Grayscale-Abstract.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    425 Unlimited Release Printed August 2002 The Implementation of Braided Composite Materials in the Design of a Bend-Twist Coupled Blade James Locke and Ivan Contreras Hidalgo (Associate Professor and Graduate Research Assistant) Wichita State University Department of Aerospace Engineering Wichita, Kansas 67260-0044 Abstract This report presents results for conceptual wind turbine blade designs that are manufactured using braided composite materials. The SERI-8 wind turbine blade was used to

  13. Effects of Structural Property Variations on Flutter Stability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aeroelastic Instability of Very Large Wind Turbine Blades Brian R. Resor, Brian C. Owens and D. Todd Griffith Sandia National Laboratories* Albuquerque, USA brresor@sandia.gov Abstract The trend in per-revolution flutter speed for increasing length wind blades is such that aeroelastic stability should be considered in their design. A classical flutter analysis of the Sandia National Laboratories 100-meter all- glass baseline blade is performed. The margin of estimated flutter speed divided by

  14. Microsoft Word - RM1_Tidal Turbine_NREL Bir, Lawson, Li_2011 1.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 by ASME Proceedings of the ASME 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June 19-24, 20111, Rotterdam, the Netherland OMAE2011-50063 STRUCTURAL DESIGN OF A HORIZONTAL-AXIS TIDAL CURRENT TURBINE COMPOSITE BLADE ABSTRACT This paper describes the structural design of a tidal turbine composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the blade external

  15. Microsoft Word - SandiaFinalReport r6101003new1102.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    04-0522 Unlimited Release Printed June 2004 DESIGN STUDIES FOR TWIST-COUPLED WIND TURBINE BLADES James Locke and Ulyses Valencia Wichita State University National Institute for Aviation Research Wichita, Kansas 67260-0093 Abstract This study presents results obtained for four hybrid designs of the Northern Power Systems (NPS) 9.2-meter prototype version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design

  16. Microsoft Word - AWEA06paper _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blade Technology Innovations for Utility-Scale Turbines Tom Ashwill Wind Energy Department Sandia National Laboratories* Albuquerque, NM 87185, June 2006 Introduction. Sandia National Laboratories (SNL) is developing concepts that will enable the utilization of longer blades that weigh less, are more efficient structurally and aerodynamically, and impart reduced loads to the system. Several of these concepts have been incorporated into subscale prototype blades. The description of these concepts

  17. Microsoft Word - AWEA06paper.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blade Technology Innovations for Utility-Scale Turbines Tom Ashwill Wind Energy Department Sandia National Laboratories* Albuquerque, NM 87185, June 2006 Introduction. Sandia National Laboratories (SNL) is developing concepts that will enable the utilization of longer blades that weigh less, are more efficient structurally and aerodynamically, and impart reduced loads to the system. Several of these concepts have been incorporated into subscale prototype blades. The description of these concepts

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind-turbine-blade-design Current search Search found 1 item Environmental Science Remove Environmental Science filter Energy Sources Remove Energy Sources filter Renewables Remove...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind-turbine-blade-design Current search Search found 1 item Energy Sources Remove Energy Sources filter Environmental Science Remove Environmental Science filter Renewables...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind-turbine-blade-design Current search Search found 1 item Environmental Science Remove Environmental Science filter Energy Sources Remove Energy Sources filter Download Remove...