National Library of Energy BETA

Sample records for blackout doe grid

  1. Postmortem analysis of power grid blackouts - The role of measurement systems

    SciTech Connect (OSTI)

    Dagle, Jeffery E.

    2006-09-01

    Promptly following any blackout, an investigation is conducted to determine the who, what, where, when, why, and how. For system operators, it is important to quickly grasp the scale and magnitude of the event and rapidly restore service. Then a broader set of stakeholders get involved to assess system performance, determine root causes, compile lessons learned, and develop recommendations. At the heart of the post-mortem investigation is the detailed sequence of events. As accurately as possible, investigators need to know what happened and when. Especially during a cascading failure where events occur rapidly, accurate timing is crucial to understanding how the event unfolded so that the root causes can be determined. The sequence of events is based on vast amounts of data collected from multiple points in the system from a myriad of data collection instruments, some devoted to the purpose of supporting system disturbance post mortem analysis, others providing useful additional context or filling in missing gaps. The more that the investigators know about their available sources of data, and the inherent limitations of each, the better (and quicker) will be the analysis. This is especially important when a large blackout has occurred; there is pressure to find answers quickly, but due to the size and complexity of the event, a deliberate and methodical investigation is necessary. This article discusses the role that system monitoring plays in supporting the investigation of large-scale system disruptions and blackouts.

  2. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: ...

  3. DOE Grid Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team DOE Grid Tech Team DOE Grid Tech Team Overview Access to reliable, cost-effective electricity is critical for economic growth and continued American prosperity. But our electric infrastructure is facing new stresses as a result of aging assets, environmental sustainability requirements, consumers adding energy back into the electric system, increasing global temperatures, extreme weather events, and growing cybersecurity concerns. We are moving towards a more digitized economy with a

  4. Blackout 2003: Blackout Final Implementation Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blackout Final Implementation Report Blackout 2003: Blackout Final Implementation Report Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations PDF icon Blackout Final Implementation Report More Documents & Publications Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk D:\0myfiles\Blackout Progress\Blackout-Progress.vp U.S. - Canada Power System Outage Task Force:

  5. DOE Announces $220 Million in Grid Modernization Funding | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy $220 Million in Grid Modernization Funding DOE Announces $220 Million in Grid Modernization Funding January 14, 2016 - 12:55pm Addthis Grid Modernization Initiative releases multi-year plan and awards funding for groundbreaking DOE-wide Grid Modernization Laboratory Consortium. | Graphic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department Grid Modernization Initiative releases multi-year plan and awards funding for groundbreaking DOE-wide Grid

  6. DOE Grid Modernization Laboratory Consortium (GMLC) - Awards | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy DOE Grid Modernization Laboratory Consortium (GMLC) - Awards DOE Grid Modernization Laboratory Consortium (GMLC) - Awards A modern electricity grid is vital to the Nation's security, economy and modern way of life, providing the foundation for essential services that Americans rely on every day. The Nation's power grid, however, is aging and faces a future for which it was not designed. The Energy Department's Grid Modernization Initiative (GMI) represents a comprehensive effort to

  7. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges. Southern recognizes that many policy and logistical concerns must be addressed for the promises of smart grid technologies and applications to be fully realized in ways that are beneficial, secure, and cost-effective

  8. Second Anniversary of Northeast Blackout Marked with Progress | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Anniversary of Northeast Blackout Marked with Progress Second Anniversary of Northeast Blackout Marked with Progress August 12, 2005 - 2:41pm Addthis Electric Reliability Standards Made Clearer and Enforceable WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today marked the second anniversary of the Northeast blackout during which 50 million Americans lost electricity by highlighting important progress that has been made to make North American electricity grids more reliable.

  9. DOE Announces New Projects to Modernize America's Electric Grid |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings | NREL DOE Announces New Projects to Modernize America's Electric Grid NREL to co-lead DOE's multi-lab Grid Modernization Laboratory Consortium January 14, 2016 Today, U.S. Department of Energy Secretary Ernest Moniz announced up to $220 million in new funding for a consortium of DOE national laboratories and partners to support critical research and development over the next three years to help modernize our nation's electrical power grid. The secretary also announced the release

  10. DOE Announces New Projects to Modernize America's Electric Grid - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL DOE Announces New Projects to Modernize America's Electric Grid NREL to co-lead DOE's multi-lab Grid Modernization Laboratory Consortium January 14, 2016 Today, U.S. Department of Energy Secretary Ernest Moniz announced up to $220 million in new funding for a consortium of DOE national laboratories and partners to support critical research and development over the next three years to help modernize our nation's electrical power grid. The secretary also announced the release

  11. Sandia to participate in upcoming DOE Grid Modernization Regional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participate in upcoming DOE Grid Modernization Regional Workshops - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & ...

  12. Blackout 2003: Summary of Comments from Forum and Email | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Summary of Comments from Forum and Email Blackout 2003: Summary of Comments from Forum and Email This Excel file is a summary of all comments and recommendations received by DOE on the Blackout Report via email and the Blackout Forum as of 1-12-04. PDF icon Summary of Comments from Forum and Email More Documents & Publications Blackout 2003: Blackout Final Implementation Report Blackout 2003: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and

  13. Argonne to lead 8 DOE Grid Modernization Projects | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory to lead 8 DOE Grid Modernization Projects January 14, 2016 Tweet EmailPrint The U.S. Department of Energy's (DOE's) Argonne National Laboratory will receive about $19 million in funding and will lead eight projects as part of the Grid Modernization Laboratory Consortium (GMLC) announced earlier today by DOE. Argonne will participate as a partner in 23 other GMLC projects. DOE announced that it plans to award up to $220 million over three years, subject to congressional

  14. D:\\0myfiles\\Blackout Progress\\Blackout-Progress.vp | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D:0myfilesBlackout ProgressBlackout-Progress.vp D:0myfilesBlackout ProgressBlackout-Progress.vp PDF icon D:0myfilesBlackout ProgressBlackout-Progress.vp More Documents & ...

  15. smart grid | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (RDSI), NETL is managing nine Smart Grid demonstration projects which mainly focus on microgrid applications with a goal to reduce peak electricity demand by at least 15% at...

  16. Blackout 2003: Energy Secretary Bodman and Minister of Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    actions taken to prevent or minimize the likelihood of future blackouts, reduce the scope of those that do occur and improve the security of the North American electric power grid. ...

  17. DRSG Comments to DOE Smart Grid RFI: Addressing Policy and Logistical...

    Office of Environmental Management (EM)

    Policy and Logistical Challenges to Smart Grid Implementation" Submitted by the Demand Response and Smart Grid Coalition (DRSG) November 1, 2010 DRSG Comments to DOE Smart Grid ...

  18. DOE Explores Potential of Wind Power to Stabilize Electric Grids

    Broader source: Energy.gov [DOE]

    A team at DOE's National Renewable Energy Laboratory is exploring the capability of wind energy to stabilize the nation's electrical grid when conventional power plants shut down. A 1.5 megawatt wind turbine, connected to a cutting edge grid simulator, is being tested at the National Wind Technology Center.

  19. Sandia to participate in upcoming DOE Grid Modernization Regional Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participate in upcoming DOE Grid Modernization Regional Workshops - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  20. DOE Launches New Smart Grid Web Portal

    Broader source: Energy.gov [DOE]

    Today, the DOE General Counsel’s Office is launching a new Smart Gird web portal.  In October, the General Counsel’s office released two reports exploring technological and legal issues critical...

  1. DOE Science Showcase - DOE's Smart Grid Research | OSTI, US Dept of Energy,

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information DOE's Smart Grid Research Image credit: DOE Office of Electricity Delivery & Energy Reliability A modernized electrical smart grid is needed to handle the exploding requirements of digital and computerized equipment and technology dependent on it as well as one that can automate and manage the increasing complexity and needs of electricity in the 21st Century. The Department of Energy (DOE) is working to increase the reliability, efficiency,

  2. New DOE Reports on Smart Grid Technologies Seek to Promote Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access New DOE Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access October ...

  3. Comments of the Demand Response and Smart Grid Coalition on DOE...

    Energy Savers [EERE]

    the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy ...

  4. EAC Recommendations for DOE Action Regarding U.S. Electric Grid...

    Energy Savers [EERE]

    U.S. Electric Grid Resiliency More Documents & Publications Recommendations on U. S. Grid Security - EAC 2011 DOE Responses to EAC Work Products - June 2014 Electricity...

  5. Smart Grid Research from DOE Databases | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Smart Grid Research from DOE Databases Information Bridge Energy Citations Database DOE Green Energy DOE R&D Project Summaries Science.gov About Smart Grid Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide, August 31, 2010 DOE Office of Electricity Delivery & Energy Reliability The NETL Smart Grid Implementation Strategy The Smart Grid: An Introduction

  6. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization

    SciTech Connect (OSTI)

    Dobson, Ian [University of Wisconsin, Madison; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Newman, David E [University of Alaska

    2007-01-01

    We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.

  7. Los Alamos to tackle modernizing energy grid in DOE-wide Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consortium Modernizing energy grid in DOE-wide Laboratory consortium Los Alamos to tackle modernizing energy grid in DOE-wide Laboratory consortium Up to $35.25 million in research funding could come to Los Alamos and its partners. January 14, 2016 The Grid Modernization Initiative represents a comprehensive DOE effort to help shape the future of our nation's grid and solve the challenges of integrating conventional and renewable sources with energy storage and smart buildings. The Grid

  8. Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges In light of the fact ...

  9. D:\\0myfiles\\Blackout Progress\\Blackout-Progress.vp

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This request focused in particular on problem areas identi- fied in preliminary findings from the blackout investigation. u NERC strengthened its compliance audit pro- gram by ...

  10. Comments of the Demand Response and Smart Grid Coalition on DOE's

    Energy Savers [EERE]

    Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access,

  11. Microsoft Word - DOCS-#287906-v1-National_Grid_Comments_on_DOE_RFI_#3.DOC

    Energy Savers [EERE]

    Grid's Response to the Department of Energy Smart Grid RFI: Addressing Policy and Logistical Challenges of Smart Grid Implementation Dated: November 1, 2010 1 National Grid's Response to the Department of Energy Request For Information on Smart Grid Key Policy questions that must be answered Pursuant to the Request for Information entitled "Addressing Policy and Logistical Challenges to Smart Grid Implementation," issued by the Department of Energy ("DOE") Office of

  12. Comments of Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy | Department of Energy Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy Comments of Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy High-Level Response to DOE RFI on Smart Grid Policy: This document responds to DOE questions regarding smart grid policy. The approach followed herein is to write concise comments addressing the overall RFI document at a higher level. PDF icon High-Level Response to DOE RFI on Smart Grid Policy More Documents

  13. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  14. DOE SciDAC's Earth System Grid Center for Enabling Technologies...

    Office of Scientific and Technical Information (OSTI)

    For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for ... Publication Date: 2013-12-19 OSTI Identifier: 1111156 Report Number(s): DOE-USC-25773 DOE ...

  15. DOE Grid Tech Team Issues Request for Public Comments on Workshop Summaries

    Broader source: Energy.gov [DOE]

    DOE's Grid Tech Team issued a notice of availability and request for comments on the Electrical Grid Integration Technical Workshop summaries. Public comments on summaries from the distribution system and transmission system workshops will be accepted until March 25, 2013.

  16. Blackout 2003: Final Report on the August 14, 2003 Blackout in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations Blackout 2003: Final Report on the August 14, 2003 Blackout in the United ...

  17. EAC Recommendations for DOE Action Regarding U.S. Electric Grid Resiliency- March 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    EAC Recommendations for DOE Action Regarding U.S. Electric Grid Resiliency, approved at the March 12-13, 2014 meeting.

  18. Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for DOE (October 17, 2012)

    Energy Savers [EERE]

    Smart Grid Outreach and Communication Strategy: The Next Steps Recommendations for the U.S. Department of Energy A Report by The Electricity Advisory Committee October 2012 Table of Contents EAC Smart Grid Outreach White Paper 1 Glossary of Terms and Abbreviations .................................................................................................. 3 2 Executive Summary: EAC Smart Grid Recommendations to DOE ..................................................... 4 3 What are the

  19. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Office of Scientific and Technical Information (OSTI)

    Report (Technical Report) | SciTech Connect DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate

  20. Microsoft Word - Honeywell comments_DOE RFI_Smart Grid Policy and Logistical Challenges.doc

    Energy Savers [EERE]

    DOE RFI on Smart Grid Honeywell Inc. 1 INITIAL COMMENTS OF HONEYWELL, INC. ON POLICY AND LOGISTICAL CHALLENGES IN IMPLEMENTING SMART GRID SOLUTIONS Pursuant to DOE's September 17, 2010 request, Honeywell, Inc. ("Honeywell") respectfully submits these comments on policy and logistical challenges and potential solutions for implementing Smart Grid solutions. Honeywell appreciates the opportunity to comment on regulatory policy issues that need to be considered, and on implementation

  1. Microsoft Word - SmartGrid - NRC Input to DOE Requestrvjcomments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NPPs control andor protection systems will initiate a unit trip when grid interface parameters are not in accordance with the NPPGrid Interface Specification (FERCNERC Standard ...

  2. DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid

    Energy Savers [EERE]

    System. June 27, 2007 | Department of Energy Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide up to $51.8 million for five cost-shared projects that will help accelerate much-needed modernization of our Nation's electricity grid. This research will advance the

  3. New DOE Reports on Smart Grid Technologies Seek to Promote Innovation,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Privacy and Access | Department of Energy Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access New DOE Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access October 5, 2010 - 12:00am Addthis Washington, D.C. - In order to implement recommendations made in the Federal Communications Commission's National Broadband Plan, the Department of Energy released two reports today on important policy issues raised by Smart Grid technologies that

  4. DOE Releases Maturity Model to Better Protect the Nation's Grid from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity Threats | Department of Energy Maturity Model to Better Protect the Nation's Grid from Cybersecurity Threats DOE Releases Maturity Model to Better Protect the Nation's Grid from Cybersecurity Threats May 31, 2012 - 4:32pm Addthis The Electricity Subsector Cybersecurity Capability Maturity Model, which allows electric utilities and grid operators to assess their cybersecurity capabilities and prioritize their actions and investments to improve cybersecurity, combines elements

  5. Blackout Final Implementation Report

    Energy Savers [EERE]

    ... DOE's review, and the May 2005 report on DME requirements by the NERC Interconnec- tion ... R.15.A.4. In addition to NERC's requirement for inspection and testing of all reactive ...

  6. Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges

    Broader source: Energy.gov [DOE]

    In light of the fact that smart grid deployments are moving forward with pace and at scale, DRSG advises the DOE against seeking to redefine the term “smart grid” as a semantic exercise, as such an...

  7. The Modern Grid Initiative is a DOE-funded project managed by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    team does have some interesting insights into the future possibilities. The GenX GenY Theory of Grid Modernization Traveling through airports a lot, I see a distinct difference...

  8. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Office of Scientific and Technical Information (OSTI)

    Report for University of Southern California Information Sciences Institute (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute

  9. DOE Live Video Presentation: Smart Grid Development in the U.S. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Live Video Presentation: Smart Grid Development in the U.S. DOE Live Video Presentation: Smart Grid Development in the U.S. November 9, 2011 - 9:24am Addthis The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability, Office of Energy Efficiency and Renewable Energy, and Brookhaven National Laboratory are conducting a free, online presentation on smart grid development in the U.S, Thursday, Dec. 1, from 11:00 a.m. to 1:00 p.m. EST. This

  10. The Northeast Blackout of 1965

    SciTech Connect (OSTI)

    Vassell, G.S.

    1990-10-11

    Twenty-five years ago, on November 9, 1965, the electric utility industry - and the nation - experienced the biggest power failure in history. While major power outages did happen before and after this unique event, none of them came even close to the Great Northeast Blackout of 1965 - not in terms of the size of the area or the number of people affected, not in terms of the trauma inflicted on the society at large, and not in terms of its impact on the electric utility industry. With our institution memory - as a society - being as short as it is, many of the lessons that were learned by the industry, by the regulators, and by the nation at large in the wake of the Northeast Blackout have been, by now, mostly forgotten. The 25th anniversary of this event offers a unique opportunity, therefore, to refresh our institutional memory in this regard and, by doing so, bring to bear our past experience to the problems of today. This article has been written with this objective in mind and from the perspective of an individual who experienced firsthand - as an active electric utility industry participant - the Northeast Blackout itself, its aftermath, and the subsequent evolution of the industry to the present day.

  11. August 2003 Blackout | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation » August 2003 Blackout August 2003 Blackout General Information Final Report on Implementation of Task Force Recommendations (Issued Oct. 3, 2006) and the press release information Report on Competition v. Reliability per Rec. 12 of Aug. 2004 Blackout Investigation Final Report Draft Report on Implementation of the U.S.-Canada Power System Outage Task Force Recommendations Notice of June 22 Conference For Public Review of Draft Report on Implementation of the U.S. - Canada Power

  12. Are You Prepared for a Blackout? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prepared for a Blackout? Are You Prepared for a Blackout? August 24, 2012 - 2:23pm Addthis Earlier this week, Lynn talked about how you could prepare for a blackout. It's always...

  13. Microsoft Word - SmartGrid - NRC Input to DOE Requestrvjcomments.docx

    Energy Savers [EERE]

    Nuclear Regulatory Commission Input to DOE Request for Information/RFI (Federal Register / Vol. 75, No. 180 / Friday, September 17, 2010/Pages 57006-57011 / Notices) / Smart Grid Implementation Input - NRC Contact: Kenn A. Miller, Office of Nuclear Reactor Regulation, 301-415-3152 Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New Technologies" and "Reliability and Cyber-Security," Page 57010. Nuclear

  14. DOE Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by Smart Grid Technologies

    Broader source: Energy.gov [DOE]

    DOE's Office of Electricy Delivery and Energy Reliability (OE) issued a notice of an open meeting on Tuesday, February 26, 2013 (9:30 a.m. to 4:30 p.m. ET) of the smart grid data privacy multi...

  15. Blackout 2003: U.S. - Canada Task Force Presents Final Report onBlackout of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2003 | Department of Energy U.S. - Canada Task Force Presents Final Report onBlackout of August 2003 Blackout 2003: U.S. - Canada Task Force Presents Final Report onBlackout of August 2003 August 14, 2003, saw the worst blackout in North American history. Today, Spencer Abraham, U.S. Secretary of Energy, and the Honorable R. John Efford, Minister of Natural Resources Canada, released the Final Report of the U.S. -Canada Power System Outage Task Force. PDF icon U.S. - Canada Task Force

  16. Data Management Issues Associated with the August 14, 2003 Blackout Investigation

    SciTech Connect (OSTI)

    Dagle, Jeffery E.

    2004-06-10

    The largest blackout in the history of the North American electric power grid occurred on August 14, 2003. An extensive investigation into what happened (and why) began immediately. The joint U.S.-Canada task force led the effort, including support from the electric utility industry and several federal agencies, e.g. the U.S. Department of Energy. The North American Electric Reliability Council (NERC) supported the task force, including particularly the electricity working group. The overall blackout investigation team drew expertise from a large number of organizations, assembled into teams to address specific attributes of the blackout. This paper describes the data management issues associated with supporting the blackout investigation, beginning with the immediate response in the days and weeks following the blackout, supporting the interim report [1], to the long-term plans for deriving lessons learned for implementing improvements in the overall process of outage disturbance reporting. The sole focus of this paper is the electricity working group activities at NERC; the security and nuclear working groups are outside the scope of this paper.

  17. Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk

    Broader source: Energy.gov [DOE]

    A report to the US-Canada Power System Outage Task Force on steps taken in the United States and Canada to reduce blackout risk one year after the August 14, 2003 blackout.

  18. Utilities respond to nuclear station blackout rule

    SciTech Connect (OSTI)

    Rubin, A.M.; Beasley, B.; Tenera, L.P

    1990-02-01

    The authors discuss how nuclear plants in the United States have taken actions to respond to the NRC Station Blackout Rule, 10CFR50.63. The rule requires that each light water cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout. Station blackout is defined as the complete loss of a-c power to the essential and non-essential switch-gear buses in a nuclear power plant. A station blackout results from the loss of all off-site power as well as the on-site emergency a-c power system. There are two basic approaches to meeting the station blackout rule. One is to cope with a station blackout independent of a-c power. Coping, as it is called, means the ability of a plant to achieve and maintain a safe shutdown condition. The second approach is to provide an alternate a-c power source (AAC).

  19. Station blackout transients in the semiscale facility

    SciTech Connect (OSTI)

    Chapman, J.C.

    1985-12-01

    The test results of station blackout transients conducted in the Semiscale MOD-2B facility are discussed in this report. The Semiscale MOD-2B facility simulates a pressurized water reactor (PWR) power plant. The experiments were initiated from conditions typical of PWR plant operating conditions (primary pressure of 15.2 MPa (2205 psi) and cold leg fluid temperature of 550 K (530F)). Five station blackout experiments were conducted, Three tests in the Power Loss (PL) Test Series and the two Primary Boil-off (PBO) Tests. The responses of these tests were analyzed and compared. However, only one test response (S-PL-2) is presented and discussed in detail. The S-PL-2 experiment is characterized by examining the responses of the primary and secondary pressures and fluid temperatures, the pressurizer liquid level, the primary fluid distribution, and the core thermal behavior. The mechanisms driving the S-PL-2 responses, the main elements of the station blackout transient, the influences of initial and boundary conditions and other transient that may appear similar to a station blackout are also discussed. Information pertinent to station blackout nuclear safety issues is presented in the report. 13 refs., 44 figs.

  20. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  1. DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide up to $51.8 million for five cost-shared projects that will help accelerate much-needed modernization of our Nation's electricity grid. This research will advance the development and application of high-temperature superconductors, which have the potential to alleviate congestion on an electricity grid that is experiencing increased demand from consumers.

  2. Blackout 2003: Electric System Working Group Technical Conference -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments and Recommendations | Department of Energy Electric System Working Group Technical Conference - Comments and Recommendations Blackout 2003: Electric System Working Group Technical Conference - Comments and Recommendations December 16, 2003 Electric System Working Group Technical Conference, Philadelphia PA - Summary of comments and recommendations relating to the aftermath of the August 2003 blackout. PDF icon Recommendations More Documents & Publications Blackout 2003:

  3. Exploring Complex Systems Aspects of Blackout Risk and Mitigation

    SciTech Connect (OSTI)

    Newman, David E [University of Alaska; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Dobson, Ian [University of Wisconsin, Madison

    2011-01-01

    Electric power transmission systems are a key infrastructure, and blackouts of these systems have major consequences for the economy and national security. Analyses of blackout data suggest that blackout size distributions have a power law form over much of their range. This result is an indication that blackouts behave as a complex dynamical system. We use a simulation of an upgrading power transmission system to investigate how these complex system dynamics impact the assessment and mitigation of blackout risk. The mitigation of failures in complex systems needs to be approached with care. The mitigation efforts can move the system to a new dynamic equilibrium while remaining near criticality and preserving the power law region. Thus, while the absolute frequency of blackouts of all sizes may be reduced, the underlying forces can still cause the relative frequency of large blackouts to small blackouts to remain the same. Moreover, in some cases, efforts to mitigate small blackouts can even increase the frequency of large blackouts. This result occurs because the large and small blackouts are not mutually independent, but are strongly coupled by the complex dynamics.

  4. DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy up to $51.8 Million to Modernize the U.S. Electric Grid System DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System June 27, 2007 - 2:08pm Addthis Superconductor Research Crucial to Improving Power Delivery Equipment WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide up to $51.8 million for five cost-shared projects that will help accelerate much-needed modernization of our Nation's

  5. DOE SciDAC's Earth System Grid Center for Enabling Technologies...

    Office of Scientific and Technical Information (OSTI)

    of Southern California 96 KNOWLEDGE MANAGEMENT AND PRESERVATION Earth System Grid, data replication, system monitoring Earth System Grid, data replication, system monitoring...

  6. UNITED STATES DEPARTMENT OF ENERGY (US DOE) DATA PRIVACY AND THE SMART GRID: A VOLUNTARY CODE OF CONDUCT (VCC)

    Energy Savers [EERE]

    DEPARTMENT OF ENERGY (US DOE) DATA PRIVACY AND THE SMART GRID: A VOLUNTARY CODE OF CONDUCT (VCC) Draft: 8/12/2014 MISSION STATEMENT The purpose of the Privacy Voluntary Code of Conduct, facilitated by the United States Department of Energy's Office of Electricity Delivery and Energy Reliability and the Federal Smart Grid Task Force, is to describe principles for voluntary adoption that: (1) encourage innovation while appropriately protecting the privacy and confidentiality of Customer Data and

  7. Blackout 2003: Conference for public review draft report on implementa...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on implementation of the task force recommendations Blackout 2003: Conference for public review draft report on implementation of the task force recommendations On Thursday, ...

  8. Blackout 2003: Electric System Working Group Technical Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blackout 2003: Electric System Working Group Technical Conference - Comments and Recommendations December 16, 2003 Electric System Working Group Technical Conference, Philadelphia ...

  9. Blackout 2003: U.S. - Canada Task Force Presents Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. - Canada Task Force Presents Final Report onBlackout of August 2003 Blackout 2003: U.S. - Canada Task Force Presents Final Report onBlackout of August 2003 August 14, 2003, ...

  10. EAC Recommendations for DOE Action on the Development of the Next Generation Grid Operating System - October 17, 2012

    Energy Savers [EERE]

    Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: October 17, 2012 RE: Recommendations on Development of the Next Generation Grid Operating System (Energy Management System). _________________________________________________________________________ The purpose of this memorandum is to respectfully recommend to the U.S. Department of Energy (DOE) a roadmap for the

  11. DOE Selects Projects for up to $50 Million of Federal Funding to Modernize the Nation's Electricity Grid

    Broader source: Energy.gov [DOE]

    Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin Kolevar today announced the Department's plans to invest up to $50 million over five years (Fiscal Years 2008 - 2012), subject to appropriations from Congress, in nine demonstration projects competitively selected to increase efficiency in the nation's electricity grid.

  12. DOE Publishes Notice of Public Meeting for Smart Grid-connected Buildings

    Broader source: Energy.gov [DOE]

    The physical characterization of smart and grid-connected commercial and residential buildings end-use equipment and appliances, including but not limited to processes and metrics for measurement, identification of grid and building services, and identification of values and benefits of grid connectivity.

  13. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  14. Microsoft Word - Honeywell comments_DOE RFI_Smart Grid Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Encourage context-aware automation to maximize consumer savings with intuitive easy-to-use automation solutions. Converge on Customer-oriented Smart Grid Architecture ...

  15. Microsoft Word - DM_VA-#126832-v3-Smart_Grid_Comments_--_DOE...

    Energy Savers [EERE]

    ... demand among consumers for Smart Grid applications like time-of-use pricing or demand-response programs. 3 In light of this reality, policymakers, industry, and other ...

  16. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    SciTech Connect (OSTI)

    Hankin, Steve

    2012-06-01

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software??now known as the Earth System Grid Federation (ESGF)??has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  17. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  18. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  19. 10 Years after the 2003 Northeast Blackout

    Broader source: Energy.gov [DOE]

    Ten years ago today, large portions of the Midwest and Northeast United States and into Canada went dark. The cascading event, which started shortly after 4:00 PM on August 14, 2003, ended up affecting an estimated 50 million people. For some customers, power was not restored for nearly four days. The Department of Energy and Natural Resources Canada jointly commissioned a task force that examined the underlying causes of the blackout and recommended forty-six actions to enhance the reliability of the North American power system. A number of the recommendations were incorporated into law passed by Congress and enacted in the Energy Policy Act of 2005 and the Energy Infrastructure Security Act of 2007.

  20. D:\\0myfiles\\DOE Policy (LBL) Blackout Final\\final-blackout-body...

    Energy Savers [EERE]

    ... genera- tors from various fuel sources, such as nuclear, ... as a regional power pool in 1935. PJM recently ... estima- tors, energy scheduling and accounting software, ...

  1. Microsoft Word - DOE Smart Grid RFI_APGA Comments 110110.doc

    Energy Savers [EERE]

    of Energy 1000 Independence Avenue, SW, Room 8H033 Washington, D.C. 20585 RE: Smart Grid RFI: Addressing Policy and ... Ladies and Gentlemen: The American Public Gas Association ...

  2. DOE Announces Funding Opportunity to Develop the Smart Grid Information Clearinghouse

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Office of Electricity Delivery and Energy Reliability (OE) issued a Funding Opportunity Announcement (FOA) for developing, populating, managing, and maintaining a Web-based Smart Grid Information Clearinghouse.

  3. DOE Hosts Public Roundtable Discussion of Smart-Grid Data Access and Privacy Issues

    Broader source: Energy.gov [DOE]

    On June 29, 2010, the Department of Energy will host a public roundtable panel discussion to collect additional information about the data access and privacy implications of smart-grid technologies...

  4. Kick-Off Meeting Smart Grid Ready Inverters DOE Project DE-EE0005337

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Grid Integration Workshop April 19, 2012 Tucson, AZ 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. Our work program has been to: * Better understand PV output variability * Apply feeder modeling and analysis tools * Consider screening method for connection * Promote a standard communication btw inverter and distribution * Investigate distribution "Hosting Capacity" for variable generation * Provide a forecast to grid operators 3 © 2012 Electric Power

  5. Microsoft Word - DOE Smart Grid RFI_APGA Comments 110110.doc

    Energy Savers [EERE]

    Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1000 Independence Avenue, SW, Room 8H033 Washington, D.C. 20585 RE: Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation, 75 Fed. Reg. 57,006 (September 17, 2010). Ladies and Gentlemen: The American Public Gas Association (APGA) is pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery and Energy

  6. Determination of station blackout frequency-duration relationships

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.; Balakrishna, S.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to the essential and nonessential electrical buses in a nuclear power plant. This generally involves the loss of redundant off-site power sources and the failure of two or more emergency diesel generators (EDGs). The US Nuclear Regulatory Commission (NRC) has proposed requiring all commercial reactors to have the capability of coping with a station blackout of a specified duration. The NRC has also proposed 4 or 8 h as acceptable durations, depending on plant susceptibility to the occurrence of station blackout events. Analyses were performed to determine expected station blackout frequencies representative of a majority of domestic nuclear power plants. A methodology based on that developed by the NRC was used. Representative industry data for loss of off-site power (LOOP) events and EDG reliability were used in the analyses.

  7. Blackout 2003: Transcript of Technical Conference with the Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigation Team | Department of Energy Transcript of Technical Conference with the Electric System Investigation Team Blackout 2003: Transcript of Technical Conference with the Electric System Investigation Team Electric System Investigation Team: 8 Reliability Recommendation consultation Transcript of the technical conference sponsored by the U.S. Canada task force investigating the August 14, 2003 blackout across Canada and the Northeastern United States. The transcript includes reports

  8. Loss of pressurizer water level during station blackout

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to both the essential and nonessential electrical buses in a nuclear power plant. The US Nuclear Regulatory Commission (NRC) has proposed a requirement that all plants be capable of maintaining adequate core cooling during station blackout events lasting a specified duration. The NRC has also suggested acceptable specified durations of four or eight hours, depending on individual plant susceptibility to blackout events. In a pressurized water reactor (PWR), the occurrence of a station blackout event results in the functional loss of many plant components, including main feedwater, reactor coolant pumps, the emergency core cooling system, and pressurizer heaters and spray. Nevertheless, PWRs have the capability of removing decay heat for some period of time using steam-driven auxiliary feedwater pumps and the natural-circulation capability of the primary system. The purpose of this investigation is to determine the early response of a PWR to station blackout conditions. In particular, the effect of primary coolant shrinkage and inventory loss on pressurizer level is examined to gain insight into the operational and analytical issues associated with the proposed station blackout coping requirement.

  9. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

    2009-01-01

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

  10. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-09-27

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the global-climate community, and - assuming its development continues - we expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful. Regretfully, we submit our final report at the end of project funding. To continue to serve the climate-science community, we are currently seeking additional funding. Such funding would allow us to maintain and enhance ESGF production and operation of this vital endeavor of cataloging, serving, and analyzing ultra-scale climate science data. At this time, the entire ESG-CET team would like to take this opportunity to sincerely thank our funding agencies in the DOE Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER) - as well as our national and international collaborators, stakeholders, and partners - for allowing us to work with you and serve the community these past several years.

  11. Blackout 2003: Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations

    Broader source: Energy.gov [DOE]

    The Task Force has completed a thorough investigation of the causes of the August 14, 2003 blackout and has recommended actions to minimize the likelihood and scope of similar events in the future.

  12. Study of a Station Blackout Event in the PWR Plant

    SciTech Connect (OSTI)

    Ching-Hui Wu; Tsu-Jen Lin; Tsu-Mu Kao [Institute of Nuclear Energy Research P.O. Box 3-3, Longtan, 32500, Taiwan (China)

    2002-07-01

    On March 18, 2001, a PWR nuclear power plant located in the Southern Taiwan occurred a Station Blackout (SBO) event. Monsoon seawater mist caused the instability of offsite power grids. High salt-contained mist caused offsite power supply to the nuclear power plant very unstable, and forced the plant to be shutdown. Around 24 hours later, when both units in the plant were shutdown, several inadequate high cycles of bus transfer between 345 kV and 161 kV startup transformers degraded the emergency 4.16 kV switchgears. Then, in the Train-A switchgear room of Unit 1 occurred a fire explosion, when the degraded switchgear was hot shorted at the in-coming 345 kV breaker. Inadequate configuration arrangement of the offsite power supply to the emergency 4.16 kV switchgears led to loss of offsite power (LOOP) events to both units in the plant. Both emergency diesel generators (EDG) of Unit 1 could not be in service in time, but those of Unit 2 were running well. The SBO event of Unit 1 lasted for about two hours till the fifth EDG (DG-5) was lined-up to the Train-B switchgear. This study investigated the scenario of the SBO event and evaluated a risk profile for the SBO period. Guidelines in the SBO event, suggested by probabilistic risk assessment (PRA) procedures were also reviewed. Many related topics such as the re-configuration of offsite power supply, the addition of isolation breakers of the emergency 4.16 kV switchgears, the betterment of DG-5 lineup design, and enhancement of the reliability of offsite power supply to the PWR plant, etc., will be in further studies. (authors)

  13. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  14. P016-10__DOE_RFI_-_Smart_Grid_Challenges__final1

    Energy Savers [EERE]

    0 Satcon Technology Corporation - Proprietary & Confidential Satcon Technology Corporation Request for Information Response for: Addressing Policy and Logistical Challenges to Smart Grid Implementation for US Department of Energy November 1, 2010 Disclosure: Contents found herein are considered proprietary and the distribution of this proposal is restricted to only the corporation stated above. Other requests for copies of this document must be referred to Satcon Headquarters, 27 Drydock

  15. How to Prepare Your Home for a Blackout | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home for a Blackout How to Prepare Your Home for a Blackout August 20, 2012 - 7:19pm Addthis Lynn Meyer Presidential Management Fellow, Office of Energy Efficiency and...

  16. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  17. Graphical Contingency Analysis for the Nation's Electric Grid

    ScienceCinema (OSTI)

    Zhenyu (Henry) Huang

    2012-12-31

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  18. Graphical Contingency Analysis for the Nation's Electric Grid

    SciTech Connect (OSTI)

    Zhenyu Huang

    2011-04-01

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  19. Smart Grid Primer (Smart Grid Books) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational Resources » Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) The Smart Grid: An Introduction, prepared 2008, is a publication sponsored by DOE's Office of Electricity Delivery and Energy Reliability that explores - in layman's terms - the nature, challenges, opportunities and necessity of Smart Grid implementation. Additional books, released in 2009, target the interests of specific stakeholder groups: Consumer Advocates,

  20. The Modern Grid Initiative is a DOE-funded project managed by the National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rainsuit Theory of grid modernization. This is third in a series of discussions on how different mindsets look at grid modernization. One of my past bosses used to share humorous theories of organizational change management from a college professor, McAdams, worthy of the great philosopher, Yogi Berra. The McAdams Theory of Grid Modernization While this column normally focuses on grid issues, generation counts. The grid is after all an energy system which includes generation, delivery, and load.

  1. Initial Evidence for Self-Organized Criticality in Electric Power System Blackouts

    SciTech Connect (OSTI)

    Carreras, B.A.; Dobson, I.; Newman, D.E.; Poole, A.B.

    2000-01-04

    We examine correlations in a time series of electric power system blackout sizes using scaled window variance analysis and R/S statistics. The data shows some evidence of long time correlations and has Hurst exponent near 0.7. Large blackouts tend to correlate with further large blackouts after a long time interval. Similar effects are also observed in many other complex systems exhibiting self-organized criticality. We discuss this initial evidence and possible explanations for self-organized criticality in power systems blackouts. Self-organized criticality, if fully confirmed in power systems, would suggest new approaches to understanding and possibly controlling blackouts.

  2. Parametric Grid Information in the DOE Knowledge Base: Data Preparation, Storage, and Access

    SciTech Connect (OSTI)

    HIPP,JAMES R.; MOORE,SUSAN G.; MYERS,STEPHEN C.; SCHULTZ,CRAIG A.; SHEPHERD,ELLEN; YOUNG,CHRISTOPHER J.

    1999-10-01

    The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation.

  3. Renewables and Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Workshop Renewables and Grid Integration February 28, 2014 Kevin Harrison National Renewable Energy Laboratory This presentation does not contain any proprietary, ...

  4. Blackout 2003: Conference for public review draft report on implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the task force recommendations | Department of Energy Conference for public review draft report on implementation of the task force recommendations Blackout 2003: Conference for public review draft report on implementation of the task force recommendations On Thursday, June 22, in Washington, D.C., the U.S.-Canada Power System Outage Task Force will hold a conference for stakeholders and the public to comment on the draft of the final report of the Task Force. The draft report assesses

  5. Estimating Failure Propagation in Models of Cascading Blackouts

    SciTech Connect (OSTI)

    Dobson, Ian [University of Wisconsin, Madison; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Nkei, Bertrand [ORNL; Newman, David E [University of Alaska

    2005-09-01

    We compare and test statistical estimates of failure propagation in data from versions of a probabilistic model of loading-dependent cascading failure and a power systems blackout model of cascading transmission line overloads. The comparisons suggest mechanisms affecting failure propagation and are an initial step towards monitoring failure propagation from practical system data. Approximations to the probabilistic model describe the forms of probability distributions of cascade sizes.

  6. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including ...

  7. Electricity Advisory Committee Smart Grid Subcommittee

    Energy Savers [EERE]

    Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011 Recommendations from the 2008 EAC Smart Grid Report (http://www.oe.energy.gov/DocumentsandMedia/final-smart-grid-report.pdf) 1. Create a Smart Grid Program office within DOE. Update: Completed. DOE's Office of Electricity Delivery and Energy Reliability (OE) has an active Smart Grid Program, which includes the Smart Grid Investment

  8. Reproducing continuous radio blackout using glow discharge plasma

    SciTech Connect (OSTI)

    Xie, Kai; Li, Xiaoping; Liu, Donglin; Shao, Mingxu [School of Aerospace Science and Technology, Xidian University, Xi'an 710071 (China)] [School of Aerospace Science and Technology, Xidian University, Xi'an 710071 (China); Zhang, Hanlu [School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121 (China)] [School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121 (China)

    2013-10-15

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 10{sup 11} cm{sup ?3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  9. Microsoft Word - DM_VA-#126832-v3-Smart_Grid_Comments_--_DOE_--_Policy_and_Logistical_Challenges.DOC

    Energy Savers [EERE]

    Before the UNITED STATES DEPARTMENT OF ENERGY Office of Electricity Delivery and Energy Reliability In the matter of: Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation 75 FR 57006 COMMENTS OF VERIZON AND VERIZON WIRELESS Michael Glover Of Counsel Edward Shakin William H. Johnson VERIZON 1320 North Courthouse Road Ninth Floor Arlington, Virginia 22201 (703) 351-3060 John T. Scott, III William D. Wallace VERIZON WIRELESS 1300 I Street N.W. Suite 400 West

  10. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    includes numerical simulators, analytical models, databases, and documentation. Smart Grid The DOE Smart Grid Implementation Strategy team (previously the Modern Grid...

  11. Smart Grid Computational Tool | Open Energy Information

    Open Energy Info (EERE)

    project benefits. The Smart Grid Computational Tool employs the benefit analysis methodology that DOE uses to evaluate the Recovery Act smart grid projects. How it works: The...

  12. Thermohydraulic and Safety Analysis for CARR Under Station Blackout Accident

    SciTech Connect (OSTI)

    Wenxi Tian; Suizheng Qiu; Guanghui Su; Dounan Jia [Xi'an Jiaotong University, 28 Xianning Road, Xi'an 710049 (China); Xingmin Liu - China Institute of Atomic Energy

    2006-07-01

    A thermohydraulic and safety analysis code (TSACC) has been developed using Fortran 90 language to evaluate the transient thermohydraulic behaviors and safety characteristics of the China Advanced Research Reactor(CARR) under Station Blackout Accident(SBA). For the development of TSACC, a series of corresponding mathematical and physical models were considered. Point reactor neutron kinetics model was adopted for solving reactor power. All possible flow and heat transfer conditions under station blackout accident were considered and the optional models were supplied. The usual Finite Difference Method (FDM) was abandoned and a new model was adopted to evaluate the temperature field of core plate type fuel element. A new simple and convenient equation was proposed for the resolution of the transient behaviors of the main pump instead of the complicated four-quadrant model. Gear method and Adams method were adopted alternately for a better solution to the stiff differential equations describing the dynamic behaviors of the CARR. The computational result of TSACC showed the enough safety margin of CARR under SBA. For the purpose of Verification and Validation (V and V), the simulated results of TSACC were compared with those of Relap5/Mdo3. The V and V result indicated a good agreement between the results by the two codes. Because of the adoption of modular programming techniques, this analysis code is expected to be applied to other reactors by easily modifying the corresponding function modules. (authors)

  13. Grid Certificates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid certificates are credentials that must be initialized for use with grid tools. Once a certificate is initialized it is automatically used by the grid tools to authenticate...

  14. The Modern Grid Initiative is a DOE-funded project managed by the National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McAdams Theory of grid modernization. This is final in a series of discussions on how different mindsets look at grid modernization. With four generation "X" and "Y" children growing up in our house over the last 25 years, we had the opportunity to begin to understand how this next generation of consumers, leaders, designers, and builders view the electric system. Briefly, generation X (GenX) are those who have grown up in the shadow of the Baby Boomers and are roughly 25 to

  15. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  16. High-Performance Computing for Real-Time Grid Analysis and Operation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

    2013-10-31

    Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

  17. Smart Grid Newsletter ? The Regulators Role in Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: "The Regulator's Role in Grid Modernization" Sponsor: The Modern Grid Strategy is a DOE-funded project conducted by the National Energy Technology Laboratory Leadership from...

  18. Potential failure of steam generator tubes following a station blackout

    SciTech Connect (OSTI)

    Ward, L.W.; Palmrose, D.E.

    1994-12-31

    The U.S. Nuclear Regulatory Commission is considering changes to pressurized water reactor (PWR) requirements relating to steam generator tube plugging and repair criteria, including leakage monitoring. The proposed changes are known as the alternate tube plugging criteria (APC) and are intended to permit PWRs to operate with through-wall cracks in steam generator tubes subject to meeting a specified limit on predicted primary to secondary leakage under accident conditions. To assess the consequences of the alternate plugging criteria, analyses were performed for a station blackout sequence in which the reactor core melts while the reactor coolant system (RCS) remains at high pressure. Evaluations were conducted to investigate the potential for tube failure with and without secondary system depressurization. The excessive heat coupled with the high-pressure differentials across the steam generator tubes could result in creep rupture failure of the tubes during a severe accident, which could lead to a radiological release directly to the environment. In order to assess the safety significance of the APC, it is important to identify the level of steam generator tube leakage that can occur without challenging the previous study conclusions that steam generator creep failure will not occur prior to a surge line or hot-leg failure. To assess the effect of leakage on steam generator tube integrity during a core melt sequence with the RCS at high pressure and the secondary side of the steam generators pressurized and depressurized, an analysis was performed for a core melt event resulting from an unmitigated station blackout to identify the total steamenerator and tube leakage flow rates that could induce tube ruptures prior to other RCS boudary faliures that could depressurize the RCS.

  19. DOE Announces Public Meetings on the Communications Needs of Utilities and Smart-Grid Data Access and Privacy

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) has long recognized the importance of incorporating broadband and other interactive communications technologies into ongoing efforts to modernize America’s electrical...

  20. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lynn Grid Integration Initiative Hydrogen Energy Storage for Grid Integration and Transportation Services May 14, 2014 2 Other DOE? 2 The GTT is a DOE inter-office work group ...

  1. Transmission Grid Integration

    Broader source: Energy.gov [DOE]

    The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

  2. file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme

    Energy Savers [EERE]

    Docket: DOE-HQ-2010-0024 Policy and Logistical Challenges to Smart Grid Implementation Comment On: DOE-HQ-2010-0024-0001 Policy and Logistical Challenges to Smart Grid ...

  3. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

  4. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  5. Reports on Initial Results of Smart Grid Investment Grant Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports on Initial Results of Smart Grid Investment Grant Projects (December 2012) Reports on Initial Results of Smart Grid Investment Grant Projects (December 2012) DOE is ...

  6. Testing and Validation of Vehicle to Grid Communication Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Validation of Vehicle to Grid Communication Standards Testing and Validation of Vehicle to Grid Communication Standards 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  7. Establishment of Grid Modernization Laboratory Consortium - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establishment of Grid Modernization Laboratory Consortium - Testing NetworkEstablishment of Grid Modernization Laboratory Consortium - Testing Network Establishment of Grid Modernization Laboratory Consortium - Testing Network Establishment of Grid Modernization Laboratory Consortium - Testing Network The U.S. Department of Energy launched the GMLC in November 2014. The consortium, a strategic partnership between DOE headquarters and the national laboratories, brings together leading experts and

  8. Smart Grid Technology Interactive Model | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Educational Resources » Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) The Smart Grid: An Introduction, prepared 2008, is a publication sponsored by DOE's Office of Electricity Delivery and Energy Reliability that explores - in layman's terms - the nature, challenges, opportunities and necessity of Smart Grid implementation. Additional books, released in 2009, target the interests of specific stakeholder groups: Consumer Advocates,

  9. Utility perspective on station blackout rule implementation with NUMARC 87-00

    SciTech Connect (OSTI)

    Maracek, J.

    1990-01-01

    The development of the station blackout rule involved an unusually high level of cooperation between the industry and the Nuclear Regulatory Commission (NRC). The industry developed an approach to implementation of the rule in the form of the Nuclear Management and Resources Council's (NUMARC's) Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors (NUMARC 87-00). This document was reviewed and accepted by the NRC staff as a means for meeting the requirements of the station blackout rule. Yet difficulties still arose when individual utilities used the NUMARC 87-00 approach to respond to the rule. This presentation examines the development process and subsequent difficulties and identifies potential improvements for development and implementation of new rules in the future.

  10. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  11. Methodology to determine the technical performance and value proposition for grid-scale energy storage systems : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K.; Trudnowski, Daniel J.

    2012-12-01

    As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

  12. Applications of the RELAP5 code to the station blackout transients at the Browns Ferry Unit One Plant

    SciTech Connect (OSTI)

    Schultz, R.R.; Wagoner, S.R.

    1983-01-01

    As a part of the charter of the Severe Accident Sequence Analysis (SASA) Program, station blackout transients have been analyzed using a RELAP5 model of the Browns Ferry Unit 1 Plant. The task was conducted as a partial fulfillment of the needs of the US Nuclear Regulatory Commission in examining the Unresolved Safety Issue A-44: Station Blackout (1) the station blackout transients were examined (a) to define the equipment needed to maintain a well cooled core, (b) to determine when core uncovery would occur given equipment failure, and (c) to characterize the behavior of the vessel thermal-hydraulics during the station blackout transients (in part as the plant operator would see it). These items are discussed in the paper. Conclusions and observations specific to the station blackout are presented.

  13. The response of BWR Mark II containments to station blackout severe accident sequences

    SciTech Connect (OSTI)

    Greene, S.R.; Hodge, S.A.; Hyman, C.R.; Tobias, M.L. (Oak Ridge National Lab., TN (USA))

    1991-05-01

    This report describes the results of a series of calculations conducted to investigate the response of BWR Mark 2 containments to short-term and long-term station blackout severe accident sequences. The BWR-LTAS, BWRSAR, and MELCOR codes were employed to conduct quantitative accident sequence progression and containment response analyses for several station blackout scenarios. The accident mitigation effectiveness of automatic depressurization system actuation, drywell flooding via containment spray operation, and debris quenching in Mark 2 suppression pools is assessed. 27 refs., 16 figs., 21 tabs.

  14. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  15. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 580 .1 A Admin Chg 1 3 10-23 2012 U.S. Department of Energyadmin change DOE O XXX.XWashington, D.C. DOE O XXX.X Chg X: XX-XX-XXXX SUBJECT: ADMINISTRATIVE CHANGE TO DOE O XXX.X, TITLE (IN ITALICS) EXPLANATION OF CHANGES. [This information can be copied from the Approval Memo] LOCATIONS OF CHANGES: Page Paragraph Changed To [Original text that was changed] [Revised text]

  16. Smart Grid Investment Grant Recipient FAQs

    Broader source: Energy.gov [DOE]

    These Questions and Answers have been provided by DOE to Smart Grid Investment Grant selectees.  The information discussed within these documents applies specifically and only to the Smart Grid...

  17. SCDAP severe core-damage studies: BWR ATWS and PWR station blackout

    SciTech Connect (OSTI)

    Laats, E.T.; Chambers, R.; Driskell, W.E.

    1983-01-01

    The Severe Accident Sequence Analysis (SASA) Program, sponsored by the US Nuclear Regulatory Commission (NRC), is addressing a number of accident scenarios that potentially pose a health hazard to the public. Two of the scenarios being analyzed in detail at the Idaho National Engineering Laboratory (INEL) are the station blackout at the Bellefonte nuclear plant and the anticipated transient without scram (ATWS) at the Browns Ferry-1 plant. The INEL analyses of the station blackout and ATWS have been divided into four parts, which represent the sequence being followed in this study. First, the evaluation of long term irradiation effects prior to the station blackout or ATWS was conducted using the FRAPCON-2 fuel rod behavior code; second, the reactor primary and secondary coolant system behavior is being analyzed with the RELAP5 code; third, the degradation of the core is being analyzed with the SCDAP code; and finally, the containment building response is being analyzed with the CONTEMPT code. This paper addresses only the SCDAP/MODO degraded core analyses for both the station blackout and ATWS scenarios.

  18. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

  19. RELAP5/MOD3 simulation of the station blackout experiment conducted at the IIST facility

    SciTech Connect (OSTI)

    Ferng, Y.M.; Liu, T.J.; Lee, C.H. [Inst. of Nuclear Energy Research, Lung-Tan (Taiwan, Province of China)

    1996-10-01

    Thermal-hydraulic responses in the station blackout experiment conducted at the IIST facility are simulated through the use of the advanced system code RELAP5/MOD3. Typical behaviors occurring in the IIST station blackout transient are characterized by secondary boiloff, primary saturation and pressurization, and subsequent core uncovery and heatup. As the coolant inventory within the steam generator secondary system boils dry, the primary system pressure increases as a result of degradation of the heat removal ability of the steam generator secondary side. This pressurization phenomenon causes the pressurizer safety valve to open and the primary coolant to deplete through the valve, causing the core to eventually become uncovered. The same response can be exactly simulated by the current model. The current calculated results show fairly good agreement with the experimental data, but the timing of the events occurring in the station blackout transient is calculated earlier than the measured value. The overall comparison of key parameters between the calculated results and IIST test data, however, reveals that the current RELAP5/MOD3 model can provide reasonable station blackout modeling for simulating long-term system behavior.

  20. WHAT THE SMART GRID MEANS TO AMERICANS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WHAT THE SMART GRID MEANS TO AMERICANS WHAT THE SMART GRID MEANS TO AMERICANS The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at

  1. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid - What's so Smart About It? An Educational Forum on Smart Grids Joe Miller - Modern Grid Strategy Team June 24, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is the Smart Grid? EISA 2007 Highlights DOE Activities Questions MODERN GRID S T R A T E G Y What is the Smart Grid? 4

  2. Energy.Gov Presents: Understanding The Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy.Gov Presents: Understanding The Grid Energy.Gov Presents: Understanding The Grid Addthis Topic Smart Grid The U.S. Department of Energy is making a series of announcements to support its Grid Modernization Initiative. As we do so, we realize many of you may be wondering: what does "grid modernization" mean? Watch this video to find out

  3. NSTAR Smart Grid Pilot

    SciTech Connect (OSTI)

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  4. Grid Architecture

    Broader source: Energy.gov [DOE]

    This report describes the discipline of grid architecture and shows how it has been adapted from the combination of system architecture, network theory, and control engineering to apply to the issues of grid modernization. It shows how grid architecture aids in managing complexity, supports stakeholder communication about the grid, supplies methods to identify gaps and constraints, and provides the ability to compare architectural choices analytically. This approach views the grid as a network of structures, including electrical structure, industry, regulatory, and market structure, information systems and communications, and control and coordination structures and provides the means to understand and plan their interactions. The report then provides architectural views of the existing US power grid structures, with regional and other specializations. It illustrates how organized central wholesale markets are integrated with bulk system control, how distribution level changes related to penetration of Distributed Energy Resources impact both distribution and bulk systems operations, and how certain existing grid structures limit the ability to implement forward-looking changes to the grid. Finally the report provides selected forward looking architectural views for advanced distribution, integrated storage, and wide scale coordination via layered decomposition. The report contains a number of explicitly labeled architectural insights to aid in managing the complexity of grid modernization.

  5. Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing Policy and Logistical Challenges to Smart Grid Implementation Galvin Electricity Initiative DOE RFI DOE RFI ...

  6. Articles about Grid Integration and Transmission | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program. September 16, 2015 Argonne National Laboratory Develops New Model to Quantify...

  7. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM ...

  8. Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements

    SciTech Connect (OSTI)

    Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek; Nguyen, Tony B.

    2006-09-30

    Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form a hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.

  9. Overture: The grid classes

    SciTech Connect (OSTI)

    Brislawn, K.; Brown, D.; Chesshire, G.; Henshaw, W.

    1997-01-01

    Overture is a library containing classes for grids, overlapping grid generation and the discretization and solution of PDEs on overlapping grids. This document describes the Overture grid classes, including classes for single grids and classes for collections of grids.

  10. Transforming Power Grid Operations via High Performance Computing

    SciTech Connect (OSTI)

    Huang, Zhenyu; Nieplocha, Jarek

    2008-07-31

    Past power grid blackout events revealed the adequacy of grid operations in responding to adverse situations partially due to low computational efficiency in grid operation functions. High performance computing (HPC) provides a promising solution to this problem. HPC applications in power grid computation also become necessary to take advantage of parallel computing platforms as the computer industry is undergoing a significant change from the traditional single-processor environment to an era for multi-processor computing platforms. HPC applications to power grid operations are multi-fold. HPC can improve todays grid operation functions like state estimation and contingency analysis and reduce the solution time from minutes to seconds, comparable to SCADA measurement cycles. HPC also enables the integration of dynamic analysis into real-time grid operations. Dynamic state estimation, look-ahead dynamic simulation and real-time dynamic contingency analysis can be implemented and would be three key dynamic functions in future control centers. HPC applications call for better decision support tools, which also need HPC support to handle large volume of data and large number of cases. Given the complexity of the grid and the sheer number of possible configurations, HPC is considered to be an indispensible element in the next generation control centers.

  11. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | National Nuclear Security Administration DOD/DOE NNSA Joint Munitions Program: 30 years of collaborative innovation Tuesday, April 26, 2016 - 11:25am As part of NNSA's commitment to protecting and preserving the nation's nuclear deterrent, NNSA collaborates with the Department of Defense (DOD) in the Joint Munitions Program (JMP). This year marks more than 30 years of partnership through the JMP to improve and invest in innovative technology in pursuit of mutual long-term national security

  12. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November ...

  13. Comments of Avista Corporation on DOE Request forInformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid: Data Access, Third Party Use, and Privacy Comments of Avista Corporation on DOE ... Grid: Data Access, Third Party Use, and Privacy Comments of Avista Corporation on DOE ...

  14. EAC Recommendations for DOE Action Regarding Consumer Acceptance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Acceptance of Smart Grid - June 6, 2013 EAC Recommendations for DOE Action Regarding Consumer Acceptance of Smart Grid - June 6, 2013 EAC Recommendations for DOE Action ...

  15. PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE | Department of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Implementation Transmission Planning Section 1222 of the Energy Policy Act 2005 PLAINS & ... August 2003 Blackout DOE Grid Tech Team Energy Assurance ...

  16. AARP submits the following comments on consumers and smart grid issues in response to the Request for Information (Request or RFI) on smart grid policy and logistical challenges, published by the Department of Energy (DOE) on September 16, 2010

    Energy Savers [EERE]

    AARP, National Consumer Law Center, and Public Citizen Comments to: DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges David Certner Legislative Counsel and Legislative Policy Director AARP Government Relations and Advocacy Olivia Wein, Staff Attorney National Consumer Law Center Tyson Slocum, Director Public Citizen's Energy Program November 1, 2010 2 CONSUMER COMMENTERS: AARP, National Consumer Law Center, and Public Citizen submit the following comments on

  17. MELCOR calculations for a low-pressure short-term station blackout in a BWR-6

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    A postulated, low-pressure, short term station blackout severe accident has been analyzed using the MELCOR code for the Grand Gulf nuclear power plant. Different versions have been used with three different models of the plant. This paper presents results of the effects of different plant models and versions of MELCOR on the calculated results and to present the best-estimating timing of events for this transient.

  18. Elforsk Smart grid programme (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution Smart Grid Projects...

  19. Electrical vehicles impacts on the grids (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  20. Regulatory/backfit analysis for the resolution of Unresolved Safety Issue A-44, Station Blackout

    SciTech Connect (OSTI)

    Rubin, A.M.

    1988-06-01

    Station blackout is the complete loss of alternating current (ac) electric power to the essential and nonessential buses in a nuclear power plant; it results when both offsite power and the onsite emergency ac power systems are unavailable. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on ac power, the consequences of a station blackout could be severe. Because of the concern about the frequency of loss of offsite power, the number of failures of emergency diesel generators, and the potentially severe consequences of a loss of all ac power, ''Station Blackout'' was designated as Unresolved Safety Issue (USI) A-44. This report presents the regulatory/backfit analysis for USI A-44. It includes (1) a summary of the issue, (2) the recommended technical resolution, (3) alternative resolutions considered by the Nuclear Regulatory Commission (NRC) staff, (4) an assessment of the benefits and costs of the recommended resolution, (5) the decision rationale, (6) the relationship between USI A-44 and other NRC programs and requirements, and (7) a backfit analysis demonstrating that the resolution of USI A-44 complies with the backfit rule (10 CFR 50.109).

  1. Regulatory analysis for the resolution of Unresolved Safety Issue A-44, Station Blackout. Draft report

    SciTech Connect (OSTI)

    Rubin, A.M.

    1986-01-01

    ''Station Blackout'' is the complete loss of alternating current (ac) electric power to the essential and nonessential buses in a nuclear power plant; it results when both offsite power and the onsite emergency ac power systems are unavailable. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on ac power, the consequences of a station blackout could be severe. Because of the concern about the frequency of loss of offsite power, the number of failures of emergency diesel generators, and the potentially severe consequences of a loss of all ac power, ''Station Blackout'' was designated as Unresolved Safety Issue (USI) A-44. This report presents the regulatory analysis for USI A-44. It includes: (1) a summary of the issue, (2) the proposed technical resolution, (3) alternative resolutions considered by the Nuclear Regulatory Commission (NRC) staff, (4) an assessment of the benefits and costs of the recommended resolution, (5) the decision rationale, and (6) the relationship between USI A-44 and other NRC programs and requirements.

  2. Modeling Advanced Neutron Source reactor station blackout accident using RELAP5

    SciTech Connect (OSTI)

    Chen, N.C.J. (Oak Ridge National Lab., TN (USA)); Fletcher, C.D. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-01-01

    The Advanced Neutron Source (ANS) system model using RELAP5 has been developed to perform loss-of-coolant accident (LOCA) and non-LOCA transients as safety-related input for early design considerations. The transients studies include LOCA, station blackout, and reactivity insertion accidents. The small-, medium-, and large-break LOCA results were presented and documented. This paper will focus on the station blackout scenario. The station blackout analyses have concentrated on thermal-hydraulic system response with and without accumulators. Five transient calculations were performed to characterize system performance using various numbers and sizes of accumulators at several key sites. The main findings will be discussed with recommendations for conceptual design considerations. ANS is a state-of-the-art research reactor to be built and operated at high heat flux, high mass flux, and high coolant subcooling. To accommodate these features, three ANS-specific changes were made in the RELAP5 code by adding: the Petukhov heat transfer correlation for single-phase forced convection in the thin coolant channel; the Gambill additive method with the Weatherhead wall superheat for the critical heat flux; and the Griffith drift flux model for the interfacial drag in the slug flow regime. 7 refs., 6 figs., 1 tab.

  3. Smart Grid Investment Grant Recipient FAQs | Department of Energy

    Energy Savers [EERE]

    Recipient FAQs Smart Grid Investment Grant Recipient FAQs These Questions and Answers have been provided by DOE to Smart Grid Investment Grant selectees. The information discussed within these documents applies specifically and only to the Smart Grid Investment Grant and not to any other DOE Recovery Act Program. Questions and Answers for the Smart Grid Investment Grant Program: Davis Bacon Act Applicability to Smart Grid Investment Grant Program Grants - Memo - February 10, 2011 (PDF 140 KB)

  4. DOE

    Gasoline and Diesel Fuel Update (EIA)

    DOE /E/A- 0202( 83//Q J Sh or t-T er m En er gy O ut lo ok a to m Quar terly Proje ction s Febru ary 1983 Ene rgy Info rma tion Adm inist ratio n Was hing ton, D.C. t rt jrt .or t lor t lor t .lor t- ior t- ior t <.o rt ort . m .er m -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -Te rm -T erm -T erm -T erm Nrm ue rgy En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En erg y En

  5. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    ... Physical and financial exchanges between these separately regulated entities may involve ... 4.21 Architectural Insight 7 In the chaos theory view of grid stability, the seeds of wide ...

  6. NREL: Distributed Grid Integration - Energy System Basics Video Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Energy System Basics Video Series Learn the essential facts on energy systems in this six-part video series sponsored by the DOE SunShot Initiative and hosted by Dr. Ravel Ammerman. Part 1: Electricity Grid Overview Part 2: Electricity Grid: Traditional Generation Technologies Part 3: Electricity Grid: Transmission Systems Part 4: Electricity Grid: Substation Overview Part 5: Electricity Grid: Distribution System Overview Part 6: Electricity Grid: Renewable Energy Resources

  7. Cybersecurity and the Smarter Grid (October 2014) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the Smarter Grid (October 2014) Cybersecurity and the Smarter Grid (October 2014) An article by OE's Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure. The article also presents insights of four Smart Grid Investment Grant (SGIG) recipients that are advancing state of the art of power grid security by designing cybersecurity into the foundation of

  8. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  9. Final Report for DOE grant DE-FG02-07ER64432 "New Grid and Discretization Technologies for Ocean and Ice Simulations"

    SciTech Connect (OSTI)

    Gunzburger, Max

    2013-03-12

    The work reported is in pursuit of these goals: high-quality unstructured, non-uniform Voronoi and Delaunay grids; improved finite element and finite volume discretization schemes; and improved finite element and finite volume discretization schemes. These are sought for application to spherical and three-dimensional applications suitable for ocean, atmosphere, ice-sheet, and other climate modeling applications.

  10. Reports | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports and Other Documents Reports and Other Documents Reports and other documents from DOE and other relevant agencies, listed by topic. AUGUST 2003 BLACKOUT CONTROL SYSTEMS SECURITY COORDINATION OF FEDERAL TRANSMISSION AUTHORIZATIONS DEMAND RESPONSE DISTRIBUTED ENERGY ELECTRICITY RELIABILITY EMERGENCY PREPAREDNESS AND EMERGENCY RESPONSE EMERGENCY RELIABILITY ORDERS ENERGY ASSURANCE ENERGY CORRIDORS ON FEDERAL LANDS ENERGY EFFICIENCY ENERGY INDEPENDENCE AND SECURITY ACT OF 2007 (EISA) ENERGY

  11. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  12. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  13. Evaluating the Effect of Upgrade, Control and Development Strategies on Robustness and Failure Risk of the Power Transmission Grid

    SciTech Connect (OSTI)

    Newman, David E; Carreras, Benjamin A; Lynch, Vickie E; Dobson, Ian

    2008-01-01

    We use the OPA complex systems model of the power transmission system to investigate the effect of a series of different network upgrade scenarios on the long time dynamics and the probability of large cascading failures. The OPA model represents the power grid at the level of DC load flow and LP generation dispatch and represents blackouts caused by randomly triggered cascading line outages and overloads. We examine the effect of increased component reliability on the long-term risks, the effect of changing operational margins and the effect of redundancy on those same long-term risks. The general result is that while increased reliability of the components decreases the probability of small blackouts, depending on the implementation, it actually can increase the probability of large blackouts. When we instead increase some types of redundancy of the system there is an overall decrease in the large blackouts. As some of these results are counter intuitive these studies suggest that care must be taken when making what seem to be logical upgrade decisions.

  14. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  15. Evaluation of station blackout accidents at nuclear power plants: Technical findings related to unresolved safety issue A-44: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    ''Station Blackout,'' which is the complete loss of alternating current (AC) electrical power in a nuclear power plant, has been designated as Unresolved Safety Issue A-44. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on AC power, the consequences of a station blackout could be severe. This report documents the findings of technical studies performed as part of the program to resolve this issue. The important factors analyzed include: the fequency of loss of offsite power; the probability that emergency or onsite AC power supplies would be unavailable; the capability and reliability of decay heat removal systems independent of AC power; and the likelihood that offsite power would be restored before systems that cannot operate for extended periods without AC power fail, thus resulting in core damage. This report also addresses effects of different designs, locations, and operational features on the estimated frequency of core damage resulting from station blackout events.

  16. Containment pressurization and burning of combustible gases in a large, dry PWR containment during a station blackout sequence

    SciTech Connect (OSTI)

    Lee, M.; Fan, C.T. (National Tsing-Hua Univ., Dept. of Nuclear Engineering, Hsinchu (TW))

    1992-07-01

    In this paper, responses of a large, dry pressurized water reactor (PWR) containment in a station blackout sequence are analyzed with the CONTAIN, MARCH3, and MAAP codes. Results show that the predicted containment responses in a station blackout sequence of these three codes are substantially different. Among these predictions, the MAAP code predicts the highest containment pressure because of the large amount of water made available to quench the debris upon vessel failure. The gradual water boiloff by debris pressurizes the containment. The combustible gas burning models in these codes are briefly described and compared.

  17. Machine Learning for the Grid (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Machine Learning for the Grid Citation Details In-Document Search Title: Machine Learning for the Grid You are accessing a document from the Department of Energy's (DOE) SciTech ...

  18. SGIG and SGDP Highlights: Jumpstarting a Modern Grid (October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided DOE with 4.5 billion to modernize the electric power grid. Under the largest program, the Smart Grid ...

  19. Smart Meters and a Smarter Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters and a Smarter Grid Smart Meters and a Smarter Grid May 16, 2011 - 4:40pm Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory Have ...

  20. HOW THE SMART GRID PROMOTES A GREENER FUTURE. | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HOW THE SMART GRID PROMOTES A GREENER FUTURE. HOW THE SMART GRID PROMOTES A GREENER FUTURE. The U.S. Department of Energy (DOE) is charged under the Energy Independence and ...

  1. Recovery Act Funds at Work: Smart Grid Investment Grant Profiles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funds at Work: Smart Grid Investment Grant Profiles Recovery Act Funds at Work: Smart Grid Investment Grant Profiles DOE is partnering with regional and local utilities and co-ops ...

  2. SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. National Transmission Grid Study: 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Grid Study: 2002 National Transmission Grid Study: 2002 National Transmission Grid Study: The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. PDF icon National Transmission Grid Study More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

  11. Progress Energy draft regarding Smart Grid RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logistical Challenges | Department of Energy Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges PDF icon Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges More Documents & Publications Comments of DRSG to DOE Smart Grid RFI:

  12. Installing a Grid-Tied Photovoltaic System

    Energy Savers [EERE]

    Generating Renewable Ideas for Development Alternatives GRID Alternatives - Solar Affordable Housing Program * Susie Chang, Director of Tribal Programs * Evelyn Blanco, Outreach Coordinator DOE Office of Indian Energy - Tribal Leader Forum - Financing and Investing in Tribal Renewable Energy Projects Generating Renewable Ideas for Development Alternatives Session Agenda  I. GRID Alternatives' Model  II. GRID and the SASH Program: Eligibility Requirements and Tribal Participation  III.

  13. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structuring the Smart Grid Framework: Application of Complex Systems Engineering Joe Miller - DOE / NETL Modern Grid Team Lead Committee on Science, Engineering, and Public Policy May 15, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy

  14. WHAT A SMART GRID MEANS TO OUR NATION'S FUTURE. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A SMART GRID MEANS TO OUR NATION'S FUTURE. WHAT A SMART GRID MEANS TO OUR NATION'S FUTURE. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and

  15. What the Smart Grid Means to America's Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What the Smart Grid Means to America's Future What the Smart Grid Means to America's Future The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and

  16. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force » Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including costs, benefits, value proposition to consumers, implementation, and deployment. Department of Energy-Edison Electric Institute e-Forum: What is a Smart Grid? May 19, 2008, 2:00 pm-4:00 pm The objective of this e-Forum was to share emerging industry views on what constitutes a Smart Grid among our fellow stakeholders, with

  17. Grid Architecture

    SciTech Connect (OSTI)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-03-02

    This work was done at the request of the U.S. Department of Energy (DOE), specifically with respect to issues relevant to U.S. electric transmission, storage and distribution infrastructure.

  18. DOE Announces First Awards in Scientific Discovery through Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy 220 Million in Grid Modernization Funding DOE Announces $220 Million in Grid Modernization Funding January 14, 2016 - 12:55pm Addthis Grid Modernization Initiative releases multi-year plan and awards funding for groundbreaking DOE-wide Grid Modernization Laboratory Consortium. | Graphic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department Grid Modernization Initiative releases multi-year plan and awards funding for groundbreaking DOE-wide Grid

  19. ESBWR response to an extended station blackout/loss of all AC power

    SciTech Connect (OSTI)

    Barrett, A. J.; Marquino, W.

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event. Beyond 7 days, only a few simple actions are needed to cope with the SBO for an indefinite amount of time. The operation of the ICS as the primary success path for mitigation of an SBO, allows for near immediate plant restart once power is restored. (authors)

  20. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen...

    Energy Savers [EERE]

    Smart Grid Solutions Strengthen Electric Reliability and Customer Services in Florida With ... With support from DOE, our SGIG project enables us to enhance service reliability while ...

  1. Electricity Grid Basics Webinar Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on electricity grid basics.

  2. National Transmission Grid Study: 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to...

  3. Electricity Grid Basics Webinar Presentation Slides and Text...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Grid Basics Webinar Presentation Slides and Text Version Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on ...

  4. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.

  5. Source term experiment STEP-3 simulating a PWR severe station blackout

    SciTech Connect (OSTI)

    Simms, R.; Baker, L. Jr.; Ritzman, R.L.

    1987-05-21

    For a severe PWR accident that leads to a loss of feedwater to the steam generators, such as might occur in a station blackout, fission product decay heating will cause a water boiloff. Without effective cooling of the core, steam will begin to oxidize the Zircaloy cladding. The noble gases and volatile fission products, such as Cs and I, that are major contributors to the radiological source term, will be released from the damaged fuel shortly after cladding failure. The accident environment when these volatile fission products escape was simulated in STEP-3 using four fuel elements from the Belgonucleaire BR3 reactor. The primary objective was to examine the releases in samples collected as close to the test zone as possible. In this paper, an analysis of the temperatures and hydrogen generation is compared with the measurements. The analysis is needed to estimate releases and characterize conditions at the source for studies of fission product transport.

  6. New time-line technique for station blackout core-melt analysis

    SciTech Connect (OSTI)

    Stutzke, M.A.

    1986-01-01

    Florida Power Corporation (FPC) has developed a new method for analyzing station blackout (SBO) core-melt accidents. This method, created during the recent probabilistic risk assessment (PRA) of Crystal River Unit 3 (CR-3), originated from the need to analyze the interactions among the two-train emergency feedwater (EFW) system, station batteries, and diesel generators (DGs) following a loss of off-site power (LOSP) event. SBO core-melt sequences for CR-3 are unique since the time core-melt commences depends on which DG fails last. The purpose of this paper is to outline the new method of analysis of SBO core-melt accidents at CR-3. The significance of SBO core-melt accidents to total plant risk, along with the efficacy of various methods to reduce SBO risk, are also discussed.

  7. Proposed SPAR Modeling Method for Quantifying Time Dependent Station Blackout Cut Sets

    SciTech Connect (OSTI)

    John A. Schroeder

    2010-06-01

    Abstract: The U.S. Nuclear Regulatory Commissions (USNRCs) Standardized Plant Analysis Risk (SPAR) models and industry risk models take similar approaches to analyzing the risk associated with loss of offsite power and station blackout (LOOP/SBO) events at nuclear reactor plants. In both SPAR models and industry models, core damage risk resulting from a LOOP/SBO event is analyzed using a combination of event trees and fault trees that produce cut sets that are, in turn, quantified to obtain a numerical estimate of the resulting core damage risk. A proposed SPAR method for quantifying the time-dependent cut sets is sometimes referred to as a convolution method. The SPAR method reflects assumptions about the timing of emergency diesel failures, the timing of subsequent attempts at emergency diesel repair, and the timing of core damage that may be different than those often used in industry models. This paper describes the proposed SPAR method.

  8. Comparative Study of Station Blackout Counterpart Tests in APEX and ROSA/AP600

    SciTech Connect (OSTI)

    Lafi, Abd Y.; Reyes, Jose N. Jr.

    2000-05-15

    A comparison is presented between station blackout tests conducted in both the Advanced Plant Experiment (APEX) facility and in the modified Rig of Safety Assessment (ROSA/AP600) Large-Scale Test Facility. The comparison includes the depressurization and liquid-level behavior during secondary-side blowdown, natural circulation, automatic depressurization system operation, and in-containment refueling water storage tank injection. Reasonable agreement between the test results from APEX NRC-2 and ROSA/AP600 AP-BO-01 has been observed with respect to the timing of depressurization and liquid draining rates. This indicates that the reduced height and pressure scaling of APEX preserves the sequence of events relative to the full-height and pressure ROSA/AP600.

  9. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    SciTech Connect (OSTI)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; Anders, David; Martineau, Richard

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC) system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.

  10. Department of Energy Announces $8.5 Million to Advance Solar Energy Grid Integration Systems

    Broader source: Energy.gov [DOE]

    Stage III awards through DOE's Sandia National Laboratories to help advance solar energy deployment and grid reliability

  11. Now Available: Smart Grid Investments Improve Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and ...

  12. America's Competitiveness Depends on a 21st Century Grid | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blackouts and brownouts cost our economy tens of billions of dollars a year. We risk ever ... Blackouts and brownouts already cost our economy tens of billions of dollars a year, and ...

  13. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  14. EAC Recommendations for DOE Action Regarding Consumer Acceptance of Smart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid - June 6, 2013 | Department of Energy Consumer Acceptance of Smart Grid - June 6, 2013 EAC Recommendations for DOE Action Regarding Consumer Acceptance of Smart Grid - June 6, 2013 EAC Recommendations for DOE Action Regarding Consumer Acceptance of Smart Grid, approved at the June 5-6, 2013 EAC Meeting. PDF icon EAC Recommendations for DOE Action on Consumer Acceptance of Smart Grid - June 6, 2013 More Documents & Publications DOE Responses to EAC Work Products - September 2013 Re:

  15. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Modernization Consortium Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Grid Modernization...

  16. Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M.; Corey, Garth P.

    2010-02-01

    This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

  17. Human Factors for Situation Assessment in Grid Operations

    SciTech Connect (OSTI)

    Guttromson, Ross T.; Schur, Anne; Greitzer, Frank L.; Paget, Mia L.

    2007-08-08

    Executive Summary Despite advances in technology, power system operators must assimilate overwhelming amounts of data to keep the grid operating. Analyses of recent blackouts have clearly demonstrated the need to enhance the operators situation awareness (SA). The long-term objective of this research is to integrate valuable technologies into the grid operator environment that support decision making under normal and abnormal operating conditions and remove non-technical barriers to enable the optimum use of these technologies by individuals working alone and as a team. More specifically, the research aims to identify methods and principles to increase SA of grid operators in the context of system conditions that are representative or common across many operating entities and develop operationally relevant experimental methods for studying technologies and operational practices which contribute to SA. With increasing complexity and interconnectivity of the grid, the scope and complexity of situation awareness have grown. New paradigms are needed to guide research and tool development aimed to enhance and improve operations. In reviewing related research, operating practices, systems, and tools, the present study established a taxonomy that provides a perspective on research and development surrounding power grid situation awareness and clarifies the field of human factors/SA for grid operations. Information sources that we used to identify critical factors underlying SA included interviews with experienced operational personnel, available historical summaries and transcripts of abnormal conditions and outages (e.g., the August 14, 2003 blackout), scientific literature, and operational policies/procedures and other documentation. Our analysis of August 2003 blackout transcripts and interviews adopted a different perspective than previous analyses of this material, and we complemented this analysis with additional interviews. Based on our analysis and a broad literature review, we advocate a new perspective on SA in terms of sensemaking, also called situated or ecological decision making, where the focus of the investigation is to understand why the decision maker(s) experienced the situation the way they did, or why what they saw made sense to them at the time. This perspective is distinct from the traditional branch of human factors research in the field which focuses more on ergonomics and the transactional relationship between the human operator and the systems. Consistent with our findings from the literature review, we recognized an over-arching need to focus SA research on issues surrounding the concept of shared knowledge; e.g., awareness of what is happening in adjacent areas as well as ones own area of responsibility. Major findings were: a) Inadequate communication/information sharing is pervasive, b) Information is available, but not used. Many tools and mechanisms exist for operators to build awareness of the physical grid system, yet the transcripts reveal that they still need to call and exchange information with operators of neighboring areas to improve or validate their SA. The specific types of information that they request are quite predictable and, in most cases, cover information that could be available to both operators and reliability coordinators through readily available displays or other data sources, c) Shared Knowledge is Required on Operations/Actions as Well as Physical Status. In an ideal, technologically and organizationally perfect world, every control room and every reliability coordinator may have access to complete data across all regional control areas and yet, there would still be reason for the operators to call each other to gain and improve their SA of power grid operations, and d) Situation Awareness as sensemaking and shared knowledge.

  18. file://P:\Smart Grid\Smart Grid RFI Policy and Logistical Comme

    Energy Savers [EERE]

    Docket: DOE-HQ-2010-0024 Policy and Logistical Challenges to Smart Grid Implementation Comment On: DOE-HQ-2010-0024-0001 Policy and Logistical Challenges to Smart Grid Implementation Document: DOE-HQ-2010-0024-DRAFT-0013 Comment on FR Doc # 2010-23251 Submitter Information Name: Address: Email: Phone: Organization: Toward Energy Efficient Municipalities, LLC General Comment I am seeking to develop America's first Smart Grid R&D Testing business campus on 200 near-enterprise zone acres owned

  19. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main...

  20. Association of Home Appliance Manufacturers Comments on Smart Grid RFI |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Association of Home Appliance Manufacturers Comments on Smart Grid RFI Association of Home Appliance Manufacturers Comments on Smart Grid RFI Comments made on behalf of the Association of Home Appliance Manufacturers (AHAM), on the Smart Grid RFI: Addressing Policy and Logistical Challenges, 75 Fed. Reg. 57,006 (Sept. 17, 2010). PDF icon Smart Grid RFI: Addressing Policy And Logistical Challenges. November 1, 2010 More Documents & Publications Comments of DRSG to DOE

  1. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges. Pepco Holdings, Inc. (PHI) is pleased to respond to the US Department of Energy (DOE) request for information regarding addressing policy and logistical challenges to smart grid implementation. This follows on the heels of

  2. Reports on Initial Results of Smart Grid Investment Grant Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (December 2012) | Department of Energy Reports on Initial Results of Smart Grid Investment Grant Projects (December 2012) Reports on Initial Results of Smart Grid Investment Grant Projects (December 2012) DOE is implementing the Smart Grid Investment Grant (SGIG) program under the American Recovery and Reinvestment Act of 2009. The SGIG program involves 99 projects that are deploying smart grid technologies, tools, and techniques for electric transmission, distribution, advanced metering,

  3. Eprice (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution...

  4. Smart Grid Grant Program Recipient Reporting Guidance, Updated | Department

    Energy Savers [EERE]

    of Energy Grant Program Recipient Reporting Guidance, Updated Smart Grid Grant Program Recipient Reporting Guidance, Updated Reporting guidance for the Smart Grid Investment Grant project under the American Recovery and Reinvestment Act. Approved by the Office of Management and Budget (OMB). Includes guidance on DOE corporate reporting, Project Management Value System (PVMS) reporting, risk management reporting, milestone reporting, and DOE jobs reporting guidance. PDF icon Smart Grid Grant

  5. National transmission grid study

    SciTech Connect (OSTI)

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  6. Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli; Cristian Rabiti

    2013-11-01

    The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.

  7. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    SciTech Connect (OSTI)

    Mandelli, D.; Smith, C.; Riley, T.; Nielsen, J.; Alfonsi, A.; Cogliati, J.; Rabiti, C.; Schroeder, J.

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Water Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Lastly, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.

  8. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  9. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mandelli, D.; Smith, C.; Riley, T.; Nielsen, J.; Alfonsi, A.; Cogliati, J.; Rabiti, C.; Schroeder, J.

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore » Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Furthermore, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.« less

  10. Source-term experiment STEP-3 simulating a PWR severe station blackout

    SciTech Connect (OSTI)

    Simms, R.; Baker, L. Jr.; Ritzman, R.L.

    1987-01-01

    For a severe pressurized water reactor accident that leads to a loss of feedwater to the stream generators, such as might occur in a station blackout, fission product decay heating causes a water boil-off. Without effective decay heat removal, the fuel elements will be uncovered. Eventually, steam will oxidize the overheated cladding. The noble gases and volatile fission products, such as cesium and iodine, that are major contributors to the radiological source term will be released from the damaged fuel shortly after cladding failure. The accident environment when these volatile fission products escape was simulated in STEP-3 using four fuel elements from the Belgonucleaire BR3 reactor. The primary objective was to examine the releases in samples collected as close to the test zone as possible. In this paper, an analysis of the temperatures and hydrogen generation is compared with the measurements. The analysis is needed to estimate releases and characterize conditions at the source for studies of fission product transport.

  11. MELCOR Analysis of Steam Generator Tube Creep Rupture in Station Blackout Severe Accident

    SciTech Connect (OSTI)

    Liao, Y.; Vierow, K. [Purdue University (United States)

    2005-12-15

    A pressurized water reactor steam generator tube rupture (SGTR) is of concern because it represents a bypass of the containment for radioactive materials to the environment. In a station blackout accident, tube integrity could be threatened by creep rupture, particularly if cracks are present in the tube walls. Methods are developed herein to improve assessment capabilities for SGTR by using the severe-accident code MELCOR. Best-estimate assumptions based on recent research and computational fluid dynamics calculations are applied in the MELCOR analysis to simulate two-dimensional natural circulation and to determine the relative creep-rupture timing in the reactor coolant pressure boundary components. A new method is developed to estimate the steam generator (SG) hottest tube wall temperature and the tube critical crack size for the SG tubes to fail first. The critical crack size for SG tubes to fail first is estimated to be 20% of the wall thickness larger than by a previous analysis. Sensitivity studies show that the failure sequence would change if some assumptions are modified. In particular, the uncertainty in the countercurrent flow limit model could reverse the failure sequence of the SG tubes and surge line.

  12. Analysis of Kuosheng Station Blackout Accident Using MELCOR 1.8.4

    SciTech Connect (OSTI)

    Wang, S.-J.; Chien, C.-S.; Wang, T.-C.; Chiang, K.-S

    2000-11-15

    The MELCOR code, developed by Sandia National Laboratories, is a fully integrated, relatively fast-running code that models the progression of severe accidents in commercial light water nuclear power plants (NPPs).A specific station blackout (SBO) accident for Kuosheng (BWR-6) NPP is simulated using the MELCOR 1.8.4 code. The MELCOR input deck for Kuosheng NPP is established based on Kuosheng NPP design data and the MELCOR users' guides. The initial steady-state conditions are generated with a developed self-initialization algorithm. The main severe accident phenomena and the fission product release fractions associated with the SBO accident were simulated. The predicted results are plausible and as expected in light of current understanding of severe accident phenomena. The uncertainty of this analysis is briefly discussed. The important features of the MELCOR 1.8.4 are described. The estimated results provide useful information for the probabilistic risk assessment (PRA) of Kuosheng NPP. This tool will be applied to the PRA, the severe accident analysis, and the severe accident management study of Kuosheng NPP in the near future.

  13. Analysis of core uncovery time in Kuosheng station blackout transient with MELCOR

    SciTech Connect (OSTI)

    Wang, S.J.; Chien, C.S. [Inst. of Nuclear Energy Research, Lungtan (Taiwan, Province of China)

    1996-02-01

    The MELCOR code, developed by the Sandia National Laboratories, is capable of simulating severe accident phenomena of nuclear power plants. Core uncovery time is an important parameter in the probabilistic risk assessment. However, many MELCOR users do not generate the initial conditions in a station blackout (SBO) transient analysis. Thus, achieving reliable core uncovery time is difficult. The core uncovery time for the Kuosheng nuclear power plant during an SBO transient is analyzed. First, full-power steady-state conditions are generated with the application of a developed self-initialization algorithm. Then the response of the SBO transient up to core uncovery is simulated. The effects of key parameters including the initialization process and the reactor feed pump (RFP) coastdown time on the core uncovery time are analyzed. The initialization process is the most important parameter that affects the core uncovery time. Because SBO transient analysis, the correct initial conditions must be generated to achieve a reliable core uncovery time. The core uncovery time is also sensitive to the RFP coastdown time. A correct time constant is required.

  14. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mandelli, D.; Smith, C.; Riley, T.; Nielsen, J.; Alfonsi, A.; Cogliati, J.; Rabiti, C.; Schroeder, J.

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore » Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Lastly, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.« less

  15. Analysis of fission product revaporization in a BWR reactor cooling system during a station blackout accident

    SciTech Connect (OSTI)

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This report presents a preliminary analysis of fission product revaporization in the Reactor Cooling System (RCS) after the vessel failure. The station blackout transient for BWR Mark I Power Plant is considered. The TRAPMELT3 models of evaporization, chemisorption, and the decay heating of RCS structures and gases are adopted in the analysis. The RCS flow models based on the density-difference between the RCS and containment pedestal region are developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP is developed for the analysis. The REVAP is incorporated with the MARCH, TRAPMELT3 and NAUA codes of the Source Term Code Pack Package (STCP). The NAUA code is used to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors determining the magnitude of revaporization and subsequent release of the volatile fission product. 8 figs., 1 tab.

  16. Planning for the Next Blackout: Optimizing the Use of Distributed Energy Resources

    SciTech Connect (OSTI)

    Glickman, Joan A.; Herrera, Shawn; Kline, Keith F.; Warwick, William M.

    2004-12-01

    Given recent blackouts and concerns of terrorist attacks, some public and private organizations are taking steps to produce their own heating, cooling, and power in the event of future, potentially prolonged, outages. For example, military installations, such as Fort Bragg in North Carolina, and the Marine Task Force Training Command in Twentynine Palms, California, turned to combined heat and power and other distributed energy technologies to reduce costs and simultaneously manage their energy and reliability needs. While these individual efforts can help ensure reliability for these facilities, public policies continue to discourage most individual public and private entities from making such investments. As a result, communities across the country are not adequately prepared to protect human health and ensure safety in the event of a prolonged emergency. Significant cost savings and social benefits can accrue if parties interested in emergency preparedness, energy efficiency, and environmentally preferred technologies, come together to identify and implement win-win solutions. This paper offers recommendations to help federal, state, and local governments, along with utilities, jointly plan and invest in cleaner distributed energy technologies to address growing reliability needs as well as environmental and emergency preparedness concerns.

  17. Parallel grid population

    DOE Patents [OSTI]

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  18. Smart Grid Newsletter …TheRegulators Role in Grid ModernizationŽ or Leadership from State Regulators can make the Smart G

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: "The Regulator's Role in Grid Modernization" Sponsor: The Modern Grid Strategy is a DOE-funded project conducted by the National Energy Technology Laboratory Leadership from state regulators can make the Smart Grid a reality In previous articles we discussed the principal characteristics that define a Modern (Smart) Grid. Armed with a much clearer understanding of what is a modern grid, and what technologies it will employ, we can now address a number of less technical issues.

  19. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and ...

  20. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Energy Savers [EERE]

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its ...

  1. Now Available: Smart Grid Investments Improve Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses ...

  2. gridFTP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gridFTP gridFTP Currently only the archive.nersc.gov system is capable of handling GridFTP transfers to HPSS. It accomplishes this by using a special GSI enabled pftp server. Data transfers are multi-threaded but are handled with a single FTP server. Improvements are planned for the future. The pftp server handling GridFTP transfers is garchive.nersc.gov. GridFTP clients must authenticate/transfer to this server to send data to archive.nersc.gov. There are numerous GridFTP clients available that

  3. ARRA Grid Modernization Investment Highlights- Fact Sheet

    Broader source: Energy.gov [DOE]

    The more than 330 Recovery Act-funded projects that the Office of Electricity Delivery and Energy Reliability has been managing over the past five years have been successfully completed, with major improvements to the grid now in place across America. Under the American Recovery and Reinvestment Act of 2009, the Energy Department invested more than $31 billion in a wide range of projects nationwide. The DOE investment included $4.5 billion for modernization of the nation’s electric grid. With matching private funding from the electric sector, the investment in grid modernization totaled about $9.5 billion.

  4. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Emerging Option Joe Miller - Modern Grid Team IRPS Conference December 10, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is it? Where's the value? What does it mean for consumers? Some current activities Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 3

  5. Quantifiably secure power grid operation, management, and evolution : a study of uncertainties affecting the grid integration of renewables.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Watson, Jean-Paul; Silva Monroy, Cesar Augusto; Gramacy, Robert B.

    2013-09-01

    This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency - the grid's ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability - especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this concern, powerful filtering techniques for spatio-temporal measurement assimilation were used to develop short-term predictive stochastic models. To achieve uncertaintytolerant solutions, very large numbers of scenarios must be simultaneously considered. One focus of this work was investigating ways of reasonably reducing this number.

  6. Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    Recovery Act Smart Grid Projects Data Collected from the US Recovery Act Smart Grid Investment Grant Projects US Recovery Act Smart Grid Investment Grant Projects (98) The Smart...

  7. Grid Partners | Open Energy Information

    Open Energy Info (EERE)

    Grid Partners Jump to: navigation, search Name: Grid Partners Place: Los Angeles, California Zip: 90025 Product: String representation "GRID Partners i ... duct selection." is too...

  8. Articles about Grid Integration and Transmission | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Integration and Transmission Articles about Grid Integration and Transmission RSS Below are stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program. March 28, 2016 DOE's 1.5-MW wind turbine at the National Wind Technology Center is being used to demonstrate that wind farms can provide the frequency-responsive back-up or "ancillary services" currently supplied to the electrical grid by conventional power plants. (Photo by Dennis

  9. Hydrogen Mitigation Strategy of the APR1400 Nuclear Power Plant for a Hypothetical Station Blackout Accident

    SciTech Connect (OSTI)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong [Korea Atomic Energy Research Institute (Korea, Republic of)

    2005-06-15

    In order to analyze the hydrogen distribution during a hypothetical station blackout accident in the Korean next-generation Advanced Power Reactor 1400 (APR1400) containment, the three-dimensional computational fluid dynamics code GASFLOW was used. The source of the hydrogen and steam for the GASFLOW analysis was obtained from a MAAP calculation. The discharged water, steam, and hydrogen from the pressurizer are released into the water of the in-containment refueling water storage tank (IRWST). Most of the discharged steam is condensed in the IRWST water because of its subcooling, and dry hydrogen is released into the free volume of the IRWST; finally, it goes out to the annular compartment above the IRWST through the vent holes. From the GASFLOW analysis, it was found that the gas mixture in the IRWST becomes quickly nonflammable by oxygen starvation but the hydrogen is accumulated in the annular compartment because of the narrow ventilation gap between the operating deck and containment wall when the igniters installed in the IRWST are not operated. When the igniters installed in the APR1400 were turned on, a short period of burning occurred in the IRWST, and then the flame was extinguished by the oxygen starvation in the IRWST. The unburned hydrogen was released into the annular compartment and went up to the dome because no igniters are installed around the annular compartment in the base design of the APR1400. From this result, it could be concluded that the control of the hydrogen concentration is difficult for the base design. In this study design modifications are proposed and evaluated with GASFLOW in view of the hydrogen mitigation strategy.

  10. Vids 4 Grids: Surge Arresters and Switchgears | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vids 4 Grids: Surge Arresters and Switchgears Vids 4 Grids: Surge Arresters and Switchgears January 24, 2011 - 5:51pm Addthis This episode of Vids 4 Grids will take us to Hubbell's surge arrester plant in Aiken, South Carolina where we will learn the role surge arresters play in the Smart Grid. Deborah J. Buterbaugh Energy Project Specialist at National Energy Technology Laboratory What does this mean for me? Modernizing our grid means cutting edge jobs in the power sector that are essential to

  11. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  12. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  13. Fuel rod support grid

    DOE Patents [OSTI]

    Downs, Robert E.; Schwallie, Ambrose L.

    1985-01-01

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  14. DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Informatio...

    Open Energy Info (EERE)

    Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  15. Comments of Santiago Grijalva: High-Level Response to DOE RFI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy Comments of Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy High-Level Response to DOE ...

  16. smart grid | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    small business Supply Chain Management Center event highlights how small businesses can help NNSA carry out its missions The Supply Chain Management Center (SCMC) has been an important tool for NNSA to save taxpayer dollars. At the event on Feb. 18, NNSA leadership and the New Mexico congressional delegation were well represented. From left, Scott Bissen, SCMC Director; Rep. Steve Pearce (R-NM); NNSA Administrator... NNSA Demonstrates its Commitment to Small Business The National Nuclear

  17. smart grid publications | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... PDF-50KB (Oct 2008) NETLMGS TeamSteve Pullins - Horizon Energy Group Power Quality for the Digital Economy PDF-475KB (Sept 2008) NETLMGS TeamBruce Renz - Renz ...

  18. Grid Logging: Best Practices Guide

    SciTech Connect (OSTI)

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  19. US Nuclear Regulatory Commission Input to DOE Request for Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart ...

  20. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's Reply comments to DOE RFI: ...

  1. NAP Coalition Response to DOE RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation NAP Coalition Response to DOE RFI: Addressing Policy and Logistical ...

  2. SmartGrid: Quarterly Data Summaries from the Data Hub and SmartGrid Project Information (from OpenEI and SmartGrid.gov)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Both OpenEI and SmartGrid.gov are DOE portals to a wealth of information about the federal initiatives that support the development of the technologies, policies and projects transforming the electric power industry. Projects funded through the U.S. Recovery Act are organized by type and pinned to an interactive map at http://en.openei.org/wiki/Gateway:Smart_Grid. Each project title links to more detailed information. The Quarterly Data Summaries from the Data Hub at SmartGrid.gov are also available on OpenEI at http://en.openei.org/datasets/node/928. In addition, the SmartGrid Information Center contains documents and reports that can be searched or browsed. Smart Grid Resources introduces international SmartGrid programs and sites, while OpenEI encourages users to add SmartGrid information to the repository.

  3. Investigations on optimization of accident management measures following a station blackout accident in a VVER-1000 pressurized water reactor

    SciTech Connect (OSTI)

    Tusheva, P.; Schaefer, F.; Kliem, S.

    2012-07-01

    The reactor safety issues are of primary importance for preserving the health of the population and ensuring no release of radioactivity and fission products into the environment. A part of the nuclear research focuses on improvement of the safety of existing nuclear power plants. Studies, research and efforts are a continuing process at improving the safety and reliability of existing and newly developed nuclear power plants at prevention of a core melt accident. Station blackout (loss of AC power supply) is one of the dominant accidents taken into consideration at performing accident analysis. In case of multiple failures of safety systems it leads to a severe accident. To prevent an accident to turn into a severe one or to mitigate the consequences, accident management measures must be performed. The present paper outlines possibilities for application and optimization of accident management measures following a station blackout accident. Assessed is the behaviour of the nuclear power plant during a station blackout accident without accident management measures and with application of primary/secondary side oriented accident management measures. Discussed are the possibilities for operators ' intervention and the influence of the performed accident management measures on the course of the accident. Special attention has been paid to the effectiveness of the passive feeding and physical phenomena having an influence on the system behaviour. The performed simulations show that the effectiveness of the secondary side feeding procedure can be limited due to an early evaporation or flashing effects in the feed water system. The analyzed cases show that the effectiveness of the accident management measures strongly depends on the initiation criteria applied for depressurization of the reactor coolant system. (authors)

  4. Address (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  5. EDISON (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  6. Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Logistical Challenges to Smart Grid Implementation | Department of Energy Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing Policy and Logistical Challenges to Smart Grid Implementation Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing Policy and Logistical Challenges to Smart Grid Implementation The Galvin Electricity Initiative, a non-profit organization, has dedicated its resources to researching and developing both prototypes and policy reforms

  7. An Explainer: How “Grid Modernization” Could Improve Your Life

    Broader source: Energy.gov [DOE]

    This month the Department of Energy is making a series of announcements to support its Grid Modernization Initiative. But what does grid modernization mean for you? We've broken it down.

  8. Source terms released into the environment for a station blackout severe accident at the Peach Bottom Atomic Power Station

    SciTech Connect (OSTI)

    Carbajo, J.J.

    1995-07-01

    This study calculates source terms released into the environment at the Peach Bottom Atomic Power Station after containment failure during a postulated low-pressure, short-term station blackout severe accident. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Source terms were calculated for three different containment failure modes. The largest environmental releases occur for early containment failure at the drywell liner in contact with the cavity by liner melt-through. This containment failure mode is very likely to occur when the cavity is dry during this postulated severe accident sequence.

  9. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Smart Grid Smart Grid "Smart grid" generally refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using ...

  10. Grid Architecture 2

    SciTech Connect (OSTI)

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  11. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  12. Presentation: Smart Grid Development in the U.S. | Department of Energy

    Energy Savers [EERE]

    Presentation: Smart Grid Development in the U.S. Presentation: Smart Grid Development in the U.S. The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability, Office of Energy Efficiency and Renewable Energy, and Brookhaven National Laboratory conducted an online presentation on smart grid development in the U.S from leading smart grid expert Dan T. Ton, program manager in the Office of Electricity Delivery and Energy Reliability, who oversees smart grid research

  13. NREL: Transmission Grid Integration - Grid Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... at the Center for Advanced Power Systems on the Florida State University Campus in Tallahassee, Florida on November 5-6, 2015. NWTC Controllable Grid Interface This fact sheet ...

  14. Understanding The Smart Grid

    SciTech Connect (OSTI)

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  15. Statistical Analysis of Abnormal Electric Power Grid Behavior

    SciTech Connect (OSTI)

    Ferryman, Thomas A.; Amidan, Brett G.

    2010-10-30

    Pacific Northwest National Laboratory is developing a technique to analyze Phasor Measurement Unit data to identify typical patterns, atypical events and precursors to a blackout or other undesirable event. The approach combines a data-driven multivariate analysis with an engineering-model approach. The method identifies atypical events, provides a plane English description of the event, and the capability to use drill-down graphics for detailed investigations. The tool can be applied to the entire grid, individual organizations (e.g. TVA, BPA), or specific substations (e.g., TVA_CUMB). The tool is envisioned for (1) event investigations, (2) overnight processing to generate a Morning Report that characterizes the previous days activity with respect to previous activity over the previous 10-30 days, and (3) potentially near-real-time operation to support the grid operators. This paper presents the current status of the tool and illustrations of its application to real world PMU data collected in three 10-day periods in 2007.

  16. STEAM LINE BREAK AND STATION BLACKOUT TRANSIENTS FOR PROLIFERATION RESISTANT HEXAGONAL TIGHT LATTICE BWR.

    SciTech Connect (OSTI)

    ROHATGI,U.S.; JO,J.; CHUNG,B.D.; TAKAHASHI,H.

    2002-06-09

    Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. The tight lattice core has a very narrow flow channels with a hydraulic diameter less than half of the regular BWR core and, thus, presents a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with Isolation Condenser System (ICs). The vessel is placed in containment with Gravity Driven Cooling System (GDCS) and Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's Simplified Boiling Water Reactor (SBWR). The safety systems are similar to SBWR; ICs and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney, since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration resulted in much larger friction in the core than the SBWR. The constitutive relationships for RELAP5 were assessed for narrow channels, and as a result the heat transfer package was modified. The modified RELAP5 was used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the Station Blackout and the Main Steam Line Break events. The results of the analyses indicate that the HCBWR system will be safely brought to the shutdown condition for these transients.

  17. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect (OSTI)

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: W process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four top events and eighteen SBO sequences (versus fifty-four SBO sequences in the original SBO model). The estimated SBO sequence conditional probabilities from the original SBO model were integrated to the corresponding sequences in the simplified SBO event tree. These results were then compared with the simulation run results.

  18. Steam Line Break and Station Blackout Transients for Proliferation Resistant Hexagonal Tight Lattice BWR

    SciTech Connect (OSTI)

    Upendra Rohatgi; Jae Jo; Bub Dong Chung; Hiroshi Takahashi [Brookhaven National Laboratory, Energy Sciences and Technology Department, Upton, New York 11973 (United States); Downar, T.J. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906-1290 (United States)

    2002-07-01

    Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. A tight lattice BWR core has very narrow flow channels with a hydraulic diameter less than half of the regular BWR core. The tight lattice core presented a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with an Isolation Cooling System (ICS). The vessel is placed in a containment with a Gravity Driven Cooling System (GDCS) and a Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's (GE) Simplified Boiling Water Reactor (SBWR). The safety systems are similar to the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney. The buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel since the tight lattice configuration resulted in much larger friction in the core than the SBWR. A modified RELAP5 Code was used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the Station Blackout and the Main Steam Line Break events. The constitutive relationships for RELAP5 were compared with the correlations and the data available for narrow channels, and the heat transfer package was modified for narrow channel application. The results of the analyses indicate that the HCBWR system will be safely shutdown for these transients. (authors)

  19. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis; Prescott, Steven; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  20. Performance of "WAMS East 1" in Providing Dynamic Information for the North East Blackout of August 14, 2003

    SciTech Connect (OSTI)

    Hauer, John F.; Bhatt, Navin B.; Shah, Kirit; Kolluri, Sharma

    2004-12-31

    The blackout that impacted the U.S. and Canada on August 14, 2003, was notable for its extent, complexity, and impact. It triggered a massive review of operating records to determine what happened, why it happened, and how to avoid it in future operations. Much of this work was done at NERC level, through the U.S.-Canada Power System Outage Task Force. Additional background information concerning the event was gathered together by a group of utilities that, collectively, have been developing a wide area measurement system (WAMS) for the eastern interconnection. Like its counterpart in the western interconnection, "WAMS East" has a primary backbone of synchronized phasor measurements that are continuously recorded at central locations. Operational data have been critical for understanding and responding to the August 14 Blackout. Records collected on WAMS East demonstrate the contributions that well synchronized data offer in such efforts, and the value of strategically located continuous recording systems to facilitate their integration. This paper examines overall performance of the WAMS East backbone, with a brief assessment of the technology involved.

  1. Building Tomorrow's Smart Grid Workforce Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Tomorrow's Smart Grid Workforce Today Building Tomorrow's Smart Grid Workforce Today Colleges, universities, utilities, and manufacturers are working together to create new training, development, and enhancement programs in schools and businesses across the country. New technologies are emerging to improve the nation's electric grid, and the sector workforce must reflect the increased skills and knowledge to install, monitor, and maintain the infrastructure. Supported by DOE Recovery

  2. Communications Requirements of Smart Grid Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Communications Requirements of Smart Grid Technologies Communications Requirements of Smart Grid Technologies This report sets forth the findings of the U.S. Department of Energy (DOE) on the communications requirements of electric utilities and proposes specific recommendations for next steps to support these requirements. In order to analyze these requirements properly, this report will review the projected requirements of various components of the Smart Grid. The template used in

  3. Flywheel Project Escalates Grid Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency August 9, 2010 - 1:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this project do? It's estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is headquartered) and help bring clean technologies to market by improving the stability and reliability of the state's electric grid. More good news for New

  4. Now Available: Pacific Northwest Smart Grid Demonstration Project -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Performance Report Volume 1 | Department of Energy Pacific Northwest Smart Grid Demonstration Project - Technology Performance Report Volume 1 Now Available: Pacific Northwest Smart Grid Demonstration Project - Technology Performance Report Volume 1 July 14, 2015 - 1:43pm Addthis The first volume of the technology performance report for the Pacific Northwest Smart Grid Demonstration, a $179 million project that was co-funded by DOE, is now available for downloading. One of 16

  5. 2012 Smart Grid Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Peer Review 2012 Smart Grid Peer Review The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations are available through individual session links and the agenda is below. Presentations: Day 1: June 7 Morning session | Moderator: Dan Ton, DOE Afternoon sessions | Moderators:

  6. FAQ: Funding Opportunity Announcement-Smart Grid Investment Grants |

    Energy Savers [EERE]

    Department of Energy FAQ: Funding Opportunity Announcement-Smart Grid Investment Grants FAQ: Funding Opportunity Announcement-Smart Grid Investment Grants The Department of Energy has reviewed all comments submitted in response to the Notice of Intent released on April 16, 2009 for the Funding Opportunity Announcement (DOE-FOA-0000058) titled Smart Grid Investment Grant Program. The final version of this FOA released on June 25, 2009 reflects various changes based on these comments. PDF icon

  7. Hydrogen Energy Storage for Grid and Transportation Services Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry Canada held a Hydrogen Energy Storage for Grid and Transportation Services Workshop on May 14-15, 2014, in Sacramento, California. The workshop was hosted by the National Renewable Energy Laboratory (NREL) and the California Air Resources Board (CARB) to identify challenges, benefits, and

  8. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Through the Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more interactive systems and components so that solar energy can be integrated into the electric power

  9. Solar Energy Grid Integration Systems-Advanced Concepts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Integration » Solar Energy Grid Integration Systems-Advanced Concepts Solar Energy Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced $25.9 million to fund eight solar projects that are targeting ways to develop power electronics and build smarter, more interactive systems and components so that solar energy can be integrated into the electric power distribution and transmission grid at higher levels. Part of the SunShot Systems Integration

  10. Comments of North American Electric Reliability Corporation (NERC) to DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid RFI: Addressing Policy and Logistical Challenges | Department of Energy North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Response to the Department of Energy's ("DOE") Request for Information (RFI) regarding the "Smart Grid RFI: Addressing Policy and Logistical

  11. Solar Smart Grid: 1663 Science and Technology Magazine | Los...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Even without massive blackouts, power outages and drops in voltage or power quality cause estimated business losses of 100 billion annually. Because electricity must be consumed ...

  12. Smart Grid Cybersecurity: Job Performance Model Report

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Assante, Michael; Tobey, David

    2012-08-01

    This is the project report to DOE OE-30 for the completion of Phase 1 of a 3 phase report. This report outlines the work done to develop a smart grid cybersecurity certification. This work is being done with the subcontractor NBISE.

  13. Final Report for DOE Project: Portal Web Services: Support of DOE SciDAC Collaboratories

    SciTech Connect (OSTI)

    Mary Thomas, PI; Geoffrey Fox, Co-PI; D. Gannon; M. Pierce; R. Moore; D Schissel; J. Boisseau

    2007-10-01

    Grid portals provide the scientific community with familiar and simplified interfaces to the Grid and Grid services, and it is important to deploy grid portals onto the SciDAC grids and collaboratories. The goal of this project is the research, development and deployment of interoperable portal and web services that can be used on SciDAC National Collaboratory grids. This project has four primary task areas: development of portal systems; management of data collections; DOE science application integration; and development of web and grid services in support of the above activities.

  14. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  15. Running Grid Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support job submission via Grid interfaces. Remote job submission is based on Globus GRAM. Jobs can be submitted either to the fork jobmanager (default) which will fork and...

  16. Providing Grid Flexibility in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control and Data Acquisition (SCADA) capabilities. ... installation of the new microwave network, the company is ... within the PRECorp transmission and distribution grid ...

  17. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer ...

  18. Grid Integration & Advanced Inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste ...

  19. Challenges facing production grids

    SciTech Connect (OSTI)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  20. City of Naperville, Illinois Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    million in funding from the U.S. Department of Energy to develop a smart-grid energy management system. The D.O.E. selected 100 companies nationwide to receive funding as part...

  1. City of Leesburg, Florida Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    9.7 million in funding by the U.S. Department of Energy to develop a smart-grid energy management system. The D.O.E. has selected 100 companies nationwide to receive funding by...

  2. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis

    2013-06-29

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  3. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Broader source: Energy.gov (indexed) [DOE]

    ...MWh of offshore wind added to the grid-helping justify the high initial investment of offshore wind projects. (Note this this represents operations costs and does not include ...

  4. Real Time Simulation of Power Grid Disruptions

    SciTech Connect (OSTI)

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  5. New York State Smart Grid Consortium September 2010 1

    Energy Savers [EERE]

    New York State Smart Grid Consortium September 2010 1 November 1, 2010 Response of: New York State Smart Grid Consortium DOE SMART GRID RFI: ADDRESSING POLICY AND LOGISTICAL CHALLENGES I. INTRODUCTION The New York State Smart Grid Consortium ("Consortium") is a not-for-profit 501(c)6 organization formed in July 2009 to address many of the same issues being examined in this proceeding 1 . It represents a unique public-private partnership of largely New York State utilities, authorities,

  6. Security for grids

    SciTech Connect (OSTI)

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  7. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  8. US Nuclear Regulatory Commission Input to DOE Request for Information Smart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Implementation Input | Department of Energy US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New

  9. Optimization Strategies for the Vulnerability Analysis of the Electric Power Grid

    SciTech Connect (OSTI)

    Pinar, A.; Meza, J.; Donde, V.; Lesieutre, B.

    2007-11-13

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (MINLP) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  10. Optimization strategies for the vulnerability analysis of the electric power grid.

    SciTech Connect (OSTI)

    Meza, Juan C.; Pinar, Ali; Lesieutre, Bernard; Donde, Vaibhav

    2009-03-01

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (minlp) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  11. Buildings-to-Grid Technical Opportunities: From the Grid Perspective |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Grid Perspective Buildings-to-Grid Technical Opportunities: From the Grid Perspective To successfully operate and deliver its promise of a seamlessly integrated buildings-grid infrastructure, a transactive energy ecosystem requires new approaches to planning and operating the power grid. This report outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current

  12. Smart Grid Week: Working to Modernize the Nation's Electric Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working to Modernize the Nation's Electric Grid Smart Grid Week: Working to Modernize the Nation's Electric Grid June 3, 2013 - 11:00am Addthis Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs Learn More about the Smart Grid Visit smartgrid.gov for

  13. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  14. OpenEI Community - Smart Grid

    Open Energy Info (EERE)

    p> http:en.openei.orgcommunityblogwhat-do-you-know-about-gridcomments black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  15. NREL: Distributed Grid Integration - Solar Distributed Grid Integratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IEA PVPS) Task 11 - PV hybrid and mini-grids Support IEA PVPS Task 14 - high ... Utility District, Anatolia Project Southern California Edison Hawaii Smart Grid projects. ...

  16. EcoGrid EU (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    EU (Smart Grid Project) Jump to: navigation, search Project Name EcoGrid EU Country Denmark Headquarters Location Bornholm, Denmark Coordinates 55.160427, 14.866884 Loading...

  17. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mid-America Regulatory Conference Joe Miller - DOE / NETL Modern Grid Team Lead June 15, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26-04NT41817 This presentation was prepared as an account of work sponsored

  18. Open Science Grid at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Science Grid Open Science Grid at NERSC NERSC provides computing to Open Science Grid (OSG) users through a special allocation. OSG Users must submit an OSG new user request ...

  19. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logistical Challenges to Smart Grid Implementation | Department of Energy Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation submits the following comments to the US Department of Energy (DOE) in hopes that their contribution can highlight and further the understanding of the DOE on

  20. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a

  1. Integrating smart sensors into grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating smart sensors into grid systems will enable more complex modeling and ... in currents at A levels in electric grids, which can enable the early detection of ...

  2. SGIP Smart Grid Interoperabilty Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle to Grid Distributed Renewables, Generation & Storage Wireless Comm - 02 Energy Storage Interconnect - 07 Distribution Grid Mgmt - 08 Standard DR & DER Signals - 09 Map IEEE ...

  3. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Usage Smart Grid Smart Grid April 14, 2016 The heavily residential Gentilly section of New Orleans will receive several advanced microgrids after learning about their use from ...

  4. Grid Net | Open Energy Information

    Open Energy Info (EERE)

    Grid Net Jump to: navigation, search Name: Grid Net Address: 340 Brannan St Place: San Francisco, California Zip: 94107 Region: Bay Area Sector: Efficiency Product: Sells open,...

  5. Comments of Tendril Networks, Inc. on DOE Request for Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid: Data Access, Third Party Use, and Privacy Comments of Tendril Networks, Inc. on DOE ... Grid: Data Access, Third Party Use, and Privacy Tendril is pleased to provide these ...

  6. DOE Report Describes Progress in the Deployment of Synchrophasor...

    Open Energy Info (EERE)

    Grid The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is pleased to announce the publication of a new report from the Smart Grid...

  7. DOE Final Report for DE-FG02-01ER63198 Title: IMPROVING THE PROCESSES OF LAND-ATMOSPHERE INTERACTION IN CCSM 2.0 AT HIGHER RESOLUTION AND BETTER SUB-GRID SCALING

    SciTech Connect (OSTI)

    Dr. Robert Dickinson

    2008-08-16

    Our CCPP project consists of the development and testing of a systematic sub-grid scaling framework for the CLM. It consists of four elements: i) a complex vegetation tiling representation; ii) an orographic tiling system; iii) a tiling system to describe a distribution of water table parameters intended to provide a realistic statistical model of wetlands; and iv) improvements of past developed treatments of precipitation intensity.

  8. Grid Data Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. uberftp UberFTP provides a rich interactive client for GridFTP. It mimics standard ftp clients in behavior, along with providing some additional features. To initialize your...

  9. gridFTP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSI enabled pftp server. Data transfers are multi-threaded but are handled with a single FTP server. Improvements are planned for the future. The pftp server handling GridFTP...

  10. PEV Grid Integration Research: Vehicles, Buildings, and Renewables Working Together (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Research Vehicles, Buildings, and Renewables Working Together Tony Markel Sr. Engineer Electric Vehicle Grid Integration National Renewable Energy Laboratory EPRI EV IWC Mtg. White Plains, NY June 19, 2014 NREL/PR-5400-62244 2 DOE EVGI and INTEGRATE Research Efforts * Electric Vehicle Grid Integration (EVGI) and INTEGRATE are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater reduction in the

  11. Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  12. Random array grid collimator

    DOE Patents [OSTI]

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  13. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6733 Unlimited Release Printed August 2013 Grid Integrated Distributed PV (GridPV) Matthew J. Reno, Kyle Coogan Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE -AC04-94AL85000. Approved for

  14. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    141 Unlimited Release Printed November 2014 Grid Integrated Distributed PV (GridPV) Version 2 Matthew J. Reno, Kyle Coogan Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Demonstration project Smart Charging (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  16. EMPORA 1 + 2 EMobile Power Austria (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Specific...

  17. Belgium east loop active network management (Smart Grid Project...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Grid Automation Transmission...

  18. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU SERVE | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SERVE WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU SERVE The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at

  19. EAC Recommendations for DOE Action Regarding Development of the Next

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Grid Operating System (Energy Management System) - October 17, 2012 | Department of Energy Development of the Next Generation Grid Operating System (Energy Management System) - October 17, 2012 EAC Recommendations for DOE Action Regarding Development of the Next Generation Grid Operating System (Energy Management System) - October 17, 2012 EAC Recommendations for DOE Action Regarding Development of the Next Generation Grid Operating System, approved at the October 15-16, 2012 EAC

  20. Now Available: Smart Grid Investments Improve Grid Reliability, Resilience,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Storm Responses (November 2014) | Department of Energy Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) December 8, 2014 - 2:35pm Addthis Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service reliability to

  1. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-Es GRIDS Project, short for Grid-Scale Rampable Intermittent Dispatchable Storage, are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  2. Ex Parte Memorandum on Grid-Enabled Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Grid-Enabled Water Heaters Ex Parte Memorandum on Grid-Enabled Water Heaters On September 26, 2013 a number of stakeholders met with DOE representatives regarding water heater standards and thermal storage and demand response programs. PDF icon DOE exparte memo_10_02_13 PDF icon Grid-Enabled_Water_Heater_Amendment More Documents & Publications EPAct 2005. Conference Report, July 27, 2005 E:\BILLS\H6.PP In the Senate of the United States,June 28, 2005.

  3. Department of Energy Data Access and Privacy Issues Related To Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Data Access and Privacy Issues Related To Smart Grid Technologies Department of Energy Data Access and Privacy Issues Related To Smart Grid Technologies This report by the Department of Energy (DOE) complements DOE's companion report, Informing Federal Smart Grid Policy: The Communications Requirements of Electric Utilities. Both reports are also components of the federal government's much broader efforts to facilitate the adoption and deployment of

  4. Containment failure time and mode for a low-pressure short-term station blackout in a BWR-4 with Mark-I containment

    SciTech Connect (OSTI)

    Carbajo, J.J.; Greene, S.R. (Oak Ridge National Lab., TN (United States))

    1993-01-01

    This study investigates containment failure time and mode for a low-pressure, short-term station blackout severe accident sequence in a boiling water reactor (BWR-4) with a Mark-I containment. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Other results using the MELCOR/CORBH package and the BWRSAR and CONTAIN codes are also presented and compared to the MELCOR results. The plant analyzed is the Peach Bottom atomic station, a BWR-4 with a Mark-I containment. The automatic depressurization system was used to depressurize the vessel in accordance with the Emergency Procedure Guidelines. Two different variations of the station blackout were studied: one with a dry cavity and the other with a flooded cavity. For the flooded cavity, it is assumed that a control rod drive (CRD) pump becomes operational after vessel failure, and it is used to pump water into the cavity.

  5. grid history | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  6. electricity grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  7. future grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  8. Smart Grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  9. DOE Superconductivity Program Stakeholders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superconductivity Program Stakeholders DOE Superconductivity Program Stakeholders Map showing the stakeholders involved in High Temperature Superconductivity work with the DOE. PDF icon DOE Superconductivity Program Stakeholders More Documents & Publications High Temperature Superconductivity Partners DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report

  10. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  11. shared Smart Grid Investment Grant

    Energy Savers [EERE]

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested about $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects and about $1.6 billion in 32 Smart Grid Demonstration Program projects to modernize the electric grid, strengthen cyber security, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. The Smart Grid Experience: Applying Results,

  12. Interactive Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational Resources » Interactive Grid Interactive Grid Each time you flick a light switch or press a power button, you enjoy the benefits of the nation's incredible electric grid. The grid is a complex network of people and machinery working around the clock to produce and deliver electricity to millions of homes across the nation. The electric grid works so well, Americans often think about it only when they receive their electric bills, or in those rare instances when there is a power

  13. GridLAB-D/SG

    Energy Science and Technology Software Center (OSTI)

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  14. Really Off the Grid: Hooper Bay, AK

    Energy Savers [EERE]

    Really Off the Grid - Hooper Bay, AK Old Housing - Energy Efficiency Vintage Hooper Bay Renewable Energy - Before & After DOE Tribal Energy Grant * $200,000 - Energy Efficiency Feasibility Study * Hire & train 2-5 local energy assessors * Energy audits of 24 homes with blower doors, etc. - Reduce energy consumption from air leakage - Moisture/mold issues - Reduce drafts * $7/gallon heating fuel * ~ $0.55/kWh - electricity (over half of households behind on utility payments) Is your house

  15. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  16. The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guba, O.; Taylor, M. A.; Ullrich, P. A.; Overfelt, J. R.; Levy, M. N.

    2014-06-25

    We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable resolution grids using the shallow water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution dependent coefficient. For the spectral element method with variable resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity ismore » constructed so that for regions of uniform resolution it matches the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the large scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications where long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less

  17. The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guba, O.; Taylor, M. A.; Ullrich, P. A.; Overfelt, J. R.; Levy, M. N.

    2014-11-27

    We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, formore » regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less

  18. NAP Coalition Response to DOE RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges to Smart Grid Implementation | Department of Energy NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation The NAP Coalition is a "Coalition of Coalitions" that has been formed for the purpose of implementing the National Action Plan released by FERC in cooperation with DOE in June of 2010. Organizations working

  19. GridPV Toolbox

    Energy Science and Technology Software Center (OSTI)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  20. Experimental and code simulation of a station blackout scenario for APR1400 with test facility ATLAS and MARS code

    SciTech Connect (OSTI)

    Yu, X. G.; Kim, Y. S.; Choi, K. Y.; Park, H. S.; Cho, S.; Kang, K. H.; Choi, N. H.

    2012-07-01

    A SBO (station blackout) experiment named SBO-01 was performed at full-pressure IET (Integral Effect Test) facility ATLAS (Advanced Test Loop for Accident Simulation) which is scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this study, the transient of SBO-01 is discussed and is subdivided into three phases: the SG fluid loss phase, the RCS fluid loss phase, and the core coolant depletion and core heatup phase. In addition, the typical phenomena in SBO-01 test - SG dryout, natural circulation, core coolant boiling, the PRZ full, core heat-up - are identified. Furthermore, the SBO-01 test is reproduced by the MARS code calculation with the ATLAS model which represents the ATLAS test facility. The experimental and calculated transients are then compared and discussed. The comparison reveals there was malfunction of equipments: the SG leakage through SG MSSV and the measurement error of loop flow meter. As the ATLAS model is validated against the experimental results, it can be further employed to investigate the other possible SBO scenarios and to study the scaling distortions in the ATLAS. (authors)

  1. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect (OSTI)

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  2. Developing Fully Coupled Dynamical Reactor Core Isolation System Models in RELAP-7 for Extended Station Black-Out Analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau

    2014-04-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.

  3. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maljovec, D.; Liu, S.; Wang, B.; Mandelli, D.; Bremer, P. -T.; Pascucci, V.; Smith, C.

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more » where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.« less

  4. Conference Proceedings Available - The Smart Grid Experience: Applying

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results, Reaching Beyond | Department of Energy Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond March 23, 2015 - 10:55am Addthis In October 2014, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) held a conference to assess progress, impacts, benefits,

  5. Grid Modernization Multi-Year Program Plan (MYPP)

    Broader source: Energy.gov [DOE]

    Our extensive, reliable power grid has fueled the nation’s growth since the early 1900s. Access to electricity is such a fundamental enabler for the economy that the National Academy of Engineering named “electrification” the greatest engineering achievement of the 20th century. However, the grid we have today does not have the attributes necessary to meet the demands of the 21st century and beyond.

  6. Machine Learning for the Grid (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Machine Learning for the Grid Citation Details In-Document Search Title: Machine Learning for the Grid Authors: Deka, Deepjyoti [1] ; Backhaus, Scott N. [1] ; Chertkov, Michael [1] ; Lokhov, Andrey [1] ; Misra, Sidhant [1] ; Vuffray, Marc Denis [1] ; Dvijotham, Krishnamurthy [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2016-02-02 OSTI Identifier: 1237248 Report Number(s): LA-UR-16-20576 DOE Contract Number: AC52-06NA25396 Resource Type: Conference

  7. The Smart Grid Experience: Applying Results, Reaching Beyond - Summary of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Proceedings (December 2014) | Department of Energy Grid Experience: Applying Results, Reaching Beyond - Summary of Conference Proceedings (December 2014) The Smart Grid Experience: Applying Results, Reaching Beyond - Summary of Conference Proceedings (December 2014) In October 2014, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) held a conference to assess progress, impacts,

  8. 2012 Smart Grid Peer Review Presentations - Day 1 Morning Session |

    Energy Savers [EERE]

    Department of Energy Morning Session 2012 Smart Grid Peer Review Presentations - Day 1 Morning Session The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations from the Day 1 morning session are below. Moderator: Dan Ton, DOE PDF icon 2012 SG Peer Review - Smart Inverter Controls

  9. 2012 Smart Grid Peer Review Presentations - Day 2 Morning Session |

    Energy Savers [EERE]

    Department of Energy Morning Session 2012 Smart Grid Peer Review Presentations - Day 2 Morning Session The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations from Day 2 morning session are below. Moderator: Merrill Smith, DOE PDF icon 2012 SG Peer Review - Recovery Act: Pacific

  10. November 2014 PSERC Webinar: Transforming the Grid from the Distribution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Out | Department of Energy 2014 PSERC Webinar: Transforming the Grid from the Distribution System Out November 2014 PSERC Webinar: Transforming the Grid from the Distribution System Out October 13, 2014 - 5:57pm Addthis The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar presenting the challenges and opportunities associated with dynamic distribution system architecture. This new dynamic distribution system connects central and local

  11. Smart Grid RFI: Addressing Policy and Logistical Challenges

    Energy Savers [EERE]

    Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 Submitted electronically via smartgridpolicy@hq.doe.gov Smart Grid Request for Information: Addressing Policy and Logistical Challenges Comments of the Alliance to Save Energy The Alliance to Save Energy (the Alliance) thanks the Department of Energy for the opportunity to comment on broad issues of policy and logistical challenges faced in smart grid implementation. The Alliance to Save

  12. Increasing Reliability of the Nation's Power Grid through Greater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visibility | Department of Energy Increasing Reliability of the Nation's Power Grid through Greater Visibility Increasing Reliability of the Nation's Power Grid through Greater Visibility March 22, 2016 - 10:15am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability DOE's Deputy Under Secretary for Science and Energy Adam Cohen today announced new funding that will build on recent progress in giving system operators

  13. Addressing Policy and Logistical Challenges to Smart Grid Implementation:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments by the Office of the Ohio Consumers' Counsel | Department of Energy Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel The Office of the Ohio Consumers' Counsel ("OCC") hereby submits the following comments in response to the United States Department of Energy ("DOE") Request for Information

  14. Smart Grid Outreach and Communication Strategy: Next Steps - EAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations for the Department of Energy (October 17, 2012) | Department of Energy Outreach and Communication Strategy: Next Steps - EAC Recommendations for the Department of Energy (October 17, 2012) Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for the Department of Energy (October 17, 2012) Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for DOE Action, approved at the October 15-16, 2012 EAC Meeting. PDF icon Smart

  15. Reply comments to DOE Request for Information-Implementing the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Privacy Reply comments to DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy ...

  16. DOE Convenes Multi-stakeholder Process to Address Privacy for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by Smart Grid Technologies DOE Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by ...

  17. DOE Building Technologies Office seeks science and engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Building Technologies Office seeks science and engineering graduate students for 2016-2017 pilot program to research building to grid integration Deadline for applying is Nov. ...

  18. EAC Recommendations for DOE Action Regarding Development of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of the Next Generation Grid Operating System (Energy Management System) - October 17, 2012 EAC Recommendations for DOE Action Regarding Development of the Next...

  19. DOE RFI 2010-11129 NBP RFI: Communications Requirements Titled...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Silver Spring Networks comments on DOE NBP RFI: Comms Requirements

  20. FY06 DOE Energy Storage Program PEER Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 DOE Energy Storage PEER Review John D. Boyes Sandia National Laboratories Mission ... batteries and new sodium sulfur battery - Grid modeling including energy storage * Secy. ...

  1. Getting Smarter About the Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smarter About the Smart Grid Getting Smarter About the Smart Grid October 13, 2010 - 11:15am Addthis Scott Blake Harris Former General Counsel What does this mean for me? There is broad agreement that we need to educate consumers about the benefits of smart grid technologies -- and we're listening. Further issues need to be debated, including how consumers might authorize third-party access to their data. Our report sets forth several recommendations for how the Energy Department can continue to

  2. QER- Comment of GridWise Alliance 1

    Broader source: Energy.gov [DOE]

    Please find attached the GridWise Alliance's Improving Electric Grid Reliability and Resilience report and my comments from today's workshop. Thank to the QER Task Force and the DOE for engaging the stakeholders in your efforts to develop our Federal energy policy objectives. The GridWise Alliance stands ready to assist with this major undertaking. Our members represent the ecosystem of players that must come together to collaborate and participate in the development of innovative solutions to evolve from the system of today to the system of the future.

  3. Workshop Outline Resilient Electric Distribution Grid R&D

    Energy Savers [EERE]

    Ver: 6 June 2014 Workshop Outline Resilient Electric Distribution Grid R&D Office of Electricity Delivery and Energy Reliability (OE) U.S. Department of Energy (DOE) Purpose  To identify key R&D activities for enhancing resilience of electric distribution grids to natural disasters: - Share current practices by distribution utilities - Share ongoing activities on resilient electric distribution grid R&D - Define R&D gaps - Identify key R&D activities to fill the gaps

  4. Microsoft Word - Understanding Smart Grid Benefits_final.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding the Benefits of the Smart Grid June 18, 2010 DOE/NETL-2010/1413 NETL Smart Grid Implementation Strategy Understanding the Benefits of the Smart Grid v1.0 Page i DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,

  5. Smart Grid Investments Improve Grid reliability, Resilience and Storm Responses

    Energy Savers [EERE]

    November 2014 Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses Page ii Table of Contents Executive Summary ...................................................................................................................................... iii 1. Introduction .............................................................................................................................................. 1 2. Overview of the Featured SGIG Projects

  6. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  7. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  8. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Energy Savers [EERE]

    1 Smart Grid Savings and Grid Integration of Renewables in Idaho Idaho Power Company (IPC) serves more than 495,000 customers in southern Idaho and eastern Oregon. IPC is vertically-integrated and manages power generation, transmission, distribution, and demand-side resources. Faced with grid modernization challenges from new wind power capacity, rising summer peak demands, and aging electricity delivery infrastructure, IPC's Smart Grid Investment Grant (SGIG) project is multi-faceted and

  9. NREL: Distributed Grid Integration - Vehicle-to-Grid Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-to-Grid Project NREL engineers test and analyze electrical vehicle charging and discharging to the electric grid, known as Vehicle-to-Grid (V2G). Testing is conducted at NREL's Distributed Energy Resources Test Facility, where researchers connect, instrument, and test V2G platforms. NREL provides calibrated, high-resolution data acquisition, grid simulation, and 240 volt alternating current residential transformer connect-ability for real world analysis. NREL is currently working with

  10. Smart Grid Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system. Smart Grid radio 8 of 12 Smart Grid radio Field programmable gate array (FPGA) technologies to develop improved software-defined radios for the smart grid Smart...

  11. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter Electric Grid March 16, 2009 Office of Electricity Delivery and Energy Reliability ...

  12. Smart Grid Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Overview Smart Grid Overview Presentation-given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting-discusses the Smart Grid including the National ...

  13. SmartGrid Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartGrid Information SmartGrid Information Smart Grid Information This web page provides information and resources on several policy issues critical to the continued development ...

  14. GridZone | Open Energy Information

    Open Energy Info (EERE)

    search Name: GridZone Sector: Efficiency, Services, Transmission Technology: Smart Grid, Energy Storage, Energy Security ParentHolding Organization: GridZone Limited Company...

  15. Smart Grid Resources | Open Energy Information

    Open Energy Info (EERE)

    Grid Resources Jump to: navigation, search Us.jpg US Resources The Smart Grid: An Introduction US Department of Energy Smart Grid Information Clearinghouse EIA Smartgrid.gov...

  16. Grid Innovation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Innovation Chicago city lights at dusk Chicago city lights at dusk Dramatic changes are under way in grid technologies that will have huge impacts on the operation and...

  17. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  18. Grid Interaction Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  19. Easy Street (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  20. CET2001 Customer Led Network Revolution (Smart Grid Project)...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  1. Stockholm Royal seaport prestudy phase (Smart Grid Project) ...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  2. Enhanced INL Power Grid Test Bed Infrastructure – Phase I

    SciTech Connect (OSTI)

    Reid, Carol Ann; West, Grayson Shawn; McBride, Scott Alan

    2014-06-01

    Idaho National Laboratory (INL), a Department of Energy (DOE) laboratory, owns, operates, and maintains transmission and distribution power grid infrastructure to support the INL multi program mission. Sections of this power infrastructure, known as the INL Power Grid Test Bed, have been and are being used by government and industry to develop, demonstrate, and validate technologies for the modern grid, including smart grid, on a full scale utility test bed. INL’s power grid includes 61 miles of 140 MW, 138 kV rated electrical power transmission supplying seven main substations, each feeding a separate facility complex (or ‘city’) within the INL’s 890 square mile Site. This power grid is fed by three commercial utilities into the INL’s main control substation, but is operated independently from the commercial utility through its primary substation and command and control center. Within the INL complex, one of the seven complexes, the Critical Infrastructure Test Range Complex (CITRC), has been designated as the INL complex for supporting critical infrastructure research and testing. This complex includes its own substation and 13.8kV distribution network, all configurable and controlled by the INL research and development programs. Through investment partnership with the DOE Office of Electricity Delivery and Energy Reliability (DOE OE), INL is enhancing its existing distribution infrastructure to expand the types of testing that can be conducted and increase flexibility for testing configurations. The enhancement of the INL Power Grid Test Bed will enable development and full scale testing of smart-grid-related technologies and smart devices including testing interoperability, operational performance, reliability, and resiliency contribution at multiple distribution voltage classes, specifically 15kV, 25kV, and 35kV. The expected time frame for completion of the Phase I portion of the enhancement would be 4th quarter fiscal year (FY) 2015.

  3. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect (OSTI)

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  4. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges The GridWise Alliance ...

  5. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    SciTech Connect (OSTI)

    Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

  6. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  7. Providing Grid Flexibility in

    Energy Savers [EERE]

    Providing Grid Flexibility in Wyoming and Montana Introduction Powder River Energy Corporation (PRECorp) is an electric cooperative serving approximately 11,900 customers in a 16,200 square-mile area of rural Wyoming and Montana. PRECorp's customers frequently experience harsh weather conditions. Severe weather conditions in PRECorp's rural and remote service territory present unique challenges in providing reliable electric service to PRECorp's customers. PRECorp's customers include coal mining

  8. Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  9. Smart Grid | OpenEI Community

    Open Energy Info (EERE)

    all rely on it but what do you really know about our electricity grid? Tags: black out, brown out, bulk power system, electricity grid, future grid, grid history, security, Smart...

  10. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Smart Grid Rows of battery racks at the <a href="/node/657906">Salem Smart Power Center</a> in Salem, Oregon. The Battelle-led Pacific Northwest Smart Grid Demonstration Project, will use the center’s 5-megawatt energy storage system to test several smart grid technologies and approaches. | Photo courtesy of Portland General Electric. Rows of battery racks at the Salem Smart Power Center in Salem, Oregon. The Battelle-led Pacific Northwest Smart Grid

  11. Smart Grid System Report

    Office of Environmental Management (EM)

    ... calls, resulting in about 1.4 million fewer annual vehicle miles traveled (DOE 2013a). ... information and greater control over energy usage when coupled with residential customer ...

  12. Grid Conected Functionality

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... building research, and its unique laboratories focused on connected homes and neighborhoods Outcomes: NREL will support a DOE whitepaper, and prepare a market survey appendix to ...

  13. Conference Proceedings Available - The Smart Grid Experience...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond Conference Proceedings Available - The Smart Grid Experience: Applying Results, ...

  14. Comparison of MELCOR and SCDAP/RELAP5 results for a low-pressure, short-term station blackout at Browns Ferry

    SciTech Connect (OSTI)

    Carbajo, J.J. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    This study compares results obtained with two U.S. Nuclear Regulatory Commission (NRC)-sponsored codes, MELCOR version 1.8.3 (1.8PQ) and SCDAP/RELAP5 Mod3.1 release C, for the same transient - a low-pressure, short-term station blackout accident at the Browns Ferry nuclear plant. This work is part of MELCOR assessment activities to compare core damage progression calculations of MELCOR against SCDAP/RELAP5 since the two codes model core damage progression very differently.

  15. New Article on Cybersecurity Discusses DOE's Partnership with the Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector to Keep the Grid Reliable and Secure | Department of Energy Article on Cybersecurity Discusses DOE's Partnership with the Energy Sector to Keep the Grid Reliable and Secure New Article on Cybersecurity Discusses DOE's Partnership with the Energy Sector to Keep the Grid Reliable and Secure October 6, 2014 - 1:57pm Addthis A new article by OE's Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are

  16. Fact Sheet: Sodium-ion Battery for Grid-level Applications (August 2013) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ion Battery for Grid-level Applications (August 2013) Fact Sheet: Sodium-ion Battery for Grid-level Applications (August 2013) In June 2012, Aquion Energy, Inc. completed the testing and demonstration requirements for the DOE's program with its low-cost, grid-scale, ambient temperature Aqueous Hybird Ion (AHI) energy storage device. For more information about how OE performs research and development on a wide variety of storage technologies, including batteries,

  17. New York Independent System Operator, Smart Grid RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logistical Challenges. | Department of Energy York Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical Challenges. New York Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical Challenges. In response to the Department of Energy's (DOE) Request for Information regarding smart grid implementation listed in the September 17, 2010 Federal Register, the New York Independent System Operator, Inc. (NYISO) offers the attached white paper entitled

  18. Improving the Reliability and Resiliency of the US Electric Grid: SGIG

    Energy Savers [EERE]

    Article in Metering International, March 2012 | Department of Energy Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid Investment

  19. DOE HQE Enterprise Assessment March 9, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team DOE Grid Tech Team DOE Grid Tech Team Overview Access to reliable, cost-effective electricity is critical for economic growth and continued American prosperity. But our electric infrastructure is facing new stresses as a result of aging assets, environmental sustainability requirements, consumers adding energy back into the electric system, increasing global temperatures, extreme weather events, and growing cybersecurity concerns. We are moving towards a more digitized economy with a

  20. FY 2013 DOE Agency Financial Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Financial Reports » FY 2013 DOE Agency Financial Report FY 2013 DOE Agency Financial Report Notable accomplishments in FY 2013: Investments in energy transformation have resulted in testing of greenhouse gas storage, the first grid-connected offshore wind prototype, cost competitive advances in cellulosic ethanol, the first commercial geothermal system to deliver power to the electric grid, improved efficiency and cyber security for the electric grid, new appliance efficiency standards,

  1. DOE Science Education Initiative Announced Today | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report (Technical Report) | SciTech Connect DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate

  2. Comments of Avista Corporation on DOE Request for

    Energy Savers [EERE]

    Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy Avista Corporation on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of Avista Corporation on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data

  3. Comments of Verizon and Verizon Wireless on DOE Request for

    Energy Savers [EERE]

    Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy Wireless on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of Verizon and Verizon Wireless on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data

  4. The Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory September 2009 Office of Electricity Delivery and Energy Reliability Transmission Smart Grid Imperative 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  5. NREL: Transmission Grid Integration - Glossary of Transmission Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Terms Glossary of Transmission Grid Integration Terms The following glossary defines common transmission grid integration terms and concepts. Ancillary services Services that help grid operators maintain balance on electric power systems. These include regulation and the contingency reserves: spinning, non-spinning, and, in some regions, supplemental operating. Balancing authority area A metered segment of the electric power system in which electrical balance is maintained. In a

  6. Plugged grids: A new solution

    SciTech Connect (OSTI)

    Barron, M.F.

    1993-12-31

    Blocked Truck Dump Grids are a coal industry country-wide problem. It does not matter if you operate a western state multi-million ton per year mega-mine or one of the many 500 ton per hour eastern ones. Forcing oversize coal through the grizzly has been a labor intensive problem for both, causing: reduced production throughput because of increased downtime; unnecessary use of maintenance or operational personnel with usually expensive ancillary equipment; and introduction of a hazardous situation with a potential safety problem. Operators have developed numerous techniques to address the problem with varying degrees of success. During 1989, AMAX Coal and Gundlach Machinery personnel developed the concept of a semi-automatic, unmanned breaker which would traverse back and forth across the top of a grizzly, breaking up the oversize chunks of coal allowing them to fall through the grizzly openings. A small test unit was built in early 1990, and the technique successfully demonstrated. In March, 1991, the first commercial unit was installed on the 26 foot {times} 123 foot grizzly at AMAX Coal`s Eagle Butte Mine located north of Gillette, Wyoming, which processes LIP to 8,000 tons per hour of raw coal. After minor adjustments, the unit was put into operation in mid-April, 1991, and is performing two years later as planned.

  7. TASMANIAN Sparse Grids Module

    Energy Science and Technology Software Center (OSTI)

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  8. Grid Client Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Client Tools Grid Client Tools Using OSG and Globus client software You can either run the OSG/Globus client software directly on the NERSC systems via "modules" or by downloading it to your workstation. On your workstation: Download and install the OSG client software. Then run the following to setup your environment: % . $INSTALL_DIR/setup.sh or % source $INSTALL_DIR/setup.csh On NERSC Compute Systems: Use the module command to load the OSG or Globus toolkit. Where possible, you

  9. Adaptive Energy Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of a Flexible, Adaptive Energy Grid !"#$%"&%'&"&()*+%,-./-"(&*"0.-"+.-1&.,2-"+2$&01&!"#$%"&3.-,.-"+%.#4&"&5.67822$& 9"-+%#&3.(,"#14&:.-&+82&;#%+2$&!+"+2'&<2,"-+(2#+&.:&=#2-/1>'&?"+%.#"*&?)6*2"-& !26)-%+1&@$(%#%'+-"+%.#&)#$2-&6.#+-"6+&&

  10. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a transactive energy ecosystem requires new approaches to planning ... the bulk grid by providing ancillary services that support the integration of energy from ...

  11. Comments of National Grid to the Smart Grid RFI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Grid to the Smart Grid RFI Comments of National Grid to the Smart Grid RFI National Grid's Response to the Department of Energy Smart Grid RFI: Addressing Policy and Logistical Challenges of Smart Grid Implementation PDF icon National Grid's comments More Documents & Publications NBP RFI-Addressing Policy and Logistical Challenges to Smart Grid Implementation. September 10, 2009 Re: NBP RFI-Implementing the National Broadband Plan by Studying the Communications Requirements of

  12. Prepares Overset Grids for Processing

    Energy Science and Technology Software Center (OSTI)

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less

  13. Steam Line Break and Station Blackout Transients for Proliferation-Resistant Hexagonal Tight Lattice Boiling Water Reactor

    SciTech Connect (OSTI)

    Rohatgi, Upendra S. [Brookhaven National Laboratory (United States); Jo, Jae H. [Brookhaven National Laboratory (United States); Chung, Bub Dong [Brookhaven National Laboratory (United States); Takahashi, Hiroshi [Brookhaven National Laboratory (United States); Downar, Thomas J. [Purdue University (United States)

    2004-01-15

    Safety analyses of a proliferation-resistant, economically competitive, high-conversion boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems, are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core that therefore operates with a fast reactor neutron spectrum and a considerably improved neutron economy compared to the current generation of light water reactors. The tight lattice core has a very narrow flow channel with a hydraulic diameter less than half of the regular boiling water reactor (BWR) core and, thus, presents a special challenge to core cooling because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator-to-fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios.In the preliminary HCBWR design, the core is placed in a vessel with a large chimney section, and the vessel is connected to the isolation condenser system (ICS). The vessel is placed in containment with the gravity driven cooling system (GDCS) and passive containment cooling system (PCCS) in a configuration similar to General Electric's simplified BWR (SBWR). The safety systems are similar to those of the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump is placed in the downcomer to augment the buoyancy head provided by the chimney since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration results in much larger friction in the core than with the SBWR.The constitutive relationships for RELAP5 are assessed for narrow channels, and as a result the heat transfer package is modified. The modified RELAP5 is used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the station blackout and the main-steam-line-break events. The results of the analyses indicate that the HCBWR system will be safely brought to the shutdown condition for these transients.

  14. DOE Encourages Utility Sector Nominations to the Federal Communications Commission's Communications, Security, Reliability, and Interoperability Council

    Broader source: Energy.gov [DOE]

    Because of the role communications technologies will play in the evolution toward a smarter national grid, DOE recommended in its October 2010 report, The Communications Requirements of Smart Grid...

  15. Comments from Google Inc. on DOE Request for Information-Implementing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid: Data Access, Third Party Use, and Privacy Comments from Google Inc. on DOE Request ... Grid: Data Access, Third Party Use, and Privacy Google is pleased to offer these comments ...

  16. DOE Announces Awards for up to $11 Million for New Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Million for New Solar Energy Grid Integration Systems DOE Announces Awards for up to 11 Million for New Solar Energy Grid Integration Systems July 29, 2009 - 12:00am Addthis ...

  17. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  18. NREL: Wind Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Photoshop art created from two NREL-Image Gallery photos of sunset view of electrical power towers combined with wind machines. Photo Illustration by Raymond David / NREL At the National Wind Technology Center (NWTC), partners can study the interactions between wind power technologies and the utility grid to gain a greater understanding of how variable generation resources such as wind energy, impact the utility grid and how to increase the percentage of wind generation in our

  19. NREL: Distributed Grid Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a man in safety glasses working with laboratory equipment. NREL's distributed grid integration researchers conduct testing and evaluation at the one-of-a-kind Energy Systems Integration Facility. NREL researchers work on advanced approaches to grid interconnection and control technologies, energy management, and grid support applications by performing testing, data visualization, modeling and analysis, and developing standards and codes. Through these efforts, NREL helps

  20. NREL: Distributed Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of two men in safety glasses working with electric equipment in a laboratory. NREL's distributed grid integration projects develop and test technologies, systems, and methods to interconnect variable renewable energy with the electric power grid. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our

  1. Consumer to Grid (C2G) (Smart Grid Project) (Schwarzach, Austria...

    Open Energy Info (EERE)

    Consumer to Grid (C2G) (Smart Grid Project) (Schwarzach, Austria) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Schwarzach,...

  2. Consumer to Grid (C2G) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Consumer to Grid (C2G) (Smart Grid Project) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Salzburg, Austria Coordinates...

  3. Consumer to Grid (C2G) (Smart Grid Project) (Hallein, Austria...

    Open Energy Info (EERE)

    Consumer to Grid (C2G) (Smart Grid Project) (Hallein, Austria) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Hallein,...

  4. Technical and Economic Assessment of Off-grid, Mini-grid and...

    Open Energy Info (EERE)

    and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical and Economic Assessment of...

  5. Advanced Grid Integration (AGI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission » Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by

  6. Getting Our Grid Report Card

    Broader source: Energy.gov [DOE]

    Overwhelming turnout at peer reviews shows the growing recognition that a modern grid is integral to developing a clean energy economy.

  7. 2014 Modern Power Grid Video

    ScienceCinema (OSTI)

    None

    2014-07-22

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  8. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  9. Buildings to Grid Technical Meeting

    SciTech Connect (OSTI)

    none,

    2012-12-01

    A meeting book created for the Buildings to Grid Technical Meeting that includes speaker and attendee bios, as well as white papers and discussion questions.

  10. Electrolysis on an Island Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis on an Island Grid Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at ...

  11. Environmental Impact of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollutants * Evaluate impact from Smart Grid on reducing pollutants through: - Demand Response - Electric Vehicles - Demand Side Management - Renewables and Distributed Energy ...

  12. 2014 Modern Power Grid Video

    SciTech Connect (OSTI)

    2014-06-02

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  13. The Economics of Micro Grids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blink-less UPS Go Electric Energy Arbitrage Energy Optimization Peak shaving Demand Response & Aggregation FACILITIES UTILITIES 4 Micro Grid Economics: 2 Examples Go Electric ...

  14. National Grid | Open Energy Information

    Open Energy Info (EERE)

    MA Website: www.nationalgrid.com References: National Grid Website1 EIA Form 861 Data Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  15. Vehicle Technologies Office Merit Review 2015: EV- Smart Grid Research & Interoperability Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV - smart grid...

  16. The CIP Report, Vol.11, No. 2 (August 2012): Smart Grid Security

    Broader source: Energy.gov [DOE]

    The August 2012 issue of The CIP Report highlights the significance of and the challenges to securing the smart grid, with contributions from DOE's Hank Kenchington, Progress Energy, Schweitzer...

  17. Power Marketing Administrations Leading the Nation’s Transition to a 21st Century Electric Grid

    Broader source: Energy.gov [DOE]

    A team of experts from DOE and Western Area Power Administration is working to identify opportunities and develop strategies that will ensure the viability, sustainability and resiliency of our nation's power grid.

  18. A hyper-spherical adaptive sparse-grid method for high-dimensional...

    Office of Scientific and Technical Information (OSTI)

    Title: A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity ... This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ...

  19. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV-smart grid...

  20. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  1. The Open Science Grid

    SciTech Connect (OSTI)

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  2. Blackout Final Implementation Report

    Energy Savers [EERE]

    Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force Natural Resources Canada U.S. Department of Energy September 2006 Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force September 2006 Natural Resources Canada U.S. Department of Energy Acknowledgments This document was prepared by staff of Natural Resources Canada and the U.S. Department of Energy. The principal contributors

  3. Fluidic: Grid-Scale Batteries for Wind and Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar February 27, 2013 - 5:42pm Addthis Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. FLUIDIC: Metal Air Recharged from DOE ARPA-E on Vimeo. Our nation's modern electric grid is limited in its ability to store excess energy for on-demand power. As a result, electricity must be generated on a constant basis to perfectly match demand. Grid-scale storage technologies have the

  4. SmartGrid Consortium: Smart Grid Roadmap for the State of New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartGrid Consortium: Smart Grid Roadmap for the State of New York SmartGrid Consortium: Smart Grid Roadmap for the State of New York Throughout its history, New York State has ...

  5. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  6. Category:Smart Grid Projects - Electric Transmission Systems...

    Open Energy Info (EERE)

    Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project...

  7. BeAware (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  8. Recovery Act: Smart Grid Investment Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investment Grants Recovery Act: Smart Grid Investment Grants Smart Grid Investment Grant Awards Recipients by State Smart Grid Investment Grant Awards Recipients by State GRID ...

  9. Public Service Company of New Mexico Smart Grid Demonstration...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Stubs Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  10. Amber Kinetics, Inc. Smart Grid Demonstration Project | Open...

    Open Energy Info (EERE)

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  11. City of Painesville Smart Grid Demonstration Project | Open Energy...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Stubs Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  12. Data Exchange (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission...

  13. DG Demonetz Validierung (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution...

  14. Securing the Electricity Grid: Government and Industry Exercise...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Securing the Electricity Grid: Government and Industry Exercise Together at GridEx III Securing the Electricity Grid: Government and Industry Exercise Together at GridEx III ...

  15. Grid Integration Studies: Data Requirements, Greening the Grid

    SciTech Connect (OSTI)

    Katz, Jessica

    2015-06-01

    A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.

  16. Grid2Home | Open Energy Information

    Open Energy Info (EERE)

    Grid2Home Jump to: navigation, search Name: Grid2Home Place: Campbell, California Product: Smart grid company based in California. Coordinates: 33.14919, -95.951444 Show Map...

  17. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  18. GridOPTICS Software System

    Energy Science and Technology Software Center (OSTI)

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allowmore » power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.« less

  19. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    SciTech Connect (OSTI)

    Kropski, Ben; Pratt, Rob

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  20. Grid Integration of Offshore Windparks (Smart Grid Project) ...

    Open Energy Info (EERE)

    Jun 2011 References EU Smart Grid Projects Map1 Overview With the WCMS the scattered wind farms have been combined in to a cluster and the control room of the relevant network...

  1. Networks, smart grids: new model for synchronization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Networks, smart grids: new model for synchronization Networks, smart grids: new model for synchronization Researchers developed a surprisingly simple mathematical model that ...

  2. smart grid technologies | OpenEI Community

    Open Energy Info (EERE)

    and discussion of smart grid technologies, tools, and techniques. The Smart Grid Investment Grant (SGIG) program is authorized by the Energy Independence and Security Act of...

  3. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    Grid Generation, LLC Jump to: navigation, search Name: National Grid Generation, LLC Place: New York Service Territory: Massachusetts, New Hampshire, New York, Rhode Island Phone...

  4. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar ...

  5. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  6. Microsoft Word - Smart Grid Economic Impact Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... value of 2.96 billion to support Smart Grid projects ... Among Smart Grid vendors - an ecosystem of manufacturers, information technology and technical services providers - about ...

  7. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Energy Reliability Steve Pullins, Modern Grid Strategy Team Utility Field Services 2009 29 April 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T ...

  8. Sensing and Measurement Architecture for Grid Modernization ...

    Office of Scientific and Technical Information (OSTI)

    Sensing and Measurement Architecture for Grid Modernization Citation Details In-Document Search Title: Sensing and Measurement Architecture for Grid Modernization You are ...

  9. Vestas State Grid JV | Open Energy Information

    Open Energy Info (EERE)

    State Grid JV Jump to: navigation, search Name: Vestas & State Grid JV Place: Beijing, Beijing Municipality, China Sector: Wind energy Product: China-based JV to coordinate the...

  10. Smart Grid Investment Grant Recipient Information | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act SGIG Smart Grid Investment Grant Recipient Information Smart Grid Investment Grant Recipient Information BACKGROUND The Department of Energy's Office of Electricity ...

  11. Power Grid Optimization | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization and Reliability Protect the Power Grid Click to email this to a friend (Opens ... Optimization and Reliability Protect the Power Grid Using the power of software, machine ...

  12. Smarter Grid Solutions | Open Energy Information

    Open Energy Info (EERE)

    Smarter Grid Solutions Jump to: navigation, search Name: Smarter Grid Solutions Place: United Kingdom Product: String representation "The SGS technol ... the technology." is too...

  13. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  14. Waukesha Electric Systems Smart Grid Demonstration Project |...

    Open Energy Info (EERE)

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  15. The Green Grid | Open Energy Information

    Open Energy Info (EERE)

    Grid Jump to: navigation, search Name: The Green Grid Place: Oregon Zip: 97006 Sector: Efficiency Product: Oregan-based consortium that seeks to improve energy efficiency in data...

  16. Secure Smart Grid Association | Open Energy Information

    Open Energy Info (EERE)

    Smart Grid Association Jump to: navigation, search Name: Secure Smart Grid Association Address: 2374 S Josephine St Place: Denver, Colorado Zip: 80210 Region: Rockies Area Number...

  17. AMIS (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    map Period Jan 2005 - Jun 2012 References EU Smart Grid Projects Map1 Overview Automation of metering and customer processes, further automation of grid components, creation...

  18. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy How the Transition to 21st Century Grid Impacts You Smart Grid Week: How the Transition to 21st Century Grid Impacts You June 5, 2013 - 2:18pm Addthis Smart meter technology plays a key role in the U.S. Department of Energy Solar Decathlon competition. <a href="/node/300517">The Team Tidewater Virginia's smart meter</a>, as seen on opening day, indicates the team generated 5 kW hours of electricity in the first several hours of the competition. |

  19. Secure Interoperable Open Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Magee, Thoman

    2014-12-31

    The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

  20. Sandia Energy - Sandia, DOE Energy Storage Program, GeneSiCSemiconduc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors Home Infrastructure Security Energy Grid Integration Partnership...